1
|
Zhu J, Yan C, Wang J, Li H, Cheng P. Control of molecular aggregation structures towards flexible organic photovoltaics. MATERIALS HORIZONS 2025. [PMID: 40390683 DOI: 10.1039/d5mh00160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Flexible organic photovoltaics (OPVs) utilizing conjugated polymers have shown considerable promise in the field of wearable electronic devices. Although active-layer materials featuring extensive conjugated structures demonstrate good electron and optical properties, they often suffer from brittleness, which poses a significant challenge to the advancement of flexible OPVs. The aggregation structure of molecules within the active layer is pivotal in determining its mechanical properties, particularly its stretchability. Recently, researchers have employed a variety of strategies to manipulate the molecular aggregation structure within the active layer to enhance its tensile properties. This review first categorizes the aggregation structures of molecules across different scales, ranging from small to large (including molecular arrangement, chain entanglement, crystallization, phase separation, and semi-interpenetrating networks) and elucidates the mechanisms by which tensile performance can be improved. Subsequently, it summarizes the methodologies for regulating the molecular aggregation structures at various scales. Finally, the review discusses the ongoing development of flexible OPVs to provide valuable insights for researchers in the field.
Collapse
Affiliation(s)
- Jiayuan Zhu
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.
| | - Cenqi Yan
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.
| | - Jiayu Wang
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.
| | - Hongxiang Li
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.
| | - Pei Cheng
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Ding Y, Xiong S, Memon WA, Zhang D, Wang Z, Li M, Deng Z, Li H, Shao M, He F. High-Performance Intrinsically-Stretchable Organic Solar Cells Enabled by Electron Acceptors with Flexible Linkers. Angew Chem Int Ed Engl 2025; 64:e202421430. [PMID: 40012441 DOI: 10.1002/anie.202421430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Indexed: 02/28/2025]
Abstract
Intrinsically stretchable organic solar cells (IS-OSCs) are emerging as promising candidates for powering next-generation wearable electronics. However, developing molecular design strategies to achieve both high efficiency and mechanical robustness in IS-OSCs remains a significant challenge. In this work, we present a novel approach by synthesizing a dimerized electron acceptor (DY-FBrL) that enables rigid OSCs with a high power conversion efficiency (PCE) of 18.75 % and a crack-onset strain (COS) of 18.54 %. The enhanced PCE and stretchability of DY-FBrL-based devices are attributed to its extended π-conjugated backbone and elongated side chains. Furthermore, we introduce an innovative polymerized acceptor (PDY-FL), synthesized via the polymerization of DY-FBrL. While PDY-FL-based devices exhibit a slightly lower PCE of 14.13 %, they achieve a significantly higher COS of 23.45 %, representing one of the highest PCEs reported for polymerized acceptors containing only flexible linkers. Consequently, IS-OSCs fabricated using DY-FBrL and PDY-FL achieve notable PCEs of 14.31 % and 11.61 %, respectively. Additionally, the device stretchability improves progressively from Y6 (strain at PCE80%=11 %), to DY-FBrL (strain at PCE80%=23 %), and PDY-FL (strain at PCE80%=31 %). This study presents a promising molecular design strategy for tailoring electron acceptor structures, offering a new pathway to develop high-performance IS-OSCs with enhanced mechanical properties.
Collapse
Affiliation(s)
- Yafei Ding
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shilong Xiong
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Waqar Ali Memon
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Di Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhi Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingpeng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zihao Deng
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Heng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ming Shao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Wang H, Kou H, Pan J, Wang X, Liu D, Yang R. Design High-Performance Stretchable Light-Harvesting Polymers for Organic Solar Cells via Synergistic Effect of Flexible Alkyl Segment and Hydrogen Bond. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412767. [PMID: 39895192 DOI: 10.1002/smll.202412767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Indexed: 02/04/2025]
Abstract
Stretchable organic solar cells (SOSCs) have great application prospects to serve as energy supply systems, which can be fully incorporated with wearable electronic devices to achieve truly integrated systems that are fully stretchable and wearable. However, the stretchable polymer light-harvesting active layer has not been successfully developed, which limits the development of stretchable organic solar cells. In this regard, a series of stretchable light-harvesting donor and acceptor polymers are designed and synthesized by introducing amide units with flexible alkyl segments and hydrogen bonds as the third component into the PM6 and PY-IT based conjugated polymer backbones. Hydrogen bonds and flexible alkyl segments can dissipate tensile stress for high stretchability. In addition, hydrogen bonds can reduce the impact of flexible alkyl segments on intermolecular stacking, thus maintaining good photovoltaic performance. The obtained results suggest that the incorporation of amide units (5 mol% content) into the donor polymer can efficiently improve the stretchability without compromising the photovoltaic performance. This study provides an understanding of the impact of amide units on properties, offering another entry to the molecular design guidelines for high-performance stretchable light-harvesting polymers, developing high-performance stretchable organic solar cells, and further promoting the development of wearable electronic devices.
Collapse
Affiliation(s)
- Hongli Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Hongming Kou
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jiye Pan
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xunchang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, China
| | - Deyu Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, China
| |
Collapse
|
4
|
Lin C, Peng R, Song W, Gao J, Feng T, Bai Y, Liu Q, Yang M, Zhang J, Ge Z. Enhancing Mechanical Durability and Long-Term Stability in Organic Solar Cells via Flexible Linker-Sequential Block Copolymerized Donors. Angew Chem Int Ed Engl 2025; 64:e202420121. [PMID: 39610343 DOI: 10.1002/anie.202420121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
Multi-component copolymerized donors (MCDs) hold great promise for improving both the efficiency and mechanical robustness of flexible organic solar cells (f-OSCs) owing to their facile molecular tunability and advantageous one-pot copolymerization. However, despite the excellent crystallinity imparted by their highly conjugated polymer backbone, MCDs often struggle to retain photovoltaic performance under large external deformations, limiting their applicability in wearable devices. Herein, we developed a novel series of flexible linker-sequential block MCDs (Fs-MCDs), specifically PM6-Cl0.8-b-D18-Cl0.2-BTB, PM6-Cl0.8-b-D18-Cl0.2-BTH, and PM6-Cl0.8-b-D18-Cl0.2-BTD, by precisely incorporating flexible functional groups into the conjugated polymer skeleton. This design strategy introduced highly effective tensile active sites, resulting in remarkable mechanical durability, with PM6-Cl0.8-b-D18-Cl0.2-BTD achieving crack-onset strain (COS) values of 49.88 % in pristine films and 31.29 % in blends. The nearly 50 % COS in pristine films represents one of the highest values reported for Fs-MCD-based OSCs, marking a significant milestone in advancing f-OSC. Additionally, PM6-Cl0.8-b-D18-Cl0.2-BTD demonstrated excellent photovoltaic performance, with efficiencies of 18.09 % in rigid binary and 19.05 % in ternary, as well as 16.63 % in flexible OSCs. It also showed impressive device stability in invert OSC (T80=9,078 h). This unique molecular design strategy provides a promising avenue for synergistically improving the photovoltaic performance, mechanical properties, and device stability of f-OSCs.
Collapse
Affiliation(s)
- Congqi Lin
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ruixiang Peng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Wei Song
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jiangwei Gao
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Tingting Feng
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yongqi Bai
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Quan Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Mengjin Yang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jianfeng Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
5
|
Wang Z, Zhang D, Yang L, Allam O, Gao Y, Su Y, Xu M, Mo S, Wu Q, Wang Z, Liu J, He J, Li R, Jia X, Li Z, Yang L, Weber MD, Yu Y, Zhang X, Marks TJ, Stingelin N, Kacher J, Jang SS, Facchetti A, Shao M. Mechanically robust and stretchable organic solar cells plasticized by small-molecule acceptors. Science 2025; 387:381-387. [PMID: 39847644 DOI: 10.1126/science.adp9709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/09/2024] [Accepted: 12/12/2024] [Indexed: 01/25/2025]
Abstract
Emerging wearable devices would benefit from integrating ductile photovoltaic light-harvesting power sources. In this work, we report a small-molecule acceptor (SMA), also known as a non-fullerene acceptor (NFA), designed for stretchable organic solar cell (s-OSC) blends with large mechanical compliance and performance. Blends of the organosilane-functionalized SMA BTP-Si4 with the polymer donor PNTB6-Cl achieved a power conversion efficiency (PCE) of >16% and ultimate strain (εu) of >95%. Typical SMAs suppress OSC blend ductility, but the addition of BTP-Si4 enhances it. Although BTP-Si4 is less crystalline than other SMAs, it retains considerable electron mobility and is highly miscible with PNTB6-Cl and is essential for enhancing εu. Thus, s-OSCs with PCE > 14% and operating normally under various deformations (>80% PCE retention under an 80% strain) were demonstrated. Analysis of several SMA-polymer blends revealed general molecular structure-miscibility-stretchability relationships for designing ductile blends.
Collapse
Affiliation(s)
- Zhenye Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Di Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Lvpeng Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Omar Allam
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yerun Gao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Su
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Meichen Xu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Songmin Mo
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, China
| | - Qinghe Wu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, China
| | - Zhi Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Junfeng Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi He
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xingwang Jia
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilin Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Long Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Mark D Weber
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yu Yu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xinliang Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Tobin J Marks
- Department of Chemistry, Materials Research Center, Northwestern University, Evanston, IL, USA
- The Trienens Center for Sustainability and Energy, Northwestern University, Evanston, IL, USA
| | - Natalie Stingelin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Josh Kacher
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Seung Soon Jang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Antonio Facchetti
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Chemistry, Materials Research Center, Northwestern University, Evanston, IL, USA
- The Trienens Center for Sustainability and Energy, Northwestern University, Evanston, IL, USA
| | - Ming Shao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
He H, Li X, Zhang J, Chen Z, Gong Y, Zhuo H, Wu X, Li Y, Wang S, Bi Z, Song B, Zhou K, Liang T, Ma W, Lu G, Ye L, Meng L, Zhang B, Li Y, Li Y. Dynamic hydrogen-bonding enables high-performance and mechanically robust organic solar cells processed with non-halogenated solvent. Nat Commun 2025; 16:787. [PMID: 39824822 PMCID: PMC11748654 DOI: 10.1038/s41467-024-55375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025] Open
Abstract
Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.92% (certified 19.57%), which stands as the highest recorded value in binary OSCs processed by green solvents. Moreover, due to the additional hydrogen-bonding provided by ethyl ester side chain, the PM6:BTA-E3-based active-layer systems achieve enhanced stretchability and thermal stability. Our work reveals the significance of dynamic hydrogen-bonding in improving the photovoltaic performance, mechanical robustness, and morphological stability of OSCs.
Collapse
Affiliation(s)
- Haozhe He
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Jingyuan Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zekun Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yufei Gong
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongmei Zhuo
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangxi Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuechen Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, China
| | - Shijie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China
| | - Bohao Song
- Frontier Institute of Science and Technology, and State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China
| | - Kangkang Zhou
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, China
| | - Tongling Liang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, and State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, China
| | - Lei Meng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ben Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yongfang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China.
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Ding Y, He F. Molecular Design of Active Layer for High-Performance Stretchable Organic Solar Cells. Macromol Rapid Commun 2025; 46:e2400637. [PMID: 39340481 DOI: 10.1002/marc.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Stretchable organic solar cells (SOSCs) have advanced rapidly in the last few years as power sources required to realize portable and wearable electronics become available. Through rational material and device engineering, SOSCs are now able to retain their photovoltaic performance even when subjected to repeated mechanical deformations. However, reconciling a high efficiency and an excellent stretchability is still a huge challenge, and the development of SOSCs has lagged far behind that of flexible OSCs. In this perspective article, recent strategies for imparting mechanical robustness to SOSCs while maintaining high power conversion efficiency are reviewed, with emphasis on the molecular design of active layers. Initially, an overview of molecular design approaches and recent research advances is provided in improving the stretchability of active layers, including donors, acceptors, and single-component materials. Subsequently, another common strategy for regulating photovoltaic and mechanical properties of SOSCs, namely multi-component system, is summarized and analyzed. Lastly, considering that SOSCs research is in its infancy, the current challenges and future directions are pointed out.
Collapse
Affiliation(s)
- Yafei Ding
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
8
|
Ma J, Xu M, Zhuo Z, Wang K, Li Q, Li H, Feng Q, Chen W, Yu N, Li M, Xie L, Lin J. Plasticizer Design Principle of "Like Dissolves Like": Semiconductor Fluid Plasticized Stretchable Fully π-Conjugated Polymers Films for Uniform Large-Area and Flexible Deep-Blue Polymer Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411449. [PMID: 39543791 DOI: 10.1002/adma.202411449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Physical blending of fully π-conjugated polymers (FπCPs) is an effective strategy to achieve intrinsically stretchable films for the fabrication of flexible optoelectronic devices, but easily causes phase separation, nonuniform morphology and uncontrollable photo-electronic processing. This may cause low efficiency, unstable and nonuniform emission, and poor color purity, which are undesirable for deep-blue flexible polymer light-emitting diodes (FPLEDs). Herein, a "Like Dissolves Like" design principle to prepare semiconductor fluid plasticizers (SFPs) is established and intrinsically stretchable FπCPs films via external plasticization for high-performance deep-blue FPLEDs are developed. Three fundamental requirements are proposed, "similar conjugated skeleton, similar molecular polarity, and similar electronic structures," to prepare model-matched nonpolar M1 and polar M2 plasticizers for poly(9,9-dioctylfluorene) (PFO). Large-area plasticized PFO films exhibit an efficient, narrowband, and stable ultra-deep-blue electroluminescence (FWHM < 40 nm, CIE: 0.12, 0.04), uniform morphology, and excellent intrinsic stretchability (fracture strain >20% and crack-onset strain >120%). Efficient and uniform deep-blue FPLEDs based on stretchable PFO films are fabricated with a high brightness of ≈3000 cd cm-2. Finally, blended PFO films exhibit outstanding stretch-deformation cycling stability of their deep-blue electroluminescent behavior, confirming the effectiveness of the "Like Dissolves Like" principle to design matched SFPs for stretchable FπCP films in flexible electronics.
Collapse
Affiliation(s)
- Jingyao Ma
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhiqiang Zhuo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Kuande Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Qianyi Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Hao Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Quanyou Feng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wenyu Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ningning Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mengyuan Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
9
|
Feng X, Gao Y, Huang X, Wang J, Dong C, Yue G, Tan F, De Wolf S. Molecular Orientation Regulation of Hole Transport Semicrystalline-Polymer Enables High-Performance Carbon-Electrode Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403267. [PMID: 38982953 DOI: 10.1002/smll.202403267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Carbon-based perovskite solar cells (PSCs) coupled with solution-processed hole transport layers (HTLs) have shown potential owing to their combination of low cost and high performance. However, the commonly used poly(3-hexylthiophene) (P3HT) semicrystalline-polymer HTL dominantly shows edge-on molecular orientation, in which the alkyl side chains directly contact the perovskite layer, resulting in an electronically poor contact at the perovskite/P3HT interface. The study adopts a synergetic strategy comprising of additive and solvent engineering to transfer the edge-on molecular orientation of P3HT HTL into 3D molecular orientation. The target P3HT HTL possesses improved charge transport as well as enhanced moisture-repelling capability. Moreover, energy level alignment between target P3HT HTL and perovskite layer is realized. As a result, the champion devices with small (0.04 cm2) and larger areas (1 cm2) deliver notable efficiencies of 20.55% and 18.32%, respectively, which are among the highest efficiency of carbon-electrode PSCs.
Collapse
Affiliation(s)
- Xiang Feng
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng, 475004, P. R. China
| | - Yueyue Gao
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng, 475004, P. R. China
| | - Xiufang Huang
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng, 475004, P. R. China
| | - Jiantao Wang
- KAUST Solar Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Cheng Dong
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng, 475004, P. R. China
| | - Gentian Yue
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng, 475004, P. R. China
| | - Furui Tan
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng, 475004, P. R. China
| | - Stefaan De Wolf
- KAUST Solar Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
10
|
Wu X, Zheng X, Chen T, Zhang S, Zhou Y, Wang M, Chen T, Wang Y, Bi Z, Fu W, Du M, Ma W, Zuo L, Chen H. High-Performance Intrinsically Stretchable Organic Photovoltaics Enabled by Robust Silver Nanowires/S-PH1000 Hybrid Transparent Electrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406879. [PMID: 39177117 DOI: 10.1002/adma.202406879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/20/2024] [Indexed: 08/24/2024]
Abstract
Intrinsically stretchable organic photovoltaics (is-OPVs) hold significant promise for integration into self-powered wearable electronics. However, their potential is hindered by the lack of sufficient consistency between optoelectronic and mechanical properties. This is primarily due to the limited availability of stretchable transparent electrodes (STEs) that possess both high conductivity and stretchability. Here, a hybrid STE with exceptional conductivity, stretchability, and thermal stability is presented. Specifically, STEs are composed of the modified PH1000 (referred to as S-PH1000) and silver nanowires (AgNWs). The S-PH1000 endows the STE with good stretchability and smoothens the surface, while the AgNWs enhance the charge transport. The resulting hybrid STEs enable is-OPVs to a remarkable power conversion efficiency (PCE) of 16.32%, positioning them among the top-performing is-OPVs. With 10% elastomer, the devices retain 82% of the initial PCE after 500 cycles at 20% strain. Additionally, OPVs equipped with these STEs exhibit superior thermal stability compared to those using indium tin oxide electrodes, maintaining 75% of the initial PCE after annealing at 85 °C for 390 h. The findings underscore the suitability of the designed hybrid electrodes for efficient and stable is-OPVs, offering a promising avenue for the future application of OPVs.
Collapse
Affiliation(s)
- Xiaoling Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiangjun Zheng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tianyi Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Sen Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ying Zhou
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Mengting Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tingjun Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yiming Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - ZhaoZhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Weifei Fu
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Miao Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lijian Zuo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| |
Collapse
|
11
|
Song W, Ye Q, Chen Z, Ge J, Xie L, Ge Z. Advances in Stretchable Organic Photovoltaics: Flexible Transparent Electrodes and Deformable Active Layer Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311170. [PMID: 38813892 DOI: 10.1002/adma.202311170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Stretchable organic photovoltaics (OPVs) have attracted significant attention as promising power sources for wearable electronic systems owing to their superior robustness under repetitive tensile strains and their good compatibility. However, reconciling a high power-conversion efficiency and a reasonable flexibility is a tremendous challenge. In addition, the development of stretchable OPVs must be accelerated to satisfy the increasing requirements of niche markets for mechanical robustness. Stretchable OPV devices can be classified as either structurally or intrinsically stretchable. This work reviews recent advances in stretchable OPVs, including the design of mechanically robust transparent electrodes, photovoltaic materials, and devices. Initially, an overview of the characteristics and recent research progress in the areas of structurally and intrinsically stretchable OPVs is provided. Subsequently, research into flexible and stretchable transparent electrodes that directly affect the performances of stretchable OPVs is summarized and analyzed. Overall, this review aims to provide an in-depth understanding of the intrinsic properties of highly efficient and deformable active materials, while also emphasizing advanced strategies for simultaneously improving the photovoltaic performance and mechanical flexibility of the active layer, including material design, multi-component settings, and structural optimization.
Collapse
Affiliation(s)
- Wei Song
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinrui Ye
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenyu Chen
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfeng Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Xie
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziyi Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Tseng CC, Wang KC, Lin PS, Chang C, Yeh LL, Tung SH, Liu CL, Cheng YJ. Intrinsically Stretchable Organic Thermoelectric Polymers Enabled by Incorporating Fused-Ring Conjugated Breakers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401966. [PMID: 38733223 DOI: 10.1002/smll.202401966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Indexed: 05/13/2024]
Abstract
While research on organic thermoelectric polymers is making significant progress in recent years, realization of a single polymer material possessing both thermoelectric properties and stretchability for the next generation of self-powered wearable electronics is a challenging task and remains an area yet to be explored. A new molecular engineering concept of "conjugated breaker" is employed to impart stretchability to a highly crystalline diketopyrrolepyrrole (DPP)-based polymer. A hexacyclic diindenothieno[2,3-b]thiophene (DITT) unit, with two 4-octyloxyphenyl groups substituted at the tetrahedral sp3-carbon bridges, is selected to function as the conjugated breaker that can sterically hinder intermolecular packing to reduce polymers' crystallinity. A series of donor-acceptor random copolymers is thus developed via polymerizing the crystalline DPP units with the DITT conjugated breakers. By controlling the monomeric DPP/DITT ratios, DITT30 reaches the optimal balance of crystalline/amorphous regions, exhibiting an exceptional power factor (PF) value up to 12.5 µW m-1 K-2 after FeCl3-doping; while, simultaneously displaying the capability to withstand strains exceeding 100%. More significantly, the doped DITT30 film possesses excellent mechanical endurance, retaining 80% of its initial PF value after 200 cycles of stretching/releasing at a strain of 50%. This research marks a pioneering achievement in creating intrinsically stretchable polymers with exceptional thermoelectric properties.
Collapse
Affiliation(s)
- Chi-Chun Tseng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Kuang-Chieh Wang
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Po-Shen Lin
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chi Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Li-Lun Yeh
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center of Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yen-Ju Cheng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| |
Collapse
|
13
|
An NT, Vu Thi N, Trung NT. Profound importance of the conventional O-H⋯O hydrogen bond versus a considerable blue shift of the C sp2-H bond in complexes of substituted carbonyls and carboxyls. Phys Chem Chem Phys 2024; 26:22775-22789. [PMID: 39162235 DOI: 10.1039/d4cp00814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Using quantum chemical approaches, we investigated the conventional O-H⋯O and nonconventional Csp2-H⋯O hydrogen bonds between carboxylic acids and aldehydes in 21 stable complexes. The strength of complexes is determined by the conventional O-H⋯O bond together with the nonconventional Csp2-H⋯O hydrogen bond, in which the former one is 4-5 times as strong as the latter one. Proportional linear correlations of the interaction energy with both individual energies of the O-H⋯O and Csp2-H⋯O hydrogen bonds are proposed. Different impacts of electron-donating and electron-withdrawing groups in substituted formaldehyde and formic acid on characteristics of conventional and nonconventional hydrogen bonds, as well as the strength of both hydrogen bond types and complexes, are also evaluated. Following complexation, it is noteworthy that the largest blue shift of the Csp2-H stretching frequency in the Csp2-H⋯O bond up to 105.3 cm-1 in CH3CHO⋯FCOOH is due to a decisive role of the O-H⋯O hydrogen bond, which has been rarely reported in the literature. The obtained results show that the conventional O-H⋯O hydrogen bond plays a pivotal role in the significant blue shift of the Csp2-H stretching frequency in the nonconventional Csp2-H⋯O hydrogen bond. Remarkably, the considerable blue shift of the Csp2-H stretching frequency is found to be one H of C-H in formic acid substituted by the electron-withdrawing group and one H in formaldehyde substituted by the electron-donating group. In addition, the change in the Csp2-H stretching frequency following complexation is proportional to both changes of electron density in σ*(Csp2-H) and σ*(O-H) orbitals, in which a dominant role of σ*(O-H) versus σ*(Csp2-H) is observed.
Collapse
Affiliation(s)
- Nguyen Truong An
- Laboratory of Computational Chemistry and Modelling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong Street, Quy Nhon City 590000, Vietnam.
- Department of Computational Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 2155/3, 18223 Prague 8, Czech Republic
| | - Ngan Vu Thi
- Laboratory of Computational Chemistry and Modelling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong Street, Quy Nhon City 590000, Vietnam.
| | - Nguyen Tien Trung
- Laboratory of Computational Chemistry and Modelling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong Street, Quy Nhon City 590000, Vietnam.
| |
Collapse
|
14
|
Chen C, Wang L, Xia W, Qiu K, Guo C, Gan Z, Zhou J, Sun Y, Liu D, Li W, Wang T. Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20. Nat Commun 2024; 15:6865. [PMID: 39127750 PMCID: PMC11316771 DOI: 10.1038/s41467-024-51359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The nanoscale fibrillar morphology, featuring long-range structural order, provides abundant interfaces for efficient exciton dissociation and high-quality pathways for effective charge transport, is a promising morphology for high performance organic solar cells. Here, we synthesize a thiophene terminated non-fullerene acceptor, L8-ThCl, to induce the fibrillization of both polymer donor and host acceptor, that surpasses the 20% efficiency milestone of organic solar cells. After adding L8-ThCl, the original weak and less continuous nanofibrils of polymer donors, i.e. PM6 or D18, are well enlarged and refined, whilst the host acceptor L8-BO also assembles into nanofibrils with enhanced structural order. By adapting the layer-by-layer deposition method, the enhanced structural order can be retained to significantly boost the power conversion efficiency, with specific values of 19.4% and 20.1% for the PM6:L8-ThCl/L8-BO:L8-ThCl and D18:L8-ThCl/L8-BO:L8-ThCl devices, with the latter being certified 20.0%, which is the highest certified efficiency reported so far for single-junction organic solar cells.
Collapse
Affiliation(s)
- Chen Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Liang Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Weiyi Xia
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ke Qiu
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, 430070, China
| | - Chuanhang Guo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zirui Gan
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jing Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuandong Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Dan Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
15
|
Lin C, Peng R, Song W, Chen Z, Feng T, Sun D, Bai Y, Ge Z. Multi-component Copolymerized Donors enable Frozen Nano-morphology and Superior Ductility for Efficient Binary Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202407040. [PMID: 38761056 DOI: 10.1002/anie.202407040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/20/2024]
Abstract
Multi-component copolymerized donors (MCDs) have gained significant interest and have been rapidly developed in flexible organic solar cells (f-OSCs) in recent years. However, ensuring the power conversion efficiency (PCE) of f-OSCs while retaining ideal mechanical properties remains an enormous challenge. The fracture strain (FS) value of typical high-efficiency blend films is generally less than 8 %, which is far from the application standards of wearable photovoltaic devices. Therefore, we developed a series of novel MCDs after meticulous molecular design. Among them, the consistent MCD backbone and end-capped functional group formed a highly conjugated molecular plane, and the solubilization and mechanical properties were effectively optimized by modifying the proportion of solubilized alkyl chains. Consequently, due to the formation of entangled structures with a frozen blend film morphology considerably improved the high ductility of the active layer, P10.8/P20.2-TCl exhibited efficient PCE in rigid (18.53 %) and flexible (17.03 %) OSCs, along with excellent FS values (16.59 %) in pristine films, meanwhile, the outstanding FS values of 25.18 % and 12.3 % were achieved by P10.6/P20.4-TCl -based pristine and blend films, respectively, which were one of the highest records achieved by end-capped MCD-based binary OSCs, demonstrating promising application to synchronize the realization of high-efficiency and mechanically ductile flexible OSCs.
Collapse
Affiliation(s)
- Congqi Lin
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Faculty of Materials and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Ruixiang Peng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Wei Song
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Zhenyu Chen
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Tingting Feng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Faculty of Materials and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Dinghong Sun
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Faculty of Materials and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Yongqi Bai
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
16
|
Wang J, Ochiai Y, Wu N, Adachi K, Inoue D, Hashizume D, Kong D, Matsuhisa N, Yokota T, Wu Q, Ma W, Sun L, Xiong S, Du B, Wang W, Shih CJ, Tajima K, Aida T, Fukuda K, Someya T. Intrinsically stretchable organic photovoltaics by redistributing strain to PEDOT:PSS with enhanced stretchability and interfacial adhesion. Nat Commun 2024; 15:4902. [PMID: 38851770 PMCID: PMC11162488 DOI: 10.1038/s41467-024-49352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/02/2024] [Indexed: 06/10/2024] Open
Abstract
Intrinsically stretchable organic photovoltaics have emerged as a prominent candidate for the next-generation wearable power generators regarding their structural design flexibility, omnidirectional stretchability, and in-plane deformability. However, formulating strategies to fabricate intrinsically stretchable organic photovoltaics that exhibit mechanical robustness under both repetitive strain cycles and high tensile strains remains challenging. Herein, we demonstrate high-performance intrinsically stretchable organic photovoltaics with an initial power conversion efficiency of 14.2%, exceptional stretchability (80% of the initial power conversion efficiency maintained at 52% tensile strain), and cyclic mechanical durability (95% of the initial power conversion efficiency retained after 100 strain cycles at 10%). The stretchability is primarily realised by delocalising and redistributing the strain in the active layer to a highly stretchable PEDOT:PSS electrode developed with a straightforward incorporation of ION E, which simultaneously enhances the stretchability of PEDOT:PSS itself and meanwhile reinforces the interfacial adhesion with the polyurethane substrate. Both enhancements are pivotal factors ensuring the excellent mechanical durability of the PEDOT:PSS electrode, which further effectively delays the crack initiation and propagation in the top active layer, and enables the limited performance degradation under high tensile strains and repetitive strain cycles.
Collapse
Affiliation(s)
- Jiachen Wang
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Yuto Ochiai
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan
| | - Niannian Wu
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan
- Department of Chemistry and Biotechnology, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Kiyohiro Adachi
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan
| | - Daishi Inoue
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan
| | - Desheng Kong
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210046, China
| | - Naoji Matsuhisa
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8505, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, 113-8656, Japan
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Qiang Wu
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lulu Sun
- Thin-Film Device Laboratory, RIKEN, Saitama, 351-0198, Japan
| | - Sixing Xiong
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan
| | - Baocai Du
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan
| | - Wenqing Wang
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Keisuke Tajima
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan
| | - Takuzo Aida
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan
- Department of Chemistry and Biotechnology, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Kenjiro Fukuda
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, Saitama, 351-0198, Japan.
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, 113-8656, Japan.
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, Saitama, 351-0198, Japan.
| |
Collapse
|
17
|
Ding Y, Memon WA, Zhang D, Zhu Y, Xiong S, Wang Z, Liu J, Li H, Lai H, Shao M, He F. Dimerized Acceptors with Conjugate-Break Linker Enable Highly Efficient and Mechanically Robust Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202403139. [PMID: 38530206 DOI: 10.1002/anie.202403139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Designing new acceptors is critical for intrinsically stretchable organic solar cells (IS-OSCs) with high efficiency and mechanical robustness. However, nearly all stretchable polymer acceptors exhibit limited efficiency and high-performance small molecular acceptors are very brittle. In this regard, we select thienylene-alkane-thienylene (TAT) as the conjugate-break linker and synthesize four dimerized acceptors by the regulation of connecting sites and halogen substitutions. It is found that the connecting sites and halogen substitutions considerably impact the overall electronic structures, aggregation behaviors, and charge transport properties. Benefiting from the optimization of the molecular structure, the dimerized acceptor exhibits rational phase separation within the blend films, which significantly facilitates exciton dissociation while effectively suppressing charge recombination processes. Consequently, FDY-m-TAT-based rigid OSCs render the highest power conversion efficiency (PCE) of 18.07 % among reported acceptors containing conjugate-break linker. Most importantly, FDY-m-TAT-based IS-OSCs achieve high PCE (14.29 %) and remarkable stretchability (crack-onset strain [COS]=18.23 %), significantly surpassing Y6-based counterpart (PCE=12.80 % and COS=8.50 %). To sum up, these findings demonstrate that dimerized acceptors containing conjugate-break linkers have immense potential in developing highly efficient and mechanically robust OSCs.
Collapse
Affiliation(s)
- Yafei Ding
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Waqar Ali Memon
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Di Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwu Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shilong Xiong
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhi Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junfeng Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Heng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ming Shao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
18
|
Lee JW, Park JS, Jeon H, Lee S, Jeong D, Lee C, Kim YH, Kim BJ. Recent progress and prospects of dimer and multimer acceptors for efficient and stable polymer solar cells. Chem Soc Rev 2024; 53:4674-4706. [PMID: 38529583 DOI: 10.1039/d3cs00895a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
High power conversion efficiency (PCE) and long-term stability are essential prerequisites for the commercialization of polymer solar cells (PSCs). Small-molecule acceptors (SMAs) are core materials that have led to recent, rapid increases in the PCEs of the PSCs. However, a critical limitation of the resulting PSCs is their poor long-term stability. Blend morphology degradation from rapid diffusion of SMAs with low glass transition temperatures (Tgs) is considered the main cause of the poor long-term stability of the PSCs. The recent emergence of oligomerized SMAs (OSMAs), composed of two or more repeating SMA units (i.e., dimerized and trimerized SMAs), has shown great promise in overcoming these challenges. This innovation in material design has enabled OSMA-based PSCs to reach impressive PCEs near 19% and exceptional long-term stability. In this review, we summarize the evolution of OSMAs, including their research background and recent progress in molecular design. In particular, we discuss the mechanisms for high PCE and stability of OSMA-based PSCs and suggest useful design guidelines for high-performance OSMAs. Furthermore, we reflect on the existing hurdles and future directions for OSMA materials towards achieving commercially viable PSCs with high PCEs and operational stabilities.
Collapse
Affiliation(s)
- Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Jin Su Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Hyesu Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Seungjin Lee
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Dahyun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Changyeon Lee
- School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yun-Hi Kim
- Department of Chemistry and RINS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
19
|
He J, Zhang D, Liu J, Yang L, Gao Y, Shao M. Polymerized-Small-Molecule Acceptors Featuring Siloxane-Terminated Side Chains for Mechanically Robust All-Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22294-22302. [PMID: 38634660 DOI: 10.1021/acsami.4c03679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Flexible and stretchable organic solar cells (OSCs) show great promise in wearable and stretchable electronic applications. However, current high-performance OSCs consisting of polymer donors (PDs) and small-molecule acceptors (SMAs) face significant challenges in achieving both high power conversion efficiency (PCE) and excellent stretch-ability. In this study, we synthesized a new polymerized-small-molecule acceptor (P-SMA) PY-SiO featuring siloxane-terminated side chains and compared its photovoltaic and mechanical performance to that of the reference PY-EH with ethylhexyl-terminated side chains. We found that the incorporation of siloxane-terminated side chains in PY-SiO enhanced the molecular aggregation and charge transport, leading to an optimized film morphology. The resultant of all-polymer solar cells (all-PSCs) based on PBDB-T/PY-SiO showed a higher PCE of 12.04% than the PY-EH-based one (10.85%). Furthermore, the siloxane-terminated side chains also increased the interchain distance and provided a larger free volume for chain rotation and reconfiguration, resulting in a higher film crack-onset strain (COS: 18.32% for PBDB-T/PY-SiO vs 11.15% for PBDB-T/PY-EH). Additionally, the PY-SiO-based stretchable all-PSCs exhibited an impressive PCE of 9.8% and retained >70% of its original PCE even under a substantial 20% strain, exceeding the performance of the PY-EH-based stretchable all-PSCs. Our result suggests the great potential of the siloxane-terminated side chain for achieving high-performance and stretchable OSCs.
Collapse
Affiliation(s)
- Jiayi He
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Di Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junfeng Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lvpeng Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yerun Gao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ming Shao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
20
|
Wang Z, Chen Z, Zhang Z, Wang H, Zhang H. Highly-ordered assembled organic fluorescent materials for high-resolution bio-sensing: a review. Biomater Sci 2024; 12:2019-2032. [PMID: 38469672 DOI: 10.1039/d3bm02070c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Organic fluorescent materials (OFMs) play a crucial role in the development of biosensors, enabling the extraction of biochemical information within cells and organisms, extending to the human body. Concurrently, OFM biosensors contribute significantly to the progress of modern medical and biological research. However, the practical applications of OFM biosensors face challenges, including issues related to low resolution, dispersivity, and stability. To overcome these challenges, scientists have introduced interactive elements to enhance the order of OFMs. Highly-ordered assembled OFMs represent a novel material type applied to biosensors. In comparison to conventional fluorescent materials, highly-ordered assembled OFMs typically exhibit robust anti-diffusion properties, high imaging contrast, and excellent stability. This approach has emerged as a promising method for effectively tracking bio-signals, particularly in the non-invasive monitoring of chronic diseases. This review introduces several highly-ordered assembled OFMs used in biosensors and also discusses various interactions that are responsible for their assembly, such as hydrogen bonding, π-π interaction, dipole-dipole interaction, and ion electrostatic interaction. Furthermore, it delves into the various applications of these biosensors while addressing the drawbacks that currently limit their commercial application. This review aims to provide a theoretical foundation for designing high-performance, highly-ordered assembled OFM biosensors suitable for practical applications. Additionally, it sheds light on the evolving trends in OFM biosensors and their application fields, offering valuable insights into the future of this dynamic research area.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Zilong Chen
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Zhenhao Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Hongzhen Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Haichang Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| |
Collapse
|
21
|
Ding P, Yang D, Yang S, Ge Z. Stability of organic solar cells: toward commercial applications. Chem Soc Rev 2024; 53:2350-2387. [PMID: 38268469 DOI: 10.1039/d3cs00492a] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Organic solar cells (OSCs) have attracted a great deal of attention in the field of clean solar energy due to their advantages of transparency, flexibility, low cost and light weight. Introducing them to the market enables seamless integration into buildings and windows, while also supporting wearable, portable electronics and internet-of-things (IoT) devices. With the development of photovoltaic materials and the optimization of fabrication technology, the power conversion efficiencies (PCEs) of OSCs have rapidly improved and now exceed 20%. However, there is a significant lack of focus on material stability and device lifetime, causing a severe hindrance to commercial applications. In this review, we carefully review important strategies employed to improve the stability of OSCs over the past three years from the perspectives of material design and device engineering. Furthermore, we analyze and discuss the current important progress in terms of air, light, thermal and mechanical stability. Finally, we propose the future research directions to overcome the challenges in achieving highly stable OSCs. We expect that this review will contribute to solving the stability problem of OSCs, eventually paving the way for commercial applications in the near future.
Collapse
Affiliation(s)
- Pengfei Ding
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daobin Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuncheng Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Ziyi Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Li S, Gao M, Zhou K, Li X, Xian K, Zhao W, Chen Y, He C, Ye L. Achieving Record-High Stretchability and Mechanical Stability in Organic Photovoltaic Blends with a Dilute-absorber Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307278. [PMID: 37865872 DOI: 10.1002/adma.202307278] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/13/2023] [Indexed: 10/23/2023]
Abstract
Organic solar cells (OSCs) have potential for applications in wearable electronics. Except for high power conversion efficiency (PCE), excellent tensile properties and mechanical stability are required for achieving high-performance wearable OSCs, while the present metrics barely meet the stretchable requirements. Herein, this work proposes a facile and low-cost strategy for constructing intrinsically stretchable OSCs by introducing a readily accessible polymer elastomer as a diluent for all-polymer photovoltaic blends. Remarkably, record-high stretchability with a fracture strain of up to 1000% and mechanical stability with elastic recovery >90% under cyclic tensile tests are realized in the OSCs active layers for the first time. Specifically, the tensile properties of best-performing all-polymer photovoltaic blends are increased by up to 250 times after blending. Previously unattainable performance metrics (fracture strain >50% and PCE >10%) are achieved simultaneously for the resulting photovoltaic films. Furthermore, an overall evaluation parameter y is proposed for the efficiency-cost- stretchability balance of photovoltaic blend films. The y value of dilute-absorber system is two orders of magnitude greater than those of prior state-of-the-art systems. Additionally, intrinsically stretchable devices are prepared to showcase the mechanical stability. Overall, this work offers a new avenue for constructing and comprehensively evaluating intrinsically stretchable organic electronic films.
Collapse
Affiliation(s)
- Saimeng Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Mengyuan Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Kangkang Zhou
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Xin Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Kaihu Xian
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Wenchao Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yu Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyong He
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
23
|
Wan Q, Thompson BC. Control of Properties through Hydrogen Bonding Interactions in Conjugated Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305356. [PMID: 37946703 PMCID: PMC10885672 DOI: 10.1002/advs.202305356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Molecular design is crucial for endowing conjugated polymers (CPs) with unique properties and enhanced electronic performance. Introducing Hydrogen-bonding (H-bonding) into CPs has been a broadly exploited, yet still emerging strategy capable of tuning a range of properties encompassing solubility, crystallinity, electronic properties, solid-state morphology, and stability, as well as mechanical properties and self-healing properties. Different H-bonding groups can be utilized to tailor CPs properties based on the applications of interest. This review provides an overview of classes of H-bonding CPs (assorted by the different H-bond functional groups), the synthetic methods to introduce the corresponding H-bond functional groups and the impact of H-bonding in CPs on corresponding electronic and materials properties. Recent advances in addressing the trade-off between electronic performance and mechanical durability are also highlighted. Furthermore, insights into future directions and prospects for H-bonded CPs are discussed.
Collapse
Affiliation(s)
- Qingpei Wan
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, 90089-1661, USA
| | - Barry C Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, 90089-1661, USA
| |
Collapse
|
24
|
Wen L, Mao H, Zhang L, Zhang J, Qin Z, Tan L, Chen Y. Achieving Desired Pseudo-Planar Heterojunction Organic Solar Cells via Binary-Dilution Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308159. [PMID: 37831921 DOI: 10.1002/adma.202308159] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Indexed: 10/15/2023]
Abstract
The sequential deposition process has demonstrated the great possibility to achieve a photolayer architecture with an ideal gradient phase separation morphology, which has a vital influence on the physical processes that determine the performance of organic solar cells (OSCs). However, the controllable preparation of pseudo-planar heterojunction (P-PHJ) with gradient distribution has not been effectively elucidated. Herein, a binary-dilution strategy is proposed, the PM6 solution with micro acceptor BO-4Cl and the L8-BO solution with micro donor PM6 respectively, to form P-PHJ film. This architecture exists good donor (D) and acceptor (A) vertical gradient distribution and larger D/A interpenetrating regions, which promotes exciton generation and dissociation, shortens charge transport distance and optimizes carrier dynamics. Moreover, the dilution of PM6 by BO-4Cl promotes the regulation of active layer aggregation size and phase purity, thus alleviating energy disorder and voltage loss. As a result, the P-PHJ device exhibits an outstanding power conversion efficiency of 19.32% with an excellent short-circuit current density of 26.92 mA cm-2 , much higher than planar binary heterojunction (17.67%) and ternary bulk heterojunction (18.49%) devices. This research proves a simple but effective method to provide an avenue for constructing desirable active layer morphology and high-performance OSCs.
Collapse
Affiliation(s)
- Lin Wen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Houdong Mao
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Lifu Zhang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Jiayou Zhang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Zhao Qin
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Licheng Tan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| |
Collapse
|
25
|
Zheng X, Wu X, Wu Q, Han Y, Ding G, Wang Y, Kong Y, Chen T, Wang M, Zhang Y, Xue J, Fu W, Luo Q, Ma C, Ma W, Zuo L, Shi M, Chen H. Thorough Optimization for Intrinsically Stretchable Organic Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307280. [PMID: 38100730 DOI: 10.1002/adma.202307280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/27/2023] [Indexed: 12/17/2023]
Abstract
The development of intrinsically stretchable organic photovoltaics (is-OPVs) with a high efficiency is of significance for practical application. However, their efficiencies lag far behind those of rigid or even flexible counterparts. To address this issue, an advanced top-illuminated OPV is designed and fabricated, which is intrinsically stretchable and has a high performance, through systematic optimizations from material to device. First, the stretchability of the active layer is largely increased by adding a low-elastic-modulus elastomer of styrene-ethylene-propylene-styrene tri-block copolymer (SEPS). Second, the stretchability and conductivity of the opaque electrode are enhanced by a conductive polymer/metal (denoted as M-PH1000@Ag) composite electrode strategy. Third, the optical and electrical properties of a sliver nanowire transparent electrode are improved by a solvent vapor annealing strategy. High-performance is-OPVs are successfully fabricated with a top-illuminated structure, which provides a record-high efficiency of 16.23%. Additionally, by incorporating 5-10% elastomer, a balance between the efficiency and stretchability of the is-OPVs is achieved. This study provides valuable insights into material and device optimizations for high-efficiency is-OPVs, with a low-cost production and excellent stretchability, which indicates a high potential for future applications of OPVs.
Collapse
Affiliation(s)
- Xiangjun Zheng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiaoling Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qiang Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yunfei Han
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Guanyu Ding
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yiming Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yibo Kong
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tianyi Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Mengting Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yiqing Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Weifei Fu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310014, P. R. China
| | - Qun Luo
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Changqi Ma
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lijian Zuo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310014, P. R. China
| | - Minmin Shi
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310014, P. R. China
| |
Collapse
|
26
|
Ye Q, Chen Z, Yang D, Song W, Zhu J, Yang S, Ge J, Chen F, Ge Z. Ductile Oligomeric Acceptor-Modified Flexible Organic Solar Cells Show Excellent Mechanical Robustness and Near 18% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305562. [PMID: 37606278 DOI: 10.1002/adma.202305562] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/26/2023] [Indexed: 08/23/2023]
Abstract
High power conversion efficiency (PCE) and mechanical robustness are key requirements for wearable applications of organic solar cells (OSCs). However, almost all highly efficient photoactive films comprising polymer donors (PD ) and small molecule acceptors (SMAs) are mechanically brittle. In this study, highly efficient (PCE = 17.91%) and mechanically robust (crack-onset strain [COS] = 11.7%) flexible OSCs are fabricated by incorporating a ductile oligomeric acceptor (DOA) into the PD :SMA system, representing the most flexible OSCs to date. The photophysical, mechanical, and photovoltaic properties of D18:N3 with different DOAs are characterized. By introducing DOA DOY-C4 with a longer flexible alkyl linker and lower polymerization, the D18:N3:DOY-C4-based flexible OSCs exhibit a significantly higher PCE (17.91%) and 50% higher COS (11.7%) than the D18:N3-based device (PCE = 17.06%, COS = 7.8%). The flexible OSCs based on D18:N3:DOY-C4 retain 98% of the initial PCE after 2000 consecutive bending cycles, showing greater mechanical stability than the reference device (maintaining 89% of initial PCE). After careful investigation, it is hypothesized that the enhancement in mechanical properties is mainly due to the formation of tie chains or entanglement in the ternary blend films. These results demonstrate that DOAs have great potential for achieving high-performance flexible OSCs.
Collapse
Affiliation(s)
- Qinrui Ye
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenyu Chen
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daobin Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Song
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jintao Zhu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Shuncheng Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jinfeng Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Chen
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Ziyi Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Zhao Y, Chen N, Deng B, Wu L, Wang S, Grandidier B, Proust J, Plain J, Xu T. Plasmonic-Enhanced Tunable Near-Infrared Photoresponse for Narrowband Organic Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49436-49446. [PMID: 37821424 DOI: 10.1021/acsami.3c11753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Near-infrared (NIR) narrowband organic photodetectors (OPDs) can be essential building blocks for emerging applications including wireless optical communication and light detection, but further improvement of their performances remains to be a great challenge. Herein, a light manipulation strategy combining solution-processable gold nanorings (AuNRs)-based hole transporting layer (HTL) and an optical microcavity is proposed to achieve high-performance NIR narrowband OPDs. Optical microcavities with a Fabry-Pérot resonator structure, guided by theoretical simulation, are coupled with PM6:BTP-eC9-based OPDs to exhibit highly tunable NIR selectivity. The further integration of AuNRs array with NIR-customized localized surface plasmon resonance in the HTL of the NIR narrowband OPDs enables evident NIR absorption enhancement, yielding a specific detectivity exceeding 1013 Jones (1.5 × 1012 Jones, calculated from noise spectral density) at 820 nm, along with a finely selective photoresponse (full width at half-maximum of 80 nm) and a 3-fold increase in photocurrent intensity. Finally, the practical application of our OPDs is demonstrated in an NIR communication system. These results reveal the great potential of an appropriate optical design for developing highly performing NIR narrowband OPDs.
Collapse
Affiliation(s)
- Yanglin Zhao
- Sino-European School of Technology, Shanghai University, 200444 Shanghai, China
| | - Nan Chen
- Sino-European School of Technology, Shanghai University, 200444 Shanghai, China
| | - Baozhong Deng
- Sino-European School of Technology, Shanghai University, 200444 Shanghai, China
| | - Lifang Wu
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Shenghao Wang
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Bruno Grandidier
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520─IEMN, 59000 Lille, France
| | - Julien Proust
- Light, Nanomaterials, Nanotechnologies (L2n), CNRS ERL 7004, University of Technology of Troyes, F-10004 Troyes, France
| | - Jérôme Plain
- Light, Nanomaterials, Nanotechnologies (L2n), CNRS ERL 7004, University of Technology of Troyes, F-10004 Troyes, France
| | - Tao Xu
- Sino-European School of Technology, Shanghai University, 200444 Shanghai, China
| |
Collapse
|
28
|
Song W, Ye Q, Yang S, Xie L, Meng Y, Chen Z, Gu Q, Yang D, Shi J, Ge Z. Ultra Robust and Highly Efficient Flexible Organic Solar Cells with Over 18 % Efficiency Realized by Incorporating a Linker Dimerized Acceptor. Angew Chem Int Ed Engl 2023; 62:e202310034. [PMID: 37612732 DOI: 10.1002/anie.202310034] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
The wearable application of flexible organic solar cells (f-OSCs) necessitates high power conversion efficiency (PCE) and mechanical robustness. However, photoactive films based on efficient non-fullerene small molecule acceptors (NF-SMAs) are typically brittle, leading to poor mechanical stability in devices. In this study, we achieved a remarkable PCE of 18.06 % in f-OSCs while maintaining ultrahigh mechanical robustness (with a crack-onset strain (COS) of higher than 11 %) by incorporating a linker dimerized acceptor (DOY-TVT). Compared to binary blends, ternary systems exhibit reduced non-radiative recombination, suppressed crystallization and diffusion of NF-SMAs, and improved load distribution across the chain networks, enabling the dissipation of the load energy. Thus, the ternary f-OSCs developed in this study achieved, high PCE and stability, surpassing binary OSCs. Moreover, the developed f-OSCs retained 97 % of the initial PCE even after 3000 bending cycles, indicating excellent mechanical stability (9.1 % higher than binary systems). Furthermore, the rigid device with inverted structure based on the optimal active layer exhibited a substantial increase in efficiency retention, with 89.6 % after 865 h at 85 °C and 93 % after more than 1300 h of shelf storage at 25 °C. These findings highlight the potential of the linker oligomer acceptor for realizing high-performing f-OSCs with ultrahigh mechanical robustness.
Collapse
Affiliation(s)
- Wei Song
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Qinrui Ye
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Shuncheng Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Lin Xie
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Yuanyuan Meng
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Zhenyu Chen
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Qun Gu
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Daobin Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Jingyu Shi
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Ziyi Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| |
Collapse
|
29
|
Seo S, Lee JW, Kim DJ, Lee D, Phan TNL, Park J, Tan Z, Cho S, Kim TS, Kim BJ. Poly(dimethylsiloxane)-block-PM6 Polymer Donors for High-Performance and Mechanically Robust Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300230. [PMID: 36929364 DOI: 10.1002/adma.202300230] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/07/2023] [Indexed: 06/16/2023]
Abstract
High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack-onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6-b-PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6-b-PDMS19k :L8-BO PSC exhibits a high PCE (18%) and 9-times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8-BO-based PSC. However, the PM6:L8-BO:PDMS12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6-b-PDMS19k :L8-BO blend exhibits significantly greater mechanical stability PCE80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8-BO blend (PCE80% at 12% strain) and the PM6:L8-BO:PDMS ternary blend (PCE80% at 4% strain). This study suggests an effective design strategy of BCP PD to achieve stretchable and efficient PSCs.
Collapse
Affiliation(s)
- Soodeok Seo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Jun Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dongchan Lee
- Department of Physics and EHSRC, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Tan Ngoc-Lan Phan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jinseok Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Zhengping Tan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shinuk Cho
- Department of Physics and EHSRC, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
30
|
Wan Q, Seo S, Lee SW, Lee J, Jeon H, Kim TS, Kim BJ, Thompson BC. High-Performance Intrinsically Stretchable Polymer Solar Cell with Record Efficiency and Stretchability Enabled by Thymine-Functionalized Terpolymer. J Am Chem Soc 2023. [PMID: 37220423 DOI: 10.1021/jacs.3c02764] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Designing new polymer semiconductors for intrinsically stretchable polymer solar cells (IS-PSCs) with high power conversion efficiency (PCE) and durability is critical for wearable electronics applications. Nearly all high-performance PSCs are constructed using fully conjugated polymer donors (PD) and small-molecule acceptors (SMA). However, a successful molecular design of PDs for high-performance and mechanically durable IS-PSCs without sacrificing conjugation has not been realized. In this study, we design a novel thymine side chain terminated 6,7-difluoro-quinoxaline (Q-Thy) monomer and synthesize a series of fully conjugated PDs (PM7-Thy5, PM7-Thy10, PM7-Thy20) featuring Q-Thy. The Q-Thy units capable of inducing dimerizable hydrogen bonding enable strong intermolecular PD assembly and highly efficient and mechanically robust PSCs. The PM7-Thy10:SMA blend demonstrates a combination of high PCE (>17%) in rigid devices and excellent stretchability (crack-onset value >13.5%). More importantly, PM7-Thy10-based IS-PSCs show an unprecedented combination of PCE (13.7%) and ultrahigh mechanical durability (maintaining 80% of initial PCE after 43% strain), illustrating the promising potential for commercialization in wearable applications.
Collapse
Affiliation(s)
- Qingpei Wan
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Soodeok Seo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sun-Woo Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinho Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyesu Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Barry C Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
31
|
Fan B, Gao W, Zhang R, Kaminsky W, Lin FR, Xia X, Fan Q, Li Y, An Y, Wu Y, Liu M, Lu X, Li WJ, Yip HL, Gao F, Jen AKY. Correlation of Local Isomerization Induced Lateral and Terminal Torsions with Performance and Stability of Organic Photovoltaics. J Am Chem Soc 2023; 145:5909-5919. [PMID: 36877211 DOI: 10.1021/jacs.2c13247] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Organic photovoltaics (OPVs) have achieved great progress in recent years due to delicately designed non-fullerene acceptors (NFAs). Compared with tailoring of the aromatic heterocycles on the NFA backbone, the incorporation of conjugated side-groups is a cost-effective way to improve the photoelectrical properties of NFAs. However, the modifications of side-groups also need to consider their effects on device stability since the molecular planarity changes induced by side-groups are related to the NFA aggregation and the evolution of the blend morphology under stresses. Herein, a new class of NFAs with local-isomerized conjugated side-groups are developed and the impact of local isomerization on their geometries and device performance/stability are systematically investigated. The device based on one of the isomers with balanced side- and terminal-group torsion angles can deliver an impressive power conversion efficiency (PCE) of 18.5%, with a low energy loss (0.528 V) and an excellent photo- and thermal stability. A similar approach can also be applied to another polymer donor to achieve an even higher PCE of 18.8%, which is among the highest efficiencies obtained for binary OPVs. This work demonstrates the effectiveness of applying local isomerization to fine-tune the side-group steric effect and non-covalent interactions between side-group and backbone, therefore improving both photovoltaic performance and stability of fused ring NFA-based OPVs.
Collapse
Affiliation(s)
- Baobing Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Wei Gao
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Rui Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Francis R Lin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Xinxin Xia
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yanxun Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yidan An
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yue Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Ming Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, China
| | - Wen Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
32
|
Du B, Fukuda K, Yokota T, Inoue D, Hashizume D, Xiong S, Lee S, Takakuwa M, Sun L, Wang J, Someya T. Surface-Energy-Mediated Interfacial Adhesion for Mechanically Robust Ultraflexible Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36896972 DOI: 10.1021/acsami.3c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Insufficient interfacial adhesion is a widespread problem across multilayered devices that undermines their reliability. In flexible organic photovoltaics (OPVs), poor interfacial adhesion can accelerate degradation and failure under mechanical deformations due to the intrinsic brittleness and mismatching mechanical properties between functional layers. We introduce an argon plasma treatment for OPV devices, which yields 58% strengthening in interfacial adhesion between an active layer and a MoOX hole transport layer, thus contributing to mechanical reliability. The improved adhesion is attributed to the increased surface energy of the active layer that occurred after the mild argon plasma treatment. The mechanically stabilized interface retards the flexible device degradation induced by mechanical stress and maintains a power conversion efficiency of 94.8% after 10,000 cycles of bending with a radius of 2.5 mm. In addition, a fabricated 3 μm thick ultraflexible OPV device shows excellent mechanical robustness, retaining 91.0% of the initial efficiency after 1000 compressing-stretching cycles with a 40% compression ratio. The developed ultraflexible OPV devices can operate stably at the maximum power point under continuous 1 sun illumination for 500 min with an 89.3% efficiency retention. Overall, we validate a simple interfacial linking strategy for efficient and mechanically robust flexible and ultraflexible OPVs.
Collapse
Affiliation(s)
- Baocai Du
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kenjiro Fukuda
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daishi Inoue
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Sixing Xiong
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinyoung Lee
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masahito Takakuwa
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jiachen Wang
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
33
|
Xiao C, Wang X, Zhong T, Zhou R, Zheng X, Liu Y, Hu T, Luo Y, Sun F, Xiao B, Liu Z, Yang C, Yang R. Hybrid Cycloalkyl-Alkyl Chain-Based Symmetric/Asymmetric Acceptors with Optimized Crystal Packing and Interfacial Exciton Properties for Efficient Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206580. [PMID: 36592412 PMCID: PMC9982590 DOI: 10.1002/advs.202206580] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Hybrid cycloalkyl-alkyl side chains are considered a unique composite side-chain system for the construction of novel organic semiconductor materials. However, there is a lack of fundamental understanding of the variations in the single-crystal structures as well as the optoelectronic and energetic properties generated by the introduction of hybrid side chains in electron acceptors. Herein, symmetric/asymmetric acceptors (Y-C10ch and A-C10ch) bearing bilateral and unilateral 10-cyclohexyldecyl are designed, synthesized, and compared with the symmetric acceptor 2,2'-((2Z,2'Z)-((12,13-bis(2-butyloctyl)-3,9 bis(ethylhexyl)-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″':4',5']thieno[2',3':4,5] pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10- diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (L8-BO). The stepwise introduction of 10-cyclohexyldecyl side chains decreases the optical bandgap, deepens the energy level, and enables the acceptor molecules to pack closely in a regular manner. Crystallographic analysis demonstrates that the 10-cyclohexyldecyl chain endows the acceptor with a more planar skeleton and enforces more compact 3D network packing, resulting in an active layer with higher domain purity. Moreover, the 10-cyclohexyldecyl chain affects the donor/acceptor interfacial energetics and accelerates exciton dissociation, enabling a power conversion efficiency (PCE) of >18% in the 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (Y6) (PM6):A-C10ch-based organic solar cells (OSCs). Importantly, the incorporation of Y-C10ch as the third component of the PM6:L8-BO blend results in a higher PCE of 19.1%. The superior molecular packing behavior of the 10-cyclohexyldecyl side chain is highlighted here for the fabrication of high-performance OSCs.
Collapse
Affiliation(s)
- Cong Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials and TechnologyJianghan UniversityWuhan430056China
| | - Xunchang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials and TechnologyJianghan UniversityWuhan430056China
- State Key Laboratory of Fine BlastingJianghan UniversityWuhan430056China
| | - Tian Zhong
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials and TechnologyJianghan UniversityWuhan430056China
| | - Ruixue Zhou
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials and TechnologyJianghan UniversityWuhan430056China
| | - Xufan Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials and TechnologyJianghan UniversityWuhan430056China
| | - Yirui Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials and TechnologyJianghan UniversityWuhan430056China
| | - Tianyu Hu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials and TechnologyJianghan UniversityWuhan430056China
| | - Yixuan Luo
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy MaterialsWuhan Institute of TechnologyWuhan430205China
| | - Fengbo Sun
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy MaterialsWuhan Institute of TechnologyWuhan430205China
| | - Biao Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials and TechnologyJianghan UniversityWuhan430056China
| | - Zhitian Liu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy MaterialsWuhan Institute of TechnologyWuhan430205China
| | - Chunming Yang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials and TechnologyJianghan UniversityWuhan430056China
| |
Collapse
|
34
|
Liao YJ, Hsieh YC, Chen JT, Yang LS, Jian XZ, Lin SH, Lin YR, Chen LM, Li F, Hsiao YT, Liao CY, Chang YM, Huang YY, Tsao CS, Horng SF, Chao YC, Meng HF. Large-Area Nonfullerene Organic Photovoltaic Modules with a High Certified Power Conversion Efficiency. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7911-7918. [PMID: 36719898 DOI: 10.1021/acsami.2c17418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Achieving large-area organic photovoltaic (OPV) modules with reasonable cost and performance is an important step toward commercialization. In this work, solution-processed conventional and inverted OPV modules with an area of 216 cm2 were fabricated by the blade coating method. Film uniformity was controlled by adjusting the fabrication parameters of the blade coating procedure. The influence of the concentration of the solutions of the interfacial materials on OPV module performance was investigated. For OPV modules based on the PM6:Y6 photoactive layer, a certificated power conversion efficiency (PCE) of 9.10% was achieved for the conventional OPV modules based on the TASiW-12 interfacial layer while a certificated PCE of 11.27% was achieved for the inverted OPV modules based on the polyethylenimine (PEI) interfacial layer. As for OPV modules based on a commercially available photoactive layer, PV-X Plus, a PCE of 8.52% was achieved in the inverted OPV modules. A halogen-free solvent, o-xylene, was used as the solvent for PV-X Plus, which makes the industrial production much more environmentally friendly.
Collapse
Affiliation(s)
- Yan-Jia Liao
- Institute of Electronic Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yu-Chao Hsieh
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jui-Tso Chen
- Institute of Electronic Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Lan-Sheng Yang
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| | - Xin-Zhe Jian
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Shih-Hung Lin
- Institute of Electronic Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yi-Ru Lin
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Li-Min Chen
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Fenghong Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, PR China
| | - Yu-Tang Hsiao
- Raynergy Tek Incorporation, Hsinchu Science Park, Hsinchu 30844, Taiwan
| | - Chuang-Yi Liao
- Raynergy Tek Incorporation, Hsinchu Science Park, Hsinchu 30844, Taiwan
| | - Yi-Ming Chang
- Raynergy Tek Incorporation, Hsinchu Science Park, Hsinchu 30844, Taiwan
| | - Yu-Yu Huang
- Taiwan Agricultural Research Institute, Wufeng, Taichung City 413008, Taiwan
| | - Cheng-Si Tsao
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Institute of Nuclear Energy Research, Longtan, Taoyuan 32546, Taiwan
| | - Sheng-Fu Horng
- Institute of Electronic Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yu-Chiang Chao
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| | - Hsin-Fei Meng
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
35
|
Chen J, Wang Z, Deng Z, Chen L, Wu X, Gao Y, Hu Y, Li M, Wang H. Hydrogen bonding-induced high-performance stretchable organic semiconductors: a Review. Front Chem 2023; 11:1200644. [PMID: 37153530 PMCID: PMC10160365 DOI: 10.3389/fchem.2023.1200644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Semiconductors are widely used in electron devices. With the development of wearable soft-electron devices, conventional inorganic semiconductors are unable to meet the demand because of their high rigidity and high cost. Thus, scientists construct organic semiconductors with high charge mobility, low cost, eco-friendly, stretchable, etc. Due to the excellent performance of stretchable organic semiconductors, they can be widely used as wearable soft-electron devices, such as stretchable organic field-effect transistors (OFETs), organic solar cells (OSCs), etc. Contains flexible display devices and flexible power sources, which are of great interest for applications of future electron devices. However, there are still some challenges that need to be solved. Commonly, enhancing the stretchability may cause the degradation of charge mobility, because of the destruction of the conjugated system. Currently, scientists find that hydrogen bonding can enhance the stretchability of organic semiconductors with high charge mobility. Thus in this review, based on the structure and design strategies of hydrogen bonding, various hydrogen bonding induced stretchable organic semiconductors are introduced. In addition, the applications of the hydrogen bonding induced stretchable organic semiconductors are reviewed. Finally, the stretchable organic semiconductors design concept and potential evolution trends are discussed. The final goal is to outline a theoretical scaffold for the design of high-performance wearable soft-electron devices, which can also further advance the development of stretchable organic semiconductors for applications.
Collapse
Affiliation(s)
- Jinhan Chen
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology (SNUT), Hanzhong, Shaanxi, China
| | - Zheng Wang
- Key Laboratory of Rubber–Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Zhifeng Deng
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology (SNUT), Hanzhong, Shaanxi, China
- *Correspondence: Zhifeng Deng, ; Hongzhen Wang,
| | - Ligui Chen
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology (SNUT), Hanzhong, Shaanxi, China
| | - Xuhui Wu
- Key Laboratory of Rubber–Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yihan Gao
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology (SNUT), Hanzhong, Shaanxi, China
| | - Yumeng Hu
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology (SNUT), Hanzhong, Shaanxi, China
| | - Mei Li
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology (SNUT), Hanzhong, Shaanxi, China
| | - Hongzhen Wang
- Key Laboratory of Rubber–Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
- *Correspondence: Zhifeng Deng, ; Hongzhen Wang,
| |
Collapse
|
36
|
Phan TNL, Lee JW, Oh ES, Lee S, Lee C, Kim TS, Li S, Kim BJ. Efficient and Nonhalogenated Solvent-Processed Organic Solar Cells Enabled by Conjugated Donor-Acceptor Block Copolymers Containing the Same Benzodithiophene Unit. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57070-57081. [PMID: 36515660 DOI: 10.1021/acsami.2c16908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organic solar cells (OSCs) based on conjugated block copolymers (CBCs) have gained considerable attention owing to their simple one-pot solution process. However, their power conversion efficiencies (PCEs) require significant improvement. Furthermore, the majority of efficient CBC-based OSCs are processed using environmentally toxic halogenated solvents. Herein, we develop a new CBC (PBDB-T-b-PY5BDT) and demonstrate efficient and stable OSCs achieved by a halogen-free solution process. We design a (D1-A1)-b-(D1-A2)-type CBC (PBDB-T-b-PY5BDT) that shares the same benzodithiophene (BDT) units in donor and acceptor blocks. This alleviates unfavorable molecular interactions between the blocks at their interfaces. The PBDB-T-b-PY5BDT-based devices exhibit a high PCE (10.55%), and they show good mechanical, thermal, and storage stabilities. Importantly, we discuss the potential of our OSCs by preparing two different control systems: one based on a binary polymer blend (PBDB-T:PY5BDT) and another based on a conjugated random copolymer (CRC, PBDB-T-r-PY5BDT). We demonstrate that the photovoltaic performance, device stability, and mechanical robustness of the CBC-based OSCs exceed those of the binary all-polymer solar cells and CRC-based OSCs.
Collapse
Affiliation(s)
- Tan Ngoc-Lan Phan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eun Sung Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Changyeon Lee
- School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
37
|
Xie Q, Cui Y, Chen Z, Zhang M, Liu C, Zhu H, Liu F, Brabec CJ, Liao X, Chen Y. Achieving efficient and stabilized organic solar cells by precisely controlling the proportion of copolymerized units in electron-rich polymers. NANOSCALE 2022; 14:17714-17724. [PMID: 36420579 DOI: 10.1039/d2nr03992c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A series of random polymers based on the donor polymer PM6 were designed from the perspective of regulating the surface electrostatic potential (ESP) distribution of the polymers and applied in organic solar cells (OSCs). Random polymers with different ESPs were obtained by introducing structural units of polymer PM6 into the polymer structure as the third unit. The simulation results showed that the random polymers feature a wider electron-donating region after the introduction of BDT units, indicating a more efficient charge generation probability. Benefiting from the optimized morphology of the active layer and the stronger interaction between the donor and the acceptor in the active layer, the device exhibited the best charge transport efficiency and lower charge recombination after the introduction of 5% BDT units, and a high power conversion efficiency (PCE) of 16.76% was achieved. In addition, OSC devices based on random polymers incorporating 5% BDT units exhibit excellent device stability. In contrast, the devices based on random polymers after the introduction of BDD units showed a much lower PCE of around 13% due to the inferior charge generation and charge transport. This work not only provides a new perspective for the molecular design of efficient random polymers, but also demonstrates that the OSC devices based on random polymers can still achieve better stability.
Collapse
Affiliation(s)
- Qian Xie
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China.
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Faculty of Engineering, Department of Material Science, Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058 Erlangen, Germany
| | - Yongjie Cui
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China.
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Zeng Chen
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Chao Liu
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Faculty of Engineering, Department of Material Science, Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058 Erlangen, Germany
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Christoph J Brabec
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Faculty of Engineering, Department of Material Science, Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058 Erlangen, Germany
| | - Xunfan Liao
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China.
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China.
| |
Collapse
|