1
|
Wu X, Ni S, Wang CH, Zhu W, Chou PT. Comprehensive Review on the Structural Diversity and Versatility of Multi-Resonance Fluorescence Emitters: Advance, Challenges, and Prospects toward OLEDs. Chem Rev 2025. [PMID: 40344420 DOI: 10.1021/acs.chemrev.5c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Fluorescence emitters with a multiple-resonant (MR) effect have become a research hotspot. These MR emitters mainly consist of polycyclic aromatic hydrocarbons with boron/nitrogen, nitrogen/carbonyl, and indolocarbazole frameworks. The staggered arrangement of the highest occupied molecular orbital and the lowest unoccupied molecular orbital facilitates MR, resulting in smaller internal reorganization energy and a narrower emission bandwidth. Optimal charge separation suppresses the energy gap between singlet and triplet excited states, favoring thermally activated delayed fluorescence (TADF). These MR-TADF materials, due to color purity and high emission efficiency, are excellent candidates for organic light-emitting diodes. Nevertheless, significant challenges remain; in particular, the limitation imposed by the alternated core configuration hinders their diversity and versatility. Most existing MR-TADF materials are concentrated in the blue-green range, with only a few in red and near-infrared spectra. This review provides a timely and comprehensive screening of MR emitters from their pioneering work to the present. Our goal is to gain understandings of the MR-TADF structure-performance relationship from both basic and advanced perspectives. Special emphasis is placed on exploring the correlations between chemical structure, photophysical properties and electroluminescent performance in both depth and breadth with an aim to promote the future development of MR emitters.
Collapse
Affiliation(s)
- Xiugang Wu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Songqian Ni
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Chih-Hsing Wang
- National Taiwan University, Department of Chemistry, Taipei 10617, Taiwan
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Pi-Tai Chou
- National Taiwan University, Department of Chemistry, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Ni HX, Yuan L, Zheng YX. Recent Advances in Concentration Quenching-Resistant Multiresonance Thermally Activated Delayed Fluorescence Emitters. Chemphyschem 2025:e2500201. [PMID: 40323099 DOI: 10.1002/cphc.202500201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 05/04/2025] [Indexed: 05/29/2025]
Abstract
The research on multiresonance thermally activated delayed fluorescence (MR-TADF) emitters has garnered increasing attention due to the exceptional photophysical properties of their corresponding organic light-emitting diodes (OLEDs), such as high efficiency and narrow emission features. However, they still face intractable issues like concentration-induced emission quenching, exciton annihilation, and spectral broadening. This review focuses on a sophisticated molecular design strategy named "sterically wrapping of MR fluorophores" to tackle the aforementioned problems. Bulky substituents isolate the MR emission core, thereby significantly reducing intermolecular interactions. Therefore, with these MR-TADF emitters, the OLEDs are capable of maintaining narrow emission bands while achieving high external quantum efficiencies across a wide concentration range from 1 to 20 wt% and even at higher concentrations. This article reviews the latest advancements in MR-TADF emitters with suppressed concentration quenching and spectral broadening, emphasizing their chemical structures, optoelectronic properties, and device performances. Finally, the potential challenges and future perspectives of MR-TADF materials are analyzed to better comprehend the potential of efficient narrowband OLEDs.
Collapse
Affiliation(s)
- Hua-Xiu Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Li Yuan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
3
|
Yan HY, Zhou DY, Ge SJ, Yu YJ, Yuan HT, Liu RH, Yang YJ, Wang Y, Liao LS, Jiang ZQ. Engineering Nitrogen/Carbonyl MR-TADF Emitters: Spiro-Lock and Tert-Butyl Synergy in Narrowband Blue Emission. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2502915. [PMID: 40159798 DOI: 10.1002/smll.202502915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters with rigid planar structures are promising for their exceptional color purity and outstanding device efficiency. However, as an important MR unit, rigidly interlocked nitrogen/carbonyl-based blue materials often face challenges like spectral broadening, red-shifting, and reduced efficiency compared to nitrogen/boron system. Herein, a peripheral modification strategy incorporating tert-butyl groups via a spiro-lock framework is used to synthesize four molecules: QAO-TF, TQAO-TF, TQAO-F, and TSOQ. The spiro-lock structure solidifies the molecular framework, narrows the emission bandwidth, and elevates the photoluminescence quantum yield to over 96%. Meanwhile, the peripheral tert-butyl groups introduce steric hindrance, isolating the luminescent core and suppressing intermolecular interactions in the solid state, thereby improving device efficiency while maintaining narrowband emission. Notably, TQAO-F shows an electroluminescence peak at 476 nm with a 25 nm full width at half maximum (FWHM) and an external quantum efficiency (EQE) of 31.7%. TSOQ, with its oxygen-induced charge effect, achieves narrowband pure blue emission with an FWHM of 20 nm, surpassing 30% EQE without sensitizers. This overall performance suggests its potential to rival the classic nitrogen/boron system.
Collapse
Affiliation(s)
- Hong-Yan Yan
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Dong-Ying Zhou
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shi-Jie Ge
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - You-Jun Yu
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Hai-Tian Yuan
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Rui-Hong Liu
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yue-Jian Yang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yu Wang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang-Sheng Liao
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau, 999078, P. R. China
| | - Zuo-Quan Jiang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
4
|
Guo L, Cui W, Li L, Pu Y, Wang K, Zheng P, Wang Y, Li C. Synergetic Multiple Charge-Transfer Excited States for Anti-Quenching and Rapid Spin-Flip Multi-Resonance Thermally Activated Delayed Fluorescence Emitter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500269. [PMID: 40156257 DOI: 10.1002/adma.202500269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/07/2025] [Indexed: 04/01/2025]
Abstract
The development of multiple resonances thermally activated delayed fluorescence (MR-TADF) emitters exhibiting high efficiency, narrowband emission, rapid reverse intersystem crossing rate (kRISC), and suppressed concentration quenching simultaneously is of great significance yet a formidable challenge. Herein, an effective strategy is presented to realize the above target by synergizing multiple charge-transfer excited states, including short-range charge transfer (SRCT), through-bond charge transfer (TBCT), and through-space charge transfer (TSCT). The proof-of-concept emitter 4tCz2B exhibits a bright green emission with a narrow full width at half maximum (FWHM) of 21 nm (0.10 eV) in solution, high photoluminescence quantum yield of 97%, fast kRISC of 7.8 × 105 s-1 and significantly suppressed concentration quenching in film state. As a result, the sensitizer-free organic light-emitting diodes (OLEDs) achieve maximum external quantum efficiencies (EQEmaxS) of over 34.5% together with an unaltered emission peak at 508 nm and FWHM of 26 nm at doping concentrations ranging from 3 to 20 wt.%. Even at a doping ratio of 50 wt.%, EQEmax is still as high as 25.5%. More importantly, the non-sensitized devices exhibit significantly reduced efficiency roll-offs, with a minimum value of 13.4% at a brightness of 1000 cd m-2.
Collapse
Affiliation(s)
- Lixiao Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Weibo Cui
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Linjie Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yexuan Pu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Kuan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Pingping Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Jihua Laboratory, 28 Huandao South Road, Foshan, Guangdong Province, 528200, P. R. China
| | - Chenglong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
5
|
Xue Z, Hu Y, Xiao S, Liu J, Miao J, Yang C. Cyano-Modified Multi-Resonance Thermally Activated Delayed Fluorescent Emitters Towards Pure-Green OLEDs with a CIE y Value of 0.74. Angew Chem Int Ed Engl 2025; 64:e202500108. [PMID: 39869485 DOI: 10.1002/anie.202500108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
The development of pure-green organic emitters with ideal emission peaks and ultra-narrow full-widths at half-maximum (FWHMs) remains a formidable challenge. Herein, we report two new green emitters, CNBN and MCNBN, which achieve extremely narrow FWHMs by synergistic rigid π-extension and cyano-substitution of a sky-blue multi-resonance thermally activated delayed fluorescence (MR-TADF) core. The introduction of cyano groups induces red-shifts in the emission to the green region and dramatically minimizes the FWHMs. In toluene solution, CNBN and MCNBN exhibit narrowband emission with a maximum at 501 nm and 510 nm with ultra-narrow FWHMs of 14 nm/0.066 eV and 15 nm/0.071 eV, respectively. Given the near-unity photoluminescence quantum yields and almost 100 % horizontal dipole orientation, the electroluminescent (EL) devices based on CNBN and MCNBN deliver external quantum efficiencies (EQEs) exceeding 30 % with FWHMs of 16 nm/0.072 eV and 17 nm/0.080 eV, respectively. Notably, the MCNBN-based device achieves pure-green emission with a maximum at 517 nm with Commission Internationale de l'Éclairage coordinates of (0.17, 0.74), closely aligning with the BT.2020 green standard.
Collapse
Affiliation(s)
- Zhuixing Xue
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yuxuan Hu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shengbing Xiao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jiahui Liu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
6
|
Huang T, Xu Y, Qu Y, Lu X, Ye K, Zhuang X, Wang Y. Azepination-Induced Frontier Molecular Orbital Delocalization of Multiple Resonance Emitters: Constructing Highly Efficient Narrowband Electroluminescent Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503383. [PMID: 40177926 DOI: 10.1002/adma.202503383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/17/2025] [Indexed: 04/05/2025]
Abstract
Developing diversified construction strategies for high-color-purity and efficient multiple resonance thermally activated delayed fluorescence (MR-TADF) materials is a major strategic demand to meet the requirements of ultra-high-definition organic light-emitting diode (OLED) displays, posing a significant challenge to the design and synthesis of emitters at the molecular level. Herein, a strategy is proposed for azepination-induced frontier molecular orbital (FMO) delocalization of MR emitters, that is, embedding azepine into the prototype molecule BNCz can effectively improve the π-conjugation degree and extend the FMO delocalization, thereby constructing a series of long-wavelength MR-TADF materials with narrowband emission. Through an intramolecular Scholl reaction, these target molecules with an azepine-embedded core are afforded by one-fold heptagonal cyclization of BNCz core and the phenyl ring attached to (aromatic amine-substituted) aryl precursor. They all exhibit efficient green emission around 520 nm and narrow full-widths at half-maximum (FWHMs) of ≤ 37 nm in toluene. OLEDs employing these emitters show excellent electroluminescence (EL) performances, among which m-PAz-BNCz-based OLED exhibits the optimal EL performances with a peak of 528 nm, a FWHM of 37 nm, Commission Internationale de L'Eclairage (CIE) coordinates of (0.26, 0.70), and a maximum external quantum efficiency (EQE) of 36.2%.
Collapse
Affiliation(s)
- Tingting Huang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yincai Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yupei Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xueying Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuming Zhuang
- Jihua Laboratory, 28 Huandao Nan Road, Foshan, Guangdong Province, 528200, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Jihua Laboratory, 28 Huandao Nan Road, Foshan, Guangdong Province, 528200, P. R. China
| |
Collapse
|
7
|
Zhang K, Wang X, Wang M, Wang S, Wang L. Solution-Processed Blue Narrowband OLED Devices with External Quantum Efficiency Beyond 35 % through Horizontal Dipole Orientation Induced by Electrostatic Interaction. Angew Chem Int Ed Engl 2025; 64:e202423812. [PMID: 39777786 DOI: 10.1002/anie.202423812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
The multiple resonance thermally activated delayed fluorescence (MR-TADF) device has drawn great attention due to their outstanding efficiency and color purity. However, the efficiency of solution-processed MR-TADF devices is still far behind their vacuum-deposited counterparts, due to the uncontrollable horizontal emitting dipole orientation for emitters during solution process, resulting in low light out-coupling efficiency. Here, we proposed a new strategy namely electrostatic interaction between a dendritic host with high positive electrostatic potential (ESP) and dendritic emitter with multiple negative ESP sites, which could induce high horizontal dipole ratio (Θ||) up to 83.0 % in solution-processed films. For this couple, the largest plane of dendritic host tends to anchor on the substrate, and thus the strong positive electrostatic site mainly lies at the exposed tetraphenylsilicon, which could electrostatically attract the multiple negative electrostatic sites of the dendritic emitter, realizing horizontal dipole orientation. Moreover, the highly twisted structure of dendritic host and dendron encapsulation of emitter could effectively suppress aggregation, leading a high photoluminescence quantum yield of 98.6 %. As a result, the solution-processed blue MR-TADF devices exhibit a record-break external quantum efficiency of 35.3 %, as well as narrow bandwidth of 17 nm and pure blue color with CIE coordinates of (0.137, 0.176).
Collapse
Affiliation(s)
- Kaiyuan Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xingdong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Mengyu Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
8
|
Zeng J, Song S, Fu Y, Peng X, Tang BZ, Zhao Z. Purely organic room-temperature phosphorescence sensitizers for highly efficient hyperfluorescence OLEDs. SCIENCE ADVANCES 2025; 11:eadt7899. [PMID: 40117348 PMCID: PMC11927617 DOI: 10.1126/sciadv.adt7899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/13/2025] [Indexed: 03/23/2025]
Abstract
Multiresonance thermally activated delayed fluorescence (MR-TADF) emitters are promising candidates for organic light-emitting diodes (OLEDs) with high color quality. However, in most cases, noble metal-containing phosphors are required as sensitizers for MR-TADF emitters to improve their electroluminescence (EL) performances, which may lead to high cost and environmental pollution. Herein, an efficient purely organic room-temperature phosphorescence (RTP) material, 3,2-PIC-TXT, with fast phosphorescence radiation is developed. It not only exhibits impressive EL performances as an emitter with an outstanding external quantum efficiency (EQE) of 33.2%, higher than that of Ir(ppy)3 (25.2%), but also functions remarkably as a sensitizer for green MR-TADF emitters (BN2, tCzphB-Ph, and tCzphB-Fl). The hyperfluorescence OLEDs using 3,2-PIC-TXT as a sensitizer provide ultrahigh EQEs of 40.9 to 43.8%, superior to those based on an Ir(ppy)3 sensitizer (37.0 to 38.0%), along with superb color purity and excellent operational stability. These OLEDs are the best devices based on RTP materials reported so far.
Collapse
Affiliation(s)
- Jiajie Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Shaoxin Song
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Yan Fu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Xiaoluo Peng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Xiao Z, Zou Y, Chen Z, Miao J, Qiu Y, Huang Z, Cao X, Peng X, Yang C. Deep-Blue OLEDs with BT. 2020 Blue Gamut, External Quantum Efficiency Approaching 40. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419601. [PMID: 39935145 DOI: 10.1002/adma.202419601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/03/2025] [Indexed: 02/13/2025]
Abstract
The hyperfluorescence (HF) technology holds great promise for the development of high-quality organic light-emitting diodes (OLEDs) for their excellent color purity, high efficiency, and low-efficiency roll-off. Sensitizer plays a crucial role in the performance of HF devices. However, designing sensitizers with simultaneous high photoluminescence quantum yield (PLQY), rapid radiative decay (kr), and fast reverse intersystem crossing rate (kRISC) poses a great challenge, particularly for the thermally activated delayed fluorescence (TADF) sensitizers targeting deep-blue HF device. Herein, by introducing a boron-containing multi-resonance-type acceptor into the multi-tert-butyl-carbazole encapsulated benzene molecular skeleton, two TADF emitters featuring hybridized multi-channel charge-transfer pathways, including short-range multi-resonance, weakened through-bond, and compact face-to-face through-space charge-transfer. Benefiting from the rational molecular design, the proof-of-concept sensitizers exhibit simultaneous rapid kr of 5.3 × 107 s-1, fast kRISC up to 5.9 × 105 s-1, a PQLY of near-unity, as well as ideal deep-blue emission in both solution and film. Consequently, the corresponding deep-blue HF devices not only achieve chromaticity coordinates that fully comply with the latest BT. 2020 standards, but also showcase record-high maximum external quantum efficiencies nearing 40%, along with suppressed efficiency roll-off.
Collapse
Affiliation(s)
- Zhengqi Xiao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Yang Zou
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuntao Qiu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
10
|
Xiao S, Cao X, Chen G, Yin X, Chen Z, Miao J, Yang C. Synergistic π-Extension and Peripheral-Locking of B/N-Based Multi-Resonance Framework Enables High-Performance Pure-Green Organic Light-Emitting Diodes. Angew Chem Int Ed Engl 2025; 64:e202418348. [PMID: 39505699 DOI: 10.1002/anie.202418348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/08/2024]
Abstract
Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters offer natural advantages for creating power-efficient, wide-color-gamut OLEDs. However, current green MR-TADF emitters face challenges in simultaneously achieving high color purity and efficient reverse inter-system crossing (RISC), leading to suboptimal device performance. In this study, we propose a synergistic molecular design approach that combines π-extension and peripheral locking to address these challenges. This approach allows for the construction of quadruple borylated MR-TADF emitters that not only deliver precisely tuned pure-green emission with a narrow full width at half maximum (FWHM) of 15 nm, but also exhibit close-to-unity quantum yield, rapid RISC, and optimal horizontal dipole orientation. The resulting sensitizer-free OLED approaches the BT.2020 standard with CIE coordinates of (0.18, 0.74) and demonstrates impressive external quantum efficiency (EQE) of 36.6 % at maximum and 31.8 % at 1000 cd m-2. Additionally, the device shows good operational stability, with a lifetime (LT80) of 485 hours at an initial luminance of 1000 cd m-2. This study hence offers a promising molecular design strategy that effectively enhances the comprehensive OLED performance.
Collapse
Affiliation(s)
- Shengbing Xiao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physical and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Guohao Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
11
|
Bai JY, Liu JY, Zhang Z, He YH, Chen GW, Wang YC, Li HZ, Xie FM, Tang JX, Li YQ. Position Optimization of Bulky Tetraphenylsilane in Multiple Resonance Molecules for Highly Efficient Narrowband OLEDs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409328. [PMID: 39811952 DOI: 10.1002/smll.202409328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Multiple resonance (MR)-type thermally activated delayed fluorescence (TADF) emitters have garnered significant interest due to their narrow full width at half maximum (FWHM) and high electroluminescence efficiency. However, the planar structures and large singlet-triplet energy gaps (ΔESTs) characteristic of MR-TADF molecules pose challenges to achieving high-performance devices. Herein, two isomeric compounds, p-TPS-BN and m-TPS-BN, are synthesized differing in the connection modes between a bulky tetraphenylsilane (TPS) group and an MR core. This strategy aims to suppress intermolecular interactions, reduce ΔEST values, and investigate how connection positions influence photoelectric properties. Both compounds exhibit remarkably small ΔEST values (0.08-0.09 eV) and high internal quantum yields (95.0-97.8%). Notably, p-TPS-BN demonstrates a faster reverse intersystem crossing (RISC) with a rate constant of 2.54 × 10⁵ s⁻¹, attributed to its optimal long-range charge transfer (LRCT) process. A narrowband device employing p-TPS-BN achieves a maximum external quantum efficiency of 35.8% with an FWHM of 36 nm. This work offers an effective framework for studying structure-property relationships in MR molecules, paving the way for the development of high-efficiency electroluminescent devices.
Collapse
Affiliation(s)
- Jue-Yao Bai
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, P. R. China
| | - Jun-Yu Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhen Zhang
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, P. R. China
| | - Yi-Hui He
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, P. R. China
| | - Guo-Wei Chen
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao SAR, 999078, P. R. China
| | - Yan-Chun Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Hao-Ze Li
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, P. R. China
| | - Feng-Ming Xie
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jian-Xin Tang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao SAR, 999078, P. R. China
| | - Yan-Qing Li
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
12
|
Wang Y, Zhao WL, Gao Z, Qu C, Li X, Jiang Y, Hu L, Wang XQ, Li M, Wang W, Chen CF, Yang HB. Switchable Topologically Chiral [2]Catenane as Multiple Resonance Thermally Activated Delayed Fluorescence Emitter for Efficient Circularly Polarized Electroluminescence. Angew Chem Int Ed Engl 2025; 64:e202417458. [PMID: 39379791 DOI: 10.1002/anie.202417458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Aiming at the fabrication of circularly polarized organic light-emitting diodes (CP-OLEDs) with high dissymmetry factors (gEL) and color purity through the employment of novel chiral source, topologically chiral [2]catenanes were first utilized as the key chiral skeleton to construct novel multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters. Impressively, the efficient chirality induction and unique switchable feature of topologically chiral [2]catenane not only lead to a high |gPL| value up to 1.6×10-2 but also facilitate in situ dynamic switching of the full-width at half-maximum (FWHM) and circularly polarized luminescence (CPL). Furthermore, the solution-processed CP-OLEDs based on the resultant topologically chiral emitters exhibit a narrow FWHM of 36 nm, maximum external quantum efficiency of 17.6 %, and CPEL with |gEL| of 2.1×10-3. This study demonstrates the successful construction of the first CP-MR-TADF emitters based on topological chirality with the highest |gPL| among the reported CP-MR-TADF emitters and excellent device performance to the best of our knowledge. Moreover, it endowed the MR-TADF emitter with distinctive switchable CPL performances, thus providing a novel design strategy as well as a promising platform for developing intelligent CP-OLEDs.
Collapse
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhiwen Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xue Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yefei Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lianrui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
13
|
Yin C, Xin Y, Huang T, Zhang Q, Duan L, Zhang D. Ultra-low power-consumption OLEDs via phosphor-assisted thermally-activated-delayed-fluorescence-sensitized narrowband emission. Nat Commun 2025; 16:30. [PMID: 39747087 PMCID: PMC11696376 DOI: 10.1038/s41467-024-55564-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
The further success of OLED beyond conventional low-luminance display applications has been hampered by the low power efficiency (PE) at high luminance. Here, we demonstrate the strategic implementation of an exceptionally high-PE, high-luminance OLED using a phosphor-assisted thermally-activated-delayed-fluorescence (TADF)-sensitized narrowband emission. On the basis of a TADF sensitizing-host possessing a fast reverse intersystem crossing, an anti-aggregation-caused-quenching character and a good bipolar charge-transporting ability, this design achieves not only a 100% exciton radiative consumption with decay times mainly in the sub-microsecond regime to mitigate exciton annihilations for nearly roll-off-free external quantum efficiency, but also narrowband emission with both small energetic loss during energy transfer and resistive loss with increasing luminance. Consequently, besides a maximum PE of 187.7 lm/W, an exceptionally high critical maximum luminance (where a PE of 100 lm/W is maintained) of over 110,000 cd/m2 is achieved for the proof-of-the-concept device, nearly one-of-magnitude higher than the previous record.
Collapse
Affiliation(s)
- Chen Yin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Department of Chemistry, Tsinghua University, Beijing, China
| | - Yangyang Xin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Department of Chemistry, Tsinghua University, Beijing, China
| | - Tianyu Huang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Department of Chemistry, Tsinghua University, Beijing, China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Department of Chemistry, Tsinghua University, Beijing, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Dongdong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
14
|
Song XF, Luo S, Li N, Wan X, Miao J, Zou Y, Li K, Yang C. Gold Coordination-Accelerated Multi-Resonance TADF Emission for Efficient Solution-Processible Ultrapure Deep-Blue OLEDs. Angew Chem Int Ed Engl 2025; 64:e202413536. [PMID: 39212254 DOI: 10.1002/anie.202413536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Multi-resonance (MR) type emitters have emerged as highly promising candidates for high-resolution organic light-emitting diodes (OLEDs). However, thermally activated delayed fluorescence (TADF) emissions with simultaneous short excited state lifetimes and ultrapure blue color (a CIEy close to 0.046 and an emission peak >440 nm) have rarely been obtained for MR emitters. Herein, we report a design of dual gold-coordinated MR molecules to achieve efficient and short-lived ultrapure blue TADF emission. The dinuclear Au(I) complex, namely iPrAuBN, shows a narrowband deep-blue emission with a peak maximum of 448 nm and a full width at half maximum (FWHM) of 29 nm in doped film. The coordination with two Au atoms significantly shortens the delayed fluorescence lifetime to 7.8 μs in comparison to 60.6 μs for the parental organic analogue. Solution-processed OLED doped with iPrAuBN demonstrates an ultrapure blue electroluminescence with a peak maximum of 442 nm, a FWHM of 19 nm, CIE coordinates of (0.154, 0.036), and a maximum external quantum efficiency of 14.8 %.
Collapse
Affiliation(s)
- Xiu-Fang Song
- Shenzhen Key Laboratory of New Information Display and Storage Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Sai Luo
- Shenzhen Key Laboratory of New Information Display and Storage Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Xintong Wan
- Shenzhen Key Laboratory of New Information Display and Storage Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Yang Zou
- Shenzhen Key Laboratory of New Information Display and Storage Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Kai Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| |
Collapse
|
15
|
Xiong J, Song JX, Chang X, Song XF, Li K, Chen Y. Two-Coordinate Dinuclear Donor-Gold(I)-Acceptor Complexes Exhibiting Multiple Excitation Wavelength Dependent Phosphorescence. Chemistry 2024; 30:e202401203. [PMID: 39198231 DOI: 10.1002/chem.202401203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/03/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
Two-coordinate Au(I) complexes with a donor-metal-acceptor (D-M-A) structure have shown rich luminescent properties. However, charge-neutral dinuclear donor-metal-acceptor type Au(I) complexes featuring aurophilic interactions have been seldom explored. Herein, we describe the structures and photoluminescence properties of two dinuclear Au(I) complexes, namely DiAu-Ph and DiAu-Me. Single crystal X-ray structural analysis of DiAu-Ph reveals a short intramolecular Au-Au distance of 3.224 Å. In dilute solution and doped films, excitation wavelength dependent multiple phosphorescence phenomena were observed for these dinuclear complexes. Theoretical calculations reveal that the aurophilic interaction causes increased contribution of the Au d orbital to the highest occupied molecular orbitals. Thus, the gap between singlet and triplet excited states (ΔEST) is enlarged, which disables the thermally activated delayed fluorescence (TADF). Moreover, the large energy separation (0.45-0.52 eV) and the different orbital configurations between the various excited states result in an inefficient internal conversion, accounting for their multiple phosphorescence properties.
Collapse
Affiliation(s)
- Jinfan Xiong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Jia-Xi Song
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Xiaoyong Chang
- Department of chemistry, Southern University of Science and Technology, 518055, Shenzhen, PR China
| | - Xiu-Fang Song
- Shenzhen Key Lab Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Blvd., Shenzhen, 518055, PR China
| | - Kai Li
- Shenzhen Key Lab Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Blvd., Shenzhen, 518055, PR China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| |
Collapse
|
16
|
Kang J, Lee HL, Jeon SO, Bae HJ, Kim SC, Han S, Lee JY. Spin-Flip-Restricted Multiple-Resonance Emitters for Extended Device Lifetime in Indolocarbazole-Based Blue Organic Light-Emitting Diodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405604. [PMID: 39206882 PMCID: PMC11515912 DOI: 10.1002/advs.202405604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
In this study, a multiple-resonance (MR) core structure is developed with a spin-flip-restricted emission mechanism based on a fused indolo[3,2,1-jk]carbazole (ICz) framework as emitters to improve the lifetime of blue organic light-emitting diodes. The molecular skeleton modulation approach applied to the conjugated π-system effectively stabilizes the triplet energy of the fused ICz emitters and narrows the full-width-at-half maximum (<20 nm). In addition, the emitters exhibit higher exciton stability than conventional boron-based MR emitters. The fused ICz-based blue fluorescent device exhibits a high external quantum efficiency of 7.2%, a blue index of 68.6 cd A-1 at a Commission internationale de l'éclairage y coordinate (CIEy) of 0.075, and a device lifetime 1.8 times longer than that of a boron-based emitter. In addition, a phosphor-sensitized fluorescent device based on the ICz emitter exhibited an improved external quantum efficiency of 20.6% with a CIEy coordinate of 0.076.
Collapse
Affiliation(s)
- Jihoon Kang
- School of Chemical EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
| | - Ha Lim Lee
- School of Chemical EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
- Samsung Advanced Institute of TechnologySamsung Electronics Co., Ltd130 Samsung‐ro, Yeongtong‐guSuwonGyeonggi16678Republic of Korea
| | - Soon Ok Jeon
- Samsung Advanced Institute of TechnologySamsung Electronics Co., Ltd130 Samsung‐ro, Yeongtong‐guSuwonGyeonggi16678Republic of Korea
| | - Hye Jin Bae
- Samsung Advanced Institute of TechnologySamsung Electronics Co., Ltd130 Samsung‐ro, Yeongtong‐guSuwonGyeonggi16678Republic of Korea
| | - Seung Chan Kim
- School of Chemical EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
| | - Seungwon Han
- Department of Display Convergence EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
| | - Jun Yeob Lee
- School of Chemical EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
- SKKU Institute of Energy Science and TechnologySungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
| |
Collapse
|
17
|
Zhong R, Wang M, Wang X, Wang S, Shao S, Wang L. 10-Dibenzothiophenyl-9,9-diphenylacridane-based multiple resonance emitters for high-efficiency narrowband green OLEDs with CIE y > 0.7 at high doping concentrations. Chem Sci 2024; 15:13290-13298. [PMID: 39183913 PMCID: PMC11340009 DOI: 10.1039/d4sc03705g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024] Open
Abstract
Multiple resonance emitters are attractive for high-color-purity organic light-emitting diodes (OLEDs) because of their unique narrowband emissions; however, they are typically used at low doping concentrations (≤15 wt%) due to aggregation-caused quenching and spectral broadening induced by planar molecular skeletons. Here, we report two multiple resonance emitters (BThPAc-1 and BThPAc-2) consisting of a 10-dibenzothiophenyl-9,9-diphenylacridane segment for efficient narrowband green emission at high doping concentrations. The dibenzothiophenyl-9,9-diphenylacridane segment contains two carbon-bridged phenyl rings as steric groups to inhibit intermolecular aggregation and a dibenzothiophene unit to extend conjugation and red-shift the emission to the green region. The resultant emitters exhibit narrowband emissions that peaked at 509-510 nm with a full width at half-maximum (FWHM) of 32 nm in 1 wt% doping films, which are maintained at less than 35 nm even in neat films. Remarkably, OLEDs employing the emitters reveal pure-green electroluminescence with a maximum external quantum efficiency of 20.3% and CIE coordinates of (0.18, 0.72) at 30 wt% doping concentration, which represents the best color coordinates for green multiple resonance OLEDs at high doping concentrations.
Collapse
Affiliation(s)
- Rui Zhong
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Mengyu Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Xingdong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Shiyang Shao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University Haikou Hainan 570228 China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
18
|
Liu H, Liu Y, Chen G, Meng Y, Peng H, Miao J, Yang C. Nonplanar structure accelerates reverse intersystem crossing of TADF emitters: nearly 40% EQE and relieved efficiency roll off. Chem Sci 2024; 15:12598-12605. [PMID: 39118617 PMCID: PMC11304530 DOI: 10.1039/d4sc03111c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Exploring strategies to enhance reverse intersystem crossing (RISC) is of great significance to develop efficient thermally activated delayed fluorescent (TADF) molecules. In this study, we investigate the substantial impact of nonplanar structure on improving the rate of RISC (k RISC). Three emitters based on spiroacridine donors are developed to evaluate this hypothesis. All molecules exhibit high photoluminescent quantum yields (PLQYs) of 96-98% due to their rigid donor and acceptor. Leveraging the synergistic effects of heavy element effect and nonplanar geometry, S2-TRZ exhibits an accelerated k RISC of 24.2 × 105 s-1 compared to the 11.1 × 105 s-1 of S1-TRZ, which solely incorporates heavy atoms. Additionally, O1-TRZ possesses a further lower k RISC of 9.42 × 105 s-1 because of the absence of these effects. Remarkably, owing to the high PLQYs and suitable TADF behaviors, devices based on these emitters exhibit state-of-the-art performance, including a maximum external quantum efficiency of up to 40.1% and maximum current efficiency of 124.7 cd A-1. More importantly, devices utilizing S2-TRZ as an emitter achieve a relieved efficiency roll-off of only 7% under 1000 cd m-2, in contrast to the 12% for O1-TRZ and 11% for S1-TRZ, respectively. These findings advance our fundamental understanding of TADF processes for high-performance electroluminescent devices.
Collapse
Affiliation(s)
- He Liu
- National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University 518055 Shenzhen P. R. China
| | - Yang Liu
- National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University 518055 Shenzhen P. R. China
| | - Guohao Chen
- National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University 518055 Shenzhen P. R. China
| | - Yuan Meng
- National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University 518055 Shenzhen P. R. China
| | - Hao Peng
- National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University 518055 Shenzhen P. R. China
| | - Jingsheng Miao
- National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University 518055 Shenzhen P. R. China
| | - Chuluo Yang
- National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University 518055 Shenzhen P. R. China
| |
Collapse
|
19
|
Kwon NY, Kwak H, Kim HY, Park SH, Park JY, Kang MJ, Koh CW, Park S, Cho MJ, Choi DH. Effect of intramolecular energy transfer in a dual-functional molecular dyad on the performance of solution-processed TADF OLEDs. Chem Sci 2024; 15:12361-12368. [PMID: 39118616 PMCID: PMC11304526 DOI: 10.1039/d4sc02357a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
This paper introduces the design concept of a dual-functional molecular dyad tailored specifically for solution-processable organic light-emitting diodes (OLEDs). Cy-tmCPBN, characterized by an asymmetric molecular dyad structure, integrates a host unit (tmCP) and a multiple-resonance (MR) emitter (CzBN) via a non-conjugated cyclohexane linker. Cy-tmCPBN exhibited efficient intramolecular energy transfers (EnTs) from tmCP to the CzBN unit, as confirmed by time-resolved fluorescence experiments. The fluorescence lifetime of the tmCP unit was approximately three times shorter in a highly diluted solution of Cy-tmCPBN than in a mixed solution of Cy-tmCP and Cy-CzBN. In addition, Cy-tmCPBN exhibited excellent solubility and film-forming ability, making it suitable for solution processing. Notably, OLEDs utilizing Cy-tmCPBN achieved over twice the brightness and improved external quantum efficiency of 12.3% compared to OLEDs using Cy-CzBN with the same concentration of CzBN in the emitting layer. The improved OLED performance can be explained by the increased EnT efficiency from Cy-tmCP to Cy-tmCPBN and the intramolecular EnT within Cy-tmCPBN. In our dual-functional dyad, incorporating both host and emitter units in an asymmetric molecular dyad structure, we induced a positive synergy effect with the host moiety, enhancing OLED performance through intramolecular EnT.
Collapse
Affiliation(s)
- Na Yeon Kwon
- Department of Chemistry, Research Institute for Natural Sciences, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Haeun Kwak
- Department of Chemistry, Research Institute for Natural Sciences, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Ha Yeon Kim
- Department of Chemistry, Research Institute for Natural Sciences, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Su Hong Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Jin Young Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Min Ji Kang
- Department of Chemistry, Research Institute for Natural Sciences, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Chang Woo Koh
- Department of Chemistry, Research Institute for Natural Sciences, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Sungnam Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| |
Collapse
|
20
|
Wang W, Bian J, Chen K, Li C, Long Y, Huang H, Jiang L, Zhao J, Liu S, Chi Z, Xu J, Zhang Y. Achieving Record External Quantum Efficiency of 11.5 % in Solution-Processable Deep-Blue Organic Light-Emitting Diodes Utilizing Hot Exciton Mechanism. Angew Chem Int Ed Engl 2024; 63:e202318782. [PMID: 38354089 DOI: 10.1002/anie.202318782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
High performance solution-processable deep-blue emitters with a Commission International de l'Eclairage (CIE) coordinate of CIEy≤0.08 are highly desired in ultrahigh-definition display. Although, deep-blue materials with hybridized local and charge-transfer (HLCT) excited-state feature are promising candidates, their rigidity and planar molecular structures limit their application in solution-processing technique. Herein, four novel deep-blue solution-processable HLCT emitters were first proposed by attaching rigid imide aliphatic rings as functional units onto the HLCT emitting core. The functional units not only improve solubility, enhance thermal properties and morphological stability of the emitting core, but also promote photoluminescence efficiency, balance charge carrier transport, and inhibit aggregation-caused quenching effect due to the weak electron-withdrawing property as well as steric hindrance. The corresponding solution-processable organic light-emitting diodes (OLEDs) substantiate an unprecedented maximum external quantum efficiency (EQEmax) of 11.5 % with an emission peak at 456 nm and excellent colour purity (full width at half maximum=56 nm and CIEy=0.09). These efficiencies represent the state-of-the-art device performance among the solution-processable blue OLEDs based on the "hot exciton" mechanism. This simple strategy opens up a new avenue for designing highly efficient solution-processable deep-blue organic luminescent materials.
Collapse
Affiliation(s)
- Wenhui Wang
- PCFM Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functional Molecular Engineering, GD HPPC Lab, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jinkun Bian
- PCFM Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functional Molecular Engineering, GD HPPC Lab, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Kaijin Chen
- PCFM Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functional Molecular Engineering, GD HPPC Lab, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Chuying Li
- PCFM Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functional Molecular Engineering, GD HPPC Lab, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yubo Long
- PCFM Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functional Molecular Engineering, GD HPPC Lab, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Haitao Huang
- PCFM Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functional Molecular Engineering, GD HPPC Lab, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Long Jiang
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Juan Zhao
- PCFM Lab, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Siwei Liu
- PCFM Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functional Molecular Engineering, GD HPPC Lab, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhenguo Chi
- PCFM Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functional Molecular Engineering, GD HPPC Lab, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiarui Xu
- PCFM Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functional Molecular Engineering, GD HPPC Lab, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yi Zhang
- PCFM Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functional Molecular Engineering, GD HPPC Lab, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
21
|
Ni F, Huang Y, Qiu L, Yang C. Synthetic progress of organic thermally activated delayed fluorescence emitters via C-H activation and functionalization. Chem Soc Rev 2024; 53:5904-5955. [PMID: 38717257 DOI: 10.1039/d3cs00871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Thermally activated delayed fluorescence (TADF) emitters have become increasingly prominent due to their promising applications across various fields, prompting a continuous demand for developing reliable synthetic methods to access them. This review aims to highlight the progress made in the last decade in synthesizing organic TADF compounds through C-H bond activation and functionalization. The review begins with a brief introduction to the basic features and design principles of TADF emitters. It then provides an overview of the advantages and concise development of C-H bond transformations in constructing TADF emitters. Subsequently, it summarizes both transition-metal-catalyzed and non-transition-metal-promoted C-H bond transformations used for the synthesis of TADF emitters. Finally, the review gives an outlook on further challenges and potential directions in this field.
Collapse
Affiliation(s)
- Fan Ni
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Yipan Huang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China.
| |
Collapse
|
22
|
Li TY, Zheng SJ, Djurovich PI, Thompson ME. Two-Coordinate Thermally Activated Delayed Fluorescence Coinage Metal Complexes: Molecular Design, Photophysical Characters, and Device Application. Chem Rev 2024; 124:4332-4392. [PMID: 38546341 DOI: 10.1021/acs.chemrev.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Since the emergence of the first green light emission from a fluorescent thin-film organic light emitting diode (OLED) in the mid-1980s, a global consumer market for OLED displays has flourished over the past few decades. This growth can primarily be attributed to the development of noble metal phosphorescent emitters that facilitated remarkable gains in electrical conversion efficiency, a broadened color gamut, and vibrant image quality for OLED displays. Despite these achievements, the limited abundance of noble metals in the Earth's crust has spurred ongoing efforts to discover cost-effective electroluminescent materials. One particularly promising avenue is the exploration of thermally activated delayed fluorescence (TADF), a mechanism with the potential to fully harness excitons in OLEDs. Recently, investigations have unveiled TADF in a series of two-coordinate coinage metal (Cu, Ag, and Au) complexes. These organometallic TADF materials exhibit distinctive behavior in comparison to their organic counterparts. They offer benefits such as tunable emissive colors, short TADF emission lifetimes, high luminescent quantum yields, and reasonable stability. Impressively, both vacuum-deposited and solution-processed OLEDs incorporating these materials have achieved outstanding performance. This review encompasses various facets on two-coordinate TADF coinage metal complexes, including molecular design, photophysical characterizations, elucidation of structure-property relationships, and OLED applications.
Collapse
Affiliation(s)
- Tian-Yi Li
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Shu-Jia Zheng
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
23
|
Park JY, Kwon NY, Koh CW, Park SH, Kang MJ, Kwak H, Park CY, Chae WS, Hong CS, Park S, Cho MJ, Choi DH. Precision-Engineered Medium-Sized Molecular Host and Emitter for Ensuring Consistent Performance in Solution-Processed Narrowband OLEDs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16553-16562. [PMID: 38570940 DOI: 10.1021/acsami.3c18848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
In this study, two novel multiple resonance (MR) emitters, DtCzBN and Cy-DtCzBN, were designed based on the well-known BCzBN structure and synthesized for narrowband solution-processed organic light-emitting diodes (OLEDs). Cy-DtCzBN possesses a dimeric V-shaped structure formed by coupling two individual DtCzBN units via a nonconjugated cyclohexane linker. When compared with DtCzBN, Cy-DtCzBN, as a medium-sized molecule, was found to maintain the optical and photophysical properties of the corresponding monomeric unit, DtCzBN, but exhibits high thermal stability, excellent solubility, and good film-forming ability. Additionally, solution-processed OLEDs were fabricated by using two sets of molecules: one set of small molecular hosts and emitters (i.e., mCP and DtCzBN) and the other set of medium-sized molecular hosts and emitters (i.e., Cy-mCP and Cy-DtCzBN). Notably, devices using medium-sized molecular hosts and emitters exhibited similar optical and photophysical properties but showed significantly improved reproducibility and thermal stability compared with those based on small molecular hosts and emitters. Our current study provides some insights into molecular design strategies for thermally stable hosts and emitters, which are highly suitable for solution-processed OLEDs.
Collapse
Affiliation(s)
- Jin Young Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Na Yeon Kwon
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Chang Woo Koh
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Su Hong Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Min Ji Kang
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Haeun Kwak
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Chae Yeong Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Weon-Sik Chae
- Daegu Center, Korea Basic Science Institute, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungnam Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
24
|
Mamada M, Hayakawa M, Ochi J, Hatakeyama T. Organoboron-based multiple-resonance emitters: synthesis, structure-property correlations, and prospects. Chem Soc Rev 2024; 53:1624-1692. [PMID: 38168795 DOI: 10.1039/d3cs00837a] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Boron-based multiple-resonance (MR) emitters exhibit the advantages of narrowband emission, high absolute photoluminescence quantum yield, thermally activated delayed fluorescence (TADF), and sufficient stability during the operation of organic light-emitting diodes (OLEDs). Thus, such MR emitters have been widely applied as blue emitters in triplet-triplet-annihilation-driven fluorescent devices used in smartphones and televisions. Moreover, they hold great promise as TADF or terminal emitters in TADF-assisted fluorescence or phosphor-sensitised fluorescent OLEDs. Herein we comprehensively review organoboron-based MR emitters based on their synthetic strategies, clarify structure-photophysical property correlations, and provide design guidelines and future development prospects.
Collapse
Affiliation(s)
- Masashi Mamada
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Junki Ochi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
25
|
Xu Y, Wang Q, Cai X, Li C, Jiang S, Wang Y. Frontier Molecular Orbital Engineering: Constructing Highly Efficient Narrowband Organic Electroluminescent Materials. Angew Chem Int Ed Engl 2023; 62:e202312451. [PMID: 37724466 DOI: 10.1002/anie.202312451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/20/2023]
Abstract
It is of great strategic significance to develop highly efficient narrowband organic electroluminescent materials that can be utilized to manufacture ultra-high-definition (UHD) displays and meet or approach the requirements of Broadcast Television 2020 (B.T.2020) color gamut standards. This motif poses challenges for molecular design and synthesis, especially for developing generality, diversity, scalability, and robustness of molecular structures. The emergence of multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters has ingeniously solved the problems and demonstrated bright application prospects in the field of UHD displays, sparking a research boom. This Minireview summarizes the research endeavors of narrowband organic electroluminescent materials, with emphasis on the tremendous contribution of frontier molecular orbital engineering (FMOE) strategy. It combines the outstanding advantages of MR framework and donor-acceptor (D-A) structure, and can achieve red-shift and narrowband emission simultaneously, which is of great significance in the development of long-wavelength narrowband emitters with emission maxima especially exceeding 500 nm. We hope that this Minireview would provide some inspiration for what could transpire in the future.
Collapse
Affiliation(s)
- Yincai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qingyang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xinliang Cai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chenglong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shimei Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Jihua Hengye Electronic Materials CO. LTD., Foshan, 528200, Guangdong Province, P. R. China
| |
Collapse
|
26
|
Luo S, Wang J, Li N, Song XF, Wan X, Li K, Yang C. Regulation of Multiple Resonance Delayed Fluorescence via Through-Space Charge Transfer Excited State towards High-Efficiency and Stable Narrowband Electroluminescence. Angew Chem Int Ed Engl 2023; 62:e202310943. [PMID: 37851366 DOI: 10.1002/anie.202310943] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
B- and N-embedded multiple resonance (MR) type thermally activated delayed fluorescence (TADF) emitters usually suffer from slow reverse intersystem crossing (RISC) process and aggregation-caused emission quenching. Here, we report the design of a sandwich structure by placing the B-N MR core between two electron-donating moieties, inducing through-space charge transfer (TSCT) states. The proper adjusting of the energy levels brings about a 10-fold higher RISC rate in comparison with the parent B-N molecule. In the meantime, a high photoluminescence quantum yield of 91 % and a good color purity were maintained. Organic light-emitting diodes based on the new MR emitter achieved a maximum external quantum efficiency of 31.7 % and small roll-offs at high brightness. High device efficiencies were also obtained for a wide range of doping concentrations of up to 20 wt % thanks to the steric shielding of the B-N core. A good operational stability with LT95 of 85.2 h has also been revealed. The dual steric and electronic effects resulting from the introduction of a TSCT state offer an effective molecular design to address the critical challenges of MR-TADF emitters.
Collapse
Affiliation(s)
- Sai Luo
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Junjie Wang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Xiu-Fang Song
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Xintong Wan
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Kai Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| |
Collapse
|
27
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
28
|
Song XF, Peng LY, Chen WK, Gao YJ, Cui G. Theoretical studies on thermally activated delayed fluorescence of "carbene-metal-amide" Cu and Au complexes: geometric structures, excitation characters, and mechanisms. Phys Chem Chem Phys 2023; 25:29603-29613. [PMID: 37877743 DOI: 10.1039/d3cp03444e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
"Carbene-metal(I)-amide" (CMA) complexes have garnered significant attention due to their remarkable properties and potential TADF applications in organic electronics. However, the atomistic working mechanism is still elusive. Herein, we chose two CMA complexes, i.e., cyclic (alkyl)(amino) carbene-copper[gold](I)-carbazole (CAAC-Cu[Au]-Cz), and employed both DFT and TD-DFT methods, in combination with radiative and nonradiative rate calculations, to investigate geometric and electronic structures of these two complexes in the ground and excited states, including orbital compositions, electronic transitions, absorption and emission spectra, and the luminescence mechanism. It is found that the coplanar or perpendicular conformations are coexistent in the ground state (S0), the lowest excited singlet state (S1), and the triplet state (T1). Both the coplanar and perpendicular S1 and T1 states have similar ligand-to-ligand charge transfer (LLCT) character between CAAC and Cz, and some charge-transfer character between metal atoms and ligands, which is beneficial to minimize the singlet-triplet energy gaps (ΔEST) and increase the spin-orbit coupling (SOC). An interesting three-state (S0, S1, T1) model involving two regions (coplanar and perpendicular) is proposed to rationalize the experimental TADF phenomena in the CMA complexes. In addition to the coplanar ones, the perpendicular S1 and T1 states also play a role in promoting the repopulation of the coplanar S1 exciton, which is a primary source for the delayed fluorescence.
Collapse
Affiliation(s)
- Xiu-Fang Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yuan-Jun Gao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
29
|
Powley SL, Riley C, Cho HH, Le Phuoc N, Linnolahti M, Greenham N, Romanov AS. Highly phosphorescent carbene-metal-carboranyl complexes of copper(I) and gold(I). Chem Commun (Camb) 2023; 59:12035-12038. [PMID: 37729393 DOI: 10.1039/d3cc04091g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
New phosphorescent "carbene-metal-carboranyl" (CMC) Cu(I) and Au(I) complexes based on the diamidocarbene (DAC) ligand show up to 68% photoluminescence quantum yield and microsecond range lifetimes. CMC organic light emitting diodes (OLEDs) emit sky-blue and warm white electroluminescence.
Collapse
Affiliation(s)
- Samuel L Powley
- Department of Chemistry, The University of Manchester, Oxford Rd., Manchester, M13 9PL, UK.
| | - Charlotte Riley
- Department of Chemistry, The University of Manchester, Oxford Rd., Manchester, M13 9PL, UK.
| | - Hwan-Hee Cho
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HE, UK.
| | - Nguyen Le Phuoc
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, FI-80101 Joensuu, Finland.
| | - Mikko Linnolahti
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, FI-80101 Joensuu, Finland.
| | - Neil Greenham
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HE, UK.
| | - Alexander S Romanov
- Department of Chemistry, The University of Manchester, Oxford Rd., Manchester, M13 9PL, UK.
| |
Collapse
|
30
|
Kabra M, Shahi PK, Wang Y, Sinha D, Spillane A, Newby GA, Saxena S, Tong Y, Chang Y, Abdeen AA, Edwards KL, Theisen CO, Liu DR, Gamm DM, Gong S, Saha K, Pattnaik BR. Nonviral base editing of KCNJ13 mutation preserves vision in a model of inherited retinal channelopathy. J Clin Invest 2023; 133:e171356. [PMID: 37561581 PMCID: PMC10541187 DOI: 10.1172/jci171356] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Clinical genome editing is emerging for rare disease treatment, but one of the major limitations is the targeting of CRISPR editors' delivery. We delivered base editors to the retinal pigmented epithelium (RPE) in the mouse eye using silica nanocapsules (SNCs) as a treatment for retinal degeneration. Leber congenital amaurosis type 16 (LCA16) is a rare pediatric blindness caused by point mutations in the KCNJ13 gene, a loss of function inwardly rectifying potassium channel (Kir7.1) in the RPE. SNCs carrying adenine base editor 8e (ABE8e) mRNA and sgRNA precisely and efficiently corrected the KCNJ13W53X/W53X mutation. Editing in both patient fibroblasts (47%) and human induced pluripotent stem cell-derived RPE (LCA16-iPSC-RPE) (17%) showed minimal off-target editing. We detected functional Kir7.1 channels in the edited LCA16-iPSC-RPE. In the LCA16 mouse model (Kcnj13W53X/+ΔR), RPE cells targeted SNC delivery of ABE8e mRNA preserved normal vision, measured by full-field electroretinogram (ERG). Moreover, multifocal ERG confirmed the topographic measure of electrical activity primarily originating from the edited retinal area at the injection site. Preserved retina structure after treatment was established by optical coherence tomography (OCT). This preclinical validation of targeted ion channel functional rescue, a challenge for pharmacological and genomic interventions, reinforced the effectiveness of nonviral genome-editing therapy for rare inherited disorders.
Collapse
Affiliation(s)
- Meha Kabra
- Department of Pediatrics
- McPherson Eye Research Institute
| | - Pawan K. Shahi
- Department of Pediatrics
- McPherson Eye Research Institute
| | - Yuyuan Wang
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
| | - Divya Sinha
- McPherson Eye Research Institute
- Waisman Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute and
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Shivani Saxena
- McPherson Eye Research Institute
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
| | - Yao Tong
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
| | | | - Amr A. Abdeen
- McPherson Eye Research Institute
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
| | - Kimberly L. Edwards
- McPherson Eye Research Institute
- Waisman Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Cole O. Theisen
- Waisman Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute and
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - David M. Gamm
- McPherson Eye Research Institute
- Waisman Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Ophthalmology and Visual Sciences and
| | - Shaoqin Gong
- McPherson Eye Research Institute
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
- Department of Ophthalmology and Visual Sciences and
| | - Krishanu Saha
- Department of Pediatrics
- McPherson Eye Research Institute
- Department of Biomedical Engineering
- Wisconsin Institute of Discovery, and
- Center for Human Genomics and Precision Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Bikash R. Pattnaik
- Department of Pediatrics
- McPherson Eye Research Institute
- Department of Ophthalmology and Visual Sciences and
| |
Collapse
|
31
|
Wu C, Tong K, Shi K, Jin Z, Wu Y, Mu Y, Huo Y, Tang M, Yang C, Meng H, Kang F, Wei G. New [3+2+1] Iridium Complexes as Effective Phosphorescent Sensitizers for Efficient Narrowband Saturated-Blue Hyper-OLEDs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301112. [PMID: 37653609 PMCID: PMC10582407 DOI: 10.1002/advs.202301112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/23/2023] [Indexed: 09/02/2023]
Abstract
Two newly designed and synthesized [3+2+1] iridium complexes through introducing bulky trimethylsiliyl (TMS) groups are doped with a terminal emitter of v-DABNA to form an coincident overlapping spectra between the emission of these two phosphors and the absorption of v-DABNA, creating cascade resonant energy transfer for efficient triplet harvesting. To boost the color quality and efficiency, the fabricated hyper-OLEDs have been optimized to achieve a high external quantum efficiency of 31.06%, which has been among the highest efficiency results reported for phosphor sensitized saturated-blue hyper-OLEDs, and pure blue emission peak at 467 nm with the full width at half maxima (FWHM) as narrow as 18 nm and the CIEy values down to 0.097, satisfying the National Institute of Standards and Technology (NIST) requirement for saturated blue OLEDs display. Surprisingly, such hyper-OLEDs have obtained the converted lifetime (LT50 ) up to 4552 h at the brightness of 100 cd m-2 , demonstrating effective Förster resonance energy transfer (FRET) process. Therefore, employing these new bulky TMS substituent [3+2+1] iridium(III) complexes for effective sensitizers can greatly pave the way for further development of high efficiency and stable blue OLEDs in display and lighting applications.
Collapse
Affiliation(s)
- Chengcheng Wu
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Kai‐Ning Tong
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Kefei Shi
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Zhaoyun Jin
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Yuan Wu
- PURI Materials, IncShenzhen518133China
| | - Yingxiao Mu
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
| | - Yanping Huo
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
| | - Man‐Chung Tang
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Chen Yang
- PURI Materials, IncShenzhen518133China
| | - Hong Meng
- School of Advanced MaterialsShenzhen Graduate SchoolPeking UniversityShenzhen518055China
| | - Feiyu Kang
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Guodan Wei
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| |
Collapse
|
32
|
Fan X, Hao X, Huang F, Yu J, Wang K, Zhang X. RGB Thermally Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes toward Realizing the BT.2020 Standard. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303504. [PMID: 37587784 PMCID: PMC10558656 DOI: 10.1002/advs.202303504] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Indexed: 08/18/2023]
Abstract
With the surging demand for ultra-high-resolution displays, the International Telecommunication Union (ITU) announce the next-generation color gamut standard, named ITU-R Recommendation BT.2020, which not only sets a seductive but challenging milestone for display technologies but also urges researchers to recognize the importance of color coordinates. Organic light-emitting diodes (OLEDs) are an important display technology in current daily life, but they face challenges in approaching the BT.2020 standard. Thermally activated delayed fluorescence (TADF) emitters have bright prospects in OLEDs because they possess 100% theoretical exciton utilization. Thus, the development of TADF emitters emitting primary red (R), green (R), and blue (B) emission is of great significance. Here, a comprehensive overview of the latest advancements in TADF emitters that exhibit Commission Internationale de l'Éclairage (CIE) coordinates surpassing the National Television System Committee (NTSC) and approaching BT.2020 standards is presented. Rational strategies for molecular designs, as well as the resulting photophysical properties and OLED performances, are discussed to elucidate the underlying mechanisms for shifting the CIE coordinates of both donor-acceptor and multiple resonance (MR) typed TADF emitters toward the BT.2020 standard. Finally, the challenges in realization of the wide-color-gamut BT.2020 standard and the prospects for this research area are provided.
Collapse
Affiliation(s)
- Xiaochun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
| | - Xiaoyao Hao
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
| | - Feng Huang
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon TechnologiesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
- Jiangsu Key Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon TechnologiesSoochow UniversitySuzhouJiangsu215123P. R. China
| |
Collapse
|
33
|
Wang L, Miao J, Zhang Y, Wu C, Huang H, Wang X, Yang C. Discrete Mononuclear Platinum(II) Complexes Realize High-Performance Red Phosphorescent OLEDs with EQEs of up to 31.8% and Superb Device Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303066. [PMID: 37327208 DOI: 10.1002/adma.202303066] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Indexed: 06/18/2023]
Abstract
Designing mononuclear platinum(II) complexes that do not rely on intermolecular aggregation for high-performance red organic light-emitting diodes remains a formidable challenge. In this work, three robust red-emitting Pt(II) complexes are created by utilizing a rigid 4-coordination configuration, where the ligands are formed by linking electron-donor of triphenylamine (TPA) moieties with electron-acceptor of pyridine, isoquinoline, and/or δ-carboline units. The thermal stability, electrochemical, and photophysical properties of the complexes are thoroughly examined. The complexes display efficient red phosphorescence, with high photoluminescence quantum yields and short excited lifetimes. The OLEDs dope with these complexes exhibit high maximum external quantum efficiencies (EQEs) of up to 31.8% with minimal efficiency roll-off even at high brightness. Significantly, the devices demonstrate exceptional long operational lifetime, with a T90 lifetime of over 14000 h at initial luminance of 1000 cd m-2 , indicating the potential for these complexes to be practically utilizes.
Collapse
Affiliation(s)
- Lian Wang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Youming Zhang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
- Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Chengjun Wu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Hong Huang
- Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Xinzhong Wang
- Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| |
Collapse
|
34
|
Zhao Z, Yan S, Ren Z. Regulating the Nature of Triplet Excited States of Thermally Activated Delayed Fluorescence Emitters. Acc Chem Res 2023. [PMID: 37364229 DOI: 10.1021/acs.accounts.3c00175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
ConspectusCharacterized by the reverse intersystem crossing (RISC) process from the triplet state (T1) to the singlet state (S1), thermally activated delayed fluorescence (TADF) emitters, which produce light by harvesting both triplet and singlet excitons without noble metals, are considered to be third-generation organic electroluminescent materials. Rapid advances in molecular design criteria, understanding the photophysics underlying TADF, and applications of TADF materials as emitters in organic light-emitting diodes (OLEDs) have been achieved. Theoretically, enhanced spin-orbit coupling (SOC) between singlet and triplet states can result in a fast RISC process and thus a high light-emitting efficiency according to Fermi's golden rule. Therefore, regulating the nature of triplet excited states by elaborate molecular design to improve SOC is an effective approach to high-efficiency TADF-based OLEDs. Generally, on one hand, the increased local excited (LE) populations of the excited triplet state can significantly improve the nature flips between S1 and T1. On other hand, the reduced energy gap between S1 and the lowest triplet with a charge transfer (CT) characteristic can also enhance their vibronic coupling. Consequently, it is vital to determine how to regulate the nature of triplet excited states by molecular design to guide the material synthesis, especially for polymeric emitters.In this Account, we focus on modulating the strategy of triplet excited states for TADF emitters and an in-depth understanding of the photophysical processes, leading to optimized OLED device performance. We include several kinds of strategies to control the nature of triplet excited states to guide the synthesis of small-molecule and polymer TADF emitters: (1) Modulating the electronic distribution of conjugated polymeric backbones by copolymerizing the electron-donating host: accordingly, the nature of excited states can be changed, especially for triplets. Meanwhile, the utilization of excitons can be systematically improved by adjusting the electronic structure of triplet states with long-range distribution in the conjugated polymeric backbones. (2) Halogenating acceptors of TADF units: the introduced halogen atoms would reestablish the electronic distribution of the triplet and relocate the hole orbits, resulting in a CT and LE hybrid nature of a triplet transformed into a LE-predominant state, which favors the RISC process. (3) Stereostructure regulation: by constructing a diverse arrangement of three-dimensional spatial configurations or conjugated architectures, the nature of the triplet can also be finely tuned, such as hyperbranched structures with multiple triplet-singlet vibration couplings, half-dendronized-half-encapsulated asymmetric systems, trinaphtho[3,3,3] propeller-based three-dimensional spatial interspersed structures, intramolecular close-packed donor-acceptor systems, and so on. We hope that this Account will provide insights into new structures and mechanisms for achieving high-performance OLEDs based on regulating the nature of triplet excited states.
Collapse
Affiliation(s)
- Zhennan Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
35
|
Gawale Y, Ansari R, Naveen KR, Kwon JH. Forthcoming hyperfluorescence display technology: relevant factors to achieve high-performance stable organic light emitting diodes. Front Chem 2023; 11:1211345. [PMID: 37377883 PMCID: PMC10291061 DOI: 10.3389/fchem.2023.1211345] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Over the decade, there have been developments in purely organic thermally activated delayed fluorescent (TADF) materials for organic light-emitting diodes (OLEDs). However, achieving narrow full width at half maximum (FWHM) and high external quantum efficiency (EQE) is crucial for real display industries. To overcome these hurdles, hyperfluorescence (HF) technology was proposed for next-generation OLEDs. In this technology, the TADF material was considered a sensitizing host, the so-called TADF sensitized host (TSH), for use of triplet excitons via the reverse intersystem crossing (RISC) pathway. Since most of the TADF materials show bipolar characteristics, electrically generated singlet and triplet exciton energies can be transported to the final fluorescent emitter (FE) through Förster resonance energy transfer (FRET) rather than Dexter energy transfer (DET). This mechanism is possible from the S1 state of the TSH to the S1 state of the final fluorescent dopant (FD) as a long-range energy transfer. Considering this, some reports are available based on hyperfluorescence OLEDs, but the detailed analysis for highly efficient and stable devices for commercialization was unclear. So herein, we reviewed the relevant factors based on recent advancements to build a highly efficient and stable hyperfluorescence system. The factors include an energy transfer mechanism based on spectral overlapping, TSH requirements, electroluminescence study based on exciplex and polarity system, shielding effect, DET suppression, and FD orientation. Furthermore, the outlook and future positives with new directions were discussed to build high-performance OLEDs.
Collapse
Affiliation(s)
| | | | | | - Jang Hyuk Kwon
- *Correspondence: Kenkera Rayappa Naveen, ; Jang Hyuk Kwon,
| |
Collapse
|
36
|
Xiaofeng L, Dongdong Z, Lian D, Yuewei Z. Sterically wrapping of multi-resonant fluorophores: an effective strategy to suppress concentration quenching and spectral broadening. Front Chem 2023; 11:1198404. [PMID: 37214480 PMCID: PMC10196060 DOI: 10.3389/fchem.2023.1198404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Multiple resonance (MR) emitters are promising for the next-generation wide color gamut organic light-emitting diodes (OLEDs) with narrowband emissions; however, they still face intractable challenges such as concentration-induced emission quenching, exciton annihilation, and spectral broadening. In this concept, we focus on an advanced molecular design strategy called "sterically wrapping of MR fluorophores" to address the above issues. By isolating the MR emission core using bulky substituents, intermolecular interactions can be significantly suppressed to eliminate the formation of unfavorable species. Consequently, using the newly designed emitters, optimized MR-OLEDs can achieve high external quantum efficiencies of >40% while maintaining extremely small full width at half maxima (FWHMs) of <25 nm over a wide range of concentrations (1-20 wt%). This strategy may shed light on the design of efficient MR emitters, which provides more room for tuning the dopant concentrations under the premise of high-efficiencies and small FWHMs, accelerating the practical application of MR-OLEDs.
Collapse
Affiliation(s)
- Luo Xiaofeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhang Dongdong
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Duan Lian
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Zhang Yuewei
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| |
Collapse
|