1
|
Chen ZJ, Shao Q, Wu J, Zheng J, Bao S, Zhang L, Zhang T, Lan X, Sun Y, Wang D, Peng J, Cheng HM. Exploiting Antisite Defects in FeWN 2 Nanosheets for Enol Electro-oxidation Coupled with H 2 Evolution at a Large Current Density. Angew Chem Int Ed Engl 2025; 64:e202500678. [PMID: 40024892 DOI: 10.1002/anie.202500678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Hydrogen production from biomass electro-oxidation offers a promising alternative to water electrolysis by lowering the anodic oxidation barrier and producing valuable chemicals. However, current biomass electro-oxidation systems have difficulties in achieving an industrial-scale current density due to the difficulty in cleaving high-energy C─H and O─H bonds. Here, we report a ternary layer nitride FeWN2 electrocatalyst with abundant antisite defects (ASDs), which significantly improves its electrocatalytic performance for ascorbic acid (AA) oxidation. The catalyst works at a remarkable current density of 2.5 A cm-2 at 0.69 V (vs RHE) and achieves 4 A cm-2 at 1.12 V in a two-electrode electrolyzer at 60 °C with 100% Faraday efficiency for H2 production. Theoretical calculations reveal that W atoms near antipodal Fe sites replenish the electron density of Fe, maintaining moderate Fe-DHA adsorption strength induced by ASDs that achieve superior catalytic efficiency for AA-to-DHA conversion This study provides new insight for developing high-performance organic oxidation catalysts with ASDs.
Collapse
Affiliation(s)
- Zheng-Jie Chen
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qiting Shao
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiajing Wu
- Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Jian Zheng
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shida Bao
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, China
| | - Lili Zhang
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tao Zhang
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xuexia Lan
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuanmiao Sun
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dawei Wang
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jing Peng
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
2
|
Guan Y, Deng Q, Wu D, Wang S, Li Z, Yan S, Zou Z. Distinct Promotion of PEC Water Oxidation of Ta 2O 5/α-Fe 2O 3/Co-Ni PBA via Coupling Ni 3d with O 2p. Inorg Chem 2025; 64:2080-2095. [PMID: 39846419 DOI: 10.1021/acs.inorgchem.4c05042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The development of robust and effective photoanodes is crucial for photoelectrochemical hydrogen production via total water splitting. Herein, the Ta2O5/α-Fe2O3/Co-Ni PBA (TFPB-1) photoanode was constructed by the compositing n-type Ta2O5 and n-type α-Fe2O3 followed by the deposition of p-type Co-Ni PBA. The IPCE of TFPB-1 was increased to 35.4% compared to 13.9% for Ta2O5 owing to the significantly improved light absorption efficiency, carrier separation efficiency and injection efficiency. The TFPB-1 achieved a current density of 2.78 mA cm-2 at 1.23 V (vs RHE), which was around 18.5 times that of Ta2O5. The OER overpotential over TFPB-1 was reduced to 0.59 V compared to 1.13 V for Ta2O5, resulting in a substantial reduction in the free energy of PEC water oxidation over TFPB-1. As a result, TFPB-1 exhibited remarkably enhanced photoelectrocatalytic activity for oxygen evolution through water oxidation.
Collapse
Affiliation(s)
- Yuan Guan
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Qiankun Deng
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Dayu Wu
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shaomang Wang
- School of Urban Construction, Changzhou University, Changzhou 213164, P. R. China
| | - Zhongyu Li
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shicheng Yan
- Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Zhigang Zou
- Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
3
|
Liu Q, Yang G, Li R, Yang X, Duan Y, Chen F, Shen Z. Principle Design of C-C Coupling Pathway Towards Highly Selective C2 Products Using Photocatalytic CO 2 Reduction:A Review. Chem Asian J 2024:e202401379. [PMID: 39676051 DOI: 10.1002/asia.202401379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Photocatalytic conversion of environmental CO2 into valuable fuels is expected to alleviate fossil fuel and pollution problems. However, intricate product-reaction pathways complicate the regulation of product selectivity. Most studies in this field have focused on increasing productivity rather than on controlling product formation. To date, the major products of photocatalytic CO2 reduction reactions (CO2RRs) are C1 compounds, as opposed to the higher-value C2 compounds, because of the low C2 selectivity of this process. The design of C-C coupled pathways is paramount to facilitate selective access to C2 products in the photocatalytic CO2RR. In this review, we discuss the mechanisms and pathways of CO2RR product generation based on recent research results and summarise the work on CO2RR to C2 products. This review aims to modulate the product-generation pathway to improve the yield and selectivity of C2 products by facilitating C-C coupling reactions. Finally, some of the current challenges in the field of the CO2RR to C2 are outlined, including possible mechanistic interpretations, cost of catalyst use, reactor design, and potential solutions.
Collapse
Affiliation(s)
- Qian Liu
- School of Materials Science and Engineering and Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P.R. China
| | - Guang Yang
- Nanke Youyi (Tianjin) Technology Co., LTD, Tianjin, 300192, P.R. China
| | - Ruru Li
- School of Materials Science and Engineering and Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P.R. China
| | - Xiaowen Yang
- School of Materials Science and Engineering and Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P.R. China
| | - Yingnan Duan
- School of Materials Science and Engineering and Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P.R. China
| | - Fangyuan Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Zhurui Shen
- School of Materials Science and Engineering and Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P.R. China
| |
Collapse
|
4
|
Sultana S, Darowska I, Pisarek M, Sulka GD, Syrek K. Designing TiO 2 Nanotubular Arrays with Au-CoO x Core-Shell Nanoparticles for Enhanced Photoelectrochemical Methanol and Lignin Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49262-49274. [PMID: 39230475 PMCID: PMC11420873 DOI: 10.1021/acsami.4c07498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
One-dimensional (1D) ordered TiO2 nanotubes exhibit exceptional charge transfer capabilities, making them suitable candidates for constructing visible-light-active photoanodes in selective PEC oxidation reactions. Herein, we employed a facile and easily scalable electrochemical method to fabricate Au-CoOx-deposited ordered TiO2 nanotubular array photoanodes. The improved visible light absorption capacity of TiO2-Au-CoOx, with unhampered 1D channels and the controlled integration of Au between TiO2 and CoOx, along with their synergistic interaction, have been identified as the most promising strategy for enhanced PEC performance, as evidenced by an IPCE of 3.7% at 450 nm. Furthermore, the robust interfacial charge transfer pathway from CoOx to the TiO2 surface via the Au mediator promotes the migration of photogenerated electrons and enables the accumulation of holes on the surface of CoOx. These holes are then efficiently utilized by oxidants such as methanol or lignin to generate value-added products, highlighting the potential of this system for advanced PEC applications.
Collapse
Affiliation(s)
- Sabiha Sultana
- Department
of Physical Chemistry and Electrochemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Izabela Darowska
- Department
of Physical Chemistry and Electrochemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Marcin Pisarek
- Laboratory
of Surface Analysis, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Grzegorz D. Sulka
- Department
of Physical Chemistry and Electrochemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Karolina Syrek
- Department
of Physical Chemistry and Electrochemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
5
|
Duan L, Xu J, Cao L, Lu L, Zang L, Hu S, Fu R, Wang K. Enhanced Electrocatalytic Performance of the FePt/PPy-C Composite toward Methanol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44718-44727. [PMID: 39139126 DOI: 10.1021/acsami.4c07065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
A novel FePt/PPy-C composite nanomaterial has been designed and investigated as a methanol oxidation reaction (MOR) electrocatalyst. The FePt nanoparticles with an average diameter of about 3 nm have been prepared by the co-reduction method and then loaded onto the PPy-C composite support. The electrocatalytic performance is affected by the composition of the FePt nanoparticles. The experimental results indicated that the Fe1.5Pt1/PPy-C catalyst exhibited excellent catalytic activity and stability for MOR, with mass activity and specific activity of 1.76 A mgPt-1 and 2.71 mA cm-2, respectively, which are 5.18 and 4.60 times higher than that of the commercial Pt/C catalyst. Density functional theory (DFT) has been employed to simulate the electrical structures of catalyst supports, and the mechanism of the methanol oxidation process has been further analyzed. The heterojunctions of the PPy-C interface could accelerate the electron migration from the electrocatalytic center to the electrodes. The possibility of methanol oxidation has been improved effectively, which can be confirmed by the d-band center and CO adsorption energy on FePt nanoparticles in the DFT calculation results.
Collapse
Affiliation(s)
- Lijun Duan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinhao Xu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Lingzhi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Liying Lu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Likun Zang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shuxian Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongpeng Fu
- School of Mathematics and Physics, Handan University, Handan 056005, China
| | - Kai Wang
- School of Mathematics and Physics, Handan University, Handan 056005, China
| |
Collapse
|
6
|
Chen YZ, Fan YW, Wang Y, Li Z. Anchoring Ultrafine β-Mo 2C Clusters Inside Porous Co-NC Using MOFs for Electric-Powered Coproduction of Valuable Chemicals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401226. [PMID: 38511543 DOI: 10.1002/smll.202401226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Electroredox of organics provides a promising and green approach to producing value-added chemicals. However, it remains a grand challenge to achieve high selectivity of desired products simultaneously at two electrodes, especially for non-isoelectronic transfer reactions. Here a porous heterostructure of Mo2C@Co-NC is successfully fabricated, where subnanometre β-Mo2C clusters (<1 nm, ≈10 wt%) are confined inside porous Co, N-doped carbon using metalorganic frameworks. It is found that Co species not only promote the formation of β-Mo2C but also can prevent it from oxidation by constructing the heterojunctions. As noted, the heterostructure achieves >96% yield and 92% Faradaic efficiency (FE) for aldehydes in anodic alcohol oxidation, as well as >99.9% yield and 96% FE for amines in cathodal nitrocompounds reduction in 1.0 M KOH. Precise control of the reaction kinetics of two half-reactions by the electronic interaction between β-Mo2C and Co is a crucial adjective. Density functional theory (DFT) gives in-depth mechanistic insight into the high aldehyde selectivity. The work guides authors to reveal the electrooxidation nature of Mo2C at a subnanometer level. It is anticipated that the strategy will provide new insights into the design of highly effective bifunctional electrocatalysts for the coproduction of more complex fine chemicals.
Collapse
Affiliation(s)
- Yu-Zhen Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China
| | - Yi-Wen Fan
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China
| | - Yang Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China
| | - Zhibo Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China
| |
Collapse
|
7
|
Mai TH, Do HB, Pham LD, Phan TX, Chen WZ, Lan LW, Lin HJ, Nguyen VH, Dong CL, Kumar ASK, El-Mahdy AFM, Lee H, Dang DK, Vo DVN, Tu LW, Kuo CC, Yang HD, Pham PV. Efficient photoanode with a MoS 2/TiO 2/Au nanoparticle heterostructure for ultraviolet-visible photoelectrocatalysis. NANOTECHNOLOGY 2024; 35:385703. [PMID: 38958589 DOI: 10.1088/1361-6528/ad5aa0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Green energy technology is generally becoming one of hot issues that need to be solved due to the adverse effects on the environment of fossil fuels. One of the strategies being studied and developed by theorists and experimentalists is the use of photoelectrochemical (PEC) cells, which are emerging as a candidate to produce hydrogen from water splitting. However, creating photoelectrodes that meet the requirements for PEC water splitting has emerged as the primary obstacle in bringing this technology to commercial fruition. Here, we construct a heterostructure, which consists of MoS2/TiO2/Au nanoparticles (NPs) to overcome the drawbacks of the photoanode. Owing to the dependence on charge transfer, the bandgap of MoS2/TiO2and the utilization the Au NPs as a stimulant for charges separation of TiO2by localized surface plasmon resonances effect as well as the increase of hot electron injection to cathode, leading to photocatalytic activities are improved. The results have recorded a significant increase in the photocurrent density from 2.3μAcm-2of TiO2to approximately 16.3μAcm-2of MoS2/TiO2/Au NPs. This work unveils a promising route to enhance the visible light adsorption and charge transfer in photo-electrode of the PEC cells by combining two-dimensional materials with metal NPs.
Collapse
Affiliation(s)
- The-Hung Mai
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Huy-Binh Do
- Faculty of Applied Science, Ho Chi Minh University of Technology and Education, Ho Chi Minh 700000, Vietnam
| | - Long Duy Pham
- Institute of Material Science, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Thien Xuan Phan
- Institute of Physics, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Wei-Zhi Chen
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Liang-Wei Lan
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Hung-Ju Lin
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Van-Hung Nguyen
- International Training Institute for Material Science, Hanoi University of Science and Technology, Hanoi 100000, Vietnam
| | - Chung-Li Dong
- Department of Physics, Tamkang University, Tamsui 25137, Taiwan
| | - Alagarsamy S K Kumar
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Faculty of Geology, Geophysics and Environmental Protection, Akademia Gorniczo-Hutnicza (AGH) University of Science and Technology, Krakow 30-059, Poland
| | - Ahmed F M El-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Hyeonseok Lee
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Dinh Khoi Dang
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Ho Chi Minh 700000, Vietnam
| | - Dai-Viet N Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh 755414, Vietnam
| | - Li-Wei Tu
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chien-Cheng Kuo
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Hung-Duen Yang
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Phuong V Pham
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
8
|
Jeong YJ, Tan R, Nam S, Lee JH, Kim SK, Lee TG, Shin SS, Zheng X, Cho IS. Rapid Surface Reconstruction of In 2S 3 Photoanode via Flame Treatment for Enhanced Photoelectrochemical Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2403164. [PMID: 38720548 DOI: 10.1002/adma.202403164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Surface reconstruction, reorganizing the surface atoms or structure, is a promising strategy to manipulate materials' electrical, electrochemical, and surface catalytic properties. Herein, a rapid surface reconstruction of indium sulfide (In2S3) is demonstrated via a high-temperature flame treatment to improve its charge collection properties. The flame process selectively transforms the In2S3 surface into a diffusionless In2O3 layer with high crystallinity. Additionally, it controllably generates bulk sulfur vacancies within a few seconds, leading to surface-reconstructed In2S3 (sr-In2S3). When using those sr-In2S3 as photoanode for photoelectrochemical water splitting devices, these dual functions of surface In2O3/bulk In2S3 reduce the charge recombination in the surface and bulk region, thus improving photocurrent density and stability. With optimized surface reconstruction, the sr-In2S3 photoanode demonstrates a significant photocurrent density of 8.5 mA cm-2 at 1.23 V versus a reversible hydrogen electrode (RHE), marking a 2.5-fold increase compared to pristine In2S3 (3.5 mA cm-2). More importantly, the sr-In2S3 photoanode exhibits an impressive photocurrent density of 7.3 mA cm-2 at 0.6 V versus RHE for iodide oxidation reaction. A practical and scalable surface reconstruction is also showcased via flame treatment. This work provides new insights for surface reconstruction engineering in sulfide-based semiconductors, making a breakthrough in developing efficient solar-fuel energy devices.
Collapse
Affiliation(s)
- Yoo Jae Jeong
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
- Department of Material Science & Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Runfa Tan
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
- Department of Material Science & Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Seongsik Nam
- Department of Nano Engineering, Department of Nano Science and Technology, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jong Ho Lee
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
- Department of Material Science & Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Sung Kyu Kim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Tae Gyu Lee
- Department of Material Science & Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Seong Sik Shin
- Department of Nano Engineering, Department of Nano Science and Technology, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Xiaolin Zheng
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - In Sun Cho
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
- Department of Material Science & Engineering, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|
9
|
Zheng L, Zhong Y, Cao J, Liu M, Liao Y, Xu H, Chen S, Xiong F, Qing Y, Wu Y. Modulation of Electronic Synergy to Enhance the Intrinsic Activity of Fe 5Ni 4S 8 Nanosheets in Restricted Space Carbonized Wood Frameworks for Efficient Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308928. [PMID: 38098313 DOI: 10.1002/smll.202308928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/22/2023] [Indexed: 05/25/2024]
Abstract
Modulation of electronic structure and composition is widely recognized as an effective strategy to improve electrocatalyst performance. Herein, using a simple simultaneous carbonization and sulfidation strategy, NiFe double hydroxide-derived Fe5Ni4S8 (FNS) nanosheets immobilized on S-doped carbonized wood (SCW) framework by taking benefit of the orientation-constrained cavity and hierarchical porous structure of wood is proposed. Benefiting from the synergistic relationships between bimetal ions, the spatial confinement offered by the wood cavity, and the enhanced structural effects of the nanosheets array, the FNS/SCW exhibit enhanced intrinsic activity, increased accessibility of catalytically active sites, and convection-facilitated mass transport, resulting in an excellent oxygen evolution reaction (OER) activity and durability. Specifically, it takes a low overpotential of 230 mV at 50 mA cm-2 and potential increase is negligible (3.8%) at 50 mA cm-2 for 80 hours. Density functional theory (DFT) calculations further reveal that the synergistic effect of bimetal can optimize the electronic structure and lower the reaction energy barrier. The FNS/SCW used as the cathode of zinc-air battery shows higher power density and excellent durability relative to commercial RuO2, exhibiting a good application prospect. Overall, this research offers proposals for designing and producing effective OER electrocatalysts using sustainable resources.
Collapse
Affiliation(s)
- Luosong Zheng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Yuxin Zhong
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Jianjie Cao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Mengqi Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Yu Liao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Han Xu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Sha Chen
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Fuquan Xiong
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Yan Qing
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| |
Collapse
|
10
|
Tian L, Tang ZJ, Hao LY, Dai T, Zou JP, Liu ZQ. Efficient Homolytic Cleavage of H 2O 2 on Hydroxyl-Enriched Spinel CuFe 2O 4 with Dual Lewis Acid Sites. Angew Chem Int Ed Engl 2024; 63:e202401434. [PMID: 38425264 DOI: 10.1002/anie.202401434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Traditional H2O2 cleavage mediated by macroscopic electron transfer (MET) not only has low utilization of H2O2, but also sacrifices the stability of catalysts. We present a non-redox hydroxyl-enriched spinel (CuFe2O4) catalyst with dual Lewis acid sites to realize the homolytic cleavage of H2O2. The results of systematic experiments, in situ characterizations, and theoretical calculations confirm that tetrahedral Cu sites with optimal Lewis acidity and strong electron delocalization can synergistically elongate the O-O bonds (1.47 Å → 1.87 Å) in collaboration with adjacent bridging hydroxyl (another Lewis acid site). As a result, the free energy of H2O2 homolytic cleavage is decreased (1.28 eV → 0.98 eV). H2O2 can be efficiently split into ⋅OH induced by hydroxyl-enriched CuFe2O4 without MET, which greatly improves the catalyst stability and the H2O2 utilization (65.2 %, nearly 2 times than traditional catalysts). The system assembled with hydroxyl-enriched CuFe2O4 and H2O2 affords exceptional performance for organic pollutant elimination. The scale-up experiment using a continuous flow reactor realizes long-term stability (up to 600 mL), confirming the tremendous potential of hydroxyl-enriched CuFe2O4 for practical applications.
Collapse
Affiliation(s)
- Lei Tian
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Zi-Jun Tang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Le-Yang Hao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Ting Dai
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Jian-Ping Zou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| |
Collapse
|
11
|
Gong H, An S, Qin W, Kuang Y, Liu D. Stabilizing BiVO 4 Photoanode in Bicarbonate Electrolyte for Efficient Photoelectrocatalytic Alcohol Oxidation. Molecules 2024; 29:1554. [PMID: 38611832 PMCID: PMC11013117 DOI: 10.3390/molecules29071554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
In order to expand the application of bismuth vanadate (BiVO4) to the field of photoelectrochemistry, researchers have explored the potential of BiVO4 in catalyzing or degrading organic substances, potentially presenting a green and eco-friendly solution. A study was conducted to investigate the impact of electrolytes on the photocatalysis of benzyl alcohol by BiVO4. The research discovered that, in an acetonitrile electrolyte (pH 9) with sodium bicarbonate, BiVO4 catalyzed benzyl alcohol by introducing saturated V5+. This innovation addressed the issue of benzyl alcohol being susceptible to catalysis in an alkaline setting, as V5+ was prone to dissolution in pH 9 on BiVO4. The concern of the photocorrosion of BiVO4 was mitigated through two approaches. Firstly, the incorporation of a non-aqueous medium inhibited the formation of active material intermediates, reducing the susceptibility of the electrode surface to photocorrosion. Secondly, the presence of saturated V5+ further deterred the leaching of V5+. Concurrently, the production of carbonate radicals by bicarbonate played a vital role in catalyzing benzyl alcohol. The results show that, in this system, BiVO4 has the potential to oxidize benzyl alcohol by photocatalysis.
Collapse
Affiliation(s)
- Haorui Gong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; (H.G.); (S.A.)
| | - Sai An
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; (H.G.); (S.A.)
| | - Weilong Qin
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
| | - Yongbo Kuang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100000, China
| | - Deyu Liu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
| |
Collapse
|
12
|
Zhao R, Zhu Z, Ouyang T, Liu ZQ. Selective CO 2 -to-Syngas Conversion Enabled by Bimetallic Gold/Zinc Sites in Partially Reduced Gold/Zinc Oxide Arrays. Angew Chem Int Ed Engl 2024; 63:e202313597. [PMID: 37853853 DOI: 10.1002/anie.202313597] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
Electrocatalytic CO2 -to-syngas (gaseous mixture of CO and H2 ) is a promising way to curb excessive CO2 emission and the greenhouse gas effect. Herein, we present a bimetallic AuZn@ZnO (AuZn/ZnO) catalyst with high efficiency and durability for the electrocatalytic reduction of CO2 and H2 O, which enables a high Faradaic efficiency of 66.4 % for CO and 26.5 % for H2 and 3 h stability of CO2 -to-syngas at -0.9 V vs. the reversible hydrogen electrode (RHE). The CO/H2 ratios show a wide range from 0.25 to 2.50 over a narrow potential window (-0.7 V to -1.1 V vs. RHE). In situ attenuated total reflection surface-enhanced infrared absorption spectroscopy combined with density functional theory calculations reveals that the bimetallic synergistic effect between Au and Zn sites lowers the activation energy barrier of CO2 molecules and facilitates electronic transfer, further highlighting the potential to control CO/H2 ratios for efficient syngas production using the coexisting Au sites and Zn sites.
Collapse
Affiliation(s)
- Rui Zhao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ziyin Zhu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
13
|
Huang ZY, Chen YY, Hao LY, Hua YJ, Lei BX, Liu ZQ. Corner-Sharing Tetrahedrally Coordinated W-V Dual Active Sites on Cu 2 V 2 O 7 for Photoelectrochemical Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307547. [PMID: 37814367 DOI: 10.1002/smll.202307547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Indexed: 10/11/2023]
Abstract
The sluggish four-electron oxygen evolving reaction is one of the key limitations of photoelectrochemical water decomposition. Optimizing the binding of active sites to oxygen in water and promoting the conversion of *O to *OOH are the key to enhancing oxygen evolution reaction. In this work, W-doped Cu2 V2 O7 (CVO) constructs corner-sharing tetrahedrally coordinated W-V dual active sites to induce the generation of electron deficiency active centers, promote the adsorption of ─OH, and accelerate the transformation of *O to *OOH for water splitting. The photocurrent obtained by the W-modified CVO photoanode is 0.97 mA cm-2 at 1.23 V versus RHE, which is much superior to that of the reported CVO. Experimental and theoretical results show that the excellent catalytic performance may be attributed to the formation of synergistic dual active sites between W and V atoms, and the introduction of W ions reduces the charge migration distance and prolongs the lifetime of photogenerated carriers. Meanwhile, the electronic structure in the center of the d-band is modulated, which leads to the redistribution of the electron density in CVO and lowers the energy barrier for the conversion of the rate-limiting step *O to *OOH.
Collapse
Affiliation(s)
- Zheng-Yi Huang
- School of Chemistry and Chemical Engineering/Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province/Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou, Hainan Normal University, Haikou, 571158, China
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center, Guangzhou University, Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Yi-Ying Chen
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center, Guangzhou University, Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Le-Yang Hao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center, Guangzhou University, Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ying-Jie Hua
- School of Chemistry and Chemical Engineering/Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province/Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou, Hainan Normal University, Haikou, 571158, China
| | - Bing-Xin Lei
- School of Chemistry and Chemical Engineering/Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province/Key Laboratory of Electrochemical Energy Storage and Light Energy Conversion Materials of Haikou, Hainan Normal University, Haikou, 571158, China
- School of Materials and Environment/Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization/Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Minzu University, Nanning, 530105, China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center, Guangzhou University, Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
14
|
Liu TK, Jang GY, Kim S, Zhang K, Zheng X, Park JH. Organic Upgrading through Photoelectrochemical Reactions: Toward Higher Profits. SMALL METHODS 2024; 8:e2300315. [PMID: 37382404 DOI: 10.1002/smtd.202300315] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/22/2023] [Indexed: 06/30/2023]
Abstract
Aqueous photoelectrochemical (PEC) cells have long been considered a promising technology to convert solar energy into hydrogen. However, the solar-to-H2 (STH) efficiency and cost-effectiveness of PEC water splitting are significantly limited by sluggish oxygen evolution reaction (OER) kinetics and the low economic value of the produced O2 , hindering the practical commercialization of PEC cells. Recently, organic upgrading PEC reactions, especially for alternative OERs, have received tremendous attention, which improves not only the STH efficiency but also the economic effectiveness of the overall reaction. In this review, PEC reaction fundamentals and reactant-product cost analysis of organic upgrading reactions are briefly reviewed, recent advances made in organic upgrading reactions, which are categorized by their reactant substrates, such as methanol, ethanol, glycol, glycerol, and complex hydrocarbons, are then summarized and discussed. Finally, the current status, further outlooks, and challenges toward industrial applications are discussed.
Collapse
Affiliation(s)
- Tae-Kyung Liu
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gyu Yong Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sungsoon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Kan Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xiaolin Zheng
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
15
|
Zhang K, Tian L, Yang J, Wu F, Wang L, Tang H, Liu ZQ. Pauling-Type Adsorption of O 2 Induced by Heteroatom Doped ZnIn 2 S 4 for Boosted Solar-Driven H 2 O 2 Production. Angew Chem Int Ed Engl 2023:e202317816. [PMID: 38082536 DOI: 10.1002/anie.202317816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 12/30/2023]
Abstract
Breaking the trade-off between activity and selectivity has perennially been a formidable endeavor in the field of hydrogen peroxide (H2 O2 ) photosynthesis, especially the side-on configuration of oxygen (O2 ) on the catalyst surface will cause the cleavage of O-O bonds, which drastically hinders the H2 O2 production performance. Herein, we present an atomically heteroatom P doped ZnIn2 S4 catalyst with tunable oxygen adsorption configuration to accelerate the ORR kinetics essential for solar-driven H2 O2 production. Indeed, the spectroscopy characterizations (such as EXAFS and in situ FTIR) and DFT calculations reveal that heteroatom P doped ZnIn2 S4 at substitutional and interstitial sites, which not only optimizes the coordination environment of Zn active sites, but also facilitates electron transfer to the Zn sites and improves charge density, avoiding the breakage of O-O bonds and reducing the energy barriers to H2 O2 production. As a result, the oxygen adsorption configuration is regulated from side-on (Yeager-type) to end-on (Pauling-type), resulting in the accelerated ORR kinetics from 874.94 to 2107.66 μmol g-1 h-1 . This finding offers a new avenue toward strategic tailoring oxygen adsorption configuration by the rational design of doped photocatalyst.
Collapse
Affiliation(s)
- Kailian Zhang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Lei Tian
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Jingfei Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Fengxiu Wu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Leigang Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Hua Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
16
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Lin C, Shan Z, Dong C, Lu Y, Meng W, Zhang G, Cai B, Su G, Park JH, Zhang K. Covalent organic frameworks bearing Ni active sites for free radical-mediated photoelectrochemical organic transformations. SCIENCE ADVANCES 2023; 9:eadi9442. [PMID: 37939175 PMCID: PMC10631720 DOI: 10.1126/sciadv.adi9442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Photoelectrochemical (PEC) organic transformations occurring at anodes are a promising strategy for circumventing the sluggish kinetics of the oxygen evolution reaction. Here, we report a free radical-mediated reaction instead of direct hole transfer occurring at the solid/liquid interface for PEC oxidation of benzyl alcohol (BA) to benzaldehyde (BAD) with high selectivity. A bismuth vanadate (BiVO4) photoanode coated with a 2,2'-bipyridine-based covalent organic framework bearing single Ni sites (Ni-TpBpy) was developed to drive the transformation. Experimental studies reveal that the reaction at the Ni-TpBpy/BiVO4 photoanode followed first-order reaction kinetics, boosting the formation of surface-bound ·OH radicals, which suppressed further BAD oxidation and provided a nearly 100% selectivity and a rate of 80.63 μmol hour-1 for the BA-to-BAD conversion. Because alcohol-to-aldehyde conversions are involved in the valorizations of biomass and plastics, this work is expected to open distinct avenues for producing key intermediates of great value.
Collapse
Affiliation(s)
- Cheng Lin
- Nanjing University of Science and Technology, Nanjing 210094, China
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Zhen Shan
- Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chaoran Dong
- Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuan Lu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Weikun Meng
- Nanjing University of Science and Technology, Nanjing 210094, China
| | - Gen Zhang
- Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bo Cai
- Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Guanyong Su
- Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Kan Zhang
- Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
18
|
Wang K, He T. Plasmon photocatalytic CO 2 reduction reactions over Au particles on various substrates. NANOSCALE 2023. [PMID: 37455632 DOI: 10.1039/d3nr02543h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Surface plasmonic effects have been widely used in photocatalytic reactions like CO2 conversion in the past decades. However, owing to the significant controversy in the physical processes of plasmon photocatalytic reactions and difficulty in realizing CO2 reduction, the influence mechanism of the plasmon effect on the CO2 photoreduction is still under debate. In this study, Au particles deposited on various substrates were employed to acquire insights into the plasmon photocatalytic CO2 reduction, including SiO2, n-Si, p-Si, TiO2-SiO2, TiO2-n-Si, and TiO2-p-Si. It was found that the plasmon resonant enhancement (PRE) effect of Au-SiO2 caused by the Au plasmon was stronger than that of Au-TiO2-SiO2 and Au-n-Si (Au-p-Si) in the visible-light range, while it was weaker for Au-n-Si (Au-p-Si) samples than Au-TiO2-n-Si (Au-TiO2-p-Si). The simulation results agree with the experimental conclusions. The photocatalytic results indicated that the catalytic activity of Au-n-Si (Au-p-Si) samples was lower than that of Au-TiO2-n-Si (Au-TiO2-p-Si), and Au-SiO2 was lower than Au-TiO2-SiO2 and Au-n-Si (Au-p-Si) samples, suggesting that the direct electron transfer (DET) mechanism was dominant here compared with the PRE mechanism.
Collapse
Affiliation(s)
- Kai Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao He
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Zhang K, Deng Y, Wu Y, Wang L, Yan L. Prussian-blue-analogue derived FeNi 2S 4/NiS nanoframes supported by N-doped graphene for highly efficient methanol oxidation electrocatalysis. J Colloid Interface Sci 2023; 647:246-254. [PMID: 37253293 DOI: 10.1016/j.jcis.2023.05.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
The design of effective and robust non-noble metal electrocatalysts to enhance catalytic reaction kinetic is critical to promote methanol oxidation catalysis. Herein, hierarchical Prussian blue analogue (PBA)-derived sulfide heterostructures supported by N-doped graphene (FeNi2S4/NiS-NG) as efficient catalysts have been developed for methanol oxidation reaction (MOR). Benefiting from the merits of hollow nanoframes structure and heterogeneous sulfide synergy, FeNi2S4/NiS-NG composite not only possesses abundant active sites to boost the catalytic properties but also alleviates the CO poisoning effect during the process exhibiting favorable kinetic behavior toward MOR. Specifically, the remarkable catalytic activity (97.6 mA cm-2/1544.3 mA mg-1) of FeNi2S4/NiS-NG for methanol oxidation was achieved, superior to most reported non-noble electrocatalysts. Additionally, the catalyst showed competitive electrocatalytic stability, with a current density of over 90% after 2000 consecutive CV cycles. This study offers promising insights into the rational modulation of the morphology and components of precious-metal-free catalysts for fuel cell applications.
Collapse
Affiliation(s)
- Kefu Zhang
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Jinzairoad 96, Hefei 230026, Anhui, China
| | - Yongqi Deng
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Jinzairoad 96, Hefei 230026, Anhui, China
| | - Yihan Wu
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Jinzairoad 96, Hefei 230026, Anhui, China
| | - Lele Wang
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Jinzairoad 96, Hefei 230026, Anhui, China
| | - Lifeng Yan
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Jinzairoad 96, Hefei 230026, Anhui, China.
| |
Collapse
|
20
|
Guo M, Ma P, Wei L, Wang J, Wang Z, Zheng K, Cheng D, Liu Y, Dai H, Guo G, Duan E, Deng J. Highly Selective Activation of C-H Bond and Inhibition of C-C Bond Cleavage by Tuning Strong Oxidative Pd Sites. J Am Chem Soc 2023; 145:11110-11120. [PMID: 37191364 DOI: 10.1021/jacs.3c00747] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Improving the product selectivity meanwhile restraining deep oxidation still remains a great challenge over the supported Pd-based catalysts. Herein, we demonstrate a universal strategy where the surface strong oxidative Pd sites are partially covered by the transition metal (e. g., Cu, Co, Ni, and Mn) oxide through thermal treatment of alloys. It could effectively inhibit the deep oxidation of isopropanol and achieve the ultrahigh selectivity (>98%) to the target product acetone in a wide temperature range of 50-200 °C, even at 150-200 °C with almost 100% isopropanol conversion over PdCu1.2/Al2O3, while an obvious decline in acetone selectivity is observed from 150 °C over Pd/Al2O3. Furthermore, it greatly improves the low-temperature catalytic activity (acetone formation rate at 110 °C over PdCu1.2/Al2O3, 34.1 times higher than that over Pd/Al2O3). The decrease of surface Pd site exposure weakens the cleavage for the C-C bond, while the introduction of proper CuO shifts the d-band center (εd) of Pd upward and strengthens the adsorption and activation of reactants, providing more reactive oxygen species, especially the key super oxygen species (O2-) for selective oxidation, and significantly reducing the barrier of O-H and β-C-H bond scission. The molecular-level understanding of the C-H and C-C bond scission mechanism will guide the regulation of strong oxidative noble metal sites with relatively inert metal oxide for the other selective catalytic oxidation reactions.
Collapse
Affiliation(s)
- Meng Guo
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Peijie Ma
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Lu Wei
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Jiayi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiwei Wang
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kun Zheng
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuxi Liu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Guangsheng Guo
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Erhong Duan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Jiguang Deng
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
21
|
Jing M, Zhao H, Jian L, Pan C, Dong Y, Zhu Y. Coral-like B-doped g-C 3N 4 with enhanced molecular dipole to boost photocatalysis-self-Fenton removal of persistent organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131017. [PMID: 36812729 DOI: 10.1016/j.jhazmat.2023.131017] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Fenton process is a popular advanced oxidation process for water purification. However, it requires an external addition of H2O2, thus raising safety threats and economic costs and encountering the problems of slow cycling of Fe2+/Fe3+ and low mineralization efficiency. Herein, we developed a novel photocatalysis-self-Fenton system based on coral-like B-doped g-C3N4 (Coral-B-CN) photocatalyst for 4-chlorophenol (4-CP) removal where H2O2 can be in situ generated by photocatalysis over Coral-B-CN, the cycling of Fe2+/Fe3+ was accelerated by photoelectrons, and the photoholes promoted 4-CP mineralization. Coral-B-CN was innovatively synthesized by hydrogen bond self-assembly followed by calcination. B heteroatom doping produced enhanced molecular dipole, while the morphological engineering exposed more active sites and optimized band structure. The effective combination of the two enhances charge separation and mass transfer between the phases, resulting in efficient in-situ H2O2 production, faster Fe2+/Fe3+ valence cycling and enhanced hole oxidation. Accordingly, nearly all 4-CP can be degraded during 50 min under the combined action of more ·OH and holes with stronger oxidation capacity. The mineralization rate of this system reached 70.3%, which is 2.6 and 4.9 times higher than that of Fenton process and photocatalysis, respectively. Besides, this system maintained excellent stability and can be applied in a broad range of pHs. The study would provide important insights into developing improved Fenton process with high performance for the removal of persistent organic pollutants.
Collapse
Affiliation(s)
- Mengyang Jing
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Zhao
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Liang Jian
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Chengsi Pan
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuming Dong
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Yongfa Zhu
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Pan Y, Huang Z, Zheng D, Yang C. Interface engineering of sandwich SiO@α-FeO@COF core-shell S-scheme heterojunctions for efficient photocatalytic oxidation of gas-phase HS. J Colloid Interface Sci 2023; 644:19-28. [PMID: 37088014 DOI: 10.1016/j.jcis.2023.03.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Hydrogen sulfide (H2S) is considered to be a broad-spectrum toxicant, and it is crucial to address this problem due to its serious health and climate change impacts. Photocatalysis can be effectively applied for the reduction of H2S molecules to S and other products. We synthesized sandwich-structured composite materials with internally immobilized SiO2 nanospheres and externally wrapped COF layers co-modified with iron oxide nanoparticles. Furthermore, originally looked at the efficiency of photocatalysis in reducing hydrogen sulfide to sulfur. In this paper, a sandwich structure of core-shell composite photocatalysts based on SiO2 was prepared by a multi-step method including Stöber and double ligand-regulated solvent heat, and these sandwich core-shell structures exhibited high hydrogen sulfide reduction and stability in applications. In addition, characterization, degradation studies, active substance trapping studies, and energy band structure analysis showed that S-type heterojunctions could effectively increase photo-generated carrier separation. This research advanced knowledge of photocatalytic hydrogen sulfide reduction and offered a novel approach for catalysts in COF sandwich core-shell structures.
Collapse
|
23
|
Efficient CO2 reduction to formate using a Cu-doped BiVO4 electrocathode in a WO3 photoanode-assisted photoelectrocatalytic system. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|