1
|
Yu SY, Wu T, Xu KH, Liu RY, Yu TH, Wang ZH, Zhang ZT. 3D bioprinted biomimetic MOF-functionalized hydrogel scaffolds for bone regeneration: Synergistic osteogenesis and osteoimmunomodulation. Mater Today Bio 2025; 32:101740. [PMID: 40270888 PMCID: PMC12018039 DOI: 10.1016/j.mtbio.2025.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/25/2025] Open
Abstract
Critical-size bone defects remain a significant clinical challenge. The lack of endogenous stem cells with osteogenic differentiation potential in the defect area, combined with the inflammatory responses induced by scaffold implantation, highlights the need for biomaterials that can deliver stem cells and possess inflammatory regulation properties. In this study, we developed a 3D bioprinted gelatin methacrylate (GelMA) hydrogel scaffold modified with luteolin-loaded ZIF-8 (LUT@ZIF-8) nanoparticles, designed to deliver bone marrow mesenchymal stem cells (BMSCs) to the defect site and release bioactive components that promote osteogenesis and modulate the immune microenvironment. The LUT@ZIF-8/GelMA hydrogel scaffolds demonstrated excellent physical properties and biocompatibility. The sustained release of luteolin and zinc ions from the LUT@ZIF-8 nanoparticles conferred antibacterial, osteoinductive, and inflammatory regulation effects. The immune microenvironment modulated by LUT@ZIF-8/GelMA hydrogel scaffolds facilitated osteogenic differentiation of BMSCs. Furthermore, in vivo experiments confirmed the osteogenic and inflammatory regulation capabilities of the LUT@ZIF-8/GelMA hydrogel scaffolds. In conclusion, the 3D bioprinted LUT@ZIF-8/GelMA hydrogel scaffolds exhibit osteoimmunomodulatory properties, presenting a promising strategy for the treatment of bone defects.
Collapse
Affiliation(s)
- San-yang Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, PR China
| | - Ting Wu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, PR China
| | - Kai-hao Xu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, PR China
| | - Ru-yue Liu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, PR China
| | - Tian-hao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110002, PR China
| | - Zhen-hua Wang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, 110122, PR China
| | - Zhong-ti Zhang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, PR China
| |
Collapse
|
2
|
Miao S, Guo J, Zhang Y, Liu P, Chen X, Han Q, Wang Y, Xuan K, Yang P, Tao F. Biomimetic Intrafibrillar Mineralization of Hierarchically Structured Amyloid-Like Fibrils. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416824. [PMID: 40195686 DOI: 10.1002/adma.202416824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/26/2025] [Indexed: 04/09/2025]
Abstract
Intrafibrillar mineralization is essential not only as a fundamental process in forming biological hard tissues but also as a foundation for developing advanced composite fibril-based materials for innovative applications. Traditionally, only natural collagen fibrils have been shown to enable intrafibrillar mineralization, presenting a challenge in designing ordered hierarchical fibrils from common protein aggregation that exhibit similar high intrafibrillar mineralization activity. In this study, a mechanically directed two-step transformation method is developed that converts phase-transitioned protein nanofilms into crystalline, hierarchical amyloid-like fibrils with multilayer structures, which effectively control the growth and lateral organization of hydroxyapatite within adaptive gaps. The resulting mineralized HSAF achieves a hardness of 0.616 ± 0.007 GPa and a modulus of 19.06 ± 3.54 GPa-properties closely resembling native hard tissues-and exhibits exceptionally high bioactivity in promoting both native bone tissue growth and further intrafibrillar mineralization, achieving 76.9% repair in a mice cranial defect model after 8 weeks and outperforming other regenerative materials. This remarkable performance, stemming from the unique structure and composition of the fibers, positions HSAF as a promising candidate for biomedical and engineering applications. These findings advance the understanding of biomineralization mechanisms and establish a foundation for developing high-bioactivity materials for hard tissue regeneration.
Collapse
Affiliation(s)
- Shuting Miao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yuexin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Peisheng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaojie Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qian Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yingbo Wang
- College of Chemical Engineering, Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Xinjiang Normal University, 102 Xinyi Road, Urumqi, 830054, China
| | - Kun Xuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Fei Tao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
3
|
An Y, Ji C, Zhang H, Jiang Q, Maitz MF, Pan J, Luo R, Wang Y. Engineered Cell Membrane Coating Technologies for Biomedical Applications: From Nanoscale to Macroscale. ACS NANO 2025; 19:11517-11546. [PMID: 40126356 DOI: 10.1021/acsnano.4c16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Cell membrane coating has emerged as a promising strategy for the surface modification of biomaterials with biological membranes, serving as a cloak that can carry more functions. The cloaked biomaterials inherit diverse intrinsic biofunctions derived from different cell sources, including enhanced biocompatibility, immunity evasion, specific targeting capacity, and immune regulation of the regenerative microenvironment. The intrinsic characteristics of biomimicry and biointerfacing have demonstrated the versatility of cell membrane coating technology on a variety of biomaterials, thus, furthering the research into a wide range of biomedical applications and clinical translation. Here, the preparation of cell membrane coatings is emphasized, and different sizes of coated biomaterials from nanoscale to macroscale as well as the engineering strategies to introduce additional biofunctions are summarized. Subsequently, the utilization of biomimetic membrane-cloaked biomaterials in biomedical applications is discussed, including drug delivery, imaging and phototherapy, cancer immunotherapy, anti-infection and detoxification, and implant modification. In conclusion, the latest advancements in clinical and preclinical studies, along with the multiple benefits of cell membrane-coated nanoparticles (NPs) in biomimetic systems, are elucidated.
Collapse
Affiliation(s)
- Yongqi An
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cheng Ji
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hao Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Manfred F Maitz
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Dresden 01069, Germany
| | - Junqiang Pan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Department of Cardiovascular Medicine, Xi'an Central Hospital, Xi'an 710003, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Research Unit. of Minimally Invasive Treatment of Structural Heart-Disease, Chinese Academy of Medical Sciences (2021RU013), Chengdu, 610065, China
| |
Collapse
|
4
|
Yang L, Wang P, Zhang Y, Zhou J, Bi X, Qian Z, Hou S, Li L, Fan Y. Hybrid cell membrane coating orchestrates foreign-body reactions, anti-adhesion, and pro-regeneration in abdominal wall reconstruction. Biomaterials 2025; 321:123289. [PMID: 40154120 DOI: 10.1016/j.biomaterials.2025.123289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Tension-free synthetic meshes are the clinical standard for hernia repair, but they often trigger immune response-mediated complications such as severe foreign-body reactions (FBR), visceral adhesions, and fibrotic healing, increasing the risk of recurrence. Herein, we developed a hybrid cell membrane coating for macroscale mesh fibers that acts as an immune orchestrator, capable of balancing immune responses with tissue regeneration. Cell membranes derived from red blood cells (RBCs) and platelets (PLTs) were covalently bonded to fiber surfaces using functionalized-liposomes and click chemistry. The fusion of clickable liposomes with cell membranes significantly improved coating efficiency, coverage uniformity, and in vivo stability. Histological and flow cytometric analyses of subcutaneous implantation in rats and mice demonstrated significant biofunctional heterogeneity among various cell membrane coatings in FBR. Specifically, the RBC-PLT-liposome hybrid cell membrane coating markedly mitigated FBR, facilitated host cell infiltration, and promoted M2-type macrophage polarization. Importantly, experimental results of abdominal wall defect repairs in rats indicate that the hybrid cell membrane coating effectively prevented visceral adhesions, promoted muscle regenerative healing, and enhanced the recruitment of Pax7+/MyoD+ muscle satellite cells. Our findings suggest that the clickable hybrid cell membrane coating offers a promising approach to enhance clinical outcomes of hernia mesh in abdominal wall reconstruction.
Collapse
Affiliation(s)
- Lingbing Yang
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China; Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, 100191, China
| | - Pu Wang
- Department of Hernia and Abdominal Wall Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Yilin Zhang
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China; Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, 100191, China
| | - Jin Zhou
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China; Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, 100191, China
| | - Xuewei Bi
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zhiyong Qian
- Department of Anatomy, Basic Medicine College, Inner Mongolia Medical University, Hohhot, 010000, China
| | - Sen Hou
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China; Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, 100191, China
| | - Linhao Li
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China; Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, 100191, China.
| | - Yubo Fan
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China; Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, 100191, China.
| |
Collapse
|
5
|
Jiang Y, Li X, Huang R, Lei F, Li L, Yang B, Zen W, Tan H, Huang Y, Hu J, Xiong Y, Wang Z, Chen Z, Chen L, Shi S, Mao X. Lyophilized apoptotic vesicles improve hemostasis and bone regeneration in traumatic patients with impacted third molar extraction. Mol Ther 2025:S1525-0016(25)00124-8. [PMID: 39988872 DOI: 10.1016/j.ymthe.2025.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/14/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025] Open
Abstract
Uncontrollable bleeding and tissue defects caused by trauma are significant clinical issues. Apoptotic vesicles (apoVs) derived from mesenchymal stem cells (MSCs) have shown promise for hemostasis and tissue regeneration, but their clinical safety and efficacy remain unverified. We investigated the procoagulant and regenerative function of lyophilized MSC-derived apoVs (MSC-apoVs) using in vitro experiments and in vivo rat models. In addition, we conducted a double-blind, randomized, self-controlled clinical trial to evaluate the safety and efficiency of lyophilized MSC-apoVs for hemostasis and bone regeneration following extraction of impacted mandibular third molars. We show that lyophilized MSC-apoVs maintain their procoagulant and regenerative functions after storage at 4°C for 3 months and upregulate tripartite motif containing 71 to activate the extracellular signal-regulated kinase signaling pathway. Furthermore, among the 43 enrolled subjects, 39 patients completed all follow-ups and 4 patients were lost to contact. All 39 patients tolerated MSC-apoVs well, with no serious adverse events or abnormal blood test results observed. The MSC-apoV group exhibited shortened hemostatic time and accelerated alveolar bone regeneration compared with the control group. This is the first clinical study to demonstrate that apoVs are safe, well tolerated, and effective as a cell-free biological therapy for hemostasis and bone regeneration.
Collapse
Affiliation(s)
- Yexiang Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xuemeng Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Ruoxin Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Fangcao Lei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Lingzhi Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Bo Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Wenfeng Zen
- Department of Stomatology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Huagen Tan
- Department of Stomatology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Yun Huang
- Department of Stomatology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Jing Hu
- Department of Stomatology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Yasha Xiong
- Department of Stomatology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Zhiyuan Wang
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Lili Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; International Center for Aging and Cancer (ICAC), Hainan Medical University, Haikou, Hainan, China; Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Department of Stomatology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
| |
Collapse
|
6
|
Ahn J, Kim B, Bello AB, Moon JJ, Arai Y, Lee SH. Regenerative Functions of Regulatory T Cells and Current Strategies Utilizing Mesenchymal Stem Cells in Immunomodulatory Tissue Regeneration. Tissue Eng Regen Med 2025; 22:167-180. [PMID: 39804546 PMCID: PMC11794763 DOI: 10.1007/s13770-024-00690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function. MSCs enhance Treg activity through indirect interactions, such as cytokine secretion, and direct interactions via membrane proteins. METHODS This review examines the regenerative functions of Tregs across various tissues, including bone, cartilage, muscle, and skin, and explores strategies to enhance Treg functionality using MSCs. Advanced techniques, such as the overexpression of relevant genes in MSCs, are highlighted for their potential to further enhance Treg function. Additionally, emerging technologies utilizing extracellular vesicles (EVs) and cell membrane-derived vesicles derived from MSCs offer promising alternatives to circumvent the potential side effects associated with live cell therapies. This review proposes approaches to enhance Treg function and promote tissue regeneration and also outlines future research directions. RESULTS AND CONCLUSION This review elucidates recent technological advancements aimed at enhancing Treg function using MSCs and examines their potential to improve tissue regeneration efficiency.
Collapse
Grants
- 2022R1A2C3004850 Ministry of Science and ICT, South Korea
- RS-2024-00405381 Ministry of Science and ICT, South Korea
- RS-2023-00257290 Ministry of Science and ICT, South Korea
- RS-2023-00246418 Ministry of Education
- RS-2023-00275407 Ministry of Education
- 21C0703L1 Ministry of Science and ICT, Ministry of Health & Welfare
- HX23C1734 Ministry of Science and ICT, Ministry of Trade, Industry and Energy, Ministry of Health & Welfare, The Ministry of Food and Drug Safety
- Ministry of Science and ICT, Ministry of Health & Welfare
- Ministry of Science and ICT, Ministry of Trade, Industry and Energy, Ministry of Health & Welfare, The Ministry of Food and Drug Safety
Collapse
Affiliation(s)
- Jinsung Ahn
- Department of Biomedical Engineering, Dongguk University, Seoul, South Korea
| | - Bowon Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, South Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, South Korea
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, South Korea.
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
7
|
Liu L, Chen H, Zhao X, Han Q, Xu Y, Liu Y, Zhang A, Li Y, Zhang W, Chen B, Wang J. Advances in the application and research of biomaterials in promoting bone repair and regeneration through immune modulation. Mater Today Bio 2025; 30:101410. [PMID: 39811613 PMCID: PMC11731593 DOI: 10.1016/j.mtbio.2024.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/02/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
With the ongoing development of osteoimmunology, increasing evidence indicates that the local immune microenvironment plays a critical role in various stages of bone formation. Consequently, modulating the immune inflammatory response triggered by biomaterials to foster a more favorable immune microenvironment for bone regeneration has emerged as a novel strategy in bone tissue engineering. This review first examines the roles of various immune cells in bone tissue injury and repair. Then, the contributions of different biomaterials, including metals, bioceramics, and polymers, in promoting osteogenesis through immune regulation, as well as their future development directions, are discussed. Finally, various design strategies, such as modifying the physicochemical properties of biomaterials and integrating bioactive substances, to optimize material design and create an immune environment conducive to bone formation, are explored. In summary, this review comprehensively covers strategies and approaches for promoting bone tissue regeneration through immune modulation. It offers a thorough understanding of current research trends in biomaterial-based immune regulation, serving as a theoretical reference for the further development and clinical application of biomaterials in bone tissue engineering.
Collapse
Affiliation(s)
- Li Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Xue Zhao
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Qing Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Yongjun Xu
- Department of Orthopedics Surgery, Wangqing County People's Hospital, Yanbian, 133000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Yongyue Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Weilong Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Bingpeng Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| |
Collapse
|
8
|
Wu J, Tang J, Zhang L, Wang W, Li Z, Zhou L, Jiang X, Huang Y, Guo Q, Wang W, Ding Z, Cai F, Xi K, Gu Y, Chen L. Biomimetic "Trojan Horse" Fibers Modulate Innate Immunity Cascades for Nerve Regeneration. ACS NANO 2025; 19:781-802. [PMID: 39708371 PMCID: PMC11752508 DOI: 10.1021/acsnano.4c12036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Neutrophil membrane vesicles (NMVs) have been successfully applied to control the inflammatory cascade after spinal cord injury (SCI) by acting as an inflammatory factor decoy to front-load the overall inflammation regulatory window; however, the mechanisms by which NMVs regulate macrophage phenotypic shifts as well as their outcomes have rarely been reported. In this study, we demonstrated the "efferocytosis-like" effect of NMVs endocytosed by macrophages, supplementing the TCA cycle intermediate metabolite α-KG by promoting glutamine metabolism, which in turn facilitates oxidative phosphorylation and inhibits the NF-κB signaling pathway to reprogram inflammatory macrophages to the pro-regenerative phenotype. Based on these findings, a "Trojan horse" composite fiber scaffold was constructed; this comprised a carboxylated poly-l-lactic acid shell encapsulated with NMVs and a core loaded with brain-derived neurotrophic factor to spatiotemporally modulate the inflammatory microenvironment by 39.23% and sustainably promote nerve regeneration by 85.67%. In vivo experiments further confirmed the effect of NMV-coated fiber scaffolds on the regulation of early innate immune inflammation and the continuous promotion of nerve regeneration. This study not only further unravels the mechanism of neutrophil membrane-macrophage interactions but also provides a strategy for coordinating inflammatory reprogramming and nerve regeneration following SCI.
Collapse
Affiliation(s)
| | | | | | | | - Ziang Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
| | - Liang Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
| | - Xinzhao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
| | - Yiyang Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
| | - Qiangqiang Guo
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
| | - Wenbo Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
| | - Zhouye Ding
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
| | - Feng Cai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
| | - Kun Xi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
| | - Yong Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
| | - Liang Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China
| |
Collapse
|
9
|
Wang Y, Yung P, Lu G, Liu Y, Ding C, Mao C, Li ZA, Tuan RS. Musculoskeletal Organs-on-Chips: An Emerging Platform for Studying the Nanotechnology-Biology Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2401334. [PMID: 38491868 PMCID: PMC11733728 DOI: 10.1002/adma.202401334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Nanotechnology-based approaches are promising for the treatment of musculoskeletal (MSK) disorders, which present significant clinical burdens and challenges, but their clinical translation requires a deep understanding of the complex interplay between nanotechnology and MSK biology. Organ-on-a-chip (OoC) systems have emerged as an innovative and versatile microphysiological platform to replicate the dynamics of tissue microenvironment for studying nanotechnology-biology interactions. This review first covers recent advances and applications of MSK OoCs and their ability to mimic the biophysical and biochemical stimuli encountered by MSK tissues. Next, by integrating nanotechnology into MSK OoCs, cellular responses and tissue behaviors may be investigated by precisely controlling and manipulating the nanoscale environment. Analysis of MSK disease mechanisms, particularly bone, joint, and muscle tissue degeneration, and drug screening and development of personalized medicine may be greatly facilitated using MSK OoCs. Finally, future challenges and directions are outlined for the field, including advanced sensing technologies, integration of immune-active components, and enhancement of biomimetic functionality. By highlighting the emerging applications of MSK OoCs, this review aims to advance the understanding of the intricate nanotechnology-MSK biology interface and its significance in MSK disease management, and the development of innovative and personalized therapeutic and interventional strategies.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Patrick Yung
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Gang Lu
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Yuwei Liu
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- The First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhenGuangdong518037P. R. China
| | - Changhai Ding
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Zhong Alan Li
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Key Laboratory of Regenerative MedicineMinistry of EducationSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Shenzhen Research InstituteThe Chinese University of Hong KongShenzhen518172P. R. China
| | - Rocky S. Tuan
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| |
Collapse
|
10
|
Xing J, Liu S. Application of loaded graphene oxide biomaterials in the repair and treatment of bone defects. Bone Joint Res 2024; 13:725-740. [PMID: 39631429 PMCID: PMC11617066 DOI: 10.1302/2046-3758.1312.bjr-2024-0048.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds' diverse roles and potential applications in bone defect treatment.
Collapse
Affiliation(s)
- Jinyi Xing
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuzhong Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Zheng Y, Tan L, Chen H, He S, Li M, Luo Z, Cai K, Hu Y. Hierarchical Integration of Curcumin-Loaded CaCO 3 Nanoparticles and Black Phosphorus Nanosheets in Core/Shell Nanofiber for Cranial Defect Repair. Adv Healthc Mater 2024:e2401786. [PMID: 39375960 DOI: 10.1002/adhm.202401786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/15/2024] [Indexed: 10/09/2024]
Abstract
Reconstruction and healing of large craniofacial bone defects are major clinical challenges due to high risk of chronic inflammation and reduced cell mineralization levels. Herein, a core-shell nanofiber-based implant with significant pro-osteogenesis capability for treating skull defects is reported, which is hierarchically integrated with curcumin-loaded calcium carbonate nanoparticles (CaCO3@Cur NPs) in the outer layers and black phosphorus nanosheets (BPNSs) in the core compartments. The radical alignment of the integrated nanocomponents allows the sequential in situ release of the therapeutic agents in a controlled manner after implantation. Curcumin can repolarize M1 macrophages into M2 phenotypes for anti-inflammation purposes. Meanwhile, the released calcium and phosphate ions can promote the biomineralization of hydroxyapatite at the defect site and facilitate bone regeneration. Evaluations on cranial defect-bearing rat models demonstrated that the electrospun fibers in the present study substantially promoted restoration of the damaged skulls and inhibited inflammation in the wound bed. This strategy provides a new idea for the treatment of skull defects in the clinic.
Collapse
Affiliation(s)
- Yan Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Lu Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Hang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shuohan He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
12
|
Chen S, Gao G, Shi J, Li N, Xie L, Zhang Y, Shan Z, Xie J, Xiao Y, Chen Z, Chen Z. Unveiling the governing role of 'remodeling triangle area' in soft-hard tissue interface equilibrium for metal implants advancement. Mater Today Bio 2024; 28:101170. [PMID: 39211290 PMCID: PMC11357867 DOI: 10.1016/j.mtbio.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
Metal implants holds significant promise for diverse fixed prostheses. However, their long-term reliability and broader application are hindered by challenges related to the disequilibrium at the soft-hard tissue interface. By using anti-inflammatory (PDA/IL4) and pro-inflammatory (PDA/LPS/IFNγ) coatings to modulate distinct immune characteristics, we discovered a dynamic bioactive structure at the soft-hard tissue interface around metal implant, which we have named the 'Remodeling Triangle Area' (RTA). We further demonstrate that the RTA can be influenced by the PDA/IL4 coating to favor a phenotype that enhances both innate and adaptive immunity. This leads to stronger epithelial adhesion, the formation of dense connective tissue via IGF1 secretion, and a more balanced soft-hard tissue interface through the OPG/RANKL axis. Conversely, the PDA/LPS/IFNγ coating shifts the RTA towards a phenotype that activates the innate immune response. This results in a less cohesive tissue structure and bone resorption, characterized by reduced IGF1 secretion and an imbalanced OPG/RANKL axis. Over all, our study introduces the novel concept termed the 'Remodeling Triangle Area' (RTA), an immune-rich anatomical region located at the nexus of the implant interface, epithelial, connective, and bone tissue, which becomes highly interactive post-implantation to modulate the soft-hard tissue interface equilibrium. We believe that an RTA-centric, immunomodulatory approach has the potential to revolutionize the design of next-generation metal implants, providing unparalleled soft-hard tissue interface equilibrium properties.
Collapse
Affiliation(s)
- Shoucheng Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Guangqi Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Jiamin Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Na Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Lv Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yingye Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zhengjie Shan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Jiaxin Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yin Xiao
- School of Medicine and Dentistry, Griffith University (GU), Gold Coast, QLD, 4222, Australia
| | - Zhuofan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| |
Collapse
|
13
|
Gu C, Chen H, Zhao Y, Xi H, Tan X, Xue P, Sun G, Jiang X, Du B, Liu X. Ti 3C 2T x@PLGA/Icaritin microspheres-modified PLGA/ β-TCP scaffolds modulate Icaritin release to enhance bone regeneration through near-infrared response. Biomed Mater 2024; 19:055038. [PMID: 39121886 DOI: 10.1088/1748-605x/ad6dc9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Porous poly (lactic-co-glycolic acid)/β-tricalcium phosphate/Icaritin (PLGA/β-TCP/ICT, PTI) scaffold is a tissue engineering scaffold based on PLGA/β-TCP (PT) containing Icaritin, the main active ingredient of the Chinese medicine Epimedium. Due to its excellent mechanical properties and osteogenic effect, PTI scaffold has the potential to promote bone defect repair. However, the release of ICT from the scaffolds is difficult to control. In this study, we constructed Ti3C2Tx@PLGA/ICT microspheres (TIM) and evaluated their characterization as well as ICT release under near-infrared (NIR) irradiation. We utilized TIM to modify the PT scaffold and performed biological experiments. First, we cultured rat bone marrow mesenchymal stem cells on the scaffold to assess biocompatibility and osteogenic potential under on-demand NIR irradiation. Subsequently, to evaluate the osteogenic properties of TIM-modified scaffoldin vivo, the scaffold was implanted into a femoral condyle defect model. TIM have excellent drug-loading capacity and encapsulation efficiency for ICT, and the incorporation of Ti3C2Txendows TIM with photothermal conversion capability. Under 0.90 W cm-2NIR irradiation, the temperature of TIM maintained at 42.0 ± 0.5 °C and the release of ICT was accelerated. Furthermore, while retaining its original properties, the TIM-modified scaffold was biocompatible and could promote cell proliferation, osteogenic differentiation, and biomineralizationin vitro, as well as the osteogenesis and osseointegrationin vivo, and its effect was further enhanced through the modulation of ICT release under NIR irradiation. In summary, TIM-modified scaffold has the potential to be applied in bone defects repairing.
Collapse
Affiliation(s)
- Changyuan Gu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| | - Hao Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| | - Yiqiao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 Jiangsu, People's Republic of China
| | - Hongzhong Xi
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| | - Xiaoxue Tan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 Jiangsu, People's Republic of China
| | - Peng Xue
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| | - Guangquan Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| | - Xiaohong Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 Jiangsu, People's Republic of China
| | - Bin Du
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| | - Xin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029 Jiangsu, People's Republic of China
| |
Collapse
|
14
|
Wang H, Zhang Y, Zhang Y, Li C, Zhang M, Wang J, Zhang Y, Du Y, Cui W, Chen W. Activating Macrophage Continual Efferocytosis via Microenvironment Biomimetic Short Fibers for Reversing Inflammation in Bone Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402968. [PMID: 38706203 DOI: 10.1002/adma.202402968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Efferocytosis-mediated inflammatory reversal plays a crucial role in bone repairing process. However, in refractory bone defects, the macrophage continual efferocytosis may be suppressed due to the disrupted microenvironment homeostasis, particularly the loss of apoptotic signals and overactivation of intracellular oxidative stress. In this study, a polydopamine-coated short fiber matrix containing biomimetic "apoptotic signals" to reconstruct the microenvironment and reactivate macrophage continual efferocytosis for inflammatory reversal and bone defect repair is presented. The "apoptotic signals" (AM/CeO2) are prepared using CeO2 nanoenzymes with apoptotic neutrophil membrane coating for macrophage recognition and oxidative stress regulation. Additionally, a short fiber "biomimetic matrix" is utilized for loading AM/CeO2 signals via abundant adhesion sites involving π-π stacking and hydrogen bonding interactions. Ultimately, the implantable apoptosis-mimetic nanoenzyme/short-fiber matrixes (PFS@AM/CeO2), integrating apoptotic signals and biomimetic matrixes, are constructed to facilitate inflammatory reversal and reestablish the pro-efferocytosis microenvironment. In vitro and in vivo data indicate that the microenvironment biomimetic short fibers can activate macrophage continual efferocytosis, leading to the suppression of overactivated inflammation. The enhanced repair of rat femoral defect further demonstrates the osteogenic potential of the pro-efferocytosis strategy. It is believed that the regulation of macrophage efferocytosis through microenvironment biomimetic materials can provide a new perspective for tissue repair.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Orthopaedic Surgery, the Hebei Medical University Third Hospital, Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yu Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yipu Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, P. R. China
| | - Chao Li
- Department of Orthopaedic Surgery, the Hebei Medical University Third Hospital, Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Mo Zhang
- Department of Orthopaedic Surgery, the Hebei Medical University Third Hospital, Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, P. R. China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, the Hebei Medical University Third Hospital, Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, P. R. China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wei Chen
- Department of Orthopaedic Surgery, the Hebei Medical University Third Hospital, Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, P. R. China
| |
Collapse
|
15
|
Han J, Rindone AN, Elisseeff JH. Immunoengineering Biomaterials for Musculoskeletal Tissue Repair across Lifespan. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311646. [PMID: 38416061 PMCID: PMC11239302 DOI: 10.1002/adma.202311646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Musculoskeletal diseases and injuries are among the leading causes of pain and morbidity worldwide. Broad efforts have focused on developing pro-regenerative biomaterials to treat musculoskeletal conditions; however, these approaches have yet to make a significant clinical impact. Recent studies have demonstrated that the immune system is central in orchestrating tissue repair and that targeting pro-regenerative immune responses can improve biomaterial therapeutic outcomes. However, aging is a critical factor negatively affecting musculoskeletal tissue repair and immune function. Hence, understanding how age affects the response to biomaterials is essential for improving musculoskeletal biomaterial therapies. This review focuses on the intersection of the immune system and aging in response to biomaterials for musculoskeletal tissue repair. The article introduces the general impacts of aging on tissue physiology, the immune system, and the response to biomaterials. Then, it explains how the adaptive immune system guides the response to injury and biomaterial implants in cartilage, muscle, and bone and discusses how aging impacts these processes in each tissue type. The review concludes by highlighting future directions for the development and translation of personalized immunomodulatory biomaterials for musculoskeletal tissue repair.
Collapse
Affiliation(s)
- Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Alexandra N. Rindone
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine; Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| |
Collapse
|
16
|
Huang Y, Xu Y, Huang Z, Mao J, Hui Y, Rui M, Jiang X, Wu J, Ding Z, Feng Y, Gu Y, Chen L. Melatonin and calcium phosphate crystal-loaded poly(L-lactic acid) porous microspheres reprogram macrophages to improve bone repair. J Mater Chem B 2024. [PMID: 38940905 DOI: 10.1039/d3tb02965d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The bone immune microenvironment can influence the occurrence and progression of bone defects. To date, research on promoting macrophage M2 polarization to improve bone injury repair has been insufficient. In this study, we designed an injectable poly(L-lactic acid) (PLLA) porous microsphere that forms calcium phosphate crystals on its surface by binding to melatonin, followed by bionanomimetic mineralization in vitro. The microsphere is injectable and degradable, and its release of melatonin (MT) and calcium phosphate (CaP) crystals promotes macrophage M2 polarization, reprogramming of macrophages, and enhanced osteogenesis. After LPS stimulation, the proportion of M2-polarized macrophages in the MS@CaP@MT group was 39.2 ± 2.7%, significantly higher than that in other groups (P < 0.05). Further, in the MS@CaP@MT group, rats exhibited bone mineral densities of 129.4 ± 12.8 mg cc-1 at 2 weeks and 171.6 ± 13.6 mg cc-1 at 4 weeks in the defect area, which were significantly higher than those in other groups (P < 0.05). Using an animal model of femoral condylar defects, we demonstrated that MT PLLA porous microspheres loaded with calcium phosphate crystals can improve the immune microenvironment and form a microsphere-centered osteogenesis model. This significantly accelerates bone defect repair and provides a potential strategy for bone defect treatment.
Collapse
Affiliation(s)
- Yiyang Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
| | - Yichang Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
| | - Ziyan Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
| | - Jiannan Mao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
- Department of Orthopaedics, Jiangyin Clinical College, Xuzhou Medical University, No. 163 Shoushan Road, Jiang Yin 214400, China
| | - Yujian Hui
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
- Department of Orthopaedics, Jiangyin Clinical College, Xuzhou Medical University, No. 163 Shoushan Road, Jiang Yin 214400, China
| | - Min Rui
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
- Department of Orthopaedics, Jiangyin Clinical College, Xuzhou Medical University, No. 163 Shoushan Road, Jiang Yin 214400, China
| | - Xinzhao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
| | - Jie Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
| | - Zhouye Ding
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
| | - Yu Feng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
| | - Yong Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
| | - Liang Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
17
|
Lei T, Li C, Liu Y, Cui Z, Deng S, Cao J, Yang H, Chen P. Microfluidics-enabled mesenchymal stem cell derived Neuron like cell membrane coated nanoparticles inhibit inflammation and apoptosis for Parkinson's Disease. J Nanobiotechnology 2024; 22:370. [PMID: 38918856 PMCID: PMC11197265 DOI: 10.1186/s12951-024-02587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
Parkinson's disease (PD) is the second largest group of neurodegenerative diseases, and its existing drug treatments are not satisfactory. Natural cell membrane drugs are used for homologous targeting to enhance efficacy. In this study, microfluidic electroporation chip prepared mesenchymal stem cell-derived neuron-like cell membrane-coated curcumin PLGA nanoparticles (MM-Cur-NPs) was synthesized and explored therapeutic effect and mechanism in PD. MM-Cur-NPs can protect neuron from damage, restore mitochondrial membrane potential and reduce oxidative stress in vitro. In PD mice, it also can improve movement disorders and restore damaged TH neurons. MM-Cur-NPs was found to be distributed in the brain and metabolized with a delay within 24 h. After 1 h administration, MM-Cur-NPs were distributed in brain with a variety of neurotransmitters were significantly upregulated, such as dopamine. Differentially expressed genes of RNA-seq were enriched in the inflammation regulation, and it was found the up-expression of anti-inflammatory factors and inhibited pro-inflammatory factors in PD. Mechanically, MM-Cur-NPs can not only reduce neuronal apoptosis, inhibit the microglial marker IBA-1 and inflammation, but also upregulate expression of neuronal mitochondrial protein VDAC1 and restore mitochondrial membrane potential. This study proposes a therapeutic strategy provide neuroprotective effects through MM-Cur-NPs therapy for PD.
Collapse
Affiliation(s)
- Tong Lei
- Department of Disease and Syndromes Research, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, Dongcheng District, 100700, China.
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, Dongcheng District, 100700, China
| | - Yang Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, Dongcheng District, 100700, China
| | - Zhao Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, Dongcheng District, 100700, China
| | - Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, Dongcheng District, 100700, China
| | - Junxian Cao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, Dongcheng District, 100700, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, Dongcheng District, 100700, China.
- Hunan Provincial Key Laboratory of Complex Effects Analysis for Chinese Patent Medicine, Yongzhou, Hunan Province, 425199, China.
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, Dongcheng District, 100700, China.
- Hunan Provincial Key Laboratory of Complex Effects Analysis for Chinese Patent Medicine, Yongzhou, Hunan Province, 425199, China.
| |
Collapse
|
18
|
Avery D, Morandini L, Sheakley L, Grabiec M, Olivares-Navarrete R. CD4 + and CD8 + T cells reduce inflammation and promote bone healing in response to titanium implants. Acta Biomater 2024; 179:385-397. [PMID: 38554889 PMCID: PMC11045310 DOI: 10.1016/j.actbio.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
T cells are adaptive immune cells essential in pathogenic response, cancer, and autoimmune disorders. During the integration of biomaterials with host tissue, T cells modify the local inflammatory environment by releasing cytokines that promote inflammatory resolution following implantation. T cells are vital for the modulation of innate immune cells, recruitment and proliferation of mesenchymal stem cells (MSCs), and formation of functional tissue around the biomaterial implant. We have demonstrated that deficiency of αβ T cells promotes macrophage polarization towards a pro-inflammatory phenotype and attenuates MSC recruitment and proliferation in vitro and in vivo. The goal of this study was to understand how CD4+ and CD8+ T cells, subsets of the αβ T cell family, impact the inflammatory response to titanium (Ti) biomaterials. Deficiency of either CD4+ or CD8+ T cells increased the proportion of pro-inflammatory macrophages, lowered anti-inflammatory macrophages, and diminished MSC recruitment in vitro and in vivo. In addition, new bone formation at the implantation site was significantly reduced in T cell-deficient mice compared to T cell-competent mice. Deficiency of CD4+ T cells exacerbated these effects compared to CD8+ T cell deficiency. Our results show the importance of CD4+ and CD8+ T cells in modulating the inflammatory response and promoting new bone formation in response to modified Ti implants. STATEMENT OF SIGNIFICANCE: CD4+ and CD8+ T cells are essential in modulating the peri-implant microenvironment during the inflammatory response to biomaterial implantation. This study shows that deficiency of either CD4+ or CD8+ T cell subsets altered macrophage polarization and reduced MSC recruitment and proliferation at the implantation site.
Collapse
Affiliation(s)
- Derek Avery
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 70 S. Madison Street, Room 3328, Richmond, VA 23220, United States
| | - Lais Morandini
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 70 S. Madison Street, Room 3328, Richmond, VA 23220, United States
| | - Luke Sheakley
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 70 S. Madison Street, Room 3328, Richmond, VA 23220, United States
| | - Melissa Grabiec
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 70 S. Madison Street, Room 3328, Richmond, VA 23220, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 70 S. Madison Street, Room 3328, Richmond, VA 23220, United States.
| |
Collapse
|
19
|
Li P, Jin Q, Zeng K, Niu C, Xie Q, Dong T, Huang Z, Dou X, Feng C. Amino acid-based supramolecular chiral hydrogels promote osteogenesis of human dental pulp stem cells via the MAPK pathway. Mater Today Bio 2024; 25:100971. [PMID: 38347936 PMCID: PMC10859303 DOI: 10.1016/j.mtbio.2024.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/15/2024] Open
Abstract
Critical-size defects (CSDs) of the craniofacial bones cause aesthetic and functional complications that seriously impact the quality of life. The transplantation of human dental pulp stem cells (hDPSCs) is a promising strategy for bone tissue engineering. Chirality is commonly observed in natural biomolecules, yet its effect on stem cell differentiation is seldom studied, and little is known about the underlying mechanism. In this study, supramolecular chiral hydrogels were constructed using L/d-phenylalanine (L/D-Phe) derivatives. The results of alkaline phosphatase expression analysis, alizarin red S assay, as well as quantitative real-time polymerase chain reaction and western blot analyses suggest that right-handed D-Phe hydrogel fibers significantly promoted osteogenic differentiation of hDPSCs. A rat model of calvarial defects was created to investigate the regulation of chiral nanofibers on the osteogenic differentiation of hDPSCs in vivo. The results of the animal experiment demonstrated that the D-Phe group exhibited greater and faster bone formation on hDPSCs. The results of RNA sequencing, vinculin immunofluorescence staining, a calcium fluorescence probe assay, and western blot analysis indicated that L-Phe significantly promoted adhesion of hDPSCs, while D-Phe nanofibers enhanced osteogenic differentiation of hDPSCs by facilitating calcium entry into cells and activate the MAPK pathway. These results of chirality-dependent osteogenic differentiation offer a novel therapeutic strategy for the treatment of CSDs by optimising the differentiation of hDPSCs into chiral nanofibers.
Collapse
Affiliation(s)
- Peilun Li
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qiaoqiao Jin
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Kangrui Zeng
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chenguang Niu
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qianyang Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ting Dong
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Guo H, Guo M, Xia Z, Shao Z. Membrane-coated nanoparticles as a biomimetic targeted delivery system for tumour therapy. BIOMATERIALS TRANSLATIONAL 2024; 5:33-45. [PMID: 39220664 PMCID: PMC11362346 DOI: 10.12336/biomatertransl.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 09/04/2024]
Abstract
Drug therapy towards tumours often causes adverse effects because of their non-specific nature. Membrane-coated technology and membrane-coated nanoparticles provide an advanced and promising platform of targeted and safe delivery. By camouflaging the nanoparticles with natural derived or artificially modified cell membranes, the nano-payloads are bestowed with properties from cell membranes such as longer circulation, tumour or inflammation-targeting, immune stimulation, augmenting the performance of traditional therapeutics. In this review, we review the development of membrane coating technology, and summarise the technical details, physicochemical properties, and research status of membrane-coated nanoparticles from different sources in tumour treatment. Finally, we also look forward to the prospects and challenges of transforming membrane coating technology from experiment into clinical use. Taken together, membrane-coated nanoparticles are bound to become one of the most potential anti-tumour strategies in the future.
Collapse
Affiliation(s)
- Haoyu Guo
- Department of Orthopaedic, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Department of Orthopaedic, Beijing Jishuitan Hospital, Fourth Medical College of Peking University, Beijing, China
| | - Mingke Guo
- Department of Orthopaedics, Affiliated Hospital of NCO School of Army Medical University, Shijiazhuang, Hebei Province, China
| | - Zhidao Xia
- Centre for Nanohealth, ILS2, Medical School, Swansea University, Swansea, UK
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
21
|
Gong C, Wang J, Tang F, Tong D, Wang Z, Zhou Z, Ruan R, Zhang J, Song J, Yang H. Bionic Bilayer Scaffold for Synchronous Hyperthermia Therapy of Orthotopic Osteosarcoma and Osteochondral Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8538-8553. [PMID: 38343191 DOI: 10.1021/acsami.3c18171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Large osseous void, postsurgical neoplastic recurrence, and slow bone-cartilage repair rate raise an imperative need to develop functional scaffold in clinical osteosarcoma treatment. Herein, a bionic bilayer scaffold constituting croconaine dye-polyethylene glycol@sodium alginate hydrogel and poly(l-lactide)/hydroxyapatite polymer matrix is fabricated to simultaneously achieve a highly efficient killing of osteosarcoma and an accelerated osteochondral regeneration. First, biomimetic osteochondral structure along with adequate interfacial interaction of the bilayer scaffold provide a structural reinforcement for transverse osseointegration and osteochondral regeneration, as evidenced by upregulated specific expressions of collagen type-I, osteopontin, and runt-related transcription factor 2. Meanwhile, thermal ablation of the synthesized nanoparticles and mitochondrial dysfunction caused by continuously released hydroxyapatite induce residual tumor necrosis synergistically. To validate the capabilities of inhibiting tumor growth and promoting osteochondral regeneration of our proposed scaffold, a novel orthotopic osteosarcoma model simulating clinical treatment scenarios of bone tumors is established on rats. Based on amounts of in vitro and in vivo results, an effective killing of osteosarcoma and a suitable osteal-microenvironment modulation of such bionic bilayer composite scaffold are achieved, which provides insightful implications for photonic hyperthermia therapy against osteosarcoma and following osseous tissue regeneration.
Collapse
Affiliation(s)
- Chenchi Gong
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Faqiang Tang
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350013, P. R. China
| | - Dongmei Tong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ziyi Wang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Zijie Zhou
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350013, P. R. China
| | - Renjie Ruan
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
22
|
Wang B, Ye X, Chen G, Zhang Y, Zeng Z, Liu C, Tan Z, Jie X. Fabrication and properties of PLA/β-TCP scaffolds using liquid crystal display (LCD) photocuring 3D printing for bone tissue engineering. Front Bioeng Biotechnol 2024; 12:1273541. [PMID: 38440328 PMCID: PMC10910430 DOI: 10.3389/fbioe.2024.1273541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/08/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction: Bone defects remain a thorny challenge that clinicians have to face. At present, scaffolds prepared by 3D printing are increasingly used in the field of bone tissue repair. Polylactic acid (PLA) has good thermoplasticity, processability, biocompatibility, and biodegradability, but the PLA is brittle and has poor osteogenic performance. Beta-tricalcium phosphate (β-TCP) has good mechanical properties and osteogenic induction properties, which can make up for the drawbacks of PLA. Methods: In this study, photocurable biodegradable polylactic acid (bio-PLA) was utilized as the raw material to prepare PLA/β-TCP slurries with varying β-TCP contents (β-TCP dosage at 0%, 10%, 20%, 30%, 35% of the PLA dosage, respectively). The PLA/β-TCP scaffolds were fabricated using liquid crystal display (LCD) light-curing 3D printing technology. The characterization of the scaffolds was assessed, and the biological activity of the scaffold with the optimal compressive strength was evaluated. The biocompatibility of the scaffold was assessed through CCK-8 assays, hemocompatibility assay and live-dead staining experiments. The osteogenic differentiation capacity of the scaffold on MC3T3-E1 cells was evaluated through alizarin red staining, alkaline phosphatase (ALP) detection, immunofluorescence experiments, and RT-qPCR assays. Results: The prepared scaffold possesses a three-dimensional network structure, and with an increase in the quantity of β-TCP, more β-TCP particles adhere to the scaffold surface. The compressive strength of PLA/β-TCP scaffolds exhibits a trend of initial increase followed by decrease with an increasing amount of β-TCP, reaching a maximum value of 52.1 MPa at a 10% β-TCP content. Degradation rate curve results indicate that with the passage of time, the degradation rate of the scaffold gradually increases, and the pH of the scaffold during degradation shows an alkaline tendency. Additionally, Live/dead staining and blood compatibility experiments suggest that the prepared PLA/β-TCP scaffold demonstrates excellent biocompatibility. CCK-8 experiments indicate that the PLA/β-TCP group promotes cell proliferation, and the prepared PLA/β-TCP scaffold exhibits a significant ability to enhance the osteogenic differentiation of MC3T3-E1 cells in vitro. Discussion: 3D printed LCD photocuring PLA/β-TCP scaffolds could improve surface bioactivity and lead to better osteogenesis, which may provide a unique strategy for developing bioactive implants in orthopedic applications.
Collapse
Affiliation(s)
- Boqun Wang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, China
- School of Intelligent Manufacturing, Dongguan Polytechnic, Dongguan, Guangdong, China
| | - Xiangling Ye
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guocai Chen
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yongqiang Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhikui Zeng
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Cansen Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zhichao Tan
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
| | - Xiaohua Jie
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Fernández-Borbolla A, García-Hevia L, Fanarraga ML. Cell Membrane-Coated Nanoparticles for Precision Medicine: A Comprehensive Review of Coating Techniques for Tissue-Specific Therapeutics. Int J Mol Sci 2024; 25:2071. [PMID: 38396747 PMCID: PMC10889273 DOI: 10.3390/ijms25042071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Nanoencapsulation has become a recent advancement in drug delivery, enhancing stability, bioavailability, and enabling controlled, targeted substance delivery to specific cells or tissues. However, traditional nanoparticle delivery faces challenges such as a short circulation time and immune recognition. To tackle these issues, cell membrane-coated nanoparticles have been suggested as a practical alternative. The production process involves three main stages: cell lysis and membrane fragmentation, membrane isolation, and nanoparticle coating. Cell membranes are typically fragmented using hypotonic lysis with homogenization or sonication. Subsequent membrane fragments are isolated through multiple centrifugation steps. Coating nanoparticles can be achieved through extrusion, sonication, or a combination of both methods. Notably, this analysis reveals the absence of a universally applicable method for nanoparticle coating, as the three stages differ significantly in their procedures. This review explores current developments and approaches to cell membrane-coated nanoparticles, highlighting their potential as an effective alternative for targeted drug delivery and various therapeutic applications.
Collapse
Affiliation(s)
- Andrés Fernández-Borbolla
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain; (A.F.-B.); (L.G.-H.)
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| | - Lorena García-Hevia
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain; (A.F.-B.); (L.G.-H.)
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| | - Mónica L. Fanarraga
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain; (A.F.-B.); (L.G.-H.)
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|
24
|
Shi Y, Tao W, Yang W, Wang L, Qiu Z, Qu X, Dang J, He J, Fan H. Calcium phosphate coating enhances osteointegration of melt electrowritten scaffold by regulating macrophage polarization. J Nanobiotechnology 2024; 22:47. [PMID: 38297240 PMCID: PMC10829397 DOI: 10.1186/s12951-024-02310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024] Open
Abstract
The osteoimmune microenvironment induced by implants plays a significant role in bone regeneration. It is essential to efficiently and timely switch the macrophage phenotype from M1 to M2 for optimal bone healing. This study examined the impact of a calcium phosphate (CaP) coating on the physiochemical properties of highly ordered polycaprolactone (PCL) scaffolds fabricated using melt electrowritten (MEW). Additionally, it investigated the influence of these scaffolds on macrophage polarization and their immunomodulation on osteogenesis. The results revealed that the CaP coated PCL scaffold exhibited a rougher surface topography and higher hydrophilicity in comparison to the PCL scaffold without coating. Besides, the surface morphology of the coating and the release of Ca2+ from the CaP coating were crucial in regulating the transition of macrophages from M1 to M2 phenotypes. They might activate the PI3K/AKT and cAMP-PKA pathways, respectively, to facilitate M2 polarization. In addition, the osteoimmune microenvironment induced by CaP coated PCL could not only enhance the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) in vitro but also promote the bone regeneration in vivo. Taken together, the CaP coating can be employed to control the phenotypic switching of macrophages, thereby creating a beneficial immunomodulatory microenvironment that promotes bone regeneration.
Collapse
Affiliation(s)
- Yubo Shi
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weidong Tao
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenjing Yang
- Xijing 986 Hospital Department, The Fourth Military Medical University, Xi'an, China
| | - Lei Wang
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Jingyi Dang
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Hongbin Fan
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
25
|
Hu Y, Tang L, Wang Z, Yan H, Yi X, Wang H, Ma L, Yang C, Ran J, Yu A. Inducing in situ M2 macrophage polarization to promote the repair of bone defects via scaffold-mediated sustained delivery of luteolin. J Control Release 2024; 365:889-904. [PMID: 37952829 DOI: 10.1016/j.jconrel.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Immunoregulation mediated bone tissue engineering (BTE) has demonstrated huge potential in promoting repair of critical-size bone defects (CSBDs). The trade-off between stable immunoregulation function and extended immunoregulation period has posed a great challenge to this strategy. Here, we reported a 3D porous biodegradable Poly(HEMA-co-3APBA)/LUT scaffold, in which reversible boronic acid ester bond was formed between the 3APBA moiety and the catechol moiety of luteolin (LUT). The boronic acid ester bond not only protected the bioactivity of LUT but also extended the release period of LUT. The rationale behind the phenomenon of sustained LUT release was explained using a classical transition state theory. In vitro/in vivo assays proved the immunoregulation function of the scaffold in inducing M2 polarization of both M0 and M1 Mφ. The crosstalk between the scaffold treated Raw 264.7 and BMSCs were also investigated through the in vitro co-culture assay. The results demonstrated that the scaffold could induce immunoregulation mediated osteogenic differentiation of BMSCs. In addition, CSBDs model of SD rats was also applied, and the corresponding data proved that the scaffold could accelerate new bone formation, therefore promoting repair of CSBDs. The as-prepared scaffold might be a promising candidate for repair of CSBDs in the future.
Collapse
Affiliation(s)
- Yan Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan 430000, China
| | - Lixi Tang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Zheng Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan 430000, China
| | - Honghan Yan
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xinzeyu Yi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan 430000, China
| | - Huimin Wang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Liya Ma
- Core Facility of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Changying Yang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Jiabing Ran
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
26
|
Takematsu E, Murphy M, Hou S, Steininger H, Alam A, Ambrosi TH, Chan CKF. Optimizing Delivery of Therapeutic Growth Factors for Bone and Cartilage Regeneration. Gels 2023; 9:gels9050377. [PMID: 37232969 DOI: 10.3390/gels9050377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Bone- and cartilage-related diseases, such as osteoporosis and osteoarthritis, affect millions of people worldwide, impairing their quality of life and increasing mortality. Osteoporosis significantly increases the bone fracture risk of the spine, hip, and wrist. For successful fracture treatment and to facilitate proper healing in the most complicated cases, one of the most promising methods is to deliver a therapeutic protein to accelerate bone regeneration. Similarly, in the setting of osteoarthritis, where degraded cartilage does not regenerate, therapeutic proteins hold great promise to promote new cartilage formation. For both osteoporosis and osteoarthritis treatments, targeted delivery of therapeutic growth factors, with the aid of hydrogels, to bone and cartilage is a key to advance the field of regenerative medicine. In this review article, we propose five important aspects of therapeutic growth factor delivery for bone and cartilage regeneration: (1) protection of protein growth factors from physical and enzymatic degradation, (2) targeted growth factor delivery, (3) controlling GF release kinetics, (4) long-term stability of regenerated tissues, and (5) osteoimmunomodulatory effects of therapeutic growth factors and carriers/scaffolds.
Collapse
Affiliation(s)
- Eri Takematsu
- Department of Surgery, Stanford Medicine, Stanford, CA 94305, USA
| | - Matthew Murphy
- Blond McIndoe Laboratories, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PR, UK
| | - Sophia Hou
- Department of Surgery, Stanford Medicine, Stanford, CA 94305, USA
| | - Holly Steininger
- School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Alina Alam
- Department of Surgery, Stanford Medicine, Stanford, CA 94305, USA
| | - Thomas H Ambrosi
- Department of Orthopaedic Surgery, University of California, Davis, CA 95817, USA
| | - Charles K F Chan
- Department of Surgery, Stanford Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA 94305, USA
| |
Collapse
|