1
|
Li H, Murugesan A, Shoaib M, Chen Q. Emerging Trends and Future Prospects of Peptide-Based Hydrogels: Revolutionizing Food Technology Applications. Compr Rev Food Sci Food Saf 2025; 24:e70187. [PMID: 40371450 DOI: 10.1111/1541-4337.70187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/28/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Peptide-based hydrogels (PHs) are versatile materials with considerable potential in food technology. Advances in synthesis techniques, such as self-assembly, click chemistry, enzymatic cross-linking, and co-assembly with polymers, have improved their production efficiency and scalability. Derived from natural amino acids, PHs are biocompatible, biodegradable, and responsive to environmental factors like pH and temperature. In food technology, encapsulation and controlled release of bioactive compounds enhance nutrient stability, flavor preservation, and bioavailability. PHs serve as texture modifiers, improve product consistency, and possess antimicrobial properties for food preservation by inhibiting spoilage and pathogens. Their biodegradability supports eco-friendly practices and sustainable packaging, including edible films and coatings that extend shelf life. Adjustable properties such as ionic strength make PHs adaptable to specific needs. PHs also show potential in developing advanced food equipment, including 3D printers and encapsulation systems, promoting efficiency and sustainability. This review emphasizes that PHs offer innovative, sustainable solutions to enhance food functionality, quality, and safety, with broad applications in food processing and preservation.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Arul Murugesan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Muhammad Shoaib
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| |
Collapse
|
2
|
Zha XJ, Wen C, Huang X, Ling TX, Li JB, Huang JG. Digital light processing 3D printing of high-fidelity and versatile hydrogels via in situ phase separation. J Mater Chem B 2025; 13:4630-4640. [PMID: 40123462 DOI: 10.1039/d5tb00106d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Recently, digital light processing (DLP) 3D printing has garnered significant interest for fabricating high-fidelity hydrogels. However, the intrinsic weak and loose network of hydrogels, coupled with uncontrollable light projection, leads to low printing resolution and restricts their broader applications. Herein, we propose a straightforward DLP 3D printing strategy utilizing in situ phase separation to produce high-fidelity, high-modulus, and biocompatible hydrogels. By selecting acrylamide monomers with poor compatibility within a polyvinyl pyrrolidone (PVP) network during polymerization, we create phase-separated domains within polyacrylamide (PAM) that effectively inhibit ultraviolet (UV) light transmission. This regulation of UV light distribution results in anhydrous inks with exceptional properties: ultra-high resolution (1.5 μm), ultra-high modulus (1043 MPa), and high strength (70.0 MPa). Upon hydration, the modulus and strength of the hydrogels decrease to approximately 4000 times those of the anhydrous gels, exhibiting high mechano-moisture sensitivity suitable for actuator applications. Additionally, the DLP 3D-printed hydrogels, featuring micro-scale structures, demonstrate good biocompatibility and facilitate nutrient transport for cell proliferation. This versatile DLP 3D printing strategy paves the way for the fabrication of high-fidelity and multifunctional hydrogels.
Collapse
Affiliation(s)
- Xiang-Jun Zha
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
- Department of Ultrasound, Medical Research Center, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, China
| | - Cheng Wen
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Xinyu Huang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Ting-Xian Ling
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jian-Bo Li
- Department of Critical Care Medicine, West China Hospital of Sichuan University, 37 Guo Xue Xiang St, Chengdu 610041, Sichuan, China
| | - Ji-Gang Huang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
3
|
Feng J, Liu Z, Gao T, Gigmes D, Morlet‐Savary F, Schmitt M, Dietlin C, Petithory T, Pieuchot L, Zhang J, Shan W, Xiao P, Dumur F, Lalevée J. High-Performance Sunlight-Induced Polymerized Hydrogels and Applications in 3D and 4D Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411888. [PMID: 39696970 PMCID: PMC11798354 DOI: 10.1002/smll.202411888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Currently, there are only few reports on water-soluble photoinitiating systems. In this study, a highly water-soluble organic dye i.e. sodium (E)-3,3'-((4-(2-(3-methylbenzo[d]thiazol-3-ium-2-yl)vinyl)phenyl)azanediyl)dipropionate iodide, was synthesized and served as a photoinitiator. Notably, this water-soluble initiator, at a low concentration of just 0.01 wt%, demonstrates a high photoinitiation ability, with some hydrogel formulations achieving nearly 100% double bond conversion under sunlight. Photopolymerization kinetics were monitored using Real-Time Fourier Transform Infrared. To explore the complex chemical principles of radical polymerization, UV-visible absorption and fluorescence spectroscopy, steady-state photolysis, fluorescence quenching experiments and cyclic voltammetry were employed to gain a comprehensive understanding of the photochemical mechanism involved. Additionally, several characteristics of the synthesized hydrogels were also investigated i.e. the water content, the water swelling, and the volume swelling. In addition to their excellent photoinitiation capabilities, the hydrogel formulations developed in this study also supported 3D printing. 3D objects with smooth surface and a high spatial resolution could be successfully printed using direct laser writing. The fabricated hydrogels could reversibly change of shape in response to water (adding or removing water), enabling successful 4D printing behavior. Furthermore, the efficient photoinitiation ability of the water-soluble formulations opens new avenues for sunlight-polymerized hydrogels and potential applications in bioprinting.
Collapse
Affiliation(s)
- Ji Feng
- Université de Haute‐AlsaceCNRSIS2M UMR7361MulhouseF‐68100France
- Université de StrasbourgStrasbourg67000France
| | - Zheng Liu
- Aix Marseille UnivCNRSICRUMR 7273MarseilleF‐13397France
| | - Tong Gao
- Université de Haute‐AlsaceCNRSIS2M UMR7361MulhouseF‐68100France
- Université de StrasbourgStrasbourg67000France
| | - Didier Gigmes
- Aix Marseille UnivCNRSICRUMR 7273MarseilleF‐13397France
| | - Fabrice Morlet‐Savary
- Université de Haute‐AlsaceCNRSIS2M UMR7361MulhouseF‐68100France
- Université de StrasbourgStrasbourg67000France
| | - Michael Schmitt
- Université de Haute‐AlsaceCNRSIS2M UMR7361MulhouseF‐68100France
- Université de StrasbourgStrasbourg67000France
| | - Celine Dietlin
- Université de Haute‐AlsaceCNRSIS2M UMR7361MulhouseF‐68100France
- Université de StrasbourgStrasbourg67000France
| | - Tatiana Petithory
- Université de Haute‐AlsaceCNRSIS2M UMR7361MulhouseF‐68100France
- Université de StrasbourgStrasbourg67000France
| | - Laurent Pieuchot
- Université de Haute‐AlsaceCNRSIS2M UMR7361MulhouseF‐68100France
- Université de StrasbourgStrasbourg67000France
| | - Jing Zhang
- Future Industries InstituteUniversity of South AustraliaMawson LakesSA5095Australia
| | - Wenpeng Shan
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Pu Xiao
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | | | - Jacques Lalevée
- Université de Haute‐AlsaceCNRSIS2M UMR7361MulhouseF‐68100France
- Université de StrasbourgStrasbourg67000France
| |
Collapse
|
4
|
Pogostin BH, Godbe K, Dubackic M, Angstman I, Fox W, Giovino N, Lagator M, Payson A, LaBarca M, Frohm B, Bernfur K, Linse S, Londergan CH, Olsson U, Gentile L, Åkerfeldt KS. Insights into the Hierarchical Assembly of a Chemically Diverse Peptide Hydrogel Derived from Human Semenogelin I. ACS NANO 2024; 18:31109-31122. [PMID: 39487039 PMCID: PMC11562788 DOI: 10.1021/acsnano.4c08672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
A peptide corresponding to a 13-residue segment of the human protein semenogelin I has been shown to generate a hydrogel consisting of amyloid-like fibrils. The relative chemical diversity (compared to synthetic de novo sequences) with 11 distinct amino acids makes this peptide (P0) an ideal candidate for investigating the role of individual residues in gelation. Herein, the N-terminal residues have been sequentially removed to furnish a series of truncated peptides, P1-P10, ranging from 12 to 3 residues in length. FTIR spectroscopy investigations reveal that P0-P6 forms a β-sheet secondary structure while shorter sequences do not self-assemble. Site-specific isotope labeling of the amide backbone of P0-P2 with the IR-sensitive vibrational probe 13C═O yields FTIR spectra indicative of the initial formation of a kinetic product that slowly transforms into a structurally different thermodynamic product. The effects of the isotopic labels on the IR spectra facilitate the assignment of parallel and antiparallel structures, which are sometimes coexistent. Additional IR studies of three PheCN-labeled P0 sequences are consistent with an H-bonded β-sheet amide core, spanning the 7 central residues. The macromolecular assembly of peptides that form β-sheets was assessed by cryo-TEM, SAXS/WAXS, and rheology. Cryo-TEM images of peptides P1-P6 display μm-long nanofibrils. Peptides P0-P3 generate homogeneous hydrogels composed of colloidally stable nanofibrils, and P4-P6 undergo phase separation due to the accumulation of attractive interfibrillar interactions. Three amino acid residues, Ser39, Phe40, and Gln43, were identified to be of particular interest in the truncated peptide series as the removal of any one of them, as the sequence shortens, leads to a major change in material properties.
Collapse
Affiliation(s)
- Brett H. Pogostin
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
- Department
of Physical Chemistry, Lund University, PO Box 124, Lund SE-221 00, Sweden
| | - Kerilyn Godbe
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Marija Dubackic
- Department
of Physical Chemistry, Lund University, PO Box 124, Lund SE-221 00, Sweden
| | - Isabelle Angstman
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - William Fox
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Natalie Giovino
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Matija Lagator
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Abigail Payson
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Marisa LaBarca
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Birgitta Frohm
- Biochemistry
and Structural Biology, Lund University, PO Box 124, Lund SE-221 00, Sweden
| | - Katja Bernfur
- Biochemistry
and Structural Biology, Lund University, PO Box 124, Lund SE-221 00, Sweden
| | - Sara Linse
- Biochemistry
and Structural Biology, Lund University, PO Box 124, Lund SE-221 00, Sweden
| | - Casey H. Londergan
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Ulf Olsson
- Department
of Physical Chemistry, Lund University, PO Box 124, Lund SE-221 00, Sweden
| | - Luigi Gentile
- Department
of Physical Chemistry, Lund University, PO Box 124, Lund SE-221 00, Sweden
- Department
of Chemistry, University of Bari Aldo Moro, Via Orabona 4, Bari 70126, Italy
| | - Karin S. Åkerfeldt
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| |
Collapse
|
5
|
Sarker M, Park S, Kumar V, Lee CH. Micro-thin hydrogel coating integrated in 3D printing for spatiotemporal delivery of bioactive small molecules. Biofabrication 2024; 17:015019. [PMID: 39437834 PMCID: PMC11552100 DOI: 10.1088/1758-5090/ad89fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Three-dimensional (3D) printing incorporated with controlled delivery is an effective tool for complex tissue regeneration. Here, we explored a new strategy for spatiotemporal delivery of bioactive cues by establishing a precise-controlled micro-thin coating of hydrogel carriers on 3D-printed scaffolds. We optimized the printing parameters for three hydrogel carriers, fibrin cross-linked with genipin, methacrylate hyaluronic acid, and multidomain peptides, resulting in homogenous micro-coating on desired locations in 3D printed polycaprolactone microfibers at each layer. Using the optimized multi-head printing technique, we successfully established spatial-controlled micro-thin coating of hydrogel layers containing profibrogenic small molecules (SMs), Oxotremorine M and PPBP maleate, and a chondrogenic cue, Kartogenin. The delivered SMs showed sustained releases up to 28 d and guided regional differentiation of mesenchymal stem cells, thus leading to fibrous and cartilaginous tissue matrix formation at designated scaffold regionsin vitroandin vivo. Our micro-coating of hydrogel carriers may serve as an efficient approach to achieve spatiotemporal delivery of various bioactive cues through 3D printed scaffolds for engineering complex tissues.
Collapse
Affiliation(s)
- Md Sarker
- Biomedical Engineering, University of Maryland Eastern Shore, 30665 Student Services Center, Princess Anne, MD 21853, United States of America
| | - Soomin Park
- Center for Dental and Craniofacial Research, College of Dental Medicine, Columbia University Medical Center, 630 W. 168th Street, VC12-210, New York, NY 10032, United States of America
| | - Vivek Kumar
- Department of Bio-Medical Engineering, New Jersey Institute of Technology, 138 Warren St., Room 316, Newark, NJ 07102, United States of America
| | - Chang H Lee
- Center for Dental and Craniofacial Research, College of Dental Medicine, Columbia University Medical Center, 630 W. 168th Street, VC12-210, New York, NY 10032, United States of America
| |
Collapse
|
6
|
Chen X, Zhao Z, Laster KV, Liu K, Dong Z. Advancements in therapeutic peptides: Shaping the future of cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189197. [PMID: 39413854 DOI: 10.1016/j.bbcan.2024.189197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
In the evolving landscape of cancer treatment, therapeutic peptides are assuming to play an increasingly vital role. Although the number of peptide drugs available for clinical cancer treatment is currently limited, extensive preclinical research is underway, presenting a promising trajectory for the future. The collaborative efforts of natural anti-cancer peptides (ACPs) and synthetic ACPs, propelled by advancements in molecular biology and peptide chemistry, are steering remarkable progress in this domain. We explores the intricate mechanisms underlying the anti-cancer effects of these peptides. The exploration of innovative strategies, including cancer immunotherapy and advanced drug delivery systems, is likely to contribute to the increasing presenceuse of peptide drugs in clinical cancer care. Furthermore, we delve into the potential implications and challenges associated with this anticipated shift, emphasizing the need for continued research and development to unlock the full therapeutic potential of peptide drugs in cancer treatment.
Collapse
Affiliation(s)
- Xiaojie Chen
- School of Basic Medical Sciences, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China
| | - Zhiwei Zhao
- School of Basic Medical Sciences, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | | | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China; Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China; Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Murphy JF, Lavelle M, Asciak L, Burdis R, Levis HJ, Ligorio C, McGuire J, Polleres M, Smith PO, Tullie L, Uribe-Gomez J, Chen B, Dawson JI, Gautrot JE, Hooper NM, Kelly DJ, Li VSW, Mata A, Pandit A, Phillips JB, Shu W, Stevens MM, Williams RL, Armstrong JPK, Huang YYS. Biofabrication and biomanufacturing in Ireland and the UK. Biodes Manuf 2024; 7:825-856. [PMID: 39650072 PMCID: PMC11618173 DOI: 10.1007/s42242-024-00316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/11/2024] [Indexed: 12/11/2024]
Abstract
As we navigate the transition from the Fourth to the Fifth Industrial Revolution, the emerging fields of biomanufacturing and biofabrication are transforming life sciences and healthcare. These sectors are benefiting from a synergy of synthetic and engineering biology, sustainable manufacturing, and integrated design principles. Advanced techniques such as 3D bioprinting, tissue engineering, directed assembly, and self-assembly are instrumental in creating biomimetic scaffolds, tissues, organoids, medical devices, and biohybrid systems. The field of biofabrication in the United Kingdom and Ireland is emerging as a pivotal force in bioscience and healthcare, propelled by cutting-edge research and development. Concentrating on the production of biologically functional products for use in drug delivery, in vitro models, and tissue engineering, research institutions across these regions are dedicated to innovating healthcare solutions that adhere to ethical standards while prioritising sustainability, affordability, and healthcare system benefits. Graphic abstract
Collapse
Affiliation(s)
- Jack F. Murphy
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ UK
| | - Martha Lavelle
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY UK
| | - Lisa Asciak
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW UK
| | - Ross Burdis
- Department of Materials, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Hannah J. Levis
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX UK
| | - Cosimo Ligorio
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD UK
| | - Jamie McGuire
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, S016 6YD UK
| | - Marlene Polleres
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Poppy O. Smith
- UCL Centre for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX UK
| | - Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, NW1 1AT UK
| | - Juan Uribe-Gomez
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 W2TY Ireland
| | - Biqiong Chen
- School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, BT9 5AH UK
| | - Jonathan I. Dawson
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, S016 6YD UK
| | - Julien E. Gautrot
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS UK
| | - Nigel M. Hooper
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, M13 9PL UK
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 H903 Ireland
| | - Vivian S. W. Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, NW1 1AT UK
| | - Alvaro Mata
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD UK
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 W2TY Ireland
| | - James B. Phillips
- UCL Centre for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX UK
| | - Wenmiao Shu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW UK
| | - Molly M. Stevens
- Department of Materials, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
- Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
| | - Rachel L. Williams
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX UK
| | - James P. K. Armstrong
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY UK
| | | |
Collapse
|
8
|
Miklosic G, Ferguson SJ, D'Este M. Engineering complex tissue-like microenvironments with biomaterials and biofabrication. Trends Biotechnol 2024; 42:1241-1257. [PMID: 38658198 DOI: 10.1016/j.tibtech.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Advances in tissue engineering for both system modeling and organ regeneration depend on embracing and recapitulating the target tissue's functional and structural complexity. Microenvironmental features such as anisotropy, heterogeneity, and other biochemical and mechanical spatiotemporal cues are essential in regulating tissue development and function. Novel biofabrication strategies and innovative biomaterial design have emerged as promising tools to better reproduce such features. These facilitate a transition towards high-fidelity biomimetic structures, offering opportunities for a deeper understanding of tissue function and the development of superior therapies. In this review, we explore some of the key structural and compositional aspects of tissues, lay out how to achieve similar outcomes with current fabrication strategies, and identify the main challenges and promising avenues for future research.
Collapse
Affiliation(s)
- Gregor Miklosic
- AO Research Institute Davos, Davos, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
9
|
Soliman BG, Nguyen AK, Gooding JJ, Kilian KA. Advancing Synthetic Hydrogels through Nature-Inspired Materials Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404235. [PMID: 38896849 PMCID: PMC11486603 DOI: 10.1002/adma.202404235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/25/2024] [Indexed: 06/21/2024]
Abstract
Synthetic extracellular matrix (ECM) mimics that can recapitulate the complex biochemical and mechanical nature of native tissues are needed for advanced models of development and disease. Biomedical research has heavily relied on the use of animal-derived biomaterials, which is now impeding their translational potential and convoluting the biological insights gleaned from in vitro tissue models. Natural hydrogels have long served as a convenient and effective cell culture tool, but advances in materials chemistry and fabrication techniques now present promising new avenues for creating xenogenic-free ECM substitutes appropriate for organotypic models and microphysiological systems. However, significant challenges remain in creating synthetic matrices that can approximate the structural sophistication, biochemical complexity, and dynamic functionality of native tissues. This review summarizes key properties of the native ECM, and discusses recent approaches used to systematically decouple and tune these properties in synthetic matrices. The importance of dynamic ECM mechanics, such as viscoelasticity and matrix plasticity, is also discussed, particularly within the context of organoid and engineered tissue matrices. Emerging design strategies to mimic these dynamic mechanical properties are reviewed, such as multi-network hydrogels, supramolecular chemistry, and hydrogels assembled from biological monomers.
Collapse
Affiliation(s)
- Bram G Soliman
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Ashley K Nguyen
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Kristopher A Kilian
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
10
|
Vadukoote TT, Avestro AJ, Smith DK. 3D-Printing Multi-Component Multi-Domain Supramolecular Gels with Differential Conductivity. Angew Chem Int Ed Engl 2024; 63:e202409757. [PMID: 38935516 DOI: 10.1002/anie.202409757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
We report the use of wet-spinning to 3D-print gels from low-molecular-weight gelators (LMWGs) based on the 1,3 : 2,4-dibenzylidenesorbitol (DBS) scaffold. Gel stripes assembled from DBS-CONHNH2 and DBS-COOH are printed, and their conductivities assessed. Printed gels based on DBS-CONHNH2 can be loaded with Au(III), which is reduced in situ to form embedded gold nanoparticles (AuNPs). The conductivity of these gels increases because of electron transport mediated by the AuNPs, whereas the conductivity of DBS-COOH, which does not promote AuNP formation, remains lower. We then fabricate multi-component gel patterns comprised of spatially well-defined domains of printed DBS-CONHNH2/AuNP (higher conductivity) and DBS-COOH (lower conductivity) resulting in soft multi-domain materials with differential conductivity. Such materials have future prospects in applications such as soft nanoelectronics or tissue engineering.
Collapse
Affiliation(s)
| | | | - David K Smith
- Department of Chemistry, University of York, Heslington, York, YO105DD, UK
| |
Collapse
|
11
|
Sun M, Wang Y, Huang A, Wang H, Peng S, Gao F, Yang X, Song X, Feng C. Enhancing Biocatalysis through Chiral Supramolecular Scaffolds: Insights into the Structural Adaptability of Lipase. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48126-48138. [PMID: 39196803 DOI: 10.1021/acsami.4c10295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
How to maintain high catalytic activity and stability in the process of biocatalysis is crucial, inspiring strategies to construct an appropriate catalytic microenvironment. Considering the lipase's inherent chirality and the necessity for a delicate hydrophilic-hydrophobic equilibrium, we crafted a chiral, nonaqueous catalytic microenvironment via the in situ coassembly of Boc-FLFL-NHNH2 (Bfl) and lipase. Benefiting from the chirality and distinct Bfl-lipase interactions, the lipase@Bfl supramolecular hybrid amplifies biological functionalities and can serve as a versatile and highly efficient catalyst. Kinetic investigations and molecular docking simulations uncover the strong lipase-substrate affinity and lipase-Bfl interactions, explaining the enhanced biological effects, catalytic activity, and stability. Our study establishes a suitable microenvironment to address the chirality and hydrophobicity during catalysis and highlights the potential of artificial chiral scaffolds and catalytic medium for enhancing lipase activity.
Collapse
Affiliation(s)
- Meng Sun
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuyang Wang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Anni Huang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Hanlu Wang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Shiqiao Peng
- Department of Endocrinology and Metabolism, First Affiliated Hospital Zhejiang University, Hangzhou, 310003, China
| | - Fengli Gao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xu Yang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Xinqiang Song
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
12
|
Iqbal J, Zafar Z, Skandalakis G, Kuruba V, Madan S, Kazim SF, A Bowers C. Recent advances of 3D-printing in spine surgery. Surg Neurol Int 2024; 15:297. [PMID: 39246777 PMCID: PMC11380890 DOI: 10.25259/sni_460_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/27/2024] [Indexed: 09/10/2024] Open
Abstract
Background The emerging use of three-dimensional printing (3DP) offers improved surgical planning and personalized care. The use of 3DP technology in spinal surgery has several common applications, including models for preoperative planning, biomodels, surgical guides, implants, and teaching tools. Methods A literature review was conducted to examine the current use of 3DP technology in spinal surgery and identify the challenges and limitations associated with its adoption. Results The review reveals that while 3DP technology offers the benefits of enhanced stability, improved surgical outcomes, and the feasibility of patient-specific solutions in spinal surgeries, several challenges remain significant impediments to widespread adoption. The obvious expected limitation is the high cost associated with implementing and maintaining a 3DP facility and creating customized patient-specific implants. Technological limitations, including the variability between medical imaging and en vivo surgical anatomy, along with the reproduction of intricate high-fidelity anatomical detail, pose additional challenges. Finally, the lack of comprehensive clinical monitoring, inadequate sample sizes, and high-quality scientific evidence all limit our understanding of the full scope of 3DP's utility in spinal surgery and preclude widespread adoption and implementation. Conclusion Despite the obvious challenges and limitations, ongoing research and development efforts are expected to address these issues, improving the accessibility and efficacy of 3DP technology in spinal surgeries. With further advancements, 3DP technology has the potential to revolutionize spinal surgery by providing personalized implants and precise surgical planning, ultimately improving patient outcomes and surgical efficiency.
Collapse
Affiliation(s)
- Javed Iqbal
- Department of Neurosurgery, King Edward Medical University, Lahore, Pakistan
| | - Zaitoon Zafar
- Department of Biotechnology, University of San Francisco, San Francisco, California, United States
| | - Georgios Skandalakis
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico, United States
| | | | - Shreya Madan
- Department of Neurosurgery, Desert Mountain High School, Scottsdale, Arizona, United States
| | - Syed Faraz Kazim
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, New Mexico, United States
| | - Christian A Bowers
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, New Mexico, United States
| |
Collapse
|
13
|
Yang B, Wang C, Yu Q, Ma P, Zhao Q, Wu Y, Ma K, Tan S. Strong Acid Enabled Comprehensive Training of Poly (Sodium Acrylate) Hydrogel Networks. Angew Chem Int Ed Engl 2024; 63:e202406407. [PMID: 38862386 DOI: 10.1002/anie.202406407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
The design of admirable hydrogel networks is of both practical and fundamental importance for diverse applications of hydrogels. Herein a general strategy of acid-assisted training is designed to enable multiple improvements of conventional poly (sodium acrylate) networks for hydrogels. Hydrophobic homogeneous crosslinked poly (sodium acrylate) hydrogels are prepared to verify the strategy. The multiple improvements of poly (sodium acrylate) networks are simply achieved by immersing the hydrogel networks into 4 M H2SO4 solutions. The introduced acids would induce transformation of poly (sodium acrylate) into poly (acrylic acid) at hydrogel surface, which constructs dynamic hydrogen bonding interactions to tighten the network. The acid-containing poly (sodium acrylate) hydrogels newly generate anti-swelling and self-healing performance, and show mechanical improvement. The internal poly (sodium acrylate) of the pristine acid-containing hydrogels is further fully transformed via acid-infiltration after following cyclic stretch/release training to significantly improve the mechanical performance. The Young's modulus, stress, and toughness of the fully-trained hydrogels are 187.6 times, 35.6 times, and 5.4 times enhanced, respectively. The polymeric networks retain isotropic in fully-trained hydrogels to ensure superior stretchability of 8.6. The acid-assisted training performance of the hydrogels can be reversibly recovered by NaOH neutralization. The acid-assisted training strategy here is general for poly (sodium acrylate) hydrogels.
Collapse
Affiliation(s)
- Baibin Yang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Caihong Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Qiannan Yu
- College of Energy and Power Engineering, Guangdong University of Petrochemical Technology, No.139, 2nd Guandu Road, Maoming, 525000, China
| | - Peipei Ma
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Qiang Zhao
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Kui Ma
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| |
Collapse
|
14
|
Farsheed AC, Zevallos-Delgado C, Yu LT, Saeidifard S, Swain JWR, Makhoul JT, Thomas AJ, Cole CC, Garcia Huitron E, Grande-Allen KJ, Singh M, Larin KV, Hartgerink JD. Tunable Macroscopic Alignment of Self-Assembling Peptide Nanofibers. ACS NANO 2024; 18:12477-12488. [PMID: 38699877 PMCID: PMC11285723 DOI: 10.1021/acsnano.4c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Progress in the design and synthesis of nanostructured self-assembling systems has facilitated the realization of numerous nanoscale geometries, including fibers, ribbons, and sheets. A key challenge has been achieving control across multiple length scales and creating macroscopic structures with nanoscale organization. Here, we present a facile extrusion-based fabrication method to produce anisotropic, nanofibrous hydrogels using self-assembling peptides. The application of shear force coinciding with ion-triggered gelation is used to kinetically trap supramolecular nanofibers into aligned, hierarchical macrostructures. Further, we demonstrate the ability to tune the nanostructure of macroscopic hydrogels through modulating phosphate buffer concentration during peptide self-assembly. In addition, increases in the nanostructural anisotropy of fabricated hydrogels are found to enhance their strength and stiffness under hydrated conditions. To demonstrate their utility as an extracellular matrix-mimetic biomaterial, aligned nanofibrous hydrogels are used to guide directional spreading of multiple cell types, but strikingly, increased matrix alignment is not always correlated with increased cellular alignment. Nanoscale observations reveal differences in cell-matrix interactions between variably aligned scaffolds and implicate the need for mechanical coupling for cells to understand nanofibrous alignment cues. In total, innovations in the supramolecular engineering of self-assembling peptides allow us to decouple nanostructure from macrostructure and generate a gradient of anisotropic nanofibrous hydrogels. We anticipate that control of architecture at multiple length scales will be critical for a variety of applications, including the bottom-up tissue engineering explored here.
Collapse
Affiliation(s)
- Adam C Farsheed
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | | | - Le Tracy Yu
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Sajede Saeidifard
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
| | - Joseph W R Swain
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Jonathan T Makhoul
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Adam J Thomas
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Carson C Cole
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Eric Garcia Huitron
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | | | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
15
|
Zhang J, Zhao D, Lu K, Yuan L, Du H. Gelation Behavior and Drug Sustained-Release Properties of a Helix Peptide Organohydrogel with pH Responsiveness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8568-8579. [PMID: 38591865 DOI: 10.1021/acs.langmuir.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Based on the typical similar repeat units (abcdefg)n of α-helical structure, the peptide H was designed to self-assemble into an organohydrogel in response to pH. Depending on the different pH, the proportions of secondary structure, microstructure, and mechanical properties of the gel were investigated. Circular dichroism (CD) and Fourier transform infrared (FT-IR) showed that the proportion of α-helical structure gradually increased to become dominant with the increase of pH. Combining transmission electron microscopy (TEM) and atomic force microscopy (AFM), it was found that the increase of the ordered α-helix structure promoted fiber formation. The further increase in pH changed the intermolecular forces, resulting in an increase in the α-helix content and the enhancement of helix-helix interaction, causing the gel fibers to converge into thicker and more dense ones. The temperature test showed the stable rheological properties of the organohydrogel between 20-60 °C. Drug release and cytotoxicity showed that the DOX-loaded organohydrogel could have a better release in an acidic environment, indicating its potential application as a drug local delivery carrier.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology Locus street, High-Tech Industry Development Zone, Zhengzhou 450001, China
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology Locus street, High-Tech Industry Development Zone, Zhengzhou 450001, China
| | - Kui Lu
- School of Chemistry and Chemical Engineering, Henan University of Technology Locus street, High-Tech Industry Development Zone, Zhengzhou 450001, China
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Yingcai Road 18, Zhengzhou 450044, Henan Province, China
| | - Libo Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology Locus street, High-Tech Industry Development Zone, Zhengzhou 450001, China
| | - Heng Du
- School of Food Science and Engineering, Henan University of Technology Locus street, High-Tech Industry Development Zone, Zhengzhou 450001, China
| |
Collapse
|
16
|
Liu H, He L, Kuzmanović M, Huang Y, Zhang L, Zhang Y, Zhu Q, Ren Y, Dong Y, Cardon L, Gou M. Advanced Nanomaterials in Medical 3D Printing. SMALL METHODS 2024; 8:e2301121. [PMID: 38009766 DOI: 10.1002/smtd.202301121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Indexed: 11/29/2023]
Abstract
3D printing is now recognized as a significant tool for medical research and clinical practice, leading to the emergence of medical 3D printing technology. It is essential to improve the properties of 3D-printed products to meet the demand for medical use. The core of generating qualified 3D printing products is to develop advanced materials and processes. Taking advantage of nanomaterials with tunable and distinct physical, chemical, and biological properties, integrating nanotechnology into 3D printing creates new opportunities for advancing medical 3D printing field. Recently, some attempts are made to improve medical 3D printing through nanotechnology, providing new insights into developing advanced medical 3D printing technology. With high-resolution 3D printing technology, nano-structures can be directly fabricated for medical applications. Incorporating nanomaterials into the 3D printing material system can improve the properties of the 3D-printed medical products. At the same time, nanomaterials can be used to expand novel medical 3D printing technologies. This review introduced the strategies and progresses of improving medical 3D printing through nanotechnology and discussed challenges in clinical translation.
Collapse
Affiliation(s)
- Haofan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liming He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maja Kuzmanović
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiting Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qi Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ya Ren
- Huahang Microcreate Technology Co., Ltd, Chengdu, 610042, China
| | - Yinchu Dong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Chengdu OrganoidMed Medical Laboratory, Chengdu, 610000, China
| | - Ludwig Cardon
- Centre for Polymer and Material Technologies, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, 9159052, Belgium
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
17
|
Nath D, Ralhan J, Joseph JP, Miglani C, Pal A. Thermoresponsive Injectable Hydrogel To Mimic the Heat- and Strain-Stiffening Behavior of Biopolymers toward Muscle Cell Proliferation. Biomacromolecules 2024; 25:853-863. [PMID: 38214450 DOI: 10.1021/acs.biomac.3c01018] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Injectable hydrogels with nonlinear mechanical attributes to emulate natural biopolymers hold paramount significance in tissue engineering, offering the potential to create scaffolds that seamlessly mimic the biomechanical intricacies of living tissues. Herein, we unveil a synthetic design strategy employing Schiff base chemistry to furnish a peptide-polymer hierarchical contractile injectable hydrogel network. This innovative design demonstrates cross-linking of supramolecular peptide nanostructures such as nanofibers, 1NF, and twisted bundles, 1TB, with a thermosensitive aldehyde-functionalized polymer, PCHO. These networks exhibit interesting nonlinear mechanical stiffening responses to temperature and external stress. Furthermore, the hydrogels transform into a gel state at physiological temperature to exhibit injectable behavior and demonstrate compression load-bearing capabilities. Finally, the hydrogel network exhibits excellent biocompatibility and cell proliferation toward fibroblast, L929, and myoblast, C2C12, to validate their use as potential extracellular matrix mimetic injectable scaffolds.
Collapse
Affiliation(s)
- Debasish Nath
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Jahanvi Ralhan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Jojo P Joseph
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Chirag Miglani
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Asish Pal
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| |
Collapse
|
18
|
Farsheed AC, Zevallos-Delgado C, Yu LT, Saeidifard S, Swain JW, Makhoul JT, Thomas AJ, Cole CC, Huitron EG, Grande-Allen KJ, Singh M, Larin KV, Hartgerink JD. Tunable Macroscopic Alignment of Self-Assembling Peptide Nanofibers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578651. [PMID: 38352501 PMCID: PMC10862821 DOI: 10.1101/2024.02.02.578651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Fibrous proteins that comprise the extracellular matrix (ECM) guide cellular growth and tissue organization. A lack of synthetic strategies able to generate aligned, ECM-mimetic biomaterials has hampered bottom-up tissue engineering of anisotropic tissues and led to a limited understanding of cell-matrix interactions. Here, we present a facile extrusion-based fabrication method to produce anisotropic, nanofibrous hydrogels using self-assembling peptides. The application of shear force coinciding with ion-triggered gelation is used to kinetically trap supramolecular nanofibers into aligned, hierarchical structures. We establish how modest changes in phosphate buffer concentration during peptide self-assembly can be used to tune their alignment and packing. In addition, increases in the nanostructural anisotropy of fabricated hydrogels are found to enhance their strength and stiffness under hydrated conditions. To demonstrate their utility as an ECM-mimetic biomaterial, aligned nanofibrous hydrogels are used to guide directional spreading of multiple cell types, but strikingly, increased matrix alignment is not always correlated with increased cellular alignment. Nanoscale observations reveal differences in cell-matrix interactions between variably aligned scaffolds and implicate the need for mechanical coupling for cells to understand nanofibrous alignment cues. In total, innovations in the supramolecular engineering of self-assembling peptides allow us to generate a gradient of anisotropic nanofibrous hydrogels, which are used to better understand directed cell growth.
Collapse
Affiliation(s)
- Adam C. Farsheed
- Department of Bioengineering, Rice University; Houston, TX 77005, USA
| | | | - Le Tracy Yu
- Department of Chemistry, Rice University; Houston, TX 77005, USA
| | - Sajede Saeidifard
- Department of Biomedical Engineering, University of Houston; Houston, TX 77204, USA
| | | | - Jonathan T. Makhoul
- Department of Bioengineering, Rice University; Houston, TX 77005, USA
- Department of Chemistry, Rice University; Houston, TX 77005, USA
| | - Adam J. Thomas
- Department of Chemistry, Rice University; Houston, TX 77005, USA
| | - Carson C. Cole
- Department of Chemistry, Rice University; Houston, TX 77005, USA
| | | | | | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston; Houston, TX 77204, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston; Houston, TX 77204, USA
| | - Jeffrey D. Hartgerink
- Department of Bioengineering, Rice University; Houston, TX 77005, USA
- Department of Chemistry, Rice University; Houston, TX 77005, USA
| |
Collapse
|
19
|
Lu A, Williams RO, Maniruzzaman M. 3D printing of biologics-what has been accomplished to date? Drug Discov Today 2024; 29:103823. [PMID: 37949427 DOI: 10.1016/j.drudis.2023.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Three-dimensional (3D) printing is a promising approach for the stabilization and delivery of non-living biologics. This versatile tool builds complex structures and customized resolutions, and has significant potential in various industries, especially pharmaceutics and biopharmaceutics. Biologics have become increasingly prevalent in the field of medicine due to their diverse applications and benefits. Stability is the main attribute that must be achieved during the development of biologic formulations. 3D printing could help to stabilize biologics by entrapment, support binding, or crosslinking. Furthermore, gene fragments could be transited into cells during co-printing, when the pores on the membrane are enlarged. This review provides: (i) an introduction to 3D printing technologies and biologics, covering genetic elements, therapeutic proteins, antibodies, and bacteriophages; (ii) an overview of the applications of 3D printing of biologics, including regenerative medicine, gene therapy, and personalized treatments; (iii) information on how 3D printing could help to stabilize and deliver biologics; and (iv) discussion on regulations, challenges, and future directions, including microneedle vaccines, novel 3D printing technologies and artificial-intelligence-facilitated research and product development. Overall, the 3D printing of biologics holds great promise for enhancing human health by providing extended longevity and enhanced quality of life, making it an exciting area in the rapidly evolving field of biomedicine.
Collapse
Affiliation(s)
- Anqi Lu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
20
|
Wang T, Yu Z, Si J, Liu L, Ren X, Gao G. Gum Arabic-based three-dimensional printed hydrogel for customizable sensors. Int J Biol Macromol 2024; 254:128072. [PMID: 37967603 DOI: 10.1016/j.ijbiomac.2023.128072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Most three-dimensional (3D) printed hydrogel exhibit non-idealized rheological properties in the process of direct ink writing and complicated curing. Therefore, accurate writability and convenient curing for 3D printed hydrogel remain a challenge. In this paper, we developed a typical 3D printed hydrogel which realized direct ink writing (DIW) at temperatures similar to human body. Silicon dioxide (SiO2) and Gum Arabic (GA) formed the Bingham fluid to ensure shape stability. The rapid initiation system of potassium persulfat (KPS) and N,N,N',N' -tetramethylethylenediamine (TMEDA) allowed the 3D printed hydrogel precursor solution to transiently form a hydrophobic conjoined cross-linking network structure of acrylamide (AAM) and lauryl methacrylate (LMA) after printing, resulting in preferable mechanical properties. Hydrogel precursor solution showed better rheological properties with the nature of Bingham fluids, and achieved transient cross-linking at 30 °C for 10 s in the rheological test. A variety of 3D printed hydrogel with individual strain sensing properties are prepared as customizable sensor that could monitor significant strain signals within 0-20 % strain with high sensitivity. Moreover, they were discovered excellent temperature sensitivity over a wide operating range (0-80 °C). The 3D printing hydrogel sensors were expected to have broad application prospects in flexible wearable devices and medical monitoring.
Collapse
Affiliation(s)
- Tingting Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
| | - Zhe Yu
- Jilin OLED Material Tech Co., Ltd., NO. 1111 heshun road, helong town, nong'an economic development zone, Changchun city, Jilin province, China.
| | - Jia Si
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
| | - Li Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Polymeric and Soft Materials Laboratory, School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Xiuyan Ren
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Polymeric and Soft Materials Laboratory, School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Guanghui Gao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Polymeric and Soft Materials Laboratory, School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
21
|
Smith DK. Supramolecular gels - a panorama of low-molecular-weight gelators from ancient origins to next-generation technologies. SOFT MATTER 2023; 20:10-70. [PMID: 38073497 DOI: 10.1039/d3sm01301d] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Supramolecular gels, self-assembled from low-molecular-weight gelators (LMWGs), have a long history and a bright future. This review provides an overview of these materials, from their use in lubrication and personal care in the ancient world, through to next-generation technologies. In academic terms, colloid scientists in the 19th and early 20th centuries first understood such gels as being physically assembled as a result of weak interactions, combining a solid-like network having a degree of crystalline order with a highly mobile liquid-like phase. During the 20th century, industrial scientists began using these materials in new applications in the polymer, oil and food industries. The advent of supramolecular chemistry in the late 20th century, with its focus on non-covalent interactions and controlled self-assembly, saw the horizons for these materials shifted significantly beyond their historic rheological applications, expanding their potential. The ability to tune the LMWG chemical structure, manipulate hierarchical assembly, develop multi-component systems, and introduce new types of responsive and interactive behaviour, has been transformative. Furthermore, the dynamics of these materials are increasingly understood, creating metastable gels and transiently-fueled systems. New approaches to shaping and patterning gels are providing a unique opportunity for more sophisticated uses. These supramolecular advances are increasingly underpinning and informing next-generation applications - from drug delivery and regenerative medicine to environmental remediation and sustainable energy. In summary, this article presents a panorama over the field of supramolecular gels, emphasising how both academic and industrial scientists are building on the past, and engaging new fundamental insights and innovative concepts to open up exciting horizons for their future use.
Collapse
Affiliation(s)
- David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
22
|
Agrawal A, Hussain CM. 3D-Printed Hydrogel for Diverse Applications: A Review. Gels 2023; 9:960. [PMID: 38131946 PMCID: PMC10743314 DOI: 10.3390/gels9120960] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Hydrogels have emerged as a versatile and promising class of materials in the field of 3D printing, offering unique properties suitable for various applications. This review delves into the intersection of hydrogels and 3D printing, exploring current research, technological advancements, and future directions. It starts with an overview of hydrogel basics, including composition and properties, and details various hydrogel materials used in 3D printing. The review explores diverse 3D printing methods for hydrogels, discussing their advantages and limitations. It emphasizes the integration of 3D-printed hydrogels in biomedical engineering, showcasing its role in tissue engineering, regenerative medicine, and drug delivery. Beyond healthcare, it also examines their applications in the food, cosmetics, and electronics industries. Challenges like resolution limitations and scalability are addressed. The review predicts future trends in material development, printing techniques, and novel applications.
Collapse
Affiliation(s)
- Arpana Agrawal
- Department of Physics, Shri Neelkantheshwar Government Post-Graduate College, Khandwa 450001, India;
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
23
|
Swain JWR, Yang CY, Hartgerink JD. Orthogonal Self-Assembly of Amphiphilic Peptide Hydrogels and Liposomes Results in Composite Materials with Tunable Release Profiles. Biomacromolecules 2023; 24:5018-5026. [PMID: 37690094 PMCID: PMC11908964 DOI: 10.1021/acs.biomac.3c00664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Self-assembled nanomaterials are promising candidates for drug delivery by providing a higher degree of spatiotemporal control compared to free drugs. However, challenges such as burst release, inadequate targeting, and drug-nanomaterial incompatibility leave room for improvement. The combination of orthogonal self-assembling systems can result in more useful materials that improve upon these weaknesses. In this work, we investigate an orthogonal self-assembling system of nanofibrous MultiDomain Peptide (MDP) hydrogels encapsulating liposomes. Both positively charged and negatively charged MDPs were prepared and mixed with positively charged, negatively charged, or zwitterionic liposomes for a total of six composites. We demonstrate that, despite both systems being amphiphilic, they are able to mix while retaining their independent identities. We show that changing the charge of either liposomes or MDPs does not hinder the self-assembly of either system or significantly affect their rheological properties. In all six cases, small molecules encapsulated in liposome-MDP composites resulted in slower release than was possible in MDP hydrogels alone. However, in one case, positively charged MDPs destabilized negatively charged liposomes and resulted in a unique release profile. Finally, we show that MDP hydrogels substantially decrease the release of chemotherapeutic doxorubicin from its liposomal formulation, Doxil, for 24 h. This work demonstrates the chemical compatibility of amphiphilic, orthogonally self-assembled systems and the range of their drug-delivering capabilities.
Collapse
Affiliation(s)
- Joseph W. R. Swain
- Department of Chemistry, Rice University, Houston, Texas 77098, United States
| | - Claire Y. Yang
- Department of Chemistry, Rice University, Houston, Texas 77098, United States
| | - Jeffrey D. Hartgerink
- Department of Chemistry and Department of Bioengineering, Rice University, Houston, Texas 77098, United States
| |
Collapse
|
24
|
Ciulla MG, Massironi A, Sugni M, Ensign MA, Marzorati S, Forouharshad M. Recent Advances in the Development of Biomimetic Materials. Gels 2023; 9:833. [PMID: 37888406 PMCID: PMC10606425 DOI: 10.3390/gels9100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
In this review, we focused on recent efforts in the design and development of materials with biomimetic properties. Innovative methods promise to emulate cell microenvironments and tissue functions, but many aspects regarding cellular communication, motility, and responsiveness remain to be explained. We photographed the state-of-the-art advancements in biomimetics, and discussed the complexity of a "bottom-up" artificial construction of living systems, with particular highlights on hydrogels, collagen-based composites, surface modifications, and three-dimensional (3D) bioprinting applications. Fast-paced 3D printing and artificial intelligence, nevertheless, collide with reality: How difficult can it be to build reproducible biomimetic materials at a real scale in line with the complexity of living systems? Nowadays, science is in urgent need of bioengineering technologies for the practical use of bioinspired and biomimetics for medicine and clinics.
Collapse
Affiliation(s)
- Maria G. Ciulla
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy
| | - Alessio Massironi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Matthew A. Ensign
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Mahdi Forouharshad
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
25
|
Zhang J, Zhao D, Lu K. Mechanisms and influencing factors of peptide hydrogel formation and biomedicine applications of hydrogels. SOFT MATTER 2023; 19:7479-7493. [PMID: 37756117 DOI: 10.1039/d3sm01057k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Self-assembled peptide-based hydrogels have shown great potential in bio-related applications due to their porous structure, strong mechanical stability, high biocompatibility, and easy functionalization. Herein, the structure and characteristics of hydrogels and the mechanism of action of several regular secondary structures during gelation are investigated. The factors influencing the formation of peptide hydrogels, especially the pH responsiveness and salt ion induction are analyzed and summarized. Finally, the biomedical applications of peptide hydrogels, such as bone tissue engineering, cell culture, antigen presentation, antibacterial materials, and drug delivery are reviewed.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou 450001, China.
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou 450001, China.
| | - Kui Lu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou 450001, China.
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Yingcai Road 18, Zhengzhou, 450044, Henan Province, China.
| |
Collapse
|
26
|
Metwally WM, El-Habashy SE, El-Hosseiny LS, Essawy MM, Eltaher HM, El-Khordagui LK. Bioinspired 3D-printed scaffold embedding DDAB-nano ZnO/nanofibrous microspheres for regenerative diabetic wound healing. Biofabrication 2023; 16:015001. [PMID: 37751750 DOI: 10.1088/1758-5090/acfd60] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
There is a constant demand for novel materials/biomedical devices to accelerate the healing of hard-to-heal wounds. Herein, an innovative 3D-printed bioinspired construct was developed as an antibacterial/regenerative scaffold for diabetic wound healing. Hyaluronic/chitosan (HA/CS) ink was used to fabricate a bilayer scaffold comprising a dense plain hydrogel layer topping an antibacterial/regenerative nanofibrous layer obtained by incorporating the hydrogel with polylactic acid nanofibrous microspheres (MS). These were embedded with nano ZnO (ZNP) or didecyldimethylammonium bromide (DDAB)-treated ZNP (D-ZNP) to generate the antibacterial/healing nano/micro hybrid biomaterials, Z-MS@scaffold and DZ-MS@scaffold. Plain and composite scaffolds incorporating blank MS (blank MS@scaffold) or MS-free ZNP@scaffold and D-ZNP@scaffold were used for comparison. 3D printed bilayer constructs with customizable porosity were obtained as verified by SEM. The DZ-MS@scaffold exhibited the largest total pore area as well as the highest water-uptake capacity andin vitroantibacterial activity. Treatment ofStaphylococcus aureus-infected full thickness diabetic wounds in rats indicated superiority of DZ-MS@scaffold as evidenced by multiple assessments. The scaffold afforded 95% wound-closure, infection suppression, effective regulation of healing-associated biomarkers as well as regeneration of skin structure in 14 d. On the other hand, healing of non-diabetic acute wounds was effectively accelerated by the simpler less porous Z-MS@scaffold. Information is provided for the first-time on the 3D printing of nanofibrous scaffolds using non-electrospun injectable bioactive nano/micro particulate constructs, an innovative ZNP-functionalized 3D-printed formulation and the distinct bioactivity of D-ZNP as a powerful antibacterial/wound healing promotor. In addition, findings underscored the crucial role of nanofibrous-MS carrier in enhancing the physicochemical, antibacterial, and wound regenerative properties of DDAB-nano ZnO. In conclusion, innovative 3D-printed DZ-MS@scaffold merging the MS-boosted multiple functionalities of ZNP and DDAB, the structural characteristics of nanofibrous MS in addition to those of the 3D-printed bilayer scaffold, provide a versatile bioactive material platform for diabetic wound healing and other biomedical applications.
Collapse
Affiliation(s)
- Walaa M Metwally
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Lobna S El-Hosseiny
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Alexandria 21500, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hoda M Eltaher
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Regenerative Medicine and Cellular Therapies Division, School of Pharmacy, Faculty of Science, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
27
|
Hafeez S, Decarli MC, Aldana A, Ebrahimi M, Ruiter FAA, Duimel H, van Blitterswijk C, Pitet LM, Moroni L, Baker MB. In Situ Covalent Reinforcement of a Benzene-1,3,5-Tricarboxamide Supramolecular Polymer Enables Biomimetic, Tough, and Fibrous Hydrogels and Bioinks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301242. [PMID: 37370137 DOI: 10.1002/adma.202301242] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/25/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023]
Abstract
Synthetic hydrogels often lack the load-bearing capacity and mechanical properties of native biopolymers found in tissue, such as cartilage. In natural tissues, toughness is often imparted via the combination of fibrous noncovalent self-assembly with key covalent bond formation. This controlled combination of supramolecular and covalent interactions remains difficult to engineer, yet can provide a clear strategy for advanced biomaterials. Here, a synthetic supramolecular/covalent strategy is investigated for creating a tough hydrogel that embodies the hierarchical fibrous architecture of the extracellular matrix (ECM). A benzene-1,3,5-tricarboxamide (BTA) hydrogelator is developed with synthetically addressable norbornene handles that self-assembles to form a and viscoelastic hydrogel. Inspired by collagen's covalent cross-linking of fibrils, the mechanical properties are reinforced by covalent intra- and interfiber cross-links. At over 90% water, the hydrogels withstand up to 550% tensile strain, 90% compressive strain, and dissipated energy with recoverable hysteresis. The hydrogels are shear-thinning, can be 3D bioprinted with good shape fidelity, and can be toughened via covalent cross-linking. These materials enable the bioprinting of human mesenchymal stromal cell (hMSC) spheroids and subsequent differentiation into chondrogenic tissue. Collectively, these findings highlight the power of covalent reinforcement of supramolecular fibers, offering a strategy for the bottom-up design of dynamic, yet tough, hydrogels and bioinks.
Collapse
Affiliation(s)
- Shahzad Hafeez
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Monize Caiado Decarli
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Agustina Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Mahsa Ebrahimi
- Advanced Functional Polymers Group, Department of Chemistry, Institute for Materials Research (IMO), Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium
| | - Floor A A Ruiter
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology- Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Hans Duimel
- Maastricht MultiModal Molecular Imaging Institute, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Louis M Pitet
- Advanced Functional Polymers Group, Department of Chemistry, Institute for Materials Research (IMO), Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
28
|
Li S, Yu Q, Li H, Chen M, Jin Y, Liu D. Self-Assembled Peptide Hydrogels in Regenerative Medicine. Gels 2023; 9:653. [PMID: 37623108 PMCID: PMC10453854 DOI: 10.3390/gels9080653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Regenerative medicine is a complex discipline that is becoming a hot research topic. Skin, bone, and nerve regeneration dominate current treatments in regenerative medicine. A new type of drug is urgently needed for their treatment due to their high vulnerability to damage and weak self-repairing ability. A self-assembled peptide hydrogel is a good scaffolding material in regenerative medicine because it is similar to the cytoplasmic matrix environment; it promotes cell adhesion, migration, proliferation, and division; and its degradation products are natural and harmless proteins. However, fewer studies have examined the specific mechanisms of self-assembled peptide hydrogels in promoting tissue regeneration. This review summarizes the applications and mechanisms of self-assembled short peptide and peptide hydrogels in skin, bone, and neural healing to improve their applications in tissue healing and regeneration.
Collapse
Affiliation(s)
- Shuangyang Li
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.L.); (Q.Y.); (H.L.); (M.C.)
| | - Qixuan Yu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.L.); (Q.Y.); (H.L.); (M.C.)
| | - Hongpeng Li
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.L.); (Q.Y.); (H.L.); (M.C.)
| | - Meiqi Chen
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.L.); (Q.Y.); (H.L.); (M.C.)
| | - Ye Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.L.); (Q.Y.); (H.L.); (M.C.)
| |
Collapse
|
29
|
Yu S, Huang Y, Shen B, Zhang W, Xie Y, Gao Q, Zhao D, Wu Z, Liu Y. Peptide hydrogels: Synthesis, properties, and applications in food science. Compr Rev Food Sci Food Saf 2023; 22:3053-3083. [PMID: 37194927 DOI: 10.1111/1541-4337.13171] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/26/2023] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Due to the unique and excellent biological, physical, and chemical properties of peptide hydrogels, their application in the biomedical field is extremely wide. The applications of peptide hydrogels are closely related to their unique responsiveness and excellent properties. However, its defects in mechanical properties, stability, and toxicity limit its application in the food field. In this review, we focus on the fabrication methods of peptide hydrogels through the physical, chemical, and biological stimulations. In addition, the functional design of peptide hydrogels by the incorporation with materials is discussed. Meanwhile, the excellent properties of peptide hydrogels such as the stimulus responsiveness, biocompatibility, antimicrobial properties, rheology, and stability are reviewed. Finally, the application of peptide hydrogel in the food field is summarized and prospected.
Collapse
Affiliation(s)
- Shuang Yu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yueying Huang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Biao Shen
- Zhoushan Customs District, Zhoushan, P. R. China
| | - Wang Zhang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yan Xie
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Qi Gao
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Dan Zhao
- School of Marine Science, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
30
|
Jiang Z, Zheng Z, Yu S, Gao Y, Ma J, Huang L, Yang L. Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing. Pharmaceutics 2023; 15:1829. [PMID: 37514015 PMCID: PMC10384736 DOI: 10.3390/pharmaceutics15071829] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Nanofiber scaffolds have emerged as a revolutionary drug delivery platform for promoting wound healing, due to their unique properties, including high surface area, interconnected porosity, excellent breathability, and moisture absorption, as well as their spatial structure which mimics the extracellular matrix. However, the use of nanofibers to achieve controlled drug loading and release still presents many challenges, with ongoing research still exploring how to load drugs onto nanofiber scaffolds without loss of activity and how to control their release in a specific spatiotemporal manner. This comprehensive study systematically reviews the applications and recent advances related to drug-laden nanofiber scaffolds for skin-wound management. First, we introduce commonly used methods for nanofiber preparation, including electrostatic spinning, sol-gel, molecular self-assembly, thermally induced phase separation, and 3D-printing techniques. Next, we summarize the polymers used in the preparation of nanofibers and drug delivery methods utilizing nanofiber scaffolds. We then review the application of drug-loaded nanofiber scaffolds for wound healing, considering the different stages of wound healing in which the drug acts. Finally, we briefly describe stimulus-responsive drug delivery schemes for nanofiber scaffolds, as well as other exciting drug delivery systems.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| |
Collapse
|
31
|
Zhu H, Zheng J, Oh XY, Chan CY, Low BQL, Tor JQ, Jiang W, Ye E, Loh XJ, Li Z. Nanoarchitecture-Integrated Hydrogel Systems toward Therapeutic Applications. ACS NANO 2023; 17:7953-7978. [PMID: 37071059 DOI: 10.1021/acsnano.2c12448] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hydrogels, as one of the most feasible soft biomaterials, have gained considerable attention in therapeutic applications by virtue of their tunable properties including superior patient compliance, good biocompatibility and biodegradation, and high cargo-loading efficiency. However, hydrogel application is still limited by some challenges like inefficient encapsulation, easy leakage of loaded cargoes, and the lack of controllability. Recently, nanoarchitecture-integrated hydrogel systems were found to be therapeutics with optimized properties, extending their bioapplication. In this review, we briefly presented the category of hydrogels according to their synthetic materials and further discussed the advantages in bioapplication. Additionally, various applications of nanoarchitecture hybrid hydrogels in biomedical engineering are systematically summarized, including cancer therapy, wound healing, cardiac repair, bone regeneration, diabetes therapy, and obesity therapy. Last, the current challenges, limitations, and future perspectives in the future development of nanoarchitecture-integrated flexible hydrogels are addressed.
Collapse
Affiliation(s)
- Houjuan Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jie Zheng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xin Yi Oh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Chui Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Beverly Qian Ling Low
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jia Qian Tor
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Wenbin Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
| |
Collapse
|
32
|
Tang M, Zhong Z, Ke C. Advanced supramolecular design for direct ink writing of soft materials. Chem Soc Rev 2023; 52:1614-1649. [PMID: 36779285 DOI: 10.1039/d2cs01011a] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The exciting advancements in 3D-printing of soft materials are changing the landscape of materials development and fabrication. Among various 3D-printers that are designed for soft materials fabrication, the direct ink writing (DIW) system is particularly attractive for chemists and materials scientists due to the mild fabrication conditions, compatibility with a wide range of organic and inorganic materials, and the ease of multi-materials 3D-printing. Inks for DIW need to possess suitable viscoelastic properties to allow for smooth extrusion and be self-supportive after printing, but molecularly facilitating 3D printability to functional materials remains nontrivial. While supramolecular binding motifs have been increasingly used for 3D-printing, these inks are largely optimized empirically for DIW. Hence, this review aims to establish a clear connection between the molecular understanding of the supramolecularly bound motifs and their viscoelastic properties at bulk. Herein, extrudable (but not self-supportive) and 3D-printable (self-supportive) polymeric materials that utilize noncovalent interactions, including hydrogen bonding, host-guest inclusion, metal-ligand coordination, micro-crystallization, and van der Waals interaction, have been discussed in detail. In particular, the rheological distinctions between extrudable and 3D-printable inks have been discussed from a supramolecular design perspective. Examples shown in this review also highlight the exciting macroscale functions amplified from the molecular design. Challenges associated with the hierarchical control and characterization of supramolecularly designed DIW inks are also outlined. The perspective of utilizing supramolecular binding motifs in soft materials DIW printing has been discussed. This review serves to connect researchers across disciplines to develop innovative solutions that connect top-down 3D-printing and bottom-up supramolecular design to accelerate the development of 3D-print soft materials for a sustainable future.
Collapse
Affiliation(s)
- Miao Tang
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| | - Zhuoran Zhong
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| | - Chenfeng Ke
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| |
Collapse
|