1
|
Liu Q, Xiong X, Fang Y, Cui J. Crystallization-Induced Network Growth for Enhancing Hydrogel Mechanical Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500976. [PMID: 40116554 DOI: 10.1002/smll.202500976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/07/2025] [Indexed: 03/23/2025]
Abstract
Inspired by the actin-myosin-mediated growth mechanisms in skeletal muscle, cyclic crystallization is employed to induce hydrogel self-growth. Using polyacrylamide-sodium acetate (PAM-NaAc) hydrogel as a model system, the crystallization of NaAc triggers the stretching and subsequent fracture of polymer chains, generating mechanoradicals at strain-concentrated regions. These reactive species facilitate the incorporation of polymerizable compounds (monomers and crosslinkers). Specifically, localized polymerization of poly(ethylene glycol) diacrylate (PEGDA) monomers occurs at fracture sites, leading to covalent network integration and achieving a 51.5-fold Young's modulus enhancement (from 0.024 to 1.24 MPa over 50 crystallization cycles). This crystallization-induced self-growth mechanism enables programmable topology engineering in soft matter systems, with implications for adaptive biomedical implants and fatigue-resistant soft robots.
Collapse
Affiliation(s)
- Qianwei Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xinhong Xiong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
| | - Yuanlai Fang
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Jiaxi Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
| |
Collapse
|
2
|
Liang C, Dudko V, Khoruzhenko O, Hong X, Lv ZP, Tunn I, Umer M, Timonen JVI, Linder MB, Breu J, Ikkala O, Zhang H. Stiff and self-healing hydrogels by polymer entanglements in co-planar nanoconfinement. NATURE MATERIALS 2025; 24:599-606. [PMID: 40055539 PMCID: PMC11961364 DOI: 10.1038/s41563-025-02146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 01/16/2025] [Indexed: 04/03/2025]
Abstract
Many biological tissues are mechanically strong and stiff but can still heal from damage. By contrast, synthetic hydrogels have not shown comparable combinations of properties, as current stiffening approaches inevitably suppress the required chain/bond dynamics for self-healing. Here we show a stiff and self-healing hydrogel with a modulus of 50 MPa and tensile strength up to 4.2 MPa by polymer entanglements in co-planar nanoconfinement. This is realized by polymerizing a highly concentrated monomer solution within a scaffold of fully delaminated synthetic hectorite nanosheets, shear oriented into a macroscopic monodomain. The resultant physical gels show self-healing efficiency up to 100% despite the high modulus, and high adhesion shear strength on a broad range of substrates. This nanoconfinement approach allows the incorporation of novel functionalities by embedding colloidal materials such as MXenes and can be generalized to other polymers and solvents to fabricate stiff and self-healing gels for soft robotics, additive manufacturing and biomedical applications.
Collapse
Affiliation(s)
- Chen Liang
- Department of Applied Physics, Aalto University, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Volodymyr Dudko
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Olena Khoruzhenko
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Xiaodan Hong
- Department of Applied Physics, Aalto University, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Zhong-Peng Lv
- Department of Applied Physics, Aalto University, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Isabell Tunn
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Muhammad Umer
- Department of Applied Physics, Aalto University, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Jaakko V I Timonen
- Department of Applied Physics, Aalto University, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Markus B Linder
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Josef Breu
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth, Germany.
| | - Olli Ikkala
- Department of Applied Physics, Aalto University, Espoo, Finland.
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland.
| | - Hang Zhang
- Department of Applied Physics, Aalto University, Espoo, Finland.
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland.
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland.
| |
Collapse
|
3
|
Kalulu M, Chilikwazi B, Hu J, Fu G. Soft Actuators and Actuation: Design, Synthesis, and Applications. Macromol Rapid Commun 2025; 46:e2400282. [PMID: 38850266 DOI: 10.1002/marc.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Soft actuators are one of the most promising technological advancements with potential solutions to diverse fields' day-to-day challenges. Soft actuators derived from hydrogel materials possess unique features such as flexibility, responsiveness to stimuli, and intricate deformations, making them ideal for soft robotics, artificial muscles, and biomedical applications. This review provides an overview of material composition and design techniques for hydrogel actuators, exploring 3D printing, photopolymerization, cross-linking, and microfabrication methods for improved actuation. It examines applications of hydrogel actuators in biomedical, soft robotics, bioinspired systems, microfluidics, lab-on-a-chip devices, and environmental, and energy systems. Finally, it discusses challenges, opportunities, advancements, and regulatory aspects related to hydrogel actuators.
Collapse
Affiliation(s)
- Mulenga Kalulu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Bright Chilikwazi
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| |
Collapse
|
4
|
Chen Z, Xu C, Chen X, Huang J, Guo Z. Advances in Electrically Conductive Hydrogels: Performance and Applications. SMALL METHODS 2025; 9:e2401156. [PMID: 39529563 DOI: 10.1002/smtd.202401156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Electrically conductive hydrogels are highly hydrated 3D networks consisting of a hydrophilic polymer skeleton and electrically conductive materials. Conductive hydrogels have excellent mechanical and electrical properties and have further extensive application prospects in biomedical treatment and other fields. Whereas numerous electrically conductive hydrogels have been fabricated, a set of general principles, that can rationally guide the synthesis of conductive hydrogels using different substances and fabrication methods for various application scenarios, remain a central demand of electrically conductive hydrogels. This paper systematically summarizes the processing, performances, and applications of conductive hydrogels, and discusses the challenges and opportunities in this field. In view of the shortcomings of conductive hydrogels in high electrical conductivity, matchable mechanical properties, as well as integrated devices and machines, it is proposed to synergistically design and process conductive hydrogels with applications in complex surroundings. It is believed that this will present a fresh perspective for the research and development of conductive hydrogels, and further expand the application of conductive hydrogels.
Collapse
Affiliation(s)
- Zhiwei Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xionggang Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| |
Collapse
|
5
|
Wang M, Sun R, Chen H, Yoshitomi T, Mamiya H, Takeguchi M, Kawazoe N, Yang Y, Chen G. Differential intracellular influence of cancer cells and normal cells on magnetothermal properties and magnetic hyperthermal effects of magnetic nanoparticles. MATERIALS HORIZONS 2025. [PMID: 40135384 DOI: 10.1039/d5mh00317b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Magnetic hyperthermia using heat locally generated by magnetic nanoparticles (MNPs) under an alternating magnetic field (AMF) to ablate cancer cells has attracted enormous attention. The high accumulation of MNPs and slow heat dissipation generated in tumors are considered the dominant factors involved in magnetic hyperthermia. However, the influence of intracellular microenvironment on magnetic hyperthermia has been ignored. This study unveiled for the first time the critical role of intracellular microenvironment on magnetic hyperthermia. The intracellular microenvironments of cancer cells and normal cells showed different influence on the magnetothermal properties and magnetic hyperthermia effects of MNPs. The MNPs in cancer cells could generate higher temperatures and induce higher rates of apoptosis than those in normal cells. Compared with that of normal cells, the intracellular microenvironment of cancer cells was more conducive to Brownian relaxation and the dynamic magnetic response of internalized MNPs. The cancerous intracellular microenvironment had a discriminative effect on the magnetic hyperthermal effect of MNPs due to the low viscoelasticity of cancer cells, which was verified by the softening or stiffening of cells and simulation models created using viscous liquids or elastic hydrogels. These findings suggest that the intracellular microenvironment should be considered another critical factor of the magnetic hyperthermal effect of MNPs.
Collapse
Affiliation(s)
- Man Wang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Rui Sun
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Huajian Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
| | - Hiroaki Mamiya
- Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science, Ibaraki 305-0047, Japan
| | - Masaki Takeguchi
- Research Center for Energy and Environmental Materials, National Institute for Materials Science, Ibaraki 305-0047, Japan
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
6
|
Xiong X, Zhou X, Zhang H, Aizenberg M, Yao Y, Hu Y, Aizenberg J, Cui J. Controlled macroscopic shape evolution of self-growing polymeric materials. Nat Commun 2025; 16:2131. [PMID: 40032829 PMCID: PMC11876608 DOI: 10.1038/s41467-025-57030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
Living organisms absorb external nutrients to grow, changing their macroscopic shapes to meet various challenges through mass transport and integration. While several strategies have been developed to create dynamic polymers that allow for mainchain remodelings to mimic the growing ability of living organisms, most are limited to simple homogeneous growth without complex control of global geometric transformation during growth. Herein, we report an approach to design controlled, growth-induced shape transformation in synthetic materials, in which significant mass transport within the materials is induced by spatially controlled polymerization leading to reshaping the materials. This method is demonstrated using silicone systems made through anionic ring-opening polymerization (anionic ROP) of octamethylcyclotetrasiloxane (D4) with a strong base as the catalyst. We show that a flat square sample can be transformed into a sphere through growth without the need for remolding and preprogramming. By varying the composition of the monomer mixture provided to the samples, and the modes of triggering and shutting down polymerization, we achieve exquisite control over growing polymeric objects into various sizes and shapes, modulating their mechanical properties, self-healing ability, and availability of active sites for further growth from a desired location. We envision this strategy opening an innovative direction in preparing soft materials with specific shapes or surface morphologies.
Collapse
Affiliation(s)
- Xinhong Xiong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
| | - Xiaozhuang Zhou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
| | - Haohui Zhang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Yuxing Yao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Yuhang Hu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- The School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - Jiaxi Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.
| |
Collapse
|
7
|
Yang J, Yan Y, Huang L, Ma M, Li M, Peng F, Huan W, Bian J. Conductive Eutectogels Fabricated by Dialdehyde Xylan/Liquid Metal-Initiated Rapid Polymerization for Multi-Response Sensors and Self-Powered Applications. ACS NANO 2025; 19:2171-2184. [PMID: 39791699 DOI: 10.1021/acsnano.4c11127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Conductive eutectogels have emerged as candidates for constructing functional flexible electronics as they are free from the constraints posed by inherent defects associated with solvents and feeble network structures. Nevertheless, developing a facile, environmentally friendly, and rapid polymerization strategy for the construction of conductive eutectogels with integrated multifunctionality is still immensely challenging. Herein, a conductive eutectogel is fabricated through a one-step dialdehyde xylan (DAX)/liquid metal (LM)-initiated polymerization of a deep eutectic solvent. DAX acts as a stabilizer for the preparation of LM nanodroplets and plays a crucial role in facilitating ultrafast gelation (less than 2 min) by virtue of its reducing dialdehyde groups. Notably, this fabrication strategy obviates the use of toxic chemical initiators and cross-linkers. The resultant eutectogels exhibit extremely high stretchability (2860%), desirable self-healing ability, high conductivity (0.72 S m-1), biocompatibility, excellent environmental stability, and exceptional responsiveness to tensile strain (GF = 4.08) and temperature (TCR = 5.35% K-1). Benefiting from these integrated features, the conductive eutectogels serve as multifunctional flexible sensors for human motion recognition and temperature monitoring. Furthermore, the eutectogel serves as a pliable electrode in the assembly of a triboelectric nanogenerator (TENG), designed to harvest mechanical energy, convert it into stable electrical outputs, and enable self-powered sensing. This study offers an approach to fabricating multifunctional integrated conductive eutectogels, making it a step closer to the development of intelligent flexible electronics.
Collapse
Affiliation(s)
- Jiyou Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yin Yan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Lingzhi Huang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Mingguo Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Mingfei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
8
|
Zheng Z, Chen X, Wang Y, Wen P, Duan Q, Zhang P, Shan L, Ni Z, Feng Y, Xue Y, Li X, Zhang L, Liu J. Self-Growing Hydrogel Bioadhesives for Chronic Wound Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408538. [PMID: 39149779 DOI: 10.1002/adma.202408538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Hydrogel bioadhesives have emerged as a promising alternative to wound dressings for chronic wound management. However, many existing bioadhesives do not meet the functional requirements for efficient wound management through dynamically mechanical modulation, due to the reduced wound contractibility, frequent wound recurrence, incapability to actively adapt to external microenvironment variation, especially for those gradually-expanded chronic wounds. Here, a self-growing hydrogel bioadhesive (sGHB) patch that exhibits instant adhesion to biological tissues but also a gradual increase in mechanical strength and interfacial adhesive strength within a 120-h application is presented. The gradually increased mechanics of the sGHB patch could effectively mitigate the stress concentration at the wound edge, and also resist the wound expansion at various stages, thus mechanically contracting the chronic wounds in a programmable manner. The self-growing hydrogel patch demonstrated enhanced wound healing efficacy in a mouse diabetic wound model, by regulating the inflammatory response, promoting the faster re-epithelialization and angiogenesis through mechanical modulation. Such kind of self-growing hydrogel bioadhesives have potential clinical utility for a variety of wound management where dynamic mechanical modulation is indispensable.
Collapse
Affiliation(s)
- Ziman Zheng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Xingmei Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yafei Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ping Wen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qingfang Duan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pei Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liangjie Shan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhipeng Ni
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yinghui Feng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xing Li
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
9
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
10
|
Liu J, Yang J, Xue B, Cao Y, Cheng W, Li Y. Understanding the Mechanochemistry of Mechano-Radicals in Self-Growth Materials by Single-Molecule Force Spectroscopy. Chemphyschem 2024; 25:e202300880. [PMID: 38705870 DOI: 10.1002/cphc.202300880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Recent research on mechano-radicals has provided valuable insights into self-growth and adaptive responsive materials. Typically, mechanophores must remain inert in the absence of force but respond quickly to external tension before other linkages within the polymer network. Azo compounds exhibit promising combinations of mechanical stability and force-triggered reactivity, making them widely used as mechano-radicals in force-responsive materials. However, the activation conditions and behavior of azo compounds have yet to be quantitatively explored. In this study, we investigated the mechanical strength of three azo compounds using single-molecule force spectroscopy. Our results revealed that these compounds exhibit rupture forces ranging from ~500 to 1000 pN, at a loading rate of 3×104 pN s-1. Importantly, these mechanophores demonstrate distinct kinetic properties. Their unique mechanical attributes enable azo bond scission and free radical generation before causing major polymer backbone damage of entire material during polymer network deformation. This fundamental understanding of mechanophores holds significant promise for the development of self-growth materials and their related applications.
Collapse
Affiliation(s)
- Jing Liu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jiahui Yang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Wei Cheng
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
- School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China
| |
Collapse
|
11
|
Wang Y, Di Z, Qin M, Qu S, Zhong W, Yuan L, Zhang J, Hibberd JM, Yu Z. Advancing Engineered Plant Living Materials through Tobacco BY-2 Cell Growth and Transfection within Tailored Granular Hydrogel Scaffolds. ACS CENTRAL SCIENCE 2024; 10:1094-1104. [PMID: 38799669 PMCID: PMC11117683 DOI: 10.1021/acscentsci.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
In this study, an innovative approach is presented in the field of engineered plant living materials (EPLMs), leveraging a sophisticated interplay between synthetic biology and engineering. We detail a 3D bioprinting technique for the precise spatial patterning and genetic transformation of the tobacco BY-2 cell line within custom-engineered granular hydrogel scaffolds. Our methodology involves the integration of biocompatible hydrogel microparticles (HMPs) primed for 3D bioprinting with Agrobacterium tumefaciens capable of plant cell transfection, serving as the backbone for the simultaneous growth and transformation of tobacco BY-2 cells. This system facilitates the concurrent growth and genetic modification of tobacco BY-2 cells within our specially designed scaffolds. These scaffolds enable the cells to develop into predefined patterns while remaining conducive to the uptake of exogenous DNA. We showcase the versatility of this technology by fabricating EPLMs with unique structural and functional properties, exemplified by EPLMs exhibiting distinct pigmentation patterns. These patterns are achieved through the integration of the betalain biosynthetic pathway into tobacco BY-2 cells. Overall, our study represents a groundbreaking shift in the convergence of materials science and plant synthetic biology, offering promising avenues for the evolution of sustainable, adaptive, and responsive living material systems.
Collapse
Affiliation(s)
- Yujie Wang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Zhengao Di
- Department
of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K.
- Earlham
Institute, Norwich Research Park, Norwich NR4 7UG, U.K.
| | - Minglang Qin
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Shenming Qu
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Wenbo Zhong
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Lingfeng Yuan
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Jing Zhang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Julian M. Hibberd
- Department
of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K.
| | - Ziyi Yu
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| |
Collapse
|
12
|
Liu Q, Fang Y, Xiong X, Xu W, Cui J. Ostwald ripening for designing time-dependent crystal hydrogels. Angew Chem Int Ed Engl 2024; 63:e202320095. [PMID: 38419359 DOI: 10.1002/anie.202320095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Ostwald ripening (OR), a classic solution theory describing molecular transfer from metastable crystal to stable one, is applied to design time-dependent crystal hydrogels that can automatically change their mechanical properties. Using a system made from crosslinked polyacrylamide (PAM) and sodium acetate (NaAc), we demonstrate that metastable fibrous crystal networks of NaAc preferably form in PAM hydrogels via a polymer-involving mismatch nucleation. These fibrous crystals would undergo OR and evolve into isolated bulk crystals, leading to a significant reduction in material rigidity (179 folds) and interfacial adhesion (20 folds). This transformation can be applied to program time-dependent self-recovery in shape and self-delamination. Since OR is a ubiquitous, robust feature of various crystals, the approach reported here represents a new direction for designing advanced transient soft materials.
Collapse
Affiliation(s)
- Qianwei Liu
- Department: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu, Sichuan, 611731, China
| | - Yuanlai Fang
- Department: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu, Sichuan, 611731, China
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| | - Xinhong Xiong
- Department: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu, Sichuan, 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
| | - Weiming Xu
- Department: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu, Sichuan, 611731, China
| | - Jiaxi Cui
- Department: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu, Sichuan, 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
| |
Collapse
|
13
|
Chen J, Tian G, Liang C, Yang D, Zhao Q, Liu Y, Qi D. Liquid metal-hydrogel composites for flexible electronics. Chem Commun (Camb) 2023; 59:14353-14369. [PMID: 37916888 DOI: 10.1039/d3cc04198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
As an emerging functional material, liquid metal-hydrogel composites exhibit excellent biosafety, high electrical conductivity, tunable mechanical properties and good adhesion, thus providing a unique platform for a wide range of flexible electronics applications such as wearable devices, medical devices, actuators, and energy conversion devices. Through different composite methods, liquid metals can be integrated into hydrogel matrices to form multifunctional composite material systems, which further expands the application range of hydrogels. In this paper, we provide a brief overview of the two materials: hydrogels and liquid metals, and discuss the synthesis method of liquid metal-hydrogel composites, focusing on the improvement of the performance of hydrogel materials by liquid metals. In addition, we summarize the research progress of liquid metal-hydrogel composites in the field of flexible electronics, pointing out the current challenges and future prospects of this material.
Collapse
Affiliation(s)
- Jianhui Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Gongwei Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Cuiyuan Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Dan Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Qinyi Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Yan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| |
Collapse
|
14
|
Xiong X, Wang H, Xue L, Cui J. Self-Growing Organic Materials. Angew Chem Int Ed Engl 2023; 62:e202306565. [PMID: 37432074 DOI: 10.1002/anie.202306565] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
The growth of living systems is ubiquitous. Living organisms can continually update their sizes, shapes, and properties to meet various environmental challenges. Such a capability is also demonstrated by emerging self-growing materials that can incorporate externally provided compounds to grow as living organisms. In this Minireview, we summarize these materials in terms of six aspects. First, we discuss their essential characteristics, then describe the strategies for enabling crosslinked organic materials to self-grow from nutrient solutions containing polymerizable compounds. The developed examples are grouped into five categories based on their molecular mechanisms. We then explain the mechanism of mass transport within polymer networks during growth, which is critical for controlling the shape and morphology of the grown products. Afterwards, simulation models built to explain the interesting phenomena observed in self-growing materials are discussed. The development of self-growing materials is accompanied by various applications, including tuning bulk properties, creating textured surfaces, growth-induced self-healing, 4D printing, self-growing implants, actuation, self-growing structural coloration, and others. These examples are then summed up. Finally, we discuss the opportunities brought by self-growing materials and their facing challenges.
Collapse
Affiliation(s)
- Xinhong Xiong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Hong Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jiaxi Cui
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| |
Collapse
|
15
|
Yang SY, Kang DS, Lee CY. Coloration on Bluish Alginate Films with Amorphous Heterogeneity Thereof. Polymers (Basel) 2023; 15:3627. [PMID: 37688253 PMCID: PMC10489677 DOI: 10.3390/polym15173627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Using sodium alginate (Alg) aqueous solution containing indigo carmine (IdC) at various concentrations we characterized the rippled surface pattern with micro-spacing on a flexible film as intriguing bluish Alg-IdC iridescence. The characterization was performed using Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, field emission scanning electron microscopy, atomic force microscopy, electron microscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction analysis, and photoluminescence detection. The edge pattern on the film had a maximum depth of 825 nm, a peak-to-peak distance of 63.0 nm, and an average distance of 2.34 nm. The center of the pattern had a maximum depth of 343 nm and a peak-to-peak distance of 162 nm. The pattern spacing rippled irregularly, widening toward the center and narrowing toward the edges. The rippled nano-patterned areas effectively generated iridescence. The ultraviolet absorption spectra of the mixture in the 270 and 615 nm ranges were the same for both the iridescent and non-iridescent film surfaces. By adding Ag+ ions to Alg-IdC, self-assembled microspheres were formed, and conductivity was improved. Cross-linked bluish materials were immediately formed by the addition of Ca2+ ions, and the film was prepared by controlling their concentration. This flexible film can be used in applications such as eco-friendly camouflage, anti-counterfeiting, QR code materials for imaging/sensing, and smart hybrid displays.
Collapse
Affiliation(s)
- Soo-Yeon Yang
- Institute of Aerospace System, Inha University, Incheon 21999, Republic of Korea
| | - Dong-Soo Kang
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea;
| | - Chang-Yull Lee
- Department of Aerospace Engineering, Inha University, Incheon 21999, Republic of Korea
| |
Collapse
|
16
|
Zhou X, Zheng Y, Zhang H, Yang L, Cui Y, Krishnan BP, Dong S, Aizenberg M, Xiong X, Hu Y, Aizenberg J, Cui J. Reversibly growing crosslinked polymers with programmable sizes and properties. Nat Commun 2023; 14:3302. [PMID: 37280214 DOI: 10.1038/s41467-023-38768-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
Growth constitutes a powerful method to post-modulate materials' structures and functions without compromising their mechanical performance for sustainable use, but the process is irreversible. To address this issue, we here report a growing-degrowing strategy that enables thermosetting materials to either absorb or release components for continuously changing their sizes, shapes, compositions, and a set of properties simultaneously. The strategy is based on the monomer-polymer equilibrium of networks in which supplying or removing small polymerizable components would drive the networks toward expansion or contraction. Using acid-catalyzed equilibration of siloxane as an example, we demonstrate that the size and mechanical properties of the resulting silicone materials can be significantly or finely tuned in both directions of growth and decomposition. The equilibration can be turned off to yield stable products or reactivated again. During the degrowing-growing circle, material structures are selectively varied either uniformly or heterogeneously, by the availability of fillers. Our strategy endows the materials with many appealing capabilities including environment adaptivity, self-healing, and switchability of surface morphologies, shapes, and optical properties. Since monomer-polymer equilibration exists in many polymers, we envision the expansion of the presented strategy to various systems for many applications.
Collapse
Affiliation(s)
- Xiaozhuang Zhou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Yijun Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Haohui Zhang
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, US
| | - Li Yang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yubo Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Baiju P Krishnan
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Shihua Dong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Xinhong Xiong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yuhang Hu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, US
- The School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, US
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Jiaxi Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|