1
|
Mao YA, Shi X, Sun P, Spanos M, Zhu L, Chen H, Wang X, Su C, Jin Y, Wang X, Chen X, Xiao J. Nanomedicines for cardiovascular diseases: Lessons learned and pathways forward. Biomaterials 2025; 320:123271. [PMID: 40117750 DOI: 10.1016/j.biomaterials.2025.123271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/09/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Cardiovascular diseases (CVDs) are vital causes of global mortality. Apart from lifestyle intervention like exercise for high-risk groups or patients at early period, various medical interventions such as percutaneous coronary intervention (PCI) and coronary artery bypass graft (CABG) surgery have been clinically used to reduce progression and prevalence of CVDs. However, invasive surgery risk and severe complications still contribute to ventricular remodeling, even heart failure. Innovations in nanomedicines have fueled impressive medical advances, representing a CVD therapeutic alternative. Currently, clinical translation of nanomedicines from bench to bedside continues to suffer unpredictable biosafety and orchestrated behavior mechanism, which, if appropriately addressed, might pave the way for their clinical implementation in the future. While state-of-the-art advances in CVDs nanomedicines are widely summarized in this review, the focus lies on urgent preclinical concerns and is transitioned to the ongoing clinical trials including stem cells-based, extracellular vesicles (EV)-based, gene, and Chimeric Antigen Receptor T (CAR T) cell therapy whose clinically applicable potential in CVD therapy will hopefully provide first answers. Overall, this review aims to provide a concise but comprehensive understanding of perspectives and challenges of CVDs nanomedicines, especially from a clinical perspective.
Collapse
Affiliation(s)
- Yi-An Mao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xiaozhou Shi
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Pingyuan Sun
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Liyun Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Hang Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xiya Wang
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chanyuan Su
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Yanjia Jin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xu Wang
- Hangzhou Medical College, Binjiang Higher Education Park, Binwen Road 481, Hangzhou, 310053, China
| | - Xuerui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Zhang N, Gao M, Hu X, Wang P, Cheng Y, Wei H, Fu G, Ge J, Li H, Zhang W, Zhou B. Biomimetic peroxisome targets myocardial injury and promotes heart repair and regeneration. Biomaterials 2025; 319:123214. [PMID: 40037208 DOI: 10.1016/j.biomaterials.2025.123214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/19/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Heart ischemic injury predominately causes mitochondrial dysfunction, leading to the accumulation of ROS and lactate. The ROS-associated DNA damage response (DDR) contributes to myocardial cell cycle arrest and the inhibition of proliferation, while lactate accumulation is often accompanied by a high risk of acute death. In this study, to restore myocardial metabolism and regenerate the heart, we established a biomimetic peroxisome by loading the Mn3O4 nanozyme into mesenchymal stem cell-derived extracellular vesicles (MSC-EV (Mn@EV)). This setup mimics the peroxidases of peroxisome to catalyze ROS, and inhibit DDR. Next, the Mn@EV was immobilized with lactate oxidase (LOX) after encompassed platelet membrane to obtain biomimetic peroxisome (Mn@LPEV). This mimics the substrate-oxidizing function to detoxify lactate and prevent death. Supported by its biomimetic and lactate-response delivery system, our biomimetic peroxisome effectively targeted deep tissues in the hearts of I/R mice, achieving a 4-fold increase in targeting compared with control vesicles. It maintained myocardial redox homeostasis by scavenging ROS and lactate, inhibiting DDR pathway, promoting myocardial regeneration, reducing acute mortality and fibrosis remodeling, accelerating immunomodulation and angiogenesis, and significantly protecting heart function.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China.
| | - Menghan Gao
- Department of Endocrinology, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolong Hu
- Department of Thoracic Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Yuan Cheng
- Xishan Institute of Applied Biotechnology, Nanjing University, Wuxi, China; Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China.
| | - Binquan Zhou
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Li N, Chen Y, Xia X, Mao C, Wan M. Progress of nanomaterials in the treatment of ischemic heart disease. J Mater Chem B 2025; 13:6021-6043. [PMID: 40331910 DOI: 10.1039/d5tb00471c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Medical or surgical interventions are commonly used to alleviate the clinical symptoms of individuals suffering from ischemic heart disease (IHD), but global morbidity and mortality remain high. This is due to the complexity of disease progression and the pathological basis of IHD, which primarily includes myocardial infarction (MI), myocardial ischemia-reperfusion injury (IRI), and heart failure (HF), as well as underlying mechanisms, such as mitochondrial damage, inflammation, oxidative stress, and cardiomyocyte death. However, many drugs have limitations, such as poor stability and low bioavailability, and surgical strategies are often ineffective in preventing disease recurrence. To overcome these problems, it is necessary to develop effective drug delivery systems and technologies. Due to their advantages in enhancing drug utilization, nanomaterials are being used to control drug biodistribution and achieve targeted accumulation, addressing the therapeutic needs of IHD. In this work, we first described the clinical aspects of MI, IRI, and HF in the context of IHD as well as their shared pathological origins. Next, clinical interventional procedures for IHD are summarized. Finally, recent developments in the use of nanomaterials for the treatment of MI, IRI, and HF are highlighted, along with potential directions for future research.
Collapse
Affiliation(s)
- Nan Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, P. R. China
- Transvascular Implantation Devices Research Institute, Hangzhou, 310053, China
| | - Yu Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xue Xia
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
4
|
Gao M, Yin L, Zhang B, Dong Z, Jiang W, Bai Z, Zhao X, Xu L, Wang N, Peng J. Targeting Ischemic Myocardium: Nanoparticles Loaded with Long Noncoding RNA AK156373 siRNA Alleviate Myocardial Infarction. ACS NANO 2025; 19:18475-18491. [PMID: 40338223 DOI: 10.1021/acsnano.5c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Despite advancements in the development of targeted approaches for the treatment of myocardial infarction (MI), there is a continuing need for improvements in treatment approaches due to the high mortality and prevalence of MI. The identification of specific therapeutic targets and the development of efficient delivery systems are essential. In this study, a nanoparticle delivery system targeting necrotic cardiomyocytes was engineered. This system effectively downregulated long noncoding RNA (lncRNA) AK156373 and reduced oxidative stress and inflammation during MI progression. Mechanistically, silencing lncRNA AK156373 enhanced the viability and mitochondrial function of hypoxic cardiomyocytes and lowered intracellular inflammatory cytokine levels and reactive oxygen species (ROS) production. In vivo, cardiac-specific lncRNA AK15673 knockout mice were generated (AK156373flox/flox, Myh6-Cre mice), and lncRNA AK156373 knockout obviously reduced the infarct size, collagen fiber deposition, and ischemia severity in MI mice, leading to improved cardiac function. Additionally, lncRNA AK156373 modulated miR-204-5p to regulate C-X-C motif chemokine receptor 2 (CXCR2) protein expression via the competing endogenous RNA (ceRNA) mechanism, exacerbating myocardial damage and accelerating MI progression. Subsequently, nanoparticles loaded with lncRNA AK156373 siRNA were synthesized. The nanoparticles significantly inhibited MI progression by modulating the miR-204-5p/CXCR2 axis to reduce oxidative stress and inflammation. Overall, these findings establish a key regulatory role for lncRNA AK156373 in MI progression and present a direct preclinical approach for MI therapy.
Collapse
Affiliation(s)
- Meng Gao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Bo Zhang
- Department of Cardiology, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Zhichao Dong
- Department of Cardiology, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Wenjiao Jiang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhuoya Bai
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xuerong Zhao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ning Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Wuhan 430065, China
| |
Collapse
|
5
|
Du X, Huang J, Zhao C, Hu Z, Zhang L, Xu Z, Liu X, Li X, Zhang Z, Guo S, Yin T, Wang G. Retrospective perspectives and future trends in nanomedicine treatment: from single membranes to hybrid membranes. NANOSCALE 2025; 17:9738-9763. [PMID: 40136036 DOI: 10.1039/d4nr04999c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
At present, various diseases seriously threaten human life and health, and the development of nanodrug delivery systems has brought about a turnaround for traditional drug treatments, with nanoparticles being precisely targeted to improve bioavailability. Surface modification of nanoparticles can prolong blood circulation time and enhance targeting ability. The application of cell membrane-coated nanoparticles further improves their biocompatibility and active targeting ability, providing new hope for the treatment of various diseases. Various types of cell membrane biomimetic nanoparticles have gradually attracted increasing attention due to their unique advantages. However, the pathological microenvironment of different diseases is complex and varied, and the single-cell membrane has several limitations because a single functional property cannot fully meet the requirements of disease treatment. Hybrid cell membranes integrate the advantages of multiple biological membranes and have become an emerging research hotspot. This review summarizes the application of cell membrane biomimetic nanoparticles in the treatment of various diseases and discusses the advantages, challenges and future development of biomimetic nanoparticles. We propose that the fusion of multiple membranes may be a reasonable trend in the future to provide some ideas and directions for the treatment of various diseases.
Collapse
Affiliation(s)
- Xinya Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Junyang Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
- JinFeng Laboratory, Chongqing, China.
- College of Computer Science, Chongqing University, Chongqing, China.
| | - Chuanrong Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
- JinFeng Laboratory, Chongqing, China.
| | - Ziqiu Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | | | - Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Xiaoying Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Xinglei Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Zhengcai Zhang
- Lepu Medical Technology (Beijing) Co., Ltd, Beijing, China
| | - Songtao Guo
- College of Computer Science, Chongqing University, Chongqing, China.
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
- JinFeng Laboratory, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
- JinFeng Laboratory, Chongqing, China.
| |
Collapse
|
6
|
Wu F, Qian Y, Ge C, Zhou Y, Yan J, Li X, Liu X, Lei Y, Zhao Z, Wei Y, Zhu J, Yin L, Duan S. Oxygen/siRNA-carrying fluoro-nanosensitizers for radio-immunotherapy sensitization. Acta Biomater 2025; 196:423-435. [PMID: 40058621 DOI: 10.1016/j.actbio.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
The anti-tumor efficacy of radiotherapy (RT) is limited by the hypoxic and immunosuppressive tumor microenvironment (TME), which leads to RT resistance and failure in eradicating distant metastatic lesions. Herein, we developed a fluorinated nanosensitizer that could deliver both oxygen (O2) and ADAR1 siRNA into tumor cells to reinforce RT by alleviating hypoxia and immunosuppression. Fluorinated poly(β-amino ester) (fPBAE) was designed to complex ADAR1 siRNA (siADAR1) via electrostatic attraction and load O2 due to the O2-dissolving capacity of fluoroalkyls. The formed nanocomplexes (NCs) facilitated robust cytosolic delivery into cancer cells after intratumoral injection, enabling efficient ADAR1 silencing to promote IFN-β release and enhance DC maturation and T cell infiltration. At the meantime, O2 was released to alleviate tumoral hypoxia. As thus, NCs significantly enhanced the anti-tumor efficacy of RT and when further coupled with programmed death ligand-1 antibody, they effectively restrained the growth of both treated primary tumors and untreated distant tumors by eliciting robust systemic immune response. This study therefore reports an enlightened strategy for remodeling the immunosuppressive TME and sensitizing radio-immunotherapy. STATEMENT OF SIGNIFICANCE: The hypoxic and immunosuppressive tumor microenvironment (TME) greatly limits the anti-tumor efficacy of radiotherapy (RT). To address this critical issue, a nano-sensitizer based on fluorinated poly(β-amino ester) (fPBAE) is herein developed to mediate efficient co-delivery of oxygen (O₂) and ADAR1 siRNA into tumor cells. ADAR1 silencing promotes DC maturation and T cell infiltration to reverse immunosuppression while the released O₂ alleviates hypoxia to sensitize RT. Thus, the nano-sensitizer remarkably enhances the anti-tumor efficacy of RT and elicits robust systemic immune response to eradicate primary and distant tumors when further coupled with PD-L1 antibody. This study provides a promising approach for RT sensitization and radio-immunotherapy.
Collapse
Affiliation(s)
- Fan Wu
- Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yu Qian
- Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Chenglong Ge
- Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yang Zhou
- Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Jing Yan
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xudong Li
- Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Xun Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yuheng Lei
- Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Ziyin Zhao
- Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yuansong Wei
- Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Junliang Zhu
- Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
| | - Shanzhou Duan
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| |
Collapse
|
7
|
Zhang C, Shi Y, Zhu Z, Yang T, Wang Y, Hu S, Wu Q, Yang H, Liu J, Zhu WH, Wang Q. Electrostatically Stabilized Light-Activated Membrane Delivery System: Overcoming Membrane Flexibility and Self-Repair to Enhance Tumor Therapy. ACS NANO 2025; 19:12119-12137. [PMID: 40106788 DOI: 10.1021/acsnano.4c18518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Cell membrane-coated nanoparticle-based delivery systems often struggle with inevitable drug leakage during the delivery process and inefficient drug release at the tumor site, resulting in unsatisfactory antitumor outcomes. Here, we present an electrostatically stabilized light-activated membrane delivery system (Hybrid membrane nanoparticles, [Hm]@NPs) for leak-free drug delivery, coupled with precisely site-specific and controllable drug release, to elevate cancer treatment. [Hm]@NPs are constructed by encapsulating an aggregation-induced emission (AIE) photosensitizer (Phenalen-1-one-quinoline malonitrile-thiophene tribenamine, Phe-Qui-T) into a positively charged reactive oxygen species (ROS)-responsive polymer (F127-TP-U11) to form a positively charged nanoparticle and then coating it with a negatively charged hybrid membrane containing red blood cell membrane and Panc-1 cell membrane. [Hm]@NPs with high stability effectively prevent drug leakage through electrostatic interaction between the hybrid membrane and nanoparticle. Simultaneously, the photosensitizer Phe-Qui-T with light-controlled ROS generation efficiently destroys both the ROS-responsive polymer and the hybrid membrane, ensuring precise and sufficient drug release while enabling photodynamic therapy (PDT), thereby augmenting antitumor efficacy. [Hm]@NPs show impressive tumor inhibition in pancreatic cancer mouse models, highlighting the potential of this light-controlled membrane-disruption strategy for advanced cell membrane-coated nanodelivery system design.
Collapse
Affiliation(s)
- Cuiyun Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Yiqi Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Zhirong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Ting Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Yuwei Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Shanshan Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Qi Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Haojian Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Jihong Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
- Center of Photosensitive Chemicals Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Qi Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
8
|
Yu Z, Wang M, Li J, Xu H, Zhang W, Xing F, Li J, Yang J, Xiong Y. A Fused Membrane-Camouflaged Biomimetic Nanosystem for Dual-Targeted Therapy of Septic Arthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410710. [PMID: 39828630 DOI: 10.1002/smll.202410710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/31/2024] [Indexed: 01/22/2025]
Abstract
Due to the inherent aseptic and enclosed characteristics of joint cavity, septic arthritis (SA) almost inevitably leads to intractable infections and rapidly progressing complex pathological environments. Presently, SA faces not only the deficient effectiveness of the gold-standard systemic antibiotic therapy but also the scarcity of effective localized targeted approaches and standardized animal models. Herein, an ingenious multifunctional nanosystem is designed, which involves the methylation of hyaluronic acid (HA), copolymerization with DEGDA, loading with vancomycin (VAN), and then coating with fused macrophage-platelet membrane (denoted as FM@HA@VAN). Upon intra-articular administration, FM@HA@VAN nanoparticles exhibit sustained retention and selectively targeting to infected sites, leveraging macrophage-mediated inflammation homing and platelet-directed bacteria targeting. The acidic microenvironment triggers responsive release of vancomycin, leading to potent bactericidal effects. Subsequently, the exposed HA@VAN nanoparticles are efficiently internalized by activated macrophages, releasing HA to alleviate oxidative stress and achieve chondroprotection by inhibiting pro-inflammatory cytokines, neutralizing ROS and upregulating macrophage M2 polarization. In vivo model and experiments confirm the efficacy of this dual-targeting antibacterial approach, demonstrating its precision in eradicating bacterial infections and alleviating associated pathological processes, including synovial hyperplasia and cartilage erosion. The dual-targeting therapeutic nanosystem, coordinated with fused-membranes, holds promise for enhancing the treatment efficacy of SA.
Collapse
Affiliation(s)
- Zeping Yu
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengxian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junqiao Li
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Xu
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenli Zhang
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Xing
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Li
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan Xiong
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Ma X, Fan Z, Peng J, Nie L. Ischemic Area-Targeting and Self-Monitoring Nanoprobes Ameliorate Myocardial Ischemia/Reperfusion Injury by Scavenging ROS and Counteracting Cardiac Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414518. [PMID: 39840521 PMCID: PMC11923900 DOI: 10.1002/advs.202414518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/18/2024] [Indexed: 01/23/2025]
Abstract
Precise and effective management of myocardial ischemia/reperfusion injury (MIRI) is still a formidable challenge in clinical practice. Additionally, real-time monitoring of drug aggregation in the MIRI region remains an open question. Herein, a drug delivery system, hesperadin and ICG assembled in PLGA-Se-Se-PEG-IMTP (HI@PSeP-IMTP), is designed to deliver hesperadin and ICG to the MIRI region for in vivo optical imaging tracking and to ameliorate MIRI. The peak aggregation of nanoprobes in the MIRI region is monitored by near-infrared fluorescence and photoacoustic imaging. The maximal fluorescence and photoacoustic signals of the HI@PSeP-IMTP group in the MIRI region rise ≈32% and 40% respectively compared with that of HI@PSeP group. Moreover, HI@PSeP-IMTP effectively mitigates MIRI due to a synergistic integration of diselenide bonds and hesperadin, which can eliminate ROS and suppress cardiac inflammation. Specifically, the expression levels of p-CaMKII, p-IκBα, and p65 in the MIRI region in the HI@PSeP-IMTP group demonstrate a reduction of 30%, 46%, and 42% respectively compared to that of the PBS group. Collectively, HI@PSeP-IMTP provides new insights into the development of drugs integrating diagnosis and treatment for MIRI.
Collapse
Affiliation(s)
- Xiaobin Ma
- Department of CardiologyGuangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Zhijin Fan
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Institute for Engineering MedicineKunming Medical UniversityKunming650500China
| | - Jingyan Peng
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Liming Nie
- Department of CardiologyGuangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| |
Collapse
|
10
|
Zhou Y, Ye H, Yu Y, Ge C, Yin M, Liu Z, Shen J, Zhou R, Li Y, Leong KW, Yin L. Helix-Guarded Molecular Clips for Cell-Free DNA Scavenging and Treatment of Systemic Lupus Erythematosus. J Am Chem Soc 2025; 147:6612-6622. [PMID: 39932220 DOI: 10.1021/jacs.4c15646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Immune disorders induced by cell-free DNA (cfDNA) account for the incidence and deterioration of systemic lupus erythematosus (SLE). Scavenging of cfDNA using cationic polymers represents a promising modality for SLE management. However, they bind cfDNA mainly via electrostatic interaction, which would result in an undesired discharge of the captured cfDNA upon competitive replacement by the negatively charged serum/intracellular components. Inspired by the natural recognition mechanism of biomacromolecules via spatial matching, we herein developed a library of dendrimer-templated, spherical, α-helical, and guanidine-rich polypeptides as molecular clips for cfDNA scavenging. Upon optimization of the polypeptide length and density on the dendrimer surface, the top-performing G3-8 was identified, which could tightly confine cfDNA within the cavity between the adjacent, rod-like α-helices. As thus, the helical G3-8 but not the random-coiled analogue D,L-G3-8 enabled robust cfDNA scavenging under serum-rich conditions to inhibit TLR9 activation and inflammation. In SLE mice, i.v. injected G3-8 efficiently prevented organ failure and inhibited inflammation by scavenging cfDNA. This study provides an enlightened strategy to stably bind and scavenge cfDNA and may shift the current paradigm of SLE management.
Collapse
Affiliation(s)
- Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Huan Ye
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yi Yu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Chenglong Ge
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Mengyuan Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Zhongmin Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Jingrui Shen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Renxiang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Youyong Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, United States
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Li T, Yang B, Liu X, Shi D, Wang Z, Chen Y, Shen C. Silica Nanoparticles Loaded With Selenium Quantum Dots Reduce Myocardial Ischemia-Reperfusion Injury by Alleviating Ferroptosis and Mitochondrial Dysfunction. Int J Nanomedicine 2025; 20:1843-1864. [PMID: 39958324 PMCID: PMC11829639 DOI: 10.2147/ijn.s500810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
Purpose Myocardial ischemia-reperfusion (IR) injury, a significant challenge in cardiovascular treatment, is primarily driven by ferroptosis and mitochondrial dysfunction. Despite extensive research, no clinical therapies effectively target ferroptosis in IR injury. This study aims to develop selenium-quantum-dot-loaded porous silica nanospheres (Se@PSN) as a novel therapeutic approach to address IR injury. Patients and Methods Se@PSN were synthesized and tested for their reactive oxygen species (ROS) scavenging capabilities and biocompatibility. Additionally, the effects of Se@PSN on ferroptosis, mitochondrial damage, oxidative stress, and myocardial IR injury severity were evaluated. Results Se@PSN enhanced the stability of selenium quantum dots and exhibited strong ROS scavenging abilities. Additionally, Se@PSN exhibited excellent biocompatibility. The Se@PSN treatment increased GPX4 levels, effectively inhibiting ferroptosis in cardiomyocytes. Furthermore, Se@PSN promoted the expression of mitochondrial respiratory complexes, mitigating oxidative phosphorylation damage and preserving mitochondrial function. These effects collectively resulted in reduced myocardial loss, inflammation, and fibrosis following IR injury. Compared to PSN alone, Se@PSN showed superior therapeutic efficacy against IR injury. Conclusion Se@PSN exhibit great potential in reducing ferroptosis and protecting mitochondrial function, making them a promising therapeutic approach for the treatment of myocardial IR injury.
Collapse
Affiliation(s)
- Taixi Li
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People’s Republic of China
| | - Boshen Yang
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People’s Republic of China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai University of Engineering Science, Shanghai, 201620, People’s Republic of China
| | - Dongmei Shi
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People’s Republic of China
| | - Zhixiang Wang
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People’s Republic of China
| | - Yizhi Chen
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People’s Republic of China
| | - Chengxing Shen
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People’s Republic of China
| |
Collapse
|
12
|
Cao J, Wu B, Yuan P, Liu Y, Hu C. Advances in Research of Hydrogel Microneedle-Based Delivery Systems for Disease Treatment. Pharmaceutics 2024; 16:1571. [PMID: 39771550 PMCID: PMC11676655 DOI: 10.3390/pharmaceutics16121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Microneedles (MNs), composed of multiple micron-scale needle-like structures attached to a base, offer a minimally invasive approach for transdermal drug delivery by penetrating the stratum corneum and delivering therapeutic agents directly to the epidermis or dermis. Hydrogel microneedles (HMNs) stand out among various MN types due to their excellent biocompatibility, high drug-loading capacity, and tunable drug-release properties. This review systematically examines the matrix materials and fabrication methods of HMN systems, highlighting advancements in natural and synthetic polymers, and explores their applications in treating conditions such as wound healing, hair loss, cardiovascular diseases, and cancer. Furthermore, the potential of HMNs for disease diagnostics is discussed. The review identifies key challenges, including limited mechanical strength, drug-loading efficiency, and lack of standardization, while proposing strategies to overcome these issues. With the integration of intelligent design and enhanced control over drug dosage and safety, HMNs are poised to revolutionize transdermal drug delivery and expand their applications in personalized medicine.
Collapse
Affiliation(s)
- Juan Cao
- School of Fashion and Design Art, Sichuan Normal University, Chengdu 610066, China;
| | - Bo Wu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Ping Yuan
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China;
| | - Yeqi Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
13
|
Shan L, Wang J, Tu H, Zhang W, Li H, Slezak P, Lu F, Lee D, Hu E, Geng Z, Lan G, Xie R. Drug delivery under cover of erythrocytes extends drug half-life: A thrombolytic targeting therapy utilizing microenvironment-responsive artificial polysaccharide microvesicles. Carbohydr Polym 2024; 343:122505. [PMID: 39174110 DOI: 10.1016/j.carbpol.2024.122505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The development of thrombolytic drug carriers capable of thrombus-targeting, prolonged circulation time, intelligent responsive release, and the ability to inhibit thrombotic recurrences remains a promising but significant challenge. To tackle this, an artificial polysaccharide microvesicle drug delivery system (uPA-CS/HS@RGD-ODE) was constructed. It is composed of cationic chitosan and anionic heparin assembled in a layer by layer structure, followed by surface modification using RGD peptide and 2-(N-oxide-N,N-diethylamino) ethylmethacrylate (ODE) before encapsulation of urokinase-type plasminogen activator (uPA). The effect of chitosan on the basic performances of uPA-CS/HS@RGD-ODE was estimated. The in vitro results suggest the uPA carrier, CS/HS@RGD-ODE, displayed outstanding targeting specific to activated platelets (61 %) and microenvironment-responsiveness at pH 6.5, facilitating thrombus-targeting and a controlled drug release, respectively. Most importantly, in vivo experiment suggests ODE from uPA-CS/HS@RGD-ODE substantially extends the half-life of uPA (120 min), as uPA-CS/HS@RGD-ODE can adhere onto erythrocytes and deliver uPA under cover of erythrocytes enabling a prolonged circulation time in the bloodstream. Further tail vein and abdominal aorta thrombosis models confirmed uPA-CS/HS@RGD-ODE exhibited superior targeting and thrombolysis capabilities compared to systemic administration of free uPA. To the knowledge of authors, this may be the first study to develop new drug carriers for delivery of thrombolytic drugs under the cover of erythrocytes for extended drug half-lives.
Collapse
Affiliation(s)
- Lianqi Shan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Junsu Wang
- Chongqing Customs, Chongqing 400044, China
| | - Hongyu Tu
- Chongqing Customs, Chongqing 400044, China
| | - Wenhan Zhang
- College of Computer and Information Science and College of Software, Southwest University, Chongqing 400715, China
| | - He Li
- Department of Geriatric Medicine, Wenzhou Ouhai District Chinese and Western Medical Association Hospital, Wenzhou 325000, China
| | - Paul Slezak
- Ludwig Boltzmann Institute for Traumatology, AUVA Research Center, 1200 Vienna, Austria
| | - Fei Lu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering and Department of Polymer·Nano Science and Technology, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Enling Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong.
| | - Zhen Geng
- Institute of Translational Medicine, Organoid Research Center, and National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
| | - Guangqian Lan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Ruiqi Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Department of Geriatric Medicine, Wenzhou Ouhai District Chinese and Western Medical Association Hospital, Wenzhou 325000, China.
| |
Collapse
|
14
|
Lei F, Zhang J, Deng Y, Wang X, Tang J, Tian J, Wan Y, Wang L, Zhou X, Zhang Y, Li C. Biomimetic nanoplatform treats myocardial ischemia/reperfusion injury by synergistically promoting angiogenesis and inhibiting inflammation. Colloids Surf B Biointerfaces 2024; 243:114159. [PMID: 39137530 DOI: 10.1016/j.colsurfb.2024.114159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
After myocardial ischemia/reperfusion injury (MI/RI), endothelial cell injury causes impaired angiogenesis and obstruction of microcirculation, resulting in an inflammatory outburst that exacerbates the damage. Therefore, synergistic blood vessel repair and inflammation inhibition are effective therapeutic strategies. In this study, we developed a platelet membrane (PM)-encapsulated baicalin nanocrystalline (BA NC) nanoplatform with a high drug load, BA NC@PM, which co-target to endothelial cells and macrophages through the transmembrane proteins of the PM to promote angiogenesis and achieve anti-inflammatory effects. In vitro cell scratch assays and transwell assay manifested that BA NC@PM could promote endothelial cell migration, as well as increase mRNA expression of CD31 and VEGF in the heart after treatment of MI/RI mice, suggesting its favorable vascular repair function. In addition, the preparation significantly reduced the expression of pro-inflammatory factors and increased the expression of anti-inflammatory factors in plasma, promoting the polarization of macrophages. Our study highlights a strategy for enhancing the treatment of MI/RI by promoting angiogenesis and regulating macrophage polarization via the biomimetic BA NC@PM nanoplatform.
Collapse
Affiliation(s)
- Fenting Lei
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jie Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xueqin Wang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Tang
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ji Tian
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Li Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Zhou
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Yingying Zhang
- Department of Anaesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Chunhong Li
- Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
15
|
Zhou R, Zhou Y, Yin M, Ge C, Yang Y, Shen J, Yin L. Inflammation-Responsive Polyion Complex Vesicles for Autoimmune Disease Therapy via Cell-Free DNA Scavenging and Inflammatory Microenvironment Modulation. ACS NANO 2024; 18:30017-30030. [PMID: 39410737 DOI: 10.1021/acsnano.4c10886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Cell-free DNA (cfDNA) scavenging represents a promising anti-inflammatory modality for autoimmune disease (AID) treatment. However, it remains challenging for existing systems to achieve inflammation-targeted cfDNA scavenging and the management of cfDNA-unrelated inflammatory pathways. Herein, inflammation-responsive polyion complex vesicles (PICsomes) are developed, bridging inflammation-instructed cfDNA scavenging, and methotrexate (MTX) delivery for AID management. A positively charged, PEGylated polypeptide with guanidine side chains (PEG-PG) is developed, which self-assembles with a negatively charged, cis-aconitic anhydride-modified poly-L-lysine (PC) to form the PICsomes and encapsulate MTX disodium salt. The neutrally charged PICsomes feature prolonged blood circulation after systemic administration, allowing for passive accumulation to the inflamed tissues. In the slightly acidic inflammatory microenvironment, PC transforms from negatively charged to positively charged, thereby disintegrating the PICsomes and liberating the PEG-PG and MTX. Consequently, PEG-PG-mediated cfDNA scavenging and MTX-mediated immunosuppression cooperate to inhibit inflammation and ameliorate the inflammatory microenvironment, promoting tissue repair in AID mouse models including collagen-induced arthritis and 2,4,6-trinitrobenzenesulfonic acid-induced colitis.
Collapse
Affiliation(s)
- Renxiang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Mengyuan Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Chenglong Ge
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yiyao Yang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Jingrui Shen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
16
|
Xu X, Zhang X, Li R, Yang X, Fu P, Feng R, Sun X, Wang Z, Yu J, Cao X, Yu Q, Wang Q, Liu S, Yang X, Zhu Y, Shi W, Deng W. Platelet Membrane-Coated Curcumin-PLGA Nanoparticles Promote Astrocyte-Neuron Transdifferentiation for Intracerebral Hemorrhage Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311128. [PMID: 38888124 DOI: 10.1002/smll.202311128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/14/2024] [Indexed: 06/20/2024]
Abstract
Intracerebral hemorrhage (ICH) is a hemorrhagic disease with high mortality and disability rates. Curcumin is a promising drug for ICH treatment due to its multiple biological activities, but its application is limited by its poor watersolubility and instability. Herein, platelet membrane-coated curcumin polylactic-co-glycolic acid (PLGA) nanoparticles (PCNPs) are prepared to achieve significantly improved solubility, stability, and sustained release of curcumin. Fourier transform infrared spectra and X-ray diffraction assays indicate good encapsulation of curcumin within nanoparticles. Moreover, it is revealed for the first time that curcumin-loaded nanoparticles can not only suppress hemin-induced astrocyte proliferation but also induce astrocytes into neuron-like cells in vitro. PCNPs are used to treat rat ICH by tail vein injection, using in situ administration as control. The results show that PCNPs are more effective than curcumin-PLGA nanoparticles in concentrating on hemorrhagic lesions, inhibiting inflammation, suppressing astrogliosis, promoting neurogenesis, and improving motor functions. The treatment efficacy of intravenously administered PCNPs is comparable to that of in situ administration, indicating a good targeting effect of PCNPs on the hemorrhage site. This study provides a potent treatment for hemorrhagic injuries and a promising solution for efficient delivery of water-insoluble drugs using composite materials of macromolecules and cell membranes.
Collapse
Affiliation(s)
- Ximing Xu
- School of Pharmacy, Jiangsu University, The International Institute on Natural Products and Stem Cells (iNPS), Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 202013, China
| | - Xinyu Zhang
- School of Pharmacy, Jiangsu University, The International Institute on Natural Products and Stem Cells (iNPS), Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 202013, China
| | - Ran Li
- School of Pharmacy, Jiangsu University, The International Institute on Natural Products and Stem Cells (iNPS), Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 202013, China
| | - Xiufen Yang
- School of Pharmacy, Jiangsu University, The International Institute on Natural Products and Stem Cells (iNPS), Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 202013, China
| | - Peng Fu
- School of Pharmacy, Jiangsu University, The International Institute on Natural Products and Stem Cells (iNPS), Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 202013, China
| | - Ruijie Feng
- School of Pharmacy, Jiangsu University, The International Institute on Natural Products and Stem Cells (iNPS), Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 202013, China
| | - Xuan Sun
- School of Pharmacy, Jiangsu University, The International Institute on Natural Products and Stem Cells (iNPS), Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 202013, China
| | - Zhe Wang
- School of Pharmacy, Jiangsu University, The International Institute on Natural Products and Stem Cells (iNPS), Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 202013, China
| | - Jiangnan Yu
- School of Pharmacy, Jiangsu University, The International Institute on Natural Products and Stem Cells (iNPS), Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 202013, China
| | - Xia Cao
- School of Pharmacy, Jiangsu University, The International Institute on Natural Products and Stem Cells (iNPS), Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 202013, China
| | - Qingtong Yu
- School of Pharmacy, Jiangsu University, The International Institute on Natural Products and Stem Cells (iNPS), Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 202013, China
| | - Qilong Wang
- School of Pharmacy, Jiangsu University, The International Institute on Natural Products and Stem Cells (iNPS), Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 202013, China
| | - Sitong Liu
- School of Pharmacy, Jiangsu University, The International Institute on Natural Products and Stem Cells (iNPS), Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 202013, China
| | - Xiaoxia Yang
- School of Pharmacy, Jiangsu University, The International Institute on Natural Products and Stem Cells (iNPS), Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 202013, China
| | - Yuan Zhu
- School of Pharmacy, Jiangsu University, The International Institute on Natural Products and Stem Cells (iNPS), Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 202013, China
| | - Wentao Shi
- Central Laboratory, Gaochun Hospital Affiliated to Jiangsu University, Jiangsu University, Nanjing, Jiangsu Province, 211300, China
| | - Wenwen Deng
- School of Pharmacy, Jiangsu University, The International Institute on Natural Products and Stem Cells (iNPS), Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 202013, China
| |
Collapse
|
17
|
Wei K, Tang C, Ma H, Fang X, Yang R. 3D-printed microrobots for biomedical applications. Biomater Sci 2024; 12:4301-4334. [PMID: 39041236 DOI: 10.1039/d4bm00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Microrobots, which can perform tasks in difficult-to-reach parts of the human body under their own or external power supply, are potential tools for biomedical applications, such as drug delivery, microsurgery, imaging and monitoring, tissue engineering, and sensors and actuators. Compared with traditional fabrication methods for microrobots, recent improvements in 3D printers enable them to print high-precision microrobots, breaking through the limitations of traditional micromanufacturing technologies that require high skills for operators and greatly shortening the design-to-production cycle. Here, this review first introduces typical 3D printing technologies used in microrobot manufacturing. Then, the structures of microrobots with different functions and application scenarios are discussed. Next, we summarize the materials (body materials, propulsion materials and intelligent materials) used in 3D microrobot manufacturing to complete body construction and realize biomedical applications (e.g., drug delivery, imaging and monitoring). Finally, the challenges and future prospects of 3D printed microrobots in biomedical applications are discussed in terms of materials, manufacturing and advancement.
Collapse
Affiliation(s)
- Kun Wei
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Chenlong Tang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Hui Ma
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Xingmiao Fang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
18
|
Wu Z, Zhang P, Yue J, Wang Q, Zhuang P, Jehan S, Fan L, Xue J, Zhou W, Wang H. Tea polyphenol nanoparticles enable targeted siRNA delivery and multi-bioactive therapy for abdominal aortic aneurysms. J Nanobiotechnology 2024; 22:471. [PMID: 39118143 PMCID: PMC11308685 DOI: 10.1186/s12951-024-02756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease, while there is a lack of pharmaceutical interventions to halt AAA progression presently. To address the multifaceted pathology of AAA, this work develops a novel multifunctional gene delivery system to simultaneously deliver two siRNAs targeting MMP-2 and MMP-9. The system (TPNs-siRNA), formed through the oxidative polymerization and self-assembly of epigallocatechin gallate (EGCG), efficiently encapsulates siRNAs during self-assembly. TPNs-siRNA safeguards siRNAs from biological degradation, facilitates intracellular siRNA transfection, promotes lysosomal escape, and releases siRNAs to silence MMP-2 and MMP-9. Additionally, TPNs, serving as a multi-bioactive material, mitigates oxidative stress and inflammation, fosters M1-to-M2 repolarization of macrophages, and inhibits cell calcification and apoptosis. In experiments with AAA mice, TPNs-siRNA accumulated and persisted in aneurysmal tissue after intravenous delivery, demonstrating that TPNs-siRNA can be significantly distributed in macrophages and VSMCs relevant to AAA pathogenesis. Leveraging the carrier's intrinsic multi-bioactive properties, the targeted siRNA delivery by TPNs exhibits a synergistic effect for enhanced AAA therapy. Furthermore, TPNs-siRNA is gradually metabolized and excreted from the body, resulting in excellent biocompatibility. Consequently, TPNs emerges as a promising multi-bioactive nanotherapy and a targeted delivery nanocarrier for effective AAA therapy.
Collapse
Affiliation(s)
- Zhen Wu
- Department of Vascular and Interventional Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Peng Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jie Yue
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Qingshan Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Peipei Zhuang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Shah Jehan
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Liyuan Fan
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jiarun Xue
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Haiyang Wang
- Department of Vascular and Interventional Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
19
|
Li B, Wang K, Cheng W, Fang B, Li YH, Yang SM, Zhang MH, Wang YH, Wang K. Recent advances of PIWI-interacting RNA in cardiovascular diseases. Clin Transl Med 2024; 14:e1770. [PMID: 39083321 PMCID: PMC11290350 DOI: 10.1002/ctm2.1770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The relationship between noncoding RNAs (ncRNAs) and human diseases has been a hot topic of research, but the study of ncRNAs in cardiovascular diseases (CVDs) is still in its infancy. PIWI-interacting RNA (piRNA), a small ncRNA that binds to the PIWI protein to maintain genome stability by silencing transposons, was widely studied in germ lines and stem cells. In recent years, piRNA has been shown to be involved in key events of multiple CVDs through various epigenetic modifications, revealing the potential value of piRNA as a new biomarker or therapeutic target. CONCLUSION This review explores origin, degradation, function, mechanism and important role of piRNA in CVDs, and the promising therapeutic targets of piRNA were summarized. This review provide a new strategy for the treatment of CVDs and lay a theoretical foundation for future research. KEY POINTS piRNA can be used as a potential therapeutic target and biomaker in CVDs. piRNA influences apoptosis, inflammation and angiogenesis by regulating epigenetic modificaions. Critical knowledge gaps remain in the unifying piRNA nomenclature and PIWI-independent function.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of ChinaShandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao UniversityJinanShandongChina
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| | - Kai Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| | - Wei Cheng
- Department of Cardiovascular SurgeryBeijing Children's Hospital, Capital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Bo Fang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| | - Ying Hui Li
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| | - Su Min Yang
- Department of Cardiovascular SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Mei Hua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of ChinaShandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao UniversityJinanShandongChina
| | - Yun Hong Wang
- Hypertension CenterBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Kun Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of ChinaShandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao UniversityJinanShandongChina
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandongChina
| |
Collapse
|
20
|
Sun R, Wang N, Zheng S, Wang H, Xie H. Nanotechnology-based Strategies for Molecular Imaging, Diagnosis, and Therapy of Organ Transplantation. Transplantation 2024; 108:1730-1748. [PMID: 39042368 DOI: 10.1097/tp.0000000000004913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Organ transplantation is the preferred paradigm for patients with end-stage organ failures. Despite unprecedented successes, complications such as immune rejection, ischemia-reperfusion injury, and graft dysfunction remain significant barriers to long-term recipient survival after transplantation. Conventional immunosuppressive drugs have limited efficacy because of significant drug toxicities, high systemic immune burden, and emergence of transplant infectious disease, leading to poor quality of life for patients. Nanoparticle-based drug delivery has emerged as a promising medical technology and offers several advantages by enhancing the delivery of drug payloads to their target sites, reducing systemic toxicity, and facilitating patient compliance over free drug administration. In addition, nanotechnology-based imaging approaches provide exciting diagnostic methods for monitoring molecular and cellular changes in transplanted organs, visualizing immune responses, and assessing the severity of rejection. These noninvasive technologies are expected to help enhance the posttransplantation patient survival through real time and early diagnosis of disease progression. Here, we present a comprehensive review of nanotechnology-assisted strategies in various aspects of organ transplantation, including organ protection before transplantation, mitigation of ischemia-reperfusion injury, counteraction of immune rejection, early detection of organ dysfunction posttransplantation, and molecular imaging and diagnosis of immune rejection.
Collapse
Affiliation(s)
- Ruiqi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Zhejiang Province, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang Province, Hangzhou, China
| | - Ning Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Zhejiang Province, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang Province, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Zhejiang Province, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang Province, Hangzhou, China
| | - Hangxiang Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Zhejiang Province, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang Province, Hangzhou, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Zhejiang Province, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Zhejiang Province, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang Province, Hangzhou, China
| |
Collapse
|
21
|
Wang K, Liu CY, Fang B, Li B, Li YH, Xia QQ, Zhao Y, Cheng XL, Yang SM, Zhang MH, Wang K. The function and therapeutic potential of transfer RNA-derived small RNAs in cardiovascular diseases: A review. Pharmacol Res 2024; 206:107279. [PMID: 38942340 DOI: 10.1016/j.phrs.2024.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a class of small non-coding RNA (sncRNA) molecules derived from tRNA, including tRNA derived fragments (tRFs) and tRNA halfs (tiRNAs). tsRNAs can affect cell functions by participating in gene expression regulation, translation regulation, intercellular signal transduction, and immune response. They have been shown to play an important role in various human diseases, including cardiovascular diseases (CVDs). Targeted regulation of tsRNAs expression can affect the progression of CVDs. The tsRNAs induced by pathological conditions can be detected when released into the extracellular, giving them enormous potential as disease biomarkers. Here, we review the biogenesis, degradation process and related functional mechanisms of tsRNAs, and discuss the research progress and application prospects of tsRNAs in different CVDs, to provide a new perspective on the treatment of CVDs.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cui-Yun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Fang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Ying-Hui Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qian-Qian Xia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yan Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xue-Li Cheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Su-Min Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Mei-Hua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China.
| | - Kun Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
22
|
Liu Y, Li C, Yang X, Yang B, Fu Q. Stimuli-responsive polymer-based nanosystems for cardiovascular disease theranostics. Biomater Sci 2024; 12:3805-3825. [PMID: 38967109 DOI: 10.1039/d4bm00415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Stimulus-responsive polymers have found widespread use in biomedicine due to their ability to alter their own structure in response to various stimuli, including internal factors such as pH, reactive oxygen species (ROS), and enzymes, as well as external factors like light. In the context of atherosclerotic cardiovascular diseases (CVDs), stimulus-response polymers have been extensively employed for the preparation of smart nanocarriers that can deliver therapeutic and diagnostic drugs specifically to inflammatory lesions. Compared with traditional drug delivery systems, stimulus-responsive nanosystems offer higher sensitivity, greater versatility, wider applicability, and enhanced biosafety. Recent research has made significant contributions towards designing stimulus-responsive polymer nanosystems for CVDs diagnosis and treatment. This review summarizes recent advances in this field by classifying stimulus-responsive polymer nanocarriers according to different responsiveness types and describing numerous stimuli relevant to these materials. Additionally, we discuss various applications of stimulus-responsive polymer nanomaterials in CVDs theranostics. We hope that this review will provide valuable insights into optimizing the design of stimulus-response polymers for accelerating their clinical application in diagnosing and treating CVDs.
Collapse
Affiliation(s)
- Yuying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Congcong Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Bin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
23
|
Chen X, Chen H, Zhu L, Zeng M, Wang T, Su C, Vulugundam G, Gokulnath P, Li G, Wang X, Yao J, Li J, Cretoiu D, Chen Z, Bei Y. Nanoparticle-Patch System for Localized, Effective, and Sustained miRNA Administration into Infarcted Myocardium to Alleviate Myocardial Ischemia-Reperfusion Injury. ACS NANO 2024. [PMID: 39020456 DOI: 10.1021/acsnano.3c08811] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Timely blood reperfusion after myocardial infarction (MI) paradoxically triggers ischemia-reperfusion injury (I/RI), which currently has not been conquered by clinical treatments. Among innovative repair strategies for myocardial I/RI, microRNAs (miRNAs) are expected as genetic tools to rescue damaged myocardium. Our previous study identified that miR-30d can provide protection against myocardial apoptosis and fibrosis to alleviate myocardial injury. Although common methods such as liposomes and viral vectors have been used for miRNA transfection, their therapeutic efficiencies have struggled with inefficient in vivo delivery, susceptible inactivation, and immunogenicity. Here, we establish a nanoparticle-patch system for miR-30d delivery in a murine myocardial I/RI model, which contains ZIF-8 nanoparticles and a conductive microneedle patch. Loaded with miR-30d, ZIF-8 nanoparticles leveraging the proton sponge effect enable miR-30d to escape the endocytic pathway, thus avoiding premature degradation in lysosomes. Meanwhile, the conductive microneedle patch offers a distinct advantage by intramyocardial administration for localized, effective, and sustained miR-30d delivery, and it simultaneously releases Au nanoparticles to reconstruct electrical impulses within the infarcted myocardium. Consequently, the nanoparticle-patch system supports the consistent and robust expression of miR-30d in cardiomyocytes. Results from echocardiography and electrocardiogram (ECG) revealed improved heart functions and standard ECG wave patterns in myocardial I/RI mice after implantation of a nanoparticle-patch system for 3 and 6 weeks. In summary, our work incorporated conductive microneedle patch and miR-30d nanodelivery systems to synergistically transcend the limitations of common RNA transfection methods, thus mitigating myocardial I/RI.
Collapse
Affiliation(s)
- Xuerui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Hang Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Liyun Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Mengting Zeng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tianhui Wang
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chanyuan Su
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou ,Fujian 350001, China
| | - Gururaja Vulugundam
- Biologics Development, Sanofi, Framingham, Massachusetts 01701, United States
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Xu Wang
- Hangzhou Medical College, Binjiang Higher Education Park, Hangzhou 310053, China
| | - Jianhua Yao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Jin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Dragos Cretoiu
- Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute of Mother and Child Health, Bucharest 020395, Romania
| | - Zhaoyang Chen
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou ,Fujian 350001, China
| | - Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
24
|
Wu C, Yan J, Ge C, Xie L, He Y, Zhao Z, Deng Y, Dong Q, Yin L. Macrophage membrane-reversibly camouflaged nanotherapeutics accelerate fracture healing by fostering MSCs recruitment and osteogenic differentiation. J Nanobiotechnology 2024; 22:411. [PMID: 38997706 PMCID: PMC11241938 DOI: 10.1186/s12951-024-02679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
The fracture healing outcome is largely dependent on the quantities as well as osteogenic differentiation capacities of mesenchymal stem cells (MSCs) at the lesion site. Herein, macrophage membrane (MM)-reversibly cloaked nanocomplexes (NCs) are engineered for the lesion-targeted and hierarchical co-delivery of short stromal derived factor-1α peptide (sSDF-1α) and Ckip-1 small interfering RNA (Ckip-1 siRNA, siCkip-1) to promote bone repair by concurrently fostering recruitment and osteogenic differentiation of endogenous MSCs. To construct the NCs, a membrane-penetrating α-helical polypeptide first assembles with siCkip-1, and the cationic NCs are sequentially coated with catalase and an outer shell of sSDF-1α-anchored MM. Due to MM-assisted inflammation homing, intravenously injected NCs could efficiently accumulate at the fractured femur, where catalase decomposes the local hydrogen peroxide to generate oxygen bubbles that drives the shedding of sSDF-1α-anchored MM in the extracellular compartment. The exposed, cationic inner core thus enables robust trans-membrane delivery into MSCs to induce Ckip-1 silencing. Consequently, sSDF-1α-guided MSCs recruitment cooperates with siCkip-1-mediated osteogenic differentiation to facilitate bone formation and accelerate bone fracture healing. This study provides an enlightened strategy for the hierarchical co-delivery of macromolecular drugs into different cellular compartments, and it also renders a promising modality for the management of fracture healing.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Orthopedics, The Second Affiliated Hospital, Soochow University, Suzhou, 215004, China
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Jing Yan
- Department of Gastroenterology, The Second Affiliated Hospital, Soochow University, Suzhou, 215004, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Chenglong Ge
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Lucheng Xie
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yunjie He
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Ziyin Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yekun Deng
- Department of Orthopedics, The Second Affiliated Hospital, Soochow University, Suzhou, 215004, China
| | - Qirong Dong
- Department of Orthopedics, The Second Affiliated Hospital, Soochow University, Suzhou, 215004, China.
| | - Lichen Yin
- Department of Gastroenterology, The Second Affiliated Hospital, Soochow University, Suzhou, 215004, China.
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
25
|
Zeng H, Zhang Y, Liu N, Wei Q, Yang F, Li J. Stimulus-Responsive Nanodelivery and Release Systems for Cancer Gene Therapy: Efficacy Improvement Strategies. Int J Nanomedicine 2024; 19:7099-7121. [PMID: 39045344 PMCID: PMC11265383 DOI: 10.2147/ijn.s470637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction of exogenous genes into target cells to overcome various tumor diseases caused by genetic defects or abnormalities and gene therapy, a new treatment method, provides a promising strategy for tumor treatment. Over the past decade, gene therapy has made exciting progress; however, it still faces the challenge of low nucleic acid delivery and release efficiencies. The emergence of nonviral vectors, primarily nanodelivery and release systems (NDRS), has resulted in a historic breakthrough in the application of gene therapy. NDRS, especially stimulus-responsive NDRS that can respond in a timely manner to changes in the internal and external microenvironment (eg, low pH, high concentration of glutathione/reactive oxygen species, overexpressed enzymes, temperature, light, ultrasound, and magnetic field), has shown excellent loading and release advantages in the precision and efficiency of tumor gene therapy and has been widely applied. The only disadvantage is that poor transfection efficiency limits the in-depth application of gene therapy in clinical practice, owing to the presence of biological barriers in the body. Therefore, this review first introduces the development history of gene therapy, the current obstacles faced by gene delivery, strategies to overcome these obstacles, and conventional vectors, and then focuses on the latest research progress in various stimulus-responsive NDRS for improving gene delivery efficiency. Finally, the future challenges and prospects that stimulus-responsive NDRS may face in clinical application and transformation are discussed to provide references for enhancing in-depth research on tumor gene therapy.
Collapse
Affiliation(s)
- Huamin Zeng
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, Sichuan, 611130, People’s Republic of China
| | - Yiran Zhang
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, Sichuan, 611130, People’s Republic of China
- School of Medical and Life Sciences, Chengdu University of traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Ningyi Liu
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, Sichuan, 611130, People’s Republic of China
- School of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637007, People’s Republic of China
| | - Qingqing Wei
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, Sichuan, 611130, People’s Republic of China
- School of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637007, People’s Republic of China
| | - Fan Yang
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, Sichuan, 611130, People’s Republic of China
| | - Jie Li
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| |
Collapse
|
26
|
Qu Y, Chu B, Li J, Deng H, Niu T, Qian Z. Macrophage-Biomimetic Nanoplatform-Based Therapy for Inflammation-Associated Diseases. SMALL METHODS 2024; 8:e2301178. [PMID: 38037521 DOI: 10.1002/smtd.202301178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Indexed: 12/02/2023]
Abstract
Inflammation-associated diseases are very common clinically with a high incidence; however, there is still a lack of effective treatments. Cell-biomimetic nanoplatforms have led to many breakthroughs in the field of biomedicine, significantly improving the efficiency of drug delivery and its therapeutic implications especially for inflammation-associated diseases. Macrophages are an important component of immune cells and play a critical role in the occurrence and progression of inflammation-associated diseases while simultaneously maintaining homeostasis and modulating immune responses. Therefore, macrophage-biomimetic nanoplatforms not only inherit the functions of macrophages including the inflammation tropism effect for targeted delivery of drugs and the neutralization effect of pro-inflammatory cytokines and toxins via membrane surface receptors or proteins, but also maintain the functions of the inner nanoparticles. Macrophage-biomimetic nanoplatforms are shown to have remarkable therapeutic efficacy and excellent application potential in inflammation-associated diseases. In this review, inflammation-associated diseases, the physiological functions of macrophages, and the classification and construction of macrophage-biomimetic nanoplatforms are first introduced. Next, the latest applications of different macrophage-biomimetic nanoplatforms for the treatment of inflammation-associated diseases are summarized. Finally, challenges and opportunities for future biomedical applications are discussed. It is hoped that the review will provide new ideas for the further development of macrophage-biomimetic nanoplatforms.
Collapse
Affiliation(s)
- Ying Qu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingyang Chu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianan Li
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanzhi Deng
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
27
|
Wei H, Yi K, Li F, Li D, Yang J, Shi R, Jin Y, Wang H, Ding J, Tao Y, Li M. Multimodal Tetrahedral DNA Nanoplatform for Surprisingly Rapid and Significant Treatment of Acute Liver Failure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305826. [PMID: 37801371 DOI: 10.1002/adma.202305826] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/07/2023] [Indexed: 10/08/2023]
Abstract
Acute liver failure (ALF) is a life-threatening disease associated with the rapid development of inflammatory storms, level elevation of reactive oxygen species (ROS), and hepatocyte necrosis, which results in high short-term mortality. Except for liver transplantation, no effective strategies are available for ALF therapy due to the rapid disease progression and narrow window of therapeutic time. Therefore, there is an urgent demand to explore the fast and effective modalities for ALF treatment. Herein, a multifunctional tetrahedral DNA nanoplatform (TDN) is constructed by incorporating tumor necrosis factor-α siRNA (siTNF-α) through DNA hybridization and antioxidant manganese porphyrin (MnP4) via π-π stacking interaction with G-quadruplex (G4) for surprisingly rapid and significant ALF therapy. TDN-siTNF-α/-G4-MnP4 silences TNF-α of macrophages by siTNF-α and polarizes them to the anti-inflammatory M2 phenotype, providing appropriate microenvironments for hepatocyte viability. Additionally, TDN-siTNF-α/-G4-MnP4 scavenges intracellular ROS by MnP4, protecting hepatocytes from oxidative-stress-associated cell death. Furthermore, TDN itself promotes hepatocyte proliferation by modulating the cell cycle. TDN-siTNF-α/-G4-MnP4 shows almost complete liver accumulation after intravenous injection and exhibits excellent therapeutic efficacy of ALF within 2 h. The multifunctional DNA nanoformulation provides an effective strategy for rapid ALF therapy, expanding its application for innovative treatments of liver diseases.
Collapse
Affiliation(s)
- Hongyan Wei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease, 600 Tianhe Road, Guangzhou, 510630, P. R. China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, 120 Longshan Road, Chongqing, 401147, P. R. China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, P. R. China
| | - Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, P. R. China
| | - Di Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Jiazhen Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, P. R. China
| | - Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, P. R. China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease, 600 Tianhe Road, Guangzhou, 510630, P. R. China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease, 600 Tianhe Road, Guangzhou, 510630, P. R. China
| |
Collapse
|
28
|
Cau MF, Ferraresso F, Seadler M, Badior K, Zhang Y, Ketelboeter LM, Rodriguez GG, Chen T, Ferraresso M, Wietrzny A, Robertson M, Haugen A, Cullis PR, de Moya M, Dyer M, Kastrup CJ. siRNA-mediated reduction of a circulating protein in swine using lipid nanoparticles. Mol Ther Methods Clin Dev 2024; 32:101258. [PMID: 38779336 PMCID: PMC11109470 DOI: 10.1016/j.omtm.2024.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Genetic manipulation of animal models is a fundamental research tool in biology and medicine but is challenging in large animals. In rodents, models can be readily developed by knocking out genes in embryonic stem cells or by knocking down genes through in vivo delivery of nucleic acids. Swine are a preferred animal model for studying the cardiovascular and immune systems, but there are limited strategies for genetic manipulation. Lipid nanoparticles (LNPs) efficiently deliver small interfering RNA (siRNA) to knock down circulating proteins, but swine are sensitive to LNP-induced complement activation-related pseudoallergy (CARPA). We hypothesized that appropriately administering optimized siRNA-LNPs could knock down circulating levels of plasminogen, a blood protein synthesized in the liver. siRNA-LNPs against plasminogen (siPLG) reduced plasma plasminogen protein and hepatic plasminogen mRNA levels to below 5% of baseline values. Functional assays showed that reducing plasminogen levels modulated systemic blood coagulation. Clinical signs of CARPA were not observed, and occasional mild and transient hepatotoxicity was present in siPLG-treated animals at 5 h post-infusion, which returned to baseline by 7 days. These findings advance siRNA-LNPs in swine models, enabling genetic engineering of blood and hepatic proteins, which can likely expand to proteins in other tissues in the future.
Collapse
Affiliation(s)
- Massimo F. Cau
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Francesca Ferraresso
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Monica Seadler
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Youjie Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | | | | | - Taylor Chen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | | | | | - Madelaine Robertson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amber Haugen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Pieter R. Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marc de Moya
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mitchell Dyer
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Division of Vascular and Endovascular Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christian J. Kastrup
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Departments of Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
29
|
Wang C, Li C, Zhang R, Huang L. Macrophage membrane-coated nanoparticles for the treatment of infectious diseases. Biomed Mater 2024; 19:042003. [PMID: 38740051 DOI: 10.1088/1748-605x/ad4aaa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Infectious diseases severely threaten human health, and traditional treatment techniques face multiple limitations. As an important component of immune cells, macrophages display unique biological properties, such as biocompatibility, immunocompatibility, targeting specificity, and immunoregulatory activity, and play a critical role in protecting the body against infections. The macrophage membrane-coated nanoparticles not only maintain the functions of the inner nanoparticles but also inherit the characteristics of macrophages, making them excellent tools for improving drug delivery and therapeutic implications in infectious diseases (IDs). In this review, we describe the characteristics and functions of macrophage membrane-coated nanoparticles and their advantages and challenges in ID therapy. We first summarize the pathological features of IDs, providing insight into how to fight them. Next, we focus on the classification, characteristics, and preparation of macrophage membrane-coated nanoparticles. Finally, we comprehensively describe the progress of macrophage membrane-coated nanoparticles in combating IDs, including drug delivery, inhibition and killing of pathogens, and immune modulation. At the end of this review, a look forward to the challenges of this aspect is presented.
Collapse
Affiliation(s)
- Chenguang Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Chuyu Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Ruoyu Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Lili Huang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
30
|
Gil-Cabrerizo P, Simon-Yarza T, Garbayo E, Blanco-Prieto MJ. Navigating the landscape of RNA delivery systems in cardiovascular disease therapeutics. Adv Drug Deliv Rev 2024; 208:115302. [PMID: 38574952 DOI: 10.1016/j.addr.2024.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Cardiovascular diseases (CVDs) stand as the leading cause of death worldwide, posing a significant global health challenge. Consequently, the development of innovative therapeutic strategies to enhance CVDs treatment is imperative. RNA-based therapies, encompassing non-coding RNAs, mRNA, aptamers, and CRISPR/Cas9 technology, have emerged as promising tools for addressing CVDs. However, inherent challenges associated with RNA, such as poor cellular uptake, susceptibility to RNase degradation, and capture by the reticuloendothelial system, underscore the necessity of combining these therapies with effective drug delivery systems. Various non-viral delivery systems, including extracellular vesicles, lipid-based carriers, polymeric and inorganic nanoparticles, as well as hydrogels, have shown promise in enhancing the efficacy of RNA therapeutics. In this review, we offer an overview of the most relevant RNA-based therapeutic strategies explored for addressing CVDs and emphasize the pivotal role of delivery systems in augmenting their effectiveness. Additionally, we discuss the current status of these therapies and the challenges that hinder their clinical translation.
Collapse
Affiliation(s)
- Paula Gil-Cabrerizo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Elisa Garbayo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
31
|
Chen Z, Yuan C, Ye Y, Lu B, Hu E, Lu F, Yu K, Xie R, Lan G. Dual-targeting fucoidan-based microvesicle for arterial thrombolysis and re-occlusion inhibition. Carbohydr Polym 2024; 328:121703. [PMID: 38220339 DOI: 10.1016/j.carbpol.2023.121703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
Arterial thrombosis is a critical thrombotic disease that poses a significant threat to human health. However, the existing clinical treatment of arterial thrombosis lacks effective targeting and precise drug release capability. In this study, we developed a system for targeted delivery and on-demand release in arterial thrombosis treatment. The carrier was constructed using chitosan (CS) and fucoidan (Fu) through layer-by-layer assembly, with subsequent surface modification using cRGD peptide. Upon encapsulation of urokinase-type plasminogen activator (uPA), the resulting therapeutic drug delivery system, uPA-CS/Fu@cRGD, demonstrated dual-targeting abilities towards P-selectin and αIIbβ3, as well as pH and platelet-responsive release properties. Importantly, we have demonstrated that the dual targeting effect exhibits higher targeting efficiency at shear rates simulating thrombosed arterial conditions (1800 s-1) compared to single targeting for the first time. In the mouse common iliac artery model, uPA-CS/Fu@cRGD exhibited great thrombolytic capability while promoting the down-regulation of coagulation factors (FXa and PAI-1) and inflammatory factors (TNF-α and IL-6), thus improving the thrombus microenvironment and exerting potential in preventing re-occlusion. Our dual-target and dual-responsive, fucoidan-based macrovesicle represent a promising platform for advanced drug target delivery applications, with potential to prevent coagulation tendencies as well as improving thrombolytic and reducing the risk of re-occlusion.
Collapse
Affiliation(s)
- Zhechang Chen
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Caijie Yuan
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Yaxin Ye
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Bitao Lu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Enling Hu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Fei Lu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Kun Yu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria.
| | - Guangqian Lan
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China.
| |
Collapse
|
32
|
Huang X, Zhang W. Macrophage membrane-camouflaged biomimetic nanovesicles for targeted treatment of arthritis. Ageing Res Rev 2024; 95:102241. [PMID: 38387516 DOI: 10.1016/j.arr.2024.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Arthritis has become the most common joint disease globally. Current attention has shifted towards preventing the disease and exploring pharmaceutical and surgical treatments for early-stage arthritis. M2 macrophages are known for their anti-inflammatory properties and their ability to support cartilage repair, offering relief from arthritis. Whereas, it remains a great challenge to promote the beneficial secretion of M2 macrophages to prevent the progression of arthritis. Therefore, it is warranted to investigate new strategies that could use the functions of M2 macrophages and enhance its therapeutic effects. This review aims to explore the macrophage cell membrane-coated biomimetic nanovesicles for targeted treatment of arthritis such as osteoarthritis (OA), rheumatoid arthritis (RA), and gouty arthritis (GA). Cell membrane-camouflaged biomimetic nanovesicle has attracted increasing attention, which successfully combine the advantages and properties of both cell membrane and delivered drug. We discuss the roles of macrophages in the pathophysiology and therapeutic targets of arthritis. Then, the common preparation strategies of macrophage membrane-coated nanovesicles are concluded. Moreover, we investigate the applications of macrophage cell membrane-camouflaged nanovesicles for arthritis, such as OA, RA, and GA. Taken together, macrophage cell membrane-camouflaged nanovesicles hold the tremendous prospect for biomedical applications in the targeted treatment of arthritis.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
33
|
Wang S, Ding P, Shen L, Fan D, Cheng H, Huo J, Wei X, He H, Zhang G. Inhalable hybrid nanovaccines with virus-biomimetic structure boost protective immune responses against SARS-CoV-2 variants. J Nanobiotechnology 2024; 22:76. [PMID: 38414031 PMCID: PMC10898168 DOI: 10.1186/s12951-024-02345-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with different antigenic variants, has posed a significant threat to public health. It is urgent to develop inhalable vaccines, instead of injectable vaccines, to elicit mucosal immunity against respiratory viral infections. METHODS We reported an inhalable hybrid nanovaccine (NVRBD-MLipo) to boost protective immunity against SARS-CoV-2 infection. Nanovesicles derived from genetically engineered 293T cells expressing RBD (NVRBD) were fused with pulmonary surfactant (PS)-biomimetic liposomes containing MPLA (MLipo) to yield NVRBD-MLipo, which possessed virus-biomimetic structure, inherited RBD expression and versatile properties. RESULTS In contrast to subcutaneous vaccination, NVRBD-MLipo, via inhalable vaccination, could efficiently enter the alveolar macrophages (AMs) to elicit AMs activation through MPLA-activated TLR4/NF-κB signaling pathway. Moreover, NVRBD-MLipo induced T and B cells activation, and high level of RBD-specific IgG and secretory IgA (sIgA), thus elevating protective mucosal and systemic immune responses, while reducing side effects. NVRBD-MLipo also demonstrated broad-spectrum neutralization activity against SARS-CoV-2 (WT, Delta, Omicron) pseudovirus, and protected immunized mice against WT pseudovirus infection. CONCLUSIONS This inhalable NVRBD-MLipo, as an effective and safe nanovaccine, holds huge potential to provoke robust mucosal immunity, and might be a promising vaccine candidate to combat respiratory infectious diseases, including COVID-19 and influenza.
Collapse
Affiliation(s)
- Shuqi Wang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Peiyang Ding
- School of Life Science, Zhengzhou University, Zhengzhou, 450046, China
| | - Lingli Shen
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Daopeng Fan
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hanghang Cheng
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jian Huo
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xin Wei
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, 475004, China
| | - Hua He
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China.
- Longhu Laboratory, Zhengzhou, 450046, China.
- School of Advanced Agriculture Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
34
|
Guan X, Xing S, Liu Y. Engineered Cell Membrane-Camouflaged Nanomaterials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:413. [PMID: 38470744 DOI: 10.3390/nano14050413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
Recent strides in nanomaterials science have paved the way for the creation of reliable, effective, highly accurate, and user-friendly biomedical systems. Pioneering the integration of natural cell membranes into sophisticated nanocarrier architectures, cell membrane camouflage has emerged as a transformative approach for regulated drug delivery, offering the benefits of minimal immunogenicity coupled with active targeting capabilities. Nevertheless, the utility of nanomaterials with such camouflage is curtailed by challenges like suboptimal targeting precision and lackluster therapeutic efficacy. Tailored cell membrane engineering stands at the forefront of biomedicine, equipping nanoplatforms with the capacity to conduct more complex operations. This review commences with an examination of prevailing methodologies in cell membrane engineering, spotlighting strategies such as direct chemical modification, lipid insertion, membrane hybridization, metabolic glycan labeling, and genetic engineering. Following this, an evaluation of the unique attributes of various nanomaterials is presented, delivering an in-depth scrutiny of the substantial advancements and applications driven by cutting-edge engineered cell membrane camouflage. The discourse culminates by recapitulating the salient influence of engineered cell membrane camouflage within nanomaterial applications and prognosticates its seminal role in transformative healthcare technologies. It is envisaged that the insights offered herein will catalyze novel avenues for the innovation and refinement of engineered cell membrane camouflaged nanotechnologies.
Collapse
Affiliation(s)
- Xiyuan Guan
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Simin Xing
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Lu J, Dai Y, He Y, Zhang T, Zhang J, Chen X, Jiang C, Lu H. Organ/Cell-Selective Intracellular Delivery of Biologics via N-Acetylated Galactosamine-Functionalized Polydisulfide Conjugates. J Am Chem Soc 2024; 146:3974-3983. [PMID: 38299512 DOI: 10.1021/jacs.3c11914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Biologics, including proteins and antisense oligonucleotides (ASOs), face significant challenges when it comes to achieving intracellular delivery within specific organs or cells through systemic administrations. In this study, we present a novel approach for delivering proteins and ASOs to liver cells, both in vitro and in vivo, using conjugates that tether N-acetylated galactosamine (GalNAc)-functionalized, cell-penetrating polydisulfides (PDSs). The method involves the thiol-bearing cargo-mediated ring-opening polymerization of GalNAc-functionalized lipoamide monomers through the so-called aggregation-induced polymerization, leading to the formation of site-specific protein/ASO-PDS conjugates with narrow dispersity. The hepatocyte-selective intracellular delivery of the conjugates arises from a combination of factors, including first GalNAc binding with ASGPR receptors on liver cells, leading to cell immobilization, and the subsequent thiol-disulfide exchange occurring on the cell surface, promoting internalization. Our findings emphasize the critical role of the close proximity of the PDS backbone to the cell surface, as it governs the success of thiol-disulfide exchange and, consequently, cell penetration. These conjugates hold tremendous potential in overcoming the various biological barriers encountered during systemic and cell-specific delivery of biomacromolecular cargos, opening up new avenues for the diagnosis and treatment of a range of liver-targeting diseases.
Collapse
Affiliation(s)
- Jianhua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yuanhao Dai
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yahui He
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ting Zhang
- Department of Microbiology & Infectious Disease Center, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Jing Zhang
- Department of Microbiology & Infectious Disease Center, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Changtao Jiang
- Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Peking University, Beijing 100191, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
36
|
Lin Y, Guan X, Su J, Chen S, Fu X, Xu X, Deng X, Chang J, Qin A, Shen A, Zhang L. Cell Membrane-Camouflaged Nanoparticles Mediated Nucleic Acids Delivery. Int J Nanomedicine 2023; 18:8001-8021. [PMID: 38164266 PMCID: PMC10758188 DOI: 10.2147/ijn.s433737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024] Open
Abstract
Nucleic acids have emerged as promising therapeutic agents for many diseases because of their potential in modulating gene expression. However, the delivery of nucleic acids remains a significant challenge in gene therapy. Although viral vectors have shown high transfection efficiency, concerns regarding teratogenicity or carcinogenicity have been raised. Non-viral vehicles, including cationic polymers, liposomes, and inorganic materials possess advantages in terms of safety, ease of preparation, and low cost. Nevertheless, they also face limitations related to immunogenicity, quick clearance in vivo, and lack of targeting specificity. On the other hand, bioinspired strategies have shown increasing potential in the field of drug delivery, yet there is a lack of comprehensive reviews summarizing the rapid development of bioinspired nanoparticles based on the cell membrane camouflage to construct the nucleic acids vehicles. Herein, we enumerated the current difficulties in nucleic acid delivery with various non-viral vehicles and provided an overview of bioinspired strategies for nucleic acid delivery.
Collapse
Affiliation(s)
- Yinshan Lin
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Xiaoling Guan
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Jianfen Su
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Sheng Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Xihua Fu
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
| | - Xiaowei Xu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Xiaohua Deng
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Jishuo Chang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Aiping Qin
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Ao Shen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Lingmin Zhang
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| |
Collapse
|
37
|
Xu S, Xu C, Xu J, Zhang K, Zhang H. Macrophage Heterogeneity and Its Impact on Myocardial Ischemia-Reperfusion Injury: An Integrative Review. J Inflamm Res 2023; 16:5971-5987. [PMID: 38088942 PMCID: PMC10712254 DOI: 10.2147/jir.s436560] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/30/2023] [Indexed: 10/21/2024] Open
Abstract
The coronary reperfusion following acute myocardial infarction can paradoxically trigger myocardial ischemia-reperfusion (IR) injury. This complex phenomenon involves the intricate interplay of different subsets of macrophages. These macrophages are crucial players in the post-infarction inflammatory response and subsequent myocardial anti-inflammatory repair. However, their diverse functions can lead to both beneficial and detrimental effects. On one hand, these macrophages play a crucial role in orchestrating the inflammatory response, aiding in the clearance of cellular debris and initiating tissue repair mechanisms. On the other hand, their excessive infiltration and activation can contribute to the perpetuation of the inflammatory cascade, leading to additional myocardial injury and adverse cardiac remodeling. Multiple mechanisms contribute to the IR injury mediated by macrophages, including oxidative stress, apoptosis, and autophagy. These processes further exacerbate the damage to the already vulnerable myocardial tissue. To address this delicate balance, therapeutic strategies aiming to target and modulate macrophage polarization and function are being explored. By fine-tuning the immune inflammatory response, such interventions hold promise in mitigating post-infarction myocardial injury and fostering a more favorable environment for myocardial healing and recovery. Through advancements in this area of research, potential anti-inflammatory interventions may pave the way for improved clinical outcomes and better management of patients after acute myocardial infarction.
Collapse
Affiliation(s)
- Shuwan Xu
- Cardiovascular Department, the Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Cong Xu
- Cardiovascular Department, the Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Jiahua Xu
- Cardiovascular Department, the Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Kun Zhang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Huanji Zhang
- Cardiovascular Department, the Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
38
|
Chen J, Tan J, Li J, Cheng W, Ke L, Wang A, Wang Q, Lin S, Li G, Wang B, Chen J, Zhang P. Genetically Engineered Biomimetic Nanoparticles for Targeted Delivery of mRNA to Treat Rheumatoid Arthritis. SMALL METHODS 2023; 7:e2300678. [PMID: 37526322 DOI: 10.1002/smtd.202300678] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/13/2023] [Indexed: 08/02/2023]
Abstract
In addition to inhibiting persistent inflammation, phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is known as an important therapeutic target for alleviating rheumatoid arthritis (RA) symptoms. Modulation of PTEN gene expression in synovial tissue using messenger RNA (mRNA) is a promising approach to combat RA. However, mRNA therapeutics are often hampered by unsatisfactory stability and inefficient localization in synovial tissue. In this study, a genetically engineered biomimetic membrane-coated mRNA (MR@P-mPTEN) carrier that effectively delivers mRNA-PTEN (mPTEN) directly to the RA joint is presented. By overexpressing tumor necrosis factor (TNF-α) receptors on macrophage biomimetic membranes via plasmid transfection, decoys that reduce inflammatory pathway activation are prepared for TNF-α. The resulting construct, MR@P-mPTEN, shows good stability and RA targeting based on in vivo fluorescence imaging. It is also found that MR@P-mPTEN competitively binds TNF-α and activates the PTEN pathway in vitro and in vivo, thereby inhibiting synovitis and joint damage. Clinical micro-computed tomography and histological analyses confirm the treatment effects. These results suggest that the genetically engineered biomimetic therapeutic platform MR@P-mPTEN both inhibits pro-inflammatory cytokines and upregulates PTEN protein expression to alleviate RA damage, providing a new a new combination strategy for RA treatment.
Collapse
Affiliation(s)
- Jianhai Chen
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Jianwei Tan
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Anqiao Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Qiqing Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, 999077, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, 999077, China
| | - Benguo Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Jingqin Chen
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
39
|
Sun M, Yang J, Fan Y, Zhang Y, Sun J, Hu M, Sun K, Zhang J. Beyond Extracellular Vesicles: Hybrid Membrane Nanovesicles as Emerging Advanced Tools for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303617. [PMID: 37749882 PMCID: PMC10646251 DOI: 10.1002/advs.202303617] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/02/2023] [Indexed: 09/27/2023]
Abstract
Extracellular vesicles (EVs), involved in essential physiological and pathological processes of the organism, have emerged as powerful tools for disease treatment owing to their unique natural biological characteristics and artificially acquired advantages. However, the limited targeting ability, insufficient production yield, and low drug-loading capability of natural simplex EVs have greatly hindered their development in clinical translation. Therefore, the establishment of multifunctional hybrid membrane nanovesicles (HMNVs) with favorable adaptability and flexibility has become the key to expanding the practical application of EVs. This timely review summarizes the current progress of HMNVs for biomedical applications. Different HMNVs preparation strategies including physical, chemical, and chimera approaches are first discussed. This review then individually describes the diverse types of HMNVs based on homologous or heterologous cell membrane substances, a fusion of cell membrane and liposome, as well as a fusion of cell membrane and bacterial membrane. Subsequently, a specific emphasis is placed on the highlight of biological applications of the HMNVs toward various diseases with representative examples. Finally, ongoing challenges and prospects of the currently developed HMNVs in clinical translational applications are briefly presented. This review will not only stimulate broad interest among researchers from diverse disciplines but also provide valuable insights for the development of promising nanoplatforms in precision medicine.
Collapse
Affiliation(s)
- Meng Sun
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Jiani Yang
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yueyun Fan
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yinfeng Zhang
- International Medical CenterBeijing Friendship HospitalCapital Medical UniversityBeijing100050P. R. China
| | - Jian Sun
- Department of Hepatobiliary SurgeryJinan University First Affiliated HospitalGuangzhou510630P. R. China
| | - Min Hu
- Department of Hepatobiliary SurgeryJinan University First Affiliated HospitalGuangzhou510630P. R. China
| | - Ke Sun
- Department of Urinary surgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
40
|
Xiong Z, An Q, Chen L, Xiang Y, Li L, Zheng Y. Cell or cell derivative-laden hydrogels for myocardial infarction therapy: from the perspective of cell types. J Mater Chem B 2023; 11:9867-9888. [PMID: 37751281 DOI: 10.1039/d3tb01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Myocardial infarction (MI) is a global cardiovascular disease with high mortality and morbidity. To treat acute MI, various therapeutic approaches have been developed, including cells, extracellular vesicles, and biomimetic nanoparticles. However, the clinical application of these therapies is limited due to low cell viability, inadequate targetability, and rapid elimination from cardiac sites. Injectable hydrogels, with their three-dimensional porous structure, can maintain the biomechanical stabilization of hearts and the transplantation activity of cells. However, they cannot regenerate cardiomyocytes or repair broken hearts. A better understanding of the collaborative relationship between hydrogel delivery systems and cell or cell-inspired therapy will facilitate advancing innovative therapeutic strategies against MI. Following that, from the perspective of cell types, MI progression and recent studies on using hydrogel to deliver cell or cell-derived preparations for MI treatment are discussed. Finally, current challenges and future prospects of cell or cell derivative-laden hydrogels for MI therapy are proposed.
Collapse
Affiliation(s)
- Ziqing Xiong
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yucheng Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yaxian Zheng
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
41
|
Shan B, Zhou Y, Yin M, Deng Y, Ge C, Liu Z, Zhou R, Dong Q, Zhou X, Yin L. Macrophage Membrane-Reversibly Cloaked Nanotherapeutics for the Anti-Inflammatory and Antioxidant Treatment of Rheumatoid Arthritis. SMALL METHODS 2023; 7:e2300667. [PMID: 37469217 DOI: 10.1002/smtd.202300667] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Indexed: 07/21/2023]
Abstract
During rheumatoid arthritis (RA) development, over-produced proinflammatory cytokines represented by tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) represented by H2 O2 form a self-promoted cycle to exacerbate the synovial inflammation and tissue damage. Herein, biomimetic nanocomplexes (NCs) reversibly cloaked with macrophage membrane (RM) are developed for effective RA management via dual scavenging of TNF-α and ROS. To construct the NCs, membrane-penetrating, helical polypeptide first condenses TNF-α siRNA (siTNF-α) and forms the cationic inner core, which further adsorbs catalase (CAT) via electrostatic interaction followed by surface coating with RM. The membrane-coated NCs enable prolonged blood circulation and active joint accumulation after systemic administration in Zymosan A-induced arthritis mice. In the oxidative microenvironment of joints, CAT degrades H2 O2 to produce O2 bubbles, which shed off the outer membrane layer to expose the positively charged inner core, thus facilitating effective intracellular delivery into macrophages. siRNA-mediated TNF-α silencing and CAT-mediated H2 O2 scavenging then cooperate to inhibit inflammation and alleviate oxidative stress, remodeling the osteomicroenvironment and fostering tissue repair. This study provides an enlightened strategy to resolve the blood circulation/cell internalization dilemma of cell membrane-coated nanosystems, and it renders a promising modality for RA treatment.
Collapse
Affiliation(s)
- Bingchen Shan
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Mengyuan Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Yekun Deng
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Chenglong Ge
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Zhongmin Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Renxiang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Qirong Dong
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xiaozhong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| |
Collapse
|
42
|
Sun Z, Ren M, Shan B, Yang Q, Zhao Z, Liu X, Yin L. One-pot synthesis of dynamically cross-linked polymers for serum-resistant nucleic acid delivery. Biomater Sci 2023; 11:5653-5662. [PMID: 37431292 DOI: 10.1039/d3bm00685a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Cationic polymers used for nucleic acid delivery often suffer from complicated syntheses, undesired intracellular cargo release and low serum stability. Herein, a series of ternary polymers were synthesized via facile green chemistry to achieve efficient plasmid DNA and mRNA delivery in serum. During the one-pot synthesis of the ternary polymer, acetylphenylboric acid (APBA), polyphenol and low-molecular weight polyethyleneimine (PEI 1.8k) were dynamically cross-linked with each other due to formation of an imine between PEI 1.8k and APBA and formation of a boronate ester between APBA and polyphenol. Series of polyphenols, including ellagic acid (EA), epigallocatechin gallate (EGCG), nordihydroguaiaretic acid (NDGA), rutin (RT) and rosmarinic acid (RA), and APBA molecules, including 2-acetylphenylboric acid (2-APBA), 3-acetylphenylboric acid (3-APBA) and 4-acetylphenylboric acid (4-APBA), were screened and the best-performing ternary polymer, 2-PEI-RT, constructed from RT and 2-APBA, was identified. The ternary polymer featured efficient DNA condensation to favor cellular internalization, and the acidic environment in endolysosomes triggered effective degradation of the polymer to promote cargo release. Thus, 2-PEI-RT showed robust plasmid DNA transfection efficiencies in various tumor cells in serum, outperforming the commercial reagent PEI 25k by 1-3 orders of magnitude. Moreover, 2-PEI-RT mediated efficient cytosolic delivery of Cas9-mRNA/sgRNA to enable pronounced CRISPR-Cas9 genome editing in vitro. Such a facile and robust platform holds great potential for non-viral nucleic acid delivery and gene therapy.
Collapse
Affiliation(s)
- Zhisong Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Mengyao Ren
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Bingchen Shan
- Department of Orthopaedics, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Qiang Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Ziyin Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Xun Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou215004, China.
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
43
|
Ge C, Zhu J, Ye H, Wei Y, Lei Y, Zhou R, Song Z, Yin L. Rational Construction of Protein-Mimetic Nano-Switch Systems Based on Secondary Structure Transitions of Synthetic Polypeptides. J Am Chem Soc 2023; 145:11206-11214. [PMID: 37167602 DOI: 10.1021/jacs.3c01156] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The manipulation of the flexibility/rigidity of polymeric chains to control their function is commonly observed in natural macromolecules but largely unexplored in synthetic systems. Herein, we construct a series of protein-mimetic nano-switches consisting of a gold nanoparticle (GNP) core, a synthetic polypeptide linker, and an optically functional molecule (OFM), whose biological function can be dynamically regulated by the flexibility of the polypeptide linker. At the dormant state, the polypeptide adopts a flexible, random-coiled conformation, bringing GNP and OFM in close proximity that leads to the "turn-off" of the OFM. Once treated with alkaline phosphatase (ALP), the nano-switches are activated due to the increased separation distance between GNP and OFM driven by the coil-to-helix and flexible-to-rigid transition of the polypeptide linker. The nano-switches therefore enable selective fluorescence imaging or photodynamic therapy in response to ALP overproduced by tumor cells. The control over polymer flexibility represents an effective strategy to manipulate the optical activity of nano-switches, which mimics the delicate structure-property relationship of natural proteins.
Collapse
Affiliation(s)
- Chenglong Ge
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Junliang Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Huan Ye
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yuansong Wei
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yuheng Lei
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Renxiang Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Ziyuan Song
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|