1
|
Liu W, Fu L, Yang S, Lu Y, Li M, Zhang L, Tang J. Hydrothermal Synthesis of Co-MoS 2 as a Bifunctional Catalyst for Overall Water Splitting. ACS OMEGA 2025; 10:15129-15142. [PMID: 40290920 PMCID: PMC12019442 DOI: 10.1021/acsomega.4c10747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
The sluggish kinetics of the oxygen evolution reaction is the main obstacle to the development of water splitting. MoS2 exhibits excellent activity in hydrogen evolution reaction (HER). However, the catalytic activity is insufficient for commercial bifunctional catalysts due to the inadequate oxygen evolution reaction (OER) catalytic activity. To address the deficiency of the OER active site of MoS2 and develop a more effective bifunctional catalyst, a one-step hydrothermal process was employed to synthesize a nonprecious Co-MoS2 catalyst, utilizing sodium molybdate as the molybdenum source, thiourea as the sulfur source, and cobalt nitrate as the cobalt source, respectively. The electrocatalytic activity of the sample was tested in an electrolyte solution of 0.1 M KOH and 1 M KOH. The experimental result indicated that the catalytic activity of the Co-MoS2 catalyst for HER and OER was remarkably enhanced compared to the pristine MoS2. The overpotential of OER and HER was reduced by approximately 200 mV and 130 mV in a 0.1 M KOH solution, respectively. Additionally, in the 1 M KOH electrolyte, the overpotentials of OER and HER were about 312 mV and 297 mV, respectively. Co-MoS2 with the Co(NO3)2 doping of 0.6 g (0.206 mol %) also exhibited excellent stability in 0.1 M KOH and 1 M KOH electrolytes. When the Co-MoS2 (Co(NO3)2-0.6 g, 0.343 mol %) electrode was used as both anode and cathode for overall water splitting in the 1 M KOH electrolyte, the current density of 10 mA cm-2 could be achieved with only 1.86 V and with a good stability. This work provides an alternative for bifunctional catalysts in overall water splitting.
Collapse
Affiliation(s)
- Wei Liu
- School
of Material Science and Engineering, Henan
University of Science and Technology, Luoyang 471003, China
- Henan
University of Science and Technology National Joint Engineering, Research Center for Abrasion Control and Molding of
Metal Materials, Luoyang 471023, China
| | - Linping Fu
- School
of Material Science and Engineering, Henan
University of Science and Technology, Luoyang 471003, China
- Henan
University of Science and Technology National Joint Engineering, Research Center for Abrasion Control and Molding of
Metal Materials, Luoyang 471023, China
| | - Shenshen Yang
- School
of Material Science and Engineering, Henan
University of Science and Technology, Luoyang 471003, China
- Henan
University of Science and Technology National Joint Engineering, Research Center for Abrasion Control and Molding of
Metal Materials, Luoyang 471023, China
| | - Yaozong Lu
- School
of Material Science and Engineering, Henan
University of Science and Technology, Luoyang 471003, China
- Henan
University of Science and Technology National Joint Engineering, Research Center for Abrasion Control and Molding of
Metal Materials, Luoyang 471023, China
| | - Ming Li
- School
of Material Science and Engineering, Henan
University of Science and Technology, Luoyang 471003, China
| | - Longhua Zhang
- School
of Material Science and Engineering, Henan
University of Science and Technology, Luoyang 471003, China
| | - Jiaqi Tang
- School
of Material Science and Engineering, Henan
University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
2
|
Zhao J, Han X, Li J, Han Z, Zhao X. Atomically Dispersed Catalytic Platinum Anti-Substitutions in Molybdenum Ditelluride. J Am Chem Soc 2025; 147:9825-9835. [PMID: 40043101 DOI: 10.1021/jacs.5c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Atomic defects, e.g., vacancies, substitutions, and dopants, play crucial roles in determining the functionalities of two-dimensional (2D) materials, including spin glass, single-photon emitters, and energy storage and conversion, due to the introduction of abnormal charge states and noncentrosymmetric distortion. In particular, anti-substitutions are regarded as promising topological defect types, in which substitution occurs at opposite charge sites, fundamentally modifying the atomic and electronic structures of pristine lattices. However, the fabrication of large-scale anti-substitutions remains challenging due to high formation energies and complex reaction paths. Here, we propose an approach for synthesizing atomically dispersed Pt anti-substitutions in defective 1T'-MoTe2 using the electrochemical exfoliation-assisted leaching-redeposition (EELR) method. Atomic-resolution scanning transmission electron microscopy (STEM) imaging reveals that Pt atoms substitute Te sites, forming unconventional Mo-Pt bonds. A rich variety of Pt anti-substitution configurations and Pt anti-substitutions coupling with Te vacancies have been fabricated by controlled electrochemical conditions. Density functional theory (DFT) calculations suggest that Pt atoms preferentially occupy the Te vacancy sites coupled with neighboring Te vacancies, stabilizing the anti-substitution configurations. The coupled Pt-Te defect complexes exhibit excellent hydrogen evolution reaction, with an overpotential of only 12.9 mV because the paired defect complexes cause charge redistribution and regulate the d-band center of the active sites as suggested by DFT. These findings introduce an effective approach for engineering atomically dispersed anti-substitutions in 2D materials, presenting new opportunities for the precise design of atomic features with targeted functionalities in catalytic and other advanced applications.
Collapse
Affiliation(s)
- Jun Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiaocang Han
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Junxian Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ziyi Han
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Li J, Ma Y, Mu X, Wang X, Li Y, Ma H, Guo Z. Recent Advances and Perspectives on Coupled Water Electrolysis for Energy-Saving Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411964. [PMID: 39777433 PMCID: PMC11831450 DOI: 10.1002/advs.202411964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Overall water splitting (OWS) to produce hydrogen has attracted large attention in recent years due to its ecological-friendliness and sustainability. However, the efficiency of OWS has been forced by the sluggish kinetics of the four-electron oxygen evolution reaction (OER). The replacement of OER by alternative electrooxidation of small molecules with more thermodynamically favorable potentials may fundamentally break the limitation and achieve hydrogen production with low energy consumption, which may also be accompanied by the production of more value-added chemicals than oxygen or by electrochemical degradation of pollutants. This review critically assesses the latest discoveries in the coupled electrooxidation of various small molecules with OWS, including alcohols, aldehydes, amides, urea, hydrazine, etc. Emphasis is placed on the corresponding electrocatalyst design and related reaction mechanisms (e.g., dual hydrogenation and N-N bond breaking of hydrazine and C═N bond regulation in urea splitting to inhibit hazardous NCO- and NO- productions, etc.), along with emerging alternative electrooxidation reactions (electrooxidation of tetrazoles, furazans, iodide, quinolines, ascorbic acid, sterol, trimethylamine, etc.). Some new decoupled electrolysis and self-powered systems are also discussed in detail. Finally, the potential challenges and prospects of coupled water electrolysis systems are highlighted to aid future research directions.
Collapse
Affiliation(s)
- Jiachen Li
- Department of ChemistryThe University of Hong KongHong Kong999077China
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
| | - Yuqiang Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
| | | | | | - Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical MaterialsSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
| | - Haixia Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
- Zhijian LaboratoryXi'an710025China
| | - Zhengxiao Guo
- Department of ChemistryThe University of Hong KongHong Kong999077China
| |
Collapse
|
4
|
Do VH, Lee JM. Transforming Adsorbate Surface Dynamics in Aqueous Electrocatalysis: Pathways to Unconstrained Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417516. [PMID: 39871686 DOI: 10.1002/adma.202417516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Indexed: 01/29/2025]
Abstract
Developing highly efficient catalysts to accelerate sluggish electrode reactions is critical for the deployment of sustainable aqueous electrochemical technologies, yet remains a great challenge. Rationally integrating functional components to tailor surface adsorption behaviors and adsorbate dynamics would divert reaction pathways and alleviate energy barriers, eliminating conventional thermodynamic constraints and ultimately optimizing energy flow within electrochemical systems. This approach has, therefore, garnered significant interest, presenting substantial potential for developing highly efficient catalysts that simultaneously enhance activity, selectivity, and stability. The immense promise and rapid evolution of this design strategy, however, do not overshadow the substantial challenges and ambiguities that persist, impeding the realization of significant breakthroughs in electrocatalyst development. This review explores the latest insights into the principles guiding the design of catalytic surfaces that enable favorable adsorbate dynamics within the contexts of hydrogen and oxygen electrochemistry. Innovative approaches for tailoring adsorbate-surface interactions are discussed, delving into underlying principles that govern these dynamics. Additionally, perspectives on the prevailing challenges are presented and future research directions are proposed. By evaluating the core principles and identifying critical research gaps, this review seeks to inspire rational electrocatalyst design, the discovery of novel reaction mechanisms and concepts, and ultimately, advance the large-scale implementation of electroconversion technologies.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| |
Collapse
|
5
|
Wen L, Chang Q, Zhang X, Li X, Zhong S, Zeng P, Shah SSA, Hu X, Cai W, Li Y. Tailoring the d-Band Center of WS 2 by Metal and Nonmetal Dual-Doping for Enhanced Electrocatalytic Nitrogen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407594. [PMID: 39344557 DOI: 10.1002/smll.202407594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Indexed: 10/01/2024]
Abstract
Tuning the adsorption energy of nitrogen intermediates and lowering the reaction energy barrier is essential to accelerate the kinetics of nitrogen reduction reaction (NRR), yet remains a great challenge. Herein, the electronic structure of WS2 is tailored based on a metal and nonmetal dual-doping strategy (denoted Fe, F-WS2) to lower the d-band center of W in order to optimize the adsorption of nitrogen intermediates. The obtained Fe, F-WS2 nanosheet catalyst presents a high Faradic efficiency (FE) of 22.42% with a NH3 yield rate of 91.46 µg h-1 mgcat. -1. The in situ characterizations and DFT simulations consistently show the enhanced activity is attributed to the downshift of the d-band center, which contributes to the rate-determining step of the second protonation to form N2H2 * key intermediates, thereby boosting the overall nitrogen electrocatalysis reaction kinetics. This work opens a new avenue to enhanced electrocatalysis by modulating the electronic structure and surrounding microenvironment of the catalytic metal centers.
Collapse
Affiliation(s)
- Lulu Wen
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Qingfang Chang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang, Henan, 453000, P. R. China
| | - Xilin Zhang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang, Henan, 453000, P. R. China
| | - Xinyang Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Shichuan Zhong
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Pan Zeng
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Xiaoye Hu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- School of Physical Science and Technology, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
6
|
Zhan X, Zhang L, Choi J, Tan X, Hong S, Wu T, Xiong P, Soo Y, Hao L, Li MM, Xu L, Robertson AW, Jung Y, Sun X, Sun Z. A Universal Synthesis of Single-Atom Catalysts via Operando Bond Formation Driven by Electricity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401814. [PMID: 39269738 PMCID: PMC11835128 DOI: 10.1002/advs.202401814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/04/2024] [Indexed: 09/15/2024]
Abstract
Single-atom catalysts (SACs), featuring highly uniform active sites, tunable coordination environments, and synergistic effects with support, have emerged as one of the most efficient catalysts for various reactions, particularly for electrochemical CO2 reduction (ECR). However, the scalability of SACs is restricted due to the limited choice of available support and problems that emerge when preparing SACs by thermal deposition. Here, an in situ reconstruction method for preparing SACs is developed with a variety of atomic sites, including nickel, cadmium, cobalt, and magnesium. Driven by electricity, different oxygen-containing metal precursors, such as MOF-74 and metal oxides, are directly atomized onto nitrogen-doped carbon (NC) supports, yielding SACs with variable metal active sites and coordination structures. The electrochemical force facilitates the in situ generation of bonds between the metal and the supports without the need for additional complex steps. A series of MNxOy (M denotes metal) SACs on NC have been synthesized and utilized for ECR. Among these, NiNxOy SACs using Ni-MOF-74 as a metal precursor exhibit excellent ECR performance. This universal and general SAC synthesis strategy at room temperature is simpler than most reported synthesis methods to date, providing practical guidance for the design of the next generation of high-performance SACs.
Collapse
Affiliation(s)
- Xinyu Zhan
- State Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Libing Zhang
- Institute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Junyoung Choi
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesInstitute of Engineering ResearchSeoul National UniversitySeoul08826Republic of Korea
| | - Xinyi Tan
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing Key Laboratory of Environmental Science and EngineeringBeijing100081China
| | - Song Hong
- State Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Tai‐Sing Wu
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Pei Xiong
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Yun‐Liang Soo
- Department of PhysicsNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Leiduan Hao
- State Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Molly Meng‐Jung Li
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Liang Xu
- State Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | | | - Yousung Jung
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesInstitute of Engineering ResearchSeoul National UniversitySeoul08826Republic of Korea
| | - Xiaofu Sun
- Institute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Zhenyu Sun
- State Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
7
|
Chen R, Liu G, Xia B, Liu T, Xia Y, Liu S, Talebian-Kiakalaieh A, Ran J. Unveiling the potential of MOF-based single-atom photocatalysts for the production of clean fuel and valuable chemical. Chem Commun (Camb) 2024; 60:10989-10999. [PMID: 39248681 DOI: 10.1039/d4cc03479a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Harnessing solar energy through photocatalysis has excellent potential for powering sustainable chemical production, supporting the United Nations' environmental goals. Single-atoms (SAs) dispersed on catalyst surfaces are gaining attention for their highly active and durable nature. Metal-organic frameworks (MOFs) can provide enough reactive sites to sustain selectivity and durability over time because of their tunable channels and functional groups. Owing to their organized structures, MOFs are ideal platforms for securing individual atoms and promoting solar-driven reactions. Few reviews have, however, reflected the possibility of combining MOFs and SAs to produce potent photocatalysts that may produce clean fuels and valuable chemicals. This review provides a general overview of methods for combining MOFs and SAs to generate photocatalysts. The challenges associated with these MOF-based single-atom systems are also critically examined. Their future development is discussed as continued refinement helps to more fully leverage their advantages for boosting photocatalytic performances - turning sunlight into chemicals in a manner that supports sustainable development. Insights gained here could illuminate pathways toward realizing the profound potential of MOF-based single-atom photocatalysts to empower production driven by renewable solar energy.
Collapse
Affiliation(s)
- Rundong Chen
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, P. R. China.
| | - Gaoxiong Liu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, P. R. China.
| | - Bingquan Xia
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, P. R. China.
| | - Teng Liu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, P. R. China
| | - Yang Xia
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, P. R. China
| | - Shantang Liu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, P. R. China.
| | | | - Jingrun Ran
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
8
|
Quintal J, McGuire C, Shi T, Huang WH, Chow D, Hung CK, Jiang DT, Hwang BJ, Chen A. Substrate-Assisted Atomic Dispersion of Cobalt for Alkaline Water Electrolysis. J Phys Chem Lett 2024; 15:9208-9215. [PMID: 39225476 DOI: 10.1021/acs.jpclett.4c02297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Atomically dispersed single-atom catalysts have recently attracted broad research interest due to their high atom efficiency and unique catalytic performance. In this study, atomic dispersion of cobalt is achieved using a chemical bath deposition method on a highly stable alkali titanate film (Ti/KTiO). These films were characterized using a variety of techniques, with atomic dispersion confirmed via grazing incidence X-ray absorption spectroscopy and ab initio modeling of single-atom systems. This modeling indicated that the alkali ion incorporated into the film facilitates atomic dispersion. Experimentally, the Ti/KTiO-supported Co(OH)2 catalysts exhibited remarkable electrochemical performance, with an overpotential of 163 mV to achieve a current density of 10 mA cm-2 with a catalyst loading of ∼0.1 mg cm-2 and high stability. These results show the potential of Ti/KTiO/Co(OH)2 catalysts for atomically efficient hydrogen production.
Collapse
Affiliation(s)
- Jonathan Quintal
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Cameron McGuire
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Tony Shi
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Darren Chow
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Chi-Kai Hung
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - De-Tong Jiang
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Bing Joe Hwang
- Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, No. 43 Keelung Road, Section 4, Da'an District, Taipei City 106335, Taiwan
| | - Aicheng Chen
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
9
|
Zhu S, Wang ZJ, Chen Y, Lu T, Li J, Wang J, Jin H, Lv JJ, Wang X, Wang S. Recent Progress Toward Electrocatalytic Conversion of Nitrobenzene. SMALL METHODS 2024; 8:e2301307. [PMID: 38088567 DOI: 10.1002/smtd.202301307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/04/2023] [Indexed: 08/18/2024]
Abstract
Despite that extensive efforts have been dedicated to the search for advanced catalysts to boost the electrocatalytic nitrobenzene reduction reaction (eNBRR), its progress is severely hampered by the limited understanding of the relationship between catalyst structure and its catalytic performance. Herein, this review aims to bridge such a gap by first analyzing the eNBRR pathway to present the main influential factors, such as electrolyte feature, applied potential, and catalyst structure. Then, the recent advancements in catalyst design for eNBRR are comprehensively summarized, particularly about the impacts of chemical composition, morphology, and crystal facets on regulating the local microenvironment, electron and mass transport for boosting catalytic performance. Finally, the future research of eNBRR is also proposed from the perspectives of performance enhancement, expansion of product scope, in-depth understanding of the reaction mechanism, and acceleration of the industrialization process through the integration of upstream and downstream technologies.
Collapse
Affiliation(s)
- Shaojun Zhu
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Zheng-Jun Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Yihuang Chen
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Tianrui Lu
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jun Li
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jichang Wang
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, N9B3P4, Canada
| | - Huile Jin
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jing-Jing Lv
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Shun Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
10
|
Wang P, Zheng J, Xu X, Zhang YQ, Shi QF, Wan Y, Ramakrishna S, Zhang J, Zhu L, Yokoshima T, Yamauchi Y, Long YZ. Unlocking Efficient Hydrogen Production: Nucleophilic Oxidation Reactions Coupled with Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404806. [PMID: 38857437 DOI: 10.1002/adma.202404806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/19/2024] [Indexed: 06/12/2024]
Abstract
Electrocatalytic water splitting driven by sustainable energy is a clean and promising water-chemical fuel conversion technology for the production of high-purity green hydrogen. However, the sluggish kinetics of anodic oxygen evolution reaction (OER) pose challenges for large-scale hydrogen production, limiting its efficiency and safety. Recently, the anodic OER has been replaced by a nucleophilic oxidation reaction (NOR) with biomass as the substrate and coupled with a hydrogen evolution reaction (HER), which has attracted great interest. Anode NOR offers faster kinetics, generates high-value products, and reduces energy consumption. By coupling NOR with hydrogen evolution reaction, hydrogen production efficiency can be enhanced while yielding high-value oxidation products or degrading pollutants. Therefore, NOR-coupled HER hydrogen production is another new green electrolytic hydrogen production strategy after electrolytic water hydrogen production, which is of great significance for realizing sustainable energy development and global decarbonization. This review explores the potential of nucleophilic oxidation reactions as an alternative to OER and delves into NOR mechanisms, guiding future research in NOR-coupled hydrogen production. It assesses different NOR-coupled production methods, analyzing reaction pathways and catalyst effects. Furthermore, it evaluates the role of electrolyzers in industrialized NOR-coupled hydrogen production and discusses future prospects and challenges. This comprehensive review aims to advance efficient and economical large-scale hydrogen production.
Collapse
Affiliation(s)
- Peng Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Xue Xu
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Yu-Qing Zhang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Qiao-Fu Shi
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Yong Wan
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Jun Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Liyang Zhu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Tokihiko Yokoshima
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Yun-Ze Long
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
11
|
Timoshenko J, Rettenmaier C, Hursán D, Rüscher M, Ortega E, Herzog A, Wagner T, Bergmann A, Hejral U, Yoon A, Martini A, Liberra E, Monteiro MCDO, Cuenya BR. Reversible metal cluster formation on Nitrogen-doped carbon controlling electrocatalyst particle size with subnanometer accuracy. Nat Commun 2024; 15:6111. [PMID: 39030207 PMCID: PMC11271611 DOI: 10.1038/s41467-024-50379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
Copper and nitrogen co-doped carbon catalysts exhibit a remarkable behavior during the electrocatalytic CO2 reduction (CO2RR), namely, the formation of metal nanoparticles from Cu single atoms, and their subsequent reversible redispersion. Here we show that the switchable nature of these species holds the key for the on-demand control over the distribution of CO2RR products, a lack of which has thus far hindered the wide-spread practical adoption of CO2RR. By intermitting pulses of a working cathodic potential with pulses of anodic potential, we were able to achieve a controlled fragmentation of the Cu particles and partial regeneration of single atom sites. By tuning the pulse durations, and by tracking the catalyst's evolution using operando quick X-ray absorption spectroscopy, the speciation of the catalyst can be steered toward single atom sites, ultrasmall metal clusters or large metal nanoparticles, each exhibiting unique CO2RR functionalities.
Collapse
Affiliation(s)
- Janis Timoshenko
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany.
| | - Clara Rettenmaier
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Dorottya Hursán
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Martina Rüscher
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Eduardo Ortega
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Antonia Herzog
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Timon Wagner
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Arno Bergmann
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Uta Hejral
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Aram Yoon
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Andrea Martini
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Eric Liberra
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | | | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany.
| |
Collapse
|
12
|
Chen Y, Xu J, Chen Y, Wang L, Jiang S, Xie ZH, Zhang T, Munroe P, Peng S. Rapid Defect Engineering in FeCoNi/FeAl 2O 4 Hybrid for Enhanced Oxygen Evolution Catalysis: A Pathway to High-Performance Electrocatalysts. Angew Chem Int Ed Engl 2024; 63:e202405372. [PMID: 38659283 DOI: 10.1002/anie.202405372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Rational modulation of surface reconstruction in the oxygen evolution reaction (OER) utilizing defect engineering to form efficient catalytic activity centers is a topical interest in the field of catalysis. The introduction of point defects has been demonstrated to be an effective strategy to regulate the electronic configuration of electrocatalysts, but the influence of more complex planar defects (e.g., twins and stacking faults), on their intrinsic activity is still not fully understood. This study harnesses ultrasonic cavitation for rapid and controlled introduction of different types of defects in the FeCoNi/FeAl2O4 hybrid coating, optimizing OER catalytic activity. Theoretical calculations and experiments demonstrate that the different defects optimize the coordination environment and facilitate the activation of surface reconstruction into true catalytic activity centers at lower potentials. Moreover, it demonstrates exceptional durability, maintaining stable oxygen production at a high current density of 300 mA cm-2 for over 120 hours. This work not only presents a novel pathway for designing advanced electrocatalysts but also deepens our understanding of defect-engineered catalytic mechanisms, showcasing the potential for rapid and efficient enhancement of electrocatalytic performance.
Collapse
Affiliation(s)
- Yuhao Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jiang Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yujie Chen
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA-5005, Australia
| | - Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shuyun Jiang
- Department of Mechanical Engineering, Southeast University, 2 Si Pai Lou, Nanjing, 210096, PR China
| | - Zong-Han Xie
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA-5005, Australia
| | - Tianran Zhang
- College of Material Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing, PR China
| | - Paul Munroe
- School of Materials Science and Engineering, University of New South Wales, NSW, 2052, Australia
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
13
|
Xiao Y, Feng K, Dawson G, Tolstoy VP, An X, Li C, He L. A feasible interlayer strategy for simultaneous light and heat management in photothermal catalysis. iScience 2024; 27:109792. [PMID: 38784020 PMCID: PMC11112341 DOI: 10.1016/j.isci.2024.109792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Photothermal conversion represents one crucial approach for solar energy harvesting and its exploitation as a sustainable alternative to fossil fuels; however, an efficient, cost-effective, and generalized approach to enhance the photothermal conversion processes is still missing. Herein, we develop a feasible and efficient photothermal conversion strategy that achieves simultaneous light and heat management using supported metal clusters and WSe2 interlayer toward enhanced CO2 hydrogenation photothermal catalysis. The interlayer can simultaneously reduce heat loss in the catalytic layer and improve light absorption, leading to an 8-fold higher CO2 conversion rate than the controls. The optical and thermal performance of WSe2 interlayered catalysts on different substrates was quantified using Raman spectroscopy. This work demonstrates a feasible and generalized approach for effective light and heat management in solar harvesting. It also provides important design guidelines for efficient photothermal converters that facilitate the remediation of the energy and environmental crises faced by humans.
Collapse
Affiliation(s)
- Yi Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Kai Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Graham Dawson
- Department of Chemistry, Xi’an Jiaotong Liverpool University, Suzhou, Jiangsu 215123, P.R. China
| | - Valeri P. Tolstoy
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
14
|
Huang JF, Hsieh WJ, Chen JL. Carbon-Promoted Pt-Single Atoms Anchored on RuO 2 Nanorods to Boost Electrochemical Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27504-27510. [PMID: 38758608 PMCID: PMC11145582 DOI: 10.1021/acsami.4c06033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
While efficient for electrochemical hydrogen evolution reaction (HER), Pt is limited by its cost and rarity. Traditional Pt catalysts and Pt single-atom (aPt) catalysts (Pt-SACs) face challenges in maintaining kinetically favorable HER pathways (Volmer-Tafel) at ultralow Pt loadings. Herein, carbon-promoted aPts were deposited on RuO2 without the addition of reductants. aPts confined on carbon-supported RuO2 nanorods (aPt/RuO2NR/Carbon) promoted "inter-aPts" Tafel. aPt/RuO2NR/Carbon is the Pt-SAC that retained underpotentially deposited H; additionally, its HER onset overpotential was "negative". The aPt/RuO2NR/Carbon exhibited 260-fold higher Pt mass activity (imPt)/turnover frequency (TOF) (522.7 A mg-1/528.4 s-1) than that of commercial Pt/C (1.9 A mg-1/1.9 s-1). In an ultralow Pt loading (0.19 μg cm-2), the HER rate-determining step maintained Volmer-Tafel and the Pt utilization efficiency was 100.3%.
Collapse
Affiliation(s)
- Jing-Fang Huang
- A
Department of Chemistry, National Chung
Hsing University, Taichung 402, Taiwan (R.O.C)
| | - Wen-Jun Hsieh
- A
Department of Chemistry, National Chung
Hsing University, Taichung 402, Taiwan (R.O.C)
| | - Jeng-Lung Chen
- National
Synchrotron Radiation Research Center, Science-Based
Industrial Park, Hsinchu30076, Taiwan (R.O.C)
| |
Collapse
|
15
|
Ren Y, Wang J, Zhang M, Wang Y, Cao Y, Kim DH, Liu Y, Lin Z. Strategies Toward High Selectivity, Activity, and Stability of Single-Atom Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308213. [PMID: 38183335 DOI: 10.1002/smll.202308213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Indexed: 01/08/2024]
Abstract
Single-atom catalysts (SACs) hold immense promise in facilitating the rational use of metal resources and achieving atomic economy due to their exceptional atom-utilization efficiency and distinct characteristics. Despite the growing interest in SACs, only limited reviews have holistically summarized their advancements centering on performance metrics. In this review, first, a thorough overview on the research progress in SACs is presented from a performance perspective and the strategies, advancements, and intriguing approaches employed to enhance the critical attributes in SACs are discussed. Subsequently, a comprehensive summary and critical analysis of the electrochemical applications of SACs are provided, with a particular focus on their efficacy in the oxygen reduction reaction , oxygen evolution reaction, hydrogen evolution reaction , CO2 reduction reaction, and N2 reduction reaction . Finally, the outline future research directions on SACs by concentrating on performance-driven investigation, where potential areas for improvement are identified and promising avenues for further study are highlighted, addressing challenges to unlock the full potential of SACs as high-performance catalysts.
Collapse
Affiliation(s)
- Yujing Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jinyong Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuqing Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuan Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Dong Ha Kim
- Department of Chemistry and NanoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Department of Chemistry and NanoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| |
Collapse
|
16
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
17
|
Liao M, Shen H, Lin X, Li Z, Zhu M, Liu K, Zhou S, Dai J, Huang Y. Interfacial engineering of POM-stabilized Ni quantum dots on porous titanium mesh for high-rate and stable alkaline hydrogen production. Dalton Trans 2024; 53:5084-5088. [PMID: 38375913 DOI: 10.1039/d3dt03917j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The development of low-cost, high-efficiency, and stable electrocatalysts for the alkaline hydrogen evolution reaction (HER) is a key challenge because the alkaline HER kinetics is slowed by an additional water dissociation step. Herein, we report an interfacial engineering strategy for polyoxometalate (POM)-stabilized nickel (Ni) quantum dots decorated on the surface of porous titanium mesh (POMs-Ni@PTM) for high-rate and stable alkaline hydrogen production. Benefiting from the strong interfacial interactions among POMs, Ni atoms, and PTM substrates, as well as unique POM-Ni quantum dot structures, the optimized POMs-Ni@PTM electrocatalyst exhibits a remarkable alkaline HER performance with an overpotential (η10) of 30.1 mV to reach a current density of 10 mA cm-2, which is much better than those of bare Ni decorated porous titanium mesh (Ni@PTM) (η10 = 171.1 mV) and POM decorated porous titanium mesh (POMs@PTM) electrocatalysts (η10 = 493.6 mV), comparable to that of the commercial 20 wt% platinum/carbon (20% Pt/C) electrocatalyst (η10 = 20 mV). Moreover, the optimized POMs-Ni@PTM electrocatalyst demonstrates excellent stability under continuous alkaline water-splitting at a current density of ∼100 mA cm-2 for 100 h, demonstrating great potential for its practical application.
Collapse
Affiliation(s)
- Meihong Liao
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Huawei Shen
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
| | - Xiaorui Lin
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Zhengji Li
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Muzi Zhu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
| | - Kefei Liu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
| | - Shuaishuai Zhou
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Jingjie Dai
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Yichao Huang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
| |
Collapse
|
18
|
Wang S, Lu M, Xia X, Wang F, Xiong X, Ding K, Pang Z, Li G, Xu Q, Hsu HY, Hu S, Ji L, Zhao Y, Wang J, Zou X, Lu X. A universal and scalable transformation of bulk metals into single-atom catalysts in ionic liquids. Proc Natl Acad Sci U S A 2024; 121:e2319136121. [PMID: 38408257 PMCID: PMC10927526 DOI: 10.1073/pnas.2319136121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Single-atom catalysts (SACs) with maximized metal atom utilization and intriguing properties are of utmost importance for energy conversion and catalysis science. However, the lack of a straightforward and scalable synthesis strategy of SACs on diverse support materials remains the bottleneck for their large-scale industrial applications. Herein, we report a general approach to directly transform bulk metals into single atoms through the precise control of the electrodissolution-electrodeposition kinetics in ionic liquids and demonstrate the successful applicability of up to twenty different monometallic SACs and one multimetallic SAC with five distinct elements. As a case study, the atomically dispersed Pt was electrodeposited onto Ni3N/Ni-Co-graphene oxide heterostructures in varied scales (up to 5 cm × 5 cm) as bifunctional catalysts with the electronic metal-support interaction, which exhibits low overpotentials at 10 mA cm-2 for hydrogen evolution reaction (HER, 30 mV) and oxygen evolution reaction (OER, 263 mV) with a relatively low Pt loading (0.98 wt%). This work provides a simple and practical route for large-scale synthesis of various SACs with favorable catalytic properties on diversified supports using alternative ionic liquids and inspires the methodology on precise synthesis of multimetallic single-atom materials with tunable compositions.
Collapse
Affiliation(s)
- Shujuan Wang
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai201800, China
| | - Minghui Lu
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Xuewen Xia
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Fei Wang
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Xiaolu Xiong
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai201800, China
| | - Kai Ding
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Zhongya Pang
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Guangshi Li
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Qian Xu
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Hsien-Yi Hsu
- Department of Materials Science and Engineering, School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Shen Hu
- School of Microelectronics, Fudan University, Shanghai200433, China
| | - Li Ji
- School of Microelectronics, Fudan University, Shanghai200433, China
| | - Yufeng Zhao
- Institute of Sustainable Energy, College of Sciences, Shanghai University, Shanghai200444, China
| | - Jing Wang
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao066000, China
| | - Xingli Zou
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Xionggang Lu
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| |
Collapse
|
19
|
Cai M, Li C, An X, Zhong B, Zhou Y, Feng K, Wang S, Zhang C, Xiao M, Wu Z, He J, Wu C, Shen J, Zhu Z, Feng K, Zhong J, He L. Supra-Photothermal CO 2 Methanation over Greenhouse-Like Plasmonic Superstructures of Ultrasmall Cobalt Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308859. [PMID: 37931240 DOI: 10.1002/adma.202308859] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Improving the solar-to-thermal energy conversion efficiency of photothermal nanomaterials at no expense of other physicochemical properties, e.g., the catalytic reactivity of metal nanoparticles, is highly desired for diverse applications but remains a big challenge. Herein, a synergistic strategy is developed for enhanced photothermal conversion by a greenhouse-like plasmonic superstructure of 4 nm cobalt nanoparticles while maintaining their intrinsic catalytic reactivity. The silica shell plays a key role in retaining the plasmonic superstructures for efficient use of the full solar spectrum, and reducing the heat loss of cobalt nanoparticles via the nano-greenhouse effect. The optimized plasmonic superstructure catalyst exhibits supra-photothermal CO2 methanation performance with a record-high rate of 2.3 mol gCo -1 h-1 , close to 100% CH4 selectivity, and desirable catalytic stability. This work reveals the great potential of nanoscale greenhouse effect in enhancing photothermal conversions through the combination with conventional promoting strategies, shedding light on the design of efficient photothermal nanomaterials for demanding applications.
Collapse
Affiliation(s)
- Mujin Cai
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Biqing Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Yuxuan Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Kun Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Shenghua Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Chengcheng Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Mengqi Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Zhiyi Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Jiari He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Chunpeng Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Jiahui Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Zhijie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Kai Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jun Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
20
|
Tan X, Zhang J, Cao F, Liu Y, Yang H, Zhou Q, Li X, Wang R, Li Z, Hu H, Zhao Q, Wu M. Salt Effect Engineering Single Fe-N 2P 2-Cl Sites on Interlinked Porous Carbon Nanosheets for Superior Oxygen Reduction Reaction and Zn-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306599. [PMID: 38224212 PMCID: PMC10966546 DOI: 10.1002/advs.202306599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/04/2023] [Indexed: 01/16/2024]
Abstract
Developing efficient metal-nitrogen-carbon (M-N-C) single-atom catalysts for oxygen reduction reaction (ORR) is significant for the widespread implementation of Zn-air batteries, while the synergic design of the matrix microstructure and coordination environment of metal centers remains challenges. Herein, a novel salt effect-induced strategy is proposed to engineer N and P coordinated atomically dispersed Fe atoms with extra-axial Cl on interlinked porous carbon nanosheets, achieving a superior single-atom Fe catalyst (denoted as Fe-NP-Cl-C) for ORR and Zn-air batteries. The hierarchical porous nanosheet architecture can provide rapid mass/electron transfer channels and facilitate the exposure of active sites. Experiments and density functional theory (DFT) calculations reveal the distinctive Fe-N2P2-Cl active sites afford significantly reduced energy barriers and promoted reaction kinetics for ORR. Consequently, the Fe-NP-Cl-C catalyst exhibits distinguished ORR performance with a half-wave potential (E1/2) of 0.92 V and excellent stability. Remarkably, the assembled Zn-air battery based on Fe-NP-Cl-C delivers an extremely high peak power density of 260 mW cm-2 and a large specific capacity of 812 mA h g-1, outperforming the commercial Pt/C and most reported congeneric catalysts. This study offers a new perspective on structural optimization and coordination engineering of single-atom catalysts for efficient oxygen electrocatalysis and energy conversion devices.
Collapse
Affiliation(s)
- Xiaojie Tan
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Jinqiang Zhang
- School of Chemical Engineering and Advanced MaterialsThe University of AdelaideAdelaideSA5005Australia
| | - Fengliang Cao
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Yachao Liu
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Hao Yang
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Qiang Zhou
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Xudong Li
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Rui Wang
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Zhongtao Li
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Han Hu
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Qingshan Zhao
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| |
Collapse
|
21
|
Yuan J, Zou J, Wu Z, Wang Z, Yang Z, Xu H. Bifunctional electrocatalytic reduction performance of nitrogen containing biomass based nanoreactors loaded with Ni nanoparticles for oxygen and carbon dioxide. NANOTECHNOLOGY 2024; 35:175402. [PMID: 37832530 DOI: 10.1088/1361-6528/ad0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
In the face of increasing energy demand, the approach of transformation that combines energy restructuring and environmental governance has become a popular research direction. As an important part of electrocatalytic reactions for gas molecules, reduction reactions of oxygen (ORR) and carbon dioxide (CO2RR) are very indispensable in the field of energy conversion and storage. However, the non-interchangeability and irreversibility of electrode materials have always been a challenge in electrocatalysis. Hereon, nickel and nitrogen decorated biomass carbon-based materials (Ni/N-BC) has been prepared by high temperature pyrolysis using agricultural waste straw as raw material. Surprisingly, it possesses abundant active sites and specific surface area as a bifunctional electrocatalyst for ORR and CO2RR. The three-dimensional porous cavity structure for the framework of biomass could not only provide a strong anchoring foundation for the active site, but also facilitate the transport and enrichment of reactants around the site. In addition, temperature modulation during the preparation process also optimizes the composition and structure of biomass carbon and nitrogen. Benefit from above structure and morphology advantages, Ni/N-BC-800 exhibits the superior electrocatalytic activity for both ORR and CO2RR simultaneously. More specifically, Ni/N-BC-800 exhibits satisfactory ORR activity in terms of initial potential and half wave potential, while also enables the production of CO under high selective. The research results provide ideas for the development and design of electrode materials and green electrocatalysts, and also expand new applications of agricultural waste in fields such as energy conversion, environmental protection, and resource utilization.
Collapse
Affiliation(s)
- Junjie Yuan
- School of Agricultural Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Jiayi Zou
- School of Agricultural Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Zhongqiu Wu
- School of Agricultural Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Zhaolong Wang
- School of Agricultural Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Zongli Yang
- School of Agricultural Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Hui Xu
- School of Agricultural Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| |
Collapse
|
22
|
Zhong B, Cai M, Liu S, He J, Wang J, Feng K, Tolstoy VP, Jiang L, Li C, An X, He L. Modulation of the Structure-function Relationship of the "nano-greenhouse effect" towards Optimized Supra-photothermal Catalysis. Chem Asian J 2023:e202301077. [PMID: 38153206 DOI: 10.1002/asia.202301077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 12/29/2023]
Abstract
Photothermal catalytic CO2 hydrogenation holds great promise for relieving the global environment and energy crises. The "nano-greenhouse effect" has been recognized as a crucial strategy for improving the heat management capabilities of a photothermal catalyst by ameliorating the convective and radiative heat losses. Yet it remains unclear to what degree the respective heat transfer and mass transport efficiencies depend on the specific structures. Herein, the structure-function relationship of the "nano-greenhouse effect" was investigated and optimized in a prototypical Ni@SiO2 core-shell catalyst towards photothermal CO2 catalysis. Experimental and theoretical results indicate that modulation of the thickness and porosity of the SiO2 nanoshell leads to variations in both heat preservation and mass transport properties. This work deepens the understandings on the contributing factor of the "nano-greenhouse effect" towards enhanced photothermal conversion. It also provides insights on the design principles of an ideal photothermal catalyst in balancing heat management and mass transport processes.
Collapse
Affiliation(s)
- Biqing Zhong
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123, Jiangsu
| | - Mujin Cai
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123, Jiangsu
| | - Shuang Liu
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123, Jiangsu
| | - Jiari He
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123, Jiangsu
| | - Jiaqi Wang
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123, Jiangsu
| | - Kai Feng
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123, Jiangsu
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123, Jiangsu
| | - Valeri P Tolstoy
- Saint-Petersburg State University, Institute of Chemistry, Saint Petersburg State University, St. Petersburg, 199034, Russia
| | - Lin Jiang
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123, Jiangsu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123, Jiangsu
| | - Chaoran Li
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123, Jiangsu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123, Jiangsu
| | - Xingda An
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123, Jiangsu
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123, Jiangsu
| | - Le He
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123, Jiangsu
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123, Jiangsu
| |
Collapse
|
23
|
Zhang Y, Han S, Zhu S, Chen R, Li T, Lyu Z, Zhao M, Gu M, Shao M, Xia Y. Slowly Removing Surface Ligand by Aging Enhances the Stability of Pd Nanosheets toward Electron Beam Irradiation and Electrocatalysis. Angew Chem Int Ed Engl 2023; 62:e202314634. [PMID: 37955915 DOI: 10.1002/anie.202314634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Surface ligands play an important role in shape-controlled growth and stabilization of colloidal nanocrystals. Their quick removal tends to cause structural deformation and/or aggregation to the nanocrystals. Herein, we demonstrate that the surface ligand based on poly(vinylpyrrolidone) (PVP) can be slowly removed from Pd nanosheets (NSs, 0.93±0.17 nm in thickness) by simply aging the colloidal suspension. The aged Pd NSs show well-preserved morphology, together with significantly enhanced stability toward both e-beam irradiation and electrocatalysis (e.g., ethanol oxidation). It is revealed that the slow desorption of PVP during aging forces the re-exposed Pd atoms to reorganize, facilitating the surface to transform from being nearly perfect to defect-rich. The resultant Pd NSs with abundant defects no longer rely on surface ligand to stabilize the atomic arrangement and thus show excellent structural and electrochemical stability. This work provides a facile and effective method to maintain the integrity of colloidal nanocrystals by slowly removing the surface ligand.
Collapse
Affiliation(s)
- Yu Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, 30332, Atlanta, GA, USA
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Shaobo Han
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, P. R. China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 30332, Atlanta, GA, USA
| | - Tiehuai Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 30332, Atlanta, GA, USA
| | - Ming Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 30332, Atlanta, GA, USA
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, P. R. China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, 30332, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 30332, Atlanta, GA, USA
| |
Collapse
|
24
|
Lv YK, Wang K, Sun WY, Peng P, Zang SQ. A Universal Electrochemical Synthetic Strategy for the Direct Assembly of Single-Atom Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304656. [PMID: 37828584 DOI: 10.1002/advs.202304656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Indexed: 10/14/2023]
Abstract
Single-atom catalysts (SACs) have been one of the frontiers in the field of catalysis in recent years owing to their high atomic utilization and unique electronic structure. To facilitate the practical application of single-atom, it is vital to develop a sustainable, facile single-atom preparation method with mass production potential. Herein, a universal one-step electrochemical synthesis strategy is proposed, and various metal-organic framework-supported SACs (including Pt, Au, Ir, Pd, Ru, Mo, Rh, and W) are straightforwardly obtained by simply replacing the guest metal precursors. As a proof-of-concept, the electrosynthetic Pt-based catalysts exhibit outstanding activity and stability in the electrocatalytic hydrogen evolution reaction (HER). This study not only enriches the single-atom synthesis methodology, but also extends the scenario of electrochemical synthesis, opening up new avenues for the design of advanced electro-synthesized catalysts.
Collapse
Affiliation(s)
- Ya-Kun Lv
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Kun Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Wen-Yan Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Peng Peng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
25
|
Chen B, Sui S, He F, He C, Cheng HM, Qiao SZ, Hu W, Zhao N. Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications. Chem Soc Rev 2023; 52:7802-7847. [PMID: 37869994 DOI: 10.1039/d3cs00445g] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
To support the global goal of carbon neutrality, numerous efforts have been devoted to the advancement of electrochemical energy conversion (EEC) and electrochemical energy storage (EES) technologies. For these technologies, transition metal dichalcogenide/carbon (TMDC/C) heterostructures have emerged as promising candidates for both electrode materials and electrocatalysts over the past decade, due to their complementary advantages. It is worth noting that interfacial properties play a crucial role in establishing the overall electrochemical characteristics of TMDC/C heterostructures. However, despite the significant scientific contribution in this area, a systematic understanding of TMDC/C heterostructures' interfacial engineering is currently lacking. This literature review aims to focus on three types of interfacial engineering, namely interfacial orientation engineering, interfacial stacking engineering, and interfacial doping engineering, of TMDC/C heterostructures for their potential applications in EES and EEC devices. To accomplish this goal, a combination of experimental and theoretical approaches was used to allow the analysis and summary of the fundamental electrochemical properties and preparation strategies of TMDC/C heterostructures. Moreover, this review highlights the design and utilization of the interfacial engineering of TMDC/C heterostructures for specific EES and EEC devices. Finally, the challenges and opportunities of using interfacial engineering of TMDC/C heterostructures in practical EES and EEC devices are outlined. We expect that this review will effectively guide readers in their understanding, design, and application of interfacial engineering of TMDC/C heterostructures.
Collapse
Affiliation(s)
- Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
| | - Simi Sui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Fang He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, People's Republic of China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, People's Republic of China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
| |
Collapse
|
26
|
Jiang H, Sun Y, You B. Dynamic Electrodeposition on Bubbles: An Effective Strategy toward Porous Electrocatalysts for Green Hydrogen Cycling. Acc Chem Res 2023. [PMID: 37229761 DOI: 10.1021/acs.accounts.3c00059] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ConspectusClosed-loop cycling of green hydrogen is a promising alternative to the current hydrocarbon economy for mitigating the energy crisis and environmental pollution. It stores energy from renewable energy sources like solar, wind, and hydropower into the chemical bond of dihydrogen (H2) via (photo)electrochemical water splitting, and then the stored energy can be released on demand through the reverse reactions in H2-O2 fuel cells. The sluggish kinetics of the involved half-reactions like hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), and oxygen reduction reaction (ORR) limit its realization. Moreover, considering the local gas-liquid-solid triphase microenvironments during H2 generation and utilization, rapid mass transport and gas diffusion are critical as well. Accordingly, developing cost-effective and active electrocatalysts featuring three-dimensional hierarchically porous structures are highly desirable to promote the energy conversion efficiency. Traditionally, the synthetic approaches of porous materials include soft/hard templating, sol-gel, 3D printing, dealloying, and freeze-drying, which often need tedious procedures, high temperature, expensive equipment, and/or harsh physiochemical conditions. In contrast, dynamic electrodeposition on bubbles using the in situ formed bubbles as templates can be conducted at ambient conditions with an electrochemical workstation. Moreover, the whole preparation process can be finished within minutes/hours, and the resulting porous materials can be employed as catalytic electrodes directly, avoiding the use of polymeric binders like Nafion and the consequent issues like limited catalyst loading, reduced conductivity, and inhibited mass transport.In this Account, we summarize our contributions to the dynamic electrodeposition on bubbles toward advanced porous electrocatalysts for green hydrogen cycling. These dynamic electrosynthesis strategies include potentiodynamic electrodeposition that linearly scans the applied potentials, galvanostatic electrodeposition that fixes the applied currents, and electroshock which quickly switches the applied potentials. The resulting porous electrocatalysts range from transition metals to alloys, nitrides, sulfides, phosphides, and their hybrids. We mainly focus on the 3D porosity design of the electrocatalysts by tuning the electrosynthesis parameters to tailor the behaviors of bubble co-generation and thus the reaction interface. Then, their electrocatalytic applications for HER, OER, overall water splitting (OWS), biomass oxidation (to replace OER), and HOR are introduced, with a special emphasis on the porosity-promoted activity. Finally, the remaining challenges and future perspective are also discussed. We hope this Account will encourage more efforts into this attractive research field of dynamic electrodeposition on bubbles for various energy catalytic reactions like carbon dioxide/monoxide reduction, nitrate reduction, methane oxidation, chlorine evolution, and others.
Collapse
Affiliation(s)
- Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry, and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry, and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|