1
|
Kim G, Lee J, Seok H, Kang T, Lee M, Choi H, Son S, Cho J, Lee D, Son S, Hwang H, Shin H, Han S, Woo G, Ollier A, Kim YJ, Fang L, Lee S, Han G, Jung GE, Lee Y, Kim HU, Park J, Heinrich A, Jang WJ, Kwon SJ, Kim T. Stochastically Broken Inversion Symmetry of Van der Waals Topological Insulator for Nanoscale Physically Unclonable Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419927. [PMID: 39967349 DOI: 10.1002/adma.202419927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/21/2025] [Indexed: 02/20/2025]
Abstract
Owing to the exotic state of quantum matter, topological insulators have emerged as a significant platform for new-generation functional devices. Among these topological insulators, tetradymites have received significant attention because of their van der Waals (vdW) structures and inversion symmetries. Although this inversion symmetry completely blocks exotic quantum phenomena, it should be broken down to facilitate versatile topological functionalities. Recently, a Janus structure is suggested for asymmetric out-of-plane lattice structures, terminating the heterogeneous atoms at two sides of the vdW structure. However, the synthesis of Janus structures has not been achieved commercially because of the imprecise control of the layer-by-layer growth, high-temperature synthesis, and low yield. To overcome these limitations, plasma sulfurization of vdW topological insulators has been presented, enabling stochastic inversion asymmetry. To take practical advantage of the random lattice distortion, physically unclonable functions (PUFs) have been suggested as applications of vdW Janus topological insulators. The sulfur dominance is experimentally demonstrated via X-ray photoelectron spectroscopy, hysteresis variation, cross-sectional transmission electron microscopy, and adhesion energy variation. In conclusion, it is envisioned that the vdW Janus topological insulators can provide an extendable encryption platform for randomized lattice distortion, offering on-demand stochastic inversion asymmetry via a single-step plasma sulfurization.
Collapse
Affiliation(s)
- Gunhyoung Kim
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jinhyoung Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, South Korea
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, South Korea
| | - Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Taewoo Kang
- School of Chemical Engineering, Sungkyunkwan University, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Minyoung Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul, 08826, South Korea
| | - Hyunbin Choi
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Sihoon Son
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jinill Cho
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, South Korea
| | - Dongho Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, South Korea
| | - Seowoo Son
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hosin Hwang
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hyelim Shin
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Sujeong Han
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Gunhoo Woo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Alexina Ollier
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul, 03760, South Korea
| | - Yeon-Ji Kim
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul, 03760, South Korea
| | - Lei Fang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, South Korea
| | - Seunghwan Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, South Korea
| | - Gyuho Han
- Park Systems Corporation, 109, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, South Korea
| | - Goo-Eun Jung
- Park Systems Corporation, 109, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, South Korea
| | - Youngi Lee
- Park Systems Corporation, 109, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, South Korea
| | - Hyeong-U Kim
- Semiconductor Manufacturing Research Center, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, South Korea
- Nano-Mechatronics, KIMM Campus, University of Science & Technology (UST), Daejeon, 34113, South Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul, 08826, South Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, South Korea
| | - Andreas Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul, 03760, South Korea
| | - Won-Jun Jang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul, 03760, South Korea
| | - Seok Joon Kwon
- School of Chemical Engineering, Sungkyunkwan University, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Taesung Kim
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, South Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
2
|
Liao J, Shao H, Zhang Y, Yan Y, Zeng J, Lan C, Gao B, Chen D, Quan Q, Xie P, Meng Y, Ho JC. Infrared In-Sensor Computing Based on Flexible Photothermoelectric Tellurium Nanomesh Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419653. [PMID: 40035105 DOI: 10.1002/adma.202419653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/24/2025] [Indexed: 03/05/2025]
Abstract
The inherent limitations of traditional von Neumann architectures hinder the rapid development of internet of things technologies. Beyond conventional, complementary metal-oxide-semiconductor technologies, imaging sensors integrated with near- or in-sensor computing architectures emerge as a promising solution. In this study, the multi-scale van der Waals (vdWs) interactions in 1D tellurium (Te) atomic chains are explored, leading to the deposition of a photothermoelectric (PTE) Te nanomesh on a polymeric polyimide substrate. The self-welding process enables the lateral vapor growth of a well-connected Te nanomesh with robust electrical and mechanical properties, including a PTE responsivity of ≈120 V W-1 in the infrared light regime. Leveraging the PTE operation, the thermal-coupled bi-directional photoresponse is investigated to demonstrate a proof-of-principle in-sensor convolutional network for edge computing. This work presents a scalable approach for assembling functional vdWs Te nanomesh and highlights its potential applications in PTE image sensing and convolutional processing.
Collapse
Affiliation(s)
- Jiachi Liao
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - He Shao
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yuxuan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yan Yan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Ji Zeng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Changyong Lan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Boxiang Gao
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Dong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Quan Quan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Pengshan Xie
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - You Meng
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 816 8580, Japan
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
3
|
Bao X, Shi J, Han X, Wu K, Zeng X, Xia Y, Zhao J, Zhang Z, Du W, Yue S, Wu X, Wu B, Huang Y, Zhang W, Liu X. Exciton Emission Enhancement in Two-Dimensional Monolayer Tungsten Disulfide on a Silicon Substrate via a Fabry-Pérot Microcavity. NANO LETTERS 2025; 25:2639-2646. [PMID: 39825839 DOI: 10.1021/acs.nanolett.4c05219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Exciton emitters in two-dimensional monolayer transition-metal dichalcogenides (TMDs) provide a boulevard for the emerging optoelectronic field, ranging from miniaturized light-emitting diodes to quantum emitters and optical communications. However, the low quantum efficiency from limited light-matter interactions and harmful substrate effects seriously hinders their applications. In this work, we achieve a ∼438-fold exciton photoluminescence enhancement by constructing a Fabry-Pérot cavity consisting of monolayer WS2 and a micron-scale hole on the SiO2/Si substrate. The overall enhancement results from the increased exciton-photon interaction due to the effective exciton-cavity mode coupling and decreased trion formation from the weakened substrate effect confirmed by transient spectroscopy. Moreover, the effective coupling improves the directivity of excitons' spontaneous radiation (fwhm ∼ 5°). This research reveals a practical platform for simultaneously enhancing exciton emission and attenuating the substrate effect, and it provides a blueprint for the development of two-dimensional monolayer TMDs-based emitters in integrated optoelectronic devices.
Collapse
Affiliation(s)
- Xiaotian Bao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jianwei Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| | - Xu Han
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Keming Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Xin Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Yuexing Xia
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jinghan Zhao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zhiyong Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Wenna Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shuai Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xianxin Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yuan Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Wenkai Zhang
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
4
|
Ai R, Cui X, Li Y, Zhuo X. Local Strain Engineering of Two-Dimensional Transition Metal Dichalcogenides Towards Quantum Emitters. NANO-MICRO LETTERS 2025; 17:104. [PMID: 39777585 PMCID: PMC11711739 DOI: 10.1007/s40820-024-01611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDCs) have received considerable attention in local strain engineering due to their extraordinary mechanical flexibility, electonic structure, and optical properties. The strain-induced out-of-plane deformations in 2D TMDCs lead to diverse excitonic behaviors and versatile modulations in optical properties, paving the way for the development of advanced quantum technologies, flexible optoelectronic materials, and straintronic devices. Research on local strain engineering on 2D TMDCs has been delved into fabrication techniques, electronic state variations, and quantum optical applications. This review begins by summarizing the state-of-the-art methods for introducing local strain into 2D TMDCs, followed by an exploration of the impact of local strain engineering on optical properties. The intriguing phenomena resulting from local strain, such as exciton funnelling and anti-funnelling, are also discussed. We then shift the focus to the application of locally strained 2D TMDCs as quantum emitters, with various strategies outlined for modulating the properties of TMDC-based quantum emitters. Finally, we discuss the remaining questions in this field and provide an outlook on the future of local strain engineering on 2D TMDCs.
Collapse
Affiliation(s)
- Ruoqi Ai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ximin Cui
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Yang Li
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Xiaolu Zhuo
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China.
| |
Collapse
|
5
|
Zhang N, Ouyang D, Li Y, Zhai T. The roadmap of two-dimensional materials toward next-generation image sensor. Natl Sci Rev 2024; 11:nwae431. [PMID: 39717117 PMCID: PMC11664214 DOI: 10.1093/nsr/nwae431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/10/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
This Prospective highlights the advances and challenges of 2D materials regarding the materials preparation, device integration, multifunctional applications, and comments on their potential as transformative candidates for future image sensors.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, China
| |
Collapse
|
6
|
Dong J, Wu Z, HuangFu C, Su Y, Zheng X, Wu W, Sa B, Pei J, Jiao L, Zheng J, Zhan H, Wang Q. Interface Engineering for Efficient Photocarrier Generation and Transfer in Strongly Coupled Metallic/Semiconducting 1T'/2H MoS 2 Heterobilayers. ACS NANO 2024; 18:32868-32877. [PMID: 39541726 DOI: 10.1021/acsnano.4c11792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Developing alternative two-dimensional (2D) metallic/semiconducting (M/S) van der Waals heterostructures (vdWHs) along with an understanding of interfacial photocarrier behavior is crucial for designing high-performance optoelectronic devices. Here, we comprehensively explored the photophysical model of photocarrier generation and interfacial transfer in as-grown 2D 1T'/2H MoS2 vdWHs using various spectroscopic characterizations. We demonstrated the transitions of activated photocarrier transfer trajectories by tuning the pump photon energies across the 2H MoS2 bandgap. The importance of confined bilayer transfer systems and strong interlayer coupling at vdW interfaces for transfer efficiency was elucidated. Additionally, the fluorophlogopite substrate was found to be an external method for regulating photocarrier generation in individual 2H layers through the p-doping effect at the substrate-2H layer interfaces, and this influence was alleviated after introducing the 2H-1T' vdW interface. Particularly, 1T' MoS2 as a broadband hot carrier absorber enabled the ultrafast (∼133 fs) injection and extraction of energetic hot carriers into the 2H layer via a photothermionic emission mechanism, achieving a high efficiency of ∼41% under 900 nm photoexcitation at room temperature. Our work offers fundamental insights into the complex interfacial carrier photophysics in 2D M/S vdWHs, providing a way of constructing advanced multifunctional devices by using these emerging materials as active components and interface engineering.
Collapse
Affiliation(s)
- Junhao Dong
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhanggui Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Changan HuangFu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yi Su
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaoyan Zheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wensheng Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Baisheng Sa
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jiajie Pei
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Liying Jiao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jingying Zheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Hongbing Zhan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Qianting Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| |
Collapse
|
7
|
Kong X, Zong X, Lei Z, Wang Z, Zhao Y, Zhao X, Zhang J, Liu Z, Ren Y, Wu L, Zhang M, He F, Yang P. A Universal In-Situ Interfacial Growth Strategy for Various MXene-Based van der Waals Heterostructures with Uniform Heterointerfaces: The Efficient Conversion from 3D Composite to 2D Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405174. [PMID: 39072996 DOI: 10.1002/smll.202405174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Two-dimensional (2D) van der Waals heterostructures endow individual 2D material with the novel functional structures, intriguing compositions, and fantastic interfaces, which efficiently provide a feasible route to overcome the intrinsic limitations of single 2D components and embrace the distinct features of different materials. However, the construction of 2D heterostructures with uniform heterointerfaces still poses significant challenges. Herein, a universal in-situ interfacial growth strategy is designed to controllably prepare a series of MXene-based tin selenides/sulfides with 2D van der Waals homogeneous heterostructures. Molten salt etching by-products that are usually recognized as undesirable impurities, are reasonably utilized by us to efficiently transform into different 2D nanostructures via in-situ interfacial growth. The obtained MXene-based 2D heterostructures present sandwiched structures and lamellar interlacing networks with uniform heterointerfaces, which demonstrate the efficient conversion from 3D composite to 2D heterostructures. Such 2D heterostructures significantly enhance charge transfer efficiency, chemical reversibility, and overall structural stability in the electrochemical process. Taking 2D-SnSe2/MXene anode as a representative, it delivers outstanding lithium storage performance with large reversible capacities and ultrahigh capacity retention of over 97% after numerous cycles at 0.2, 1.0, and 10.0 A g-1 current density, which suggests its tremendous application potential in lithium-ion batteries.
Collapse
Affiliation(s)
- Xianglong Kong
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xiaohang Zong
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Zijin Lei
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Zicong Wang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ying Zhao
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xudong Zhao
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Junming Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Zhiliang Liu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yueming Ren
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Linzhi Wu
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Milin Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
8
|
Lim S, Kim TW, Park T, Heo YS, Yang S, Seo H, Suh J, Lee JU. Large-Scale Analysis of Defects in Atomically Thin Semiconductors using Hyperspectral Line Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400737. [PMID: 38874112 DOI: 10.1002/smll.202400737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
Point defects play a crucial role in determining the properties of atomically thin semiconductors. This work demonstrates the controlled formation of different types of defects and their comprehensive optical characterization using hyperspectral line imaging (HSLI). Distinct optical responses are observed in monolayer semiconductors grown under different stoichiometries using metal-organic chemical vapor deposition. HSLI enables the simultaneous measurement of 400 spectra, allowing for statistical analysis of optical signatures at close to a centimeter scale. The study discovers that chalcogen-rich samples exhibit remarkable optical uniformity due to reduced precursor accumulation compared to the metal-rich case. The utilization of HSLI as a facile and reliable characterization tool pushes the boundaries of potential applications for atomically thin semiconductors in future devices.
Collapse
Affiliation(s)
- Seungjae Lim
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Tae Wan Kim
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Taejoon Park
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Yoon Seong Heo
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Seonguk Yang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
- Department of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Hosung Seo
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Joonki Suh
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
- Department of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Jae-Ung Lee
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| |
Collapse
|
9
|
Huang CH, Cheng TY, Wu CY, Chen KH, Wu TL, Chou YC. Embedded Hybrid-Dimensional Heterointerface for Filament Modulation in 2D Material-Based Artificial Nociceptor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401946. [PMID: 39103304 PMCID: PMC11422813 DOI: 10.1002/advs.202401946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/09/2024] [Indexed: 08/07/2024]
Abstract
Nociceptors are key sensory receptors that transmit warning signals to the central nervous system in response to painful stimuli. This fundamental process is emulated in an electronic device by developing a novel artificial nociceptor with an ultrathin, nonstoichiometric gallium oxide (GaOx)-silicon oxide heterostructure. A large-area 2D-GaOx film is printed on a substrate through liquid metal printing to facilitate the production of conductive filaments. This nociceptive structure exhibits a unique short-term temporal response following stimulation, enabling a facile demonstration of threshold-switching physics. The developed heterointerface 2D-GaOx film enables the fabrication of fast-switching, low-energy, and compliance-free 2D-GaOx nociceptors, as confirmed through experiments. The accumulation and extrusion of Ag in the oxide matrix are significant for inducing plastic changes in artificial biological sensors. High-resolution transmission electron microscopy and electron energy loss spectroscopy demonstrate that Ag clusters in the material dispersed under electrical bias and regrouped spontaneously when the bias is removed owing to interfacial energy minimization. Moreover, 2D nociceptors are stable; thus, heterointerface engineering can enable effective control of charge transfer in 2D heterostructural devices. Furthermore, the diffusive 2D-GaOx device and its Ag dynamics enable the direct emulation of biological nociceptors, marking an advancement in the hardware implementation of artificial human sensory systems.
Collapse
Affiliation(s)
- Chang-Hsun Huang
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Te-Yu Cheng
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Chia-Yi Wu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuan-Hung Chen
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Tian-Li Wu
- International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yi-Chia Chou
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
10
|
Liu L, Yu Q, Xia J, Shi W, Wang D, Wu J, Xie L, Chen Y, Jiao L. 2D Air-Stable Nonlayered Ferrimagnetic FeCr 2S 4 Crystals Synthesized via Chemical Vapor Deposition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401338. [PMID: 38506613 DOI: 10.1002/adma.202401338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Indexed: 03/21/2024]
Abstract
The discovery of intrinsic 2D magnetic materials has opened up new opportunities for exploring magnetic properties at atomic layer thicknesses, presenting potential applications in spintronic devices. Here a new 2D ferrimagnetic crystal of nonlayered FeCr2S4 is synthesized with high phase purity using chemical vapor deposition. The obtained 2D FeCr2S4 exhibits perpendicular magnetic anisotropy, as evidenced by the out-of-plane/in-plane Hall effect and anisotropic magnetoresistance. Theoretical calculations further elucidate that the observed magnetic anisotropy can be attributed to its surface termination structure. By combining temperature-dependent magneto-transport and polarized Raman spectroscopy characterizations, it is discovered that both the measured Curie temperature and the critical temperature at which a low energy magnon peak disappeared remains constant, regardless of its thickness. Magnetic force microscopy measurements show the flipping process of magnetic domains. The exceptional air-stability of the 2D FeCr2S4 is also confirmed via Raman spectroscopy and Hall hysteresis loops. The robust anisotropic ferrimagnetism, the thickness-independent of Curie temperature, coupled with excellent air-stability, make 2D FeCr2S4 crystals highly attractive for future spintronic devices.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qin Yu
- Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Centre of Material Science and Optoelectronic Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| | - Wenxiao Shi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Juanxia Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liming Xie
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuansha Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liying Jiao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Cao W, Lai D, Yang J, Liu L, Wu H, Wang J, Liu Y. Research Progress on the Preparation Methods for and Flame Retardant Mechanism of Black Phosphorus and Black Phosphorus Nanosheets. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:892. [PMID: 38786848 PMCID: PMC11124063 DOI: 10.3390/nano14100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Black phosphorus and black phosphorus nanosheets are widely used in the flame retardant field because of their excellent properties, but the immature preparation methods have resulted in extremely high preparation cost, which greatly limits their development and application. In this paper, various preparation methods of black phosphorus and black phosphorus nanosheets are described in detail, the advantages and disadvantages of each method are analyzed in depth, the flame-retardant mechanism and application of black phosphorus and black phosphorus nanosheets in flame retardants are discussed, and the subsequent development direction of black phosphorus and black phosphorus nanosheets is proposed.
Collapse
Affiliation(s)
- Wuyan Cao
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (W.C.); (L.L.); (H.W.); (Y.L.)
| | - Dengwang Lai
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (W.C.); (L.L.); (H.W.); (Y.L.)
| | - Jun Yang
- Zhuzhou Times New Material Technology Co., Ltd., Zhuzhou 412007, China;
| | - Li Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (W.C.); (L.L.); (H.W.); (Y.L.)
| | - Hao Wu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (W.C.); (L.L.); (H.W.); (Y.L.)
| | - Jin Wang
- Zhuzhou Times New Material Technology Co., Ltd., Zhuzhou 412007, China;
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (W.C.); (L.L.); (H.W.); (Y.L.)
| |
Collapse
|
12
|
Shi X, Liu C, Zhang X, Zhan G, Cai Y, Zhou D, Zhao Y, Wang N, Hu F, Wang X, Ma H, Wang L. Vapor Phase Growth of Air-Stable Hybrid Perovskite FAPbBr 3 Single-Crystalline Nanosheets. NANO LETTERS 2024; 24:2299-2307. [PMID: 38334593 DOI: 10.1021/acs.nanolett.3c04604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Organic-inorganic hybrid perovskites have attracted tremendous attention owing to their fascinating optoelectronic properties. However, their poor air stability seriously hinders practical applications, which becomes more serious with thickness down to the nanoscale. Here we report a one-step vapor phase growth of HC(NH2)2PbBr3 (FAPbBr3) single-crystalline nanosheets of tunable size up to 50 μm and thickness down to 20 nm. The FAPbBr3 nanosheets demonstrate high stability for over months of exposure to air with no degradation in surface roughness and photoluminescence efficiency. Besides, the FAPbBr3 photodetectors exhibit superior overall performance as compared to previous devices based on nonlayered perovskite nanosheets, such as an ultralow dark current of 24 pA, an ultrahigh responsivity of 1033 A/W, an external quantum efficiency over 3000%, a rapid response time around 25 ms, and a high on/off ratio of 104. This work provides a strategy to tackle the challenges of hybrid perovskites toward integrated optoelectronics with requirements of nanoscale thickness, high stability, and excellent performance.
Collapse
Affiliation(s)
- Xinyu Shi
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Chao Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Xiaomin Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Yuxiao Cai
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Yuwei Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Nana Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Fengrui Hu
- School of Physics, College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaoyong Wang
- School of Physics, College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Huifang Ma
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| |
Collapse
|
13
|
Momeni K, Sakib N, Figueroa DEC, Paul S, Chen CY, Lin YC, Robinson JA. Combined Experimental and Computational Insight into the Role of Substrate in the Synthesis of Two-Dimensional WSe 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6644-6652. [PMID: 38264996 DOI: 10.1021/acsami.3c16761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Synthesis of large-area transition-metal dichalcogenides (TMDs) with controlled orientation is a significant challenge to their industrial applications. Substrate plays a vital role in determining the final quality of monolayer materials grown via the chemical vapor deposition process by controlling their orientation, crystal structure, and grain boundary. This study determined the binding energy and equilibrium distance for tungsten diselenide (WSe2) monolayers on crystalline and amorphous silicon dioxide and aluminum dioxide substrates. Differently oriented WSe2 monolayers are considered to investigate the role of the substrate in the orientation, binding strength, and equilibrium distance. This study can pave the way to synthesizing high-quality two-dimensional (2D) materials for electronic and chemical applications.
Collapse
Affiliation(s)
- Kasra Momeni
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Nuruzzaman Sakib
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Daniel E Cintron Figueroa
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shiddartha Paul
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Department of Mechanical Engineering, The University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Cindy Y Chen
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yu-Chuan Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsin-Chu 30010, Taiwan
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
14
|
Cao X, Zhou R, Xiong Y, Du G, Feng Z, Pan Q, Chen Y, Ji H, Ni Z, Lu J, Hu H, You Y. Volume-Confined Fabrication of Large-Scale Single-Crystalline Molecular Ferroelectric Thin Films and Their Applications in 2D Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305016. [PMID: 38037482 PMCID: PMC10811469 DOI: 10.1002/advs.202305016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Indexed: 12/02/2023]
Abstract
With outstanding advantages of chemical synthesis, structural diversity, and mechanical flexibility, molecular ferroelectrics have attracted increasing attention, demonstrating themselves as promising candidates for next-generation wearable electronics and flexible devices in the film form. However, it remains a challenge to grow high-quality thin films of molecular ferroelectrics. To address the above issue, a volume-confined method is utilized to achieve ultrasmooth single-crystal molecular ferroelectric thin films at the sub-centimeter scale, with the thickness controlled in the range of 100-1000 nm. More importantly, the preparation method is applicable to most molecular ferroelectrics and has no dependency on substrates, showing excellent reproducibility and universality. To demonstrate the application potential, two-dimensional (2D) transitional metal dichalcogenide semiconductor/molecular ferroelectric heterostructures are prepared and investigated by optical spectroscopic method, proving the possibility of integrating molecular ferroelectrics with 2D layered materials. These results may unlock the potential for preparing and developing high-performance devices based on molecular ferroelectric thin films.
Collapse
Affiliation(s)
- Xiao‐Xing Cao
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Ru‐Jie Zhou
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Yu‐An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Guo‐Wei Du
- Key Laboratory of Quantum Materials and Devices of Ministry of EducationSchool of PhysicsSoutheast UniversityNanjing211189People's Republic of China
| | - Zi‐Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Yin‐Zhu Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of EducationSchool of PhysicsSoutheast UniversityNanjing211189People's Republic of China
| | - Hao‐Ran Ji
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Zhenhua Ni
- Key Laboratory of Quantum Materials and Devices of Ministry of EducationSchool of PhysicsSoutheast UniversityNanjing211189People's Republic of China
| | - Junpeng Lu
- Key Laboratory of Quantum Materials and Devices of Ministry of EducationSchool of PhysicsSoutheast UniversityNanjing211189People's Republic of China
| | - Huihui Hu
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Yu‐Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| |
Collapse
|