1
|
Wu X, Ye Y, Sun M, Mei Y, Ji B, Wang M, Song E. Recent Progress of Soft and Bioactive Materials in Flexible Bioelectronics. CYBORG AND BIONIC SYSTEMS 2025; 6:0192. [PMID: 40302943 PMCID: PMC12038164 DOI: 10.34133/cbsystems.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/22/2024] [Accepted: 09/22/2024] [Indexed: 05/02/2025] Open
Abstract
Materials that establish functional, stable interfaces to targeted tissues for long-term monitoring/stimulation equipped with diagnostic/therapeutic capabilities represent breakthroughs in biomedical research and clinical medicine. A fundamental challenge is the mechanical and chemical mismatch between tissues and implants that ultimately results in device failure for corrosion by biofluids and associated foreign body response. Of particular interest is in the development of bioactive materials at the level of chemistry and mechanics for high-performance, minimally invasive function, simultaneously with tissue-like compliance and in vivo biocompatibility. This review summarizes the most recent progress for these purposes, with an emphasis on material properties such as foreign body response, on integration schemes with biological tissues, and on their use as bioelectronic platforms. The article begins with an overview of emerging classes of material platforms for bio-integration with proven utility in live animal models, as high performance and stable interfaces with different form factors. Subsequent sections review various classes of flexible, soft tissue-like materials, ranging from self-healing hydrogel/elastomer to bio-adhesive composites and to bioactive materials. Additional discussions highlight examples of active bioelectronic systems that support electrophysiological mapping, stimulation, and drug delivery as treatments of related diseases, at spatiotemporal resolutions that span from the cellular level to organ-scale dimension. Envisioned applications involve advanced implants for brain, cardiac, and other organ systems, with capabilities of bioactive materials that offer stability for human subjects and live animal models. Results will inspire continuing advancements in functions and benign interfaces to biological systems, thus yielding therapy and diagnostics for human healthcare.
Collapse
Affiliation(s)
- Xiaojun Wu
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
| | - Yuanming Ye
- Unmanned System Research Institute, National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mubai Sun
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Yongfeng Mei
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
- International Institute for Intelligent Nanorobots and Nanosystems,
Neuromodulation and Brain-machine-interface Centre, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Bowen Ji
- Unmanned System Research Institute, National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ming Wang
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- Frontier Institute of Chip and System,
Fudan University, Shanghai 200433, China
| | - Enming Song
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
- International Institute for Intelligent Nanorobots and Nanosystems,
Neuromodulation and Brain-machine-interface Centre, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Hang C, Rao Q, Wu J, Qi J, Jiang X. A Bilayer Microfluidics-Based Elastic Encapsulation Method of Liquid Metal Circuits with Cellular Resolution. ACS NANO 2025; 19:13118-13127. [PMID: 40159078 DOI: 10.1021/acsnano.4c18309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Mechanical mismatches at the microscale between bioelectronics and cells severely hinder the successful acquisition of high-quality and stable electrophysiological signals. Room-temperature liquid metals (EGaIn), which possess a near-zero Young's modulus, present a promising material for achieving stable conformal contact with biological tissues. However, the fluidity of liquid metals limits the elastic encapsulation of the patterned circuits with cellular resolution. To address this challenge, we develop a bilayer microfluidics-based method to elastically encapsulate a high-resolution electrode array (20 μm) within several minutes (<3 min). The alignment-free method overcomes the limitations of packaging polymers and high-resolution aligners, enabling cost-effective, scalable manufacturing for devices. These electronics exhibit excellent wear resistance, high flexibility (>300% strain), and excellent biocompatibility, facilitating long-term stable interfacing with cardiomyocytes and enabling the collection of high-quality (∼30 dB) cell field potential signals as well as epicardial signals (∼42 dB) from living rat models. This rapid and straightforward encapsulation approach improves the precision and integration of liquid metal-based flexible electronics, holding the promise of high-resolution monitoring and treatment, such as electrophysiological mapping, electrical stimulation, and other therapeutic interventions at the cellular levels.
Collapse
Affiliation(s)
- Chen Hang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Qingyan Rao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Jialu Wu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| |
Collapse
|
3
|
Zhao L, Lu Y, Lu X, Guo B, Chang Z, Ren Q, Li X, Wang B, Lv A, Wei J, Nie J, Lv Y, Rotenberg MY, Zhang Y, Ji D, Fang Y. Hierarchical Porous Aerogel-Hydrogel Interlocking Bioelectronic Interface for Arrhythmia Management. SMALL METHODS 2025:e2401844. [PMID: 40159855 DOI: 10.1002/smtd.202401844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/20/2025] [Indexed: 04/02/2025]
Abstract
Carbon aerogels with exceptional electrical properties are considered promising materials for bioelectronics in signal detection and electrical stimulation. To address the mechanical incompatibilities of carbon aerogels with bio-interfaces, particularly for dynamic tissues and organs, the incorporation of hydrogels is an effective strategy. However, achieving excellent electrical performance in carbon aerogel-hydrogel hybrids remains a significant challenge. Two key factors contribute to this difficulty: 1) unrestricted hydrogel infiltration during preparation can lead to complete encapsulation of the conductive aerogel, and 2) the high swelling behavior of hydrogels can cause disconnection of the aerogel. Herein, a stretchable, highly conductive bioelectronic interface is achieved by forming an interlocking network between hierarchical porous carbon aerogel (PA) with polyvinyl alcohol (PVA) hydrogel. Partial exposure of the PA due to confined infiltration of PVA into the porous structure maintains the electrical performance, while the non-swellable PVA ensures mechanical stretchability and stability. The hybrid demonstrates excellent conductivity (370 S·m-1), high charge storage capacity (1.66 mC cm-2), remarkable stretchability (250%), and long-term stability over three months, enabling effective signal recording and electrical stimulation. For the first time, carbon aerogel-hydrogel hybrids enable cardiac pacing both ex vivo and in vivo in rat heart models. Compared to conventional platinum electrodes, the PA-PVA electrodes require lower pacing voltages, suggesting potential advantages in power efficiency and reduced tissue damage. The electrodes can be integrated with a wireless implantable device for in vivo synchronous electrocardiogram monitoring and cardiac pacing, underscoring their potential for arrhythmia management.
Collapse
Affiliation(s)
- Lei Zhao
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuhan Lu
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xinxin Lu
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bihan Guo
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhiqiang Chang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qinjuan Ren
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xiang Li
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bingfang Wang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ailin Lv
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianfang Nie
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yingying Lv
- Research Centre of Nanoscience and Nanotechnology, College of Science, Shanghai University, Shanghai, 200444, China
| | - Menahem Y Rotenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Ya Zhang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Daizong Ji
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yin Fang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
4
|
Lin Y, Wu A, Zhang Y, Duan H, Zhu P, Mao Y. Recent progress of nanomaterials-based composite hydrogel sensors for human-machine interactions. DISCOVER NANO 2025; 20:60. [PMID: 40156703 PMCID: PMC11954787 DOI: 10.1186/s11671-025-04240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
Hydrogel-based flexible sensors have demonstrated significant advantages in the fields of flexible electronics and human-machine interactions (HMIs), including outstanding flexibility, high sensitivity, excellent conductivity, and exceptional biocompatibility, making them ideal materials for next-generation smart HMI sensors. However, traditional hydrogel sensors still face numerous challenges in terms of reliability, multifunctionality, and environmental adaptability, which limit their performance in complex application scenarios. Nanomaterial-based composite hydrogels significantly improve the mechanical properties, conductivity, and multifunctionality of hydrogels by incorporating conductive nanomaterials, thereby driving the rapid development of wearable sensors for HMIs. This review systematically summarizes the latest research progress on hydrogels based on carbon nanomaterials, metal nanomaterials, and two-dimensional MXene nanomaterials, and provides a comprehensive analysis of their sensing mechanisms in HMI, including triboelectric nanogenerator mechanism, stress-resistance response mechanism, and electrophysiological acquisition mechanism. The review further explores the applications of composite hydrogel-based sensors in personal electronic device control, virtual reality/augmented reality (VR/AR) game interaction, and robotic control. Finally, the current technical status and future development directions of nanomaterial composite hydrogel sensors are summarized. We hope that this review will provide valuable insights and inspiration for the future design of nanocomposite hydrogel-based flexible sensors in HMI applications.
Collapse
Affiliation(s)
- Yuyang Lin
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Aobin Wu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Yitao Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Haiyang Duan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China
| | - Pengcheng Zhu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Kong C, Guo Z, Teng T, Yao Q, Yu J, Wang M, Ma Y, Wang P, Tang Q. Electroactive Nanomaterials for the Prevention and Treatment of Heart Failure: From Materials and Mechanisms to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406206. [PMID: 39268781 DOI: 10.1002/smll.202406206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Heart failure (HF) represents a cardiovascular disease that significantly threatens global well-being and quality of life. Electroactive nanomaterials, characterized by their distinctive physical and chemical properties, emerge as promising candidates for HF prevention and management. This review comprehensively examines electroactive nanomaterials and their applications in HF intervention. It presents the definition, classification, and intrinsic characteristics of conductive, piezoelectric, and triboelectric nanomaterials, emphasizing their mechanical robustness, electrical conductivity, and piezoelectric coefficients. The review elucidates their applications and mechanisms: 1) early detection and diagnosis, employing nanomaterial-based sensors for real-time cardiac health monitoring; 2) cardiac tissue repair and regeneration, providing mechanical, chemical, and electrical stimuli for tissue restoration; 3) localized administration of bioactive biomolecules, genes, or pharmacotherapeutic agents, using nanomaterials as advanced drug delivery systems; and 4) electrical stimulation therapies, leveraging their properties for innovative pacemaker and neurostimulation technologies. Challenges in clinical translation, such as biocompatibility, stability, and scalability, are discussed, along with future prospects and potential innovations, including multifunctional and stimuli-responsive nanomaterials for precise HF therapies. This review encapsulates current research and future directions concerning the use of electroactive nanomaterials in HF prevention and management, highlighting their potential to innovating in cardiovascular medicine.
Collapse
Affiliation(s)
- Chunyan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Qi Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Jiabin Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Mingyu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Yulan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Pan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| |
Collapse
|
6
|
Wang X, Wang H, Liu X, Zhang Y, Li J, Liu H, Feng J, Jiang W, Liu L, Chen Y, Li X, Zhao L, Guan J, Zhang Y. Self-adhesion conductive cardiac patch based on methoxytriethylene glycol-functionalized graphene effectively improves cardiac function after myocardial infarction. J Adv Res 2024:S2090-1232(24)00545-9. [PMID: 39566818 DOI: 10.1016/j.jare.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024] Open
Abstract
INTRODUCTION Abnormal electrical activity of the heart following myocardial infarction (MI) may lead to heart failure or sudden cardiac death. Graphene-based conductive hydrogels can simulate the microenvironment of myocardial tissue and improve cardiac function post-MI. However, existing methods for preparing graphene and its derivatives suffer from drawbacks such as low purity, complex processes, and unclear structures, which limiting their biological applications. OBJECTIVES We propose an optimized synthetic route for synthesizing methoxytriethylene glycol-functionalized graphene (TEG-GR) with a defined structure. The aim of this study is to establish a novel self-adhesion conductive cardiac patch based on TEG-GR for protecting cardiac function after MI. METHODS We optimized π-extension polymerization (APEX) reaction to synthesize TEG-GR. TEG-GR was incorporated into dopamine-modified gelatin (GelDA) to construct conductive cardiac patch (TEG-GR/GelDA). We validated the function of TEG-GR/GelDA cardiac patch in rat models of MI, and explored the mechanism of TEG-GR/GelDA cardiac patch by RNA sequencing and molecular biology experiments. RESULTS Methoxytriethylene glycol side chain endowed graphene with low immunogenicity and superior biological properties without compromising conductivity. In rats, transplantation of TEG-GR/GelDA cardiac patch onto the infarcted area of heart could more effectively enhance ejection fraction, attenuate collagen deposition, shorten QRS interval and increase vessel density at 28 days post-treatment, compared to non-conductive cardiac patch. Transcriptome analysis indicated that TEG-GR/GelDA cardiac patch could improve cardiac function by maintaining gap junction, promoting angiogenesis, and suppressing cardiomyocytes apoptosis. CONCLUSION The precision synthesis of polymer with defined functional group expands the application of graphene in biomedical field, and the novel cardiac patch can be a promising candidate for treating MI.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Hao Wang
- Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yuan Zhang
- Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jiamin Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Heng Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Jing Feng
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Wenqian Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Ling Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Yongchao Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Xiaohan Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Limin Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Jing Guan
- Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China.
| |
Collapse
|
7
|
Chang Z, Wang B, Ren Q, Nie J, Guo B, Lu Y, Lu X, Zhang Y, Ji D, Lv Y, Rotenberg MY, Fang Y. Fully Implantable Wireless Cardiac Pacing and Sensing System Integrated with Hydrogel Electrodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401982. [PMID: 39344271 PMCID: PMC11600267 DOI: 10.1002/advs.202401982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/16/2024] [Indexed: 10/01/2024]
Abstract
Cardiac pacemakers play a crucial role in arrhythmia treatment. Existing devices typically rely on rigid electrode components, leading to potential issues such as heart damage and detachment during prolonged cardiac motion due to the mechanical mismatch with cardiac tissue. Additionally, traditional pacemakers, with their batteries and percutaneous leads, introduce infection risks and limit freedom of movement. A wireless, battery-free multifunctional bioelectronic device for cardiac pacing is developed. This device integrates highly conductive (160 S m-1), flexible (Young's modulus of 80 kPa is similar to that of mammalian heart tissue), and stretchable (270%) soft hydrogel electrodes, providing high signal-to-noise ratio (≈28 dB) electrocardiogram (ECG) recordings and effective pacing of the beating heart. The versatile device detects physiological and biochemical signals in the cardiac environment and allows for adjustable pacing in vivo studies. Remarkably, it maintained recording and pacing capabilities 31 days post-implantation in rats. Additionally, the wireless bioelectronic device can be fully implanted in rabbits for pacing. By addressing a major shortcoming of conventional pacemakers, this device paves the way for implantable flexible bioelectronics, which offers promising opportunities for advanced cardiac therapies.
Collapse
Affiliation(s)
- Zhiqiang Chang
- Research Center for Translational MedicineMedical Innovation Center and State Key Laboratory of CardiologyShanghai East HospitalThe Institute for Biomedical Engineering & Nano ScienceTongji University School of MedicineShanghai200120China
| | - Bingfang Wang
- Research Center for Translational MedicineMedical Innovation Center and State Key Laboratory of CardiologyShanghai East HospitalThe Institute for Biomedical Engineering & Nano ScienceTongji University School of MedicineShanghai200120China
| | - Qinjuan Ren
- Research Center for Translational MedicineMedical Innovation Center and State Key Laboratory of CardiologyShanghai East HospitalThe Institute for Biomedical Engineering & Nano ScienceTongji University School of MedicineShanghai200120China
| | - Jianfang Nie
- Research Center for Translational MedicineMedical Innovation Center and State Key Laboratory of CardiologyShanghai East HospitalThe Institute for Biomedical Engineering & Nano ScienceTongji University School of MedicineShanghai200120China
| | - Bihan Guo
- Research Center for Translational MedicineMedical Innovation Center and State Key Laboratory of CardiologyShanghai East HospitalThe Institute for Biomedical Engineering & Nano ScienceTongji University School of MedicineShanghai200120China
| | - Yuhan Lu
- Research Center for Translational MedicineMedical Innovation Center and State Key Laboratory of CardiologyShanghai East HospitalThe Institute for Biomedical Engineering & Nano ScienceTongji University School of MedicineShanghai200120China
| | - Xinxin Lu
- Research Center for Translational MedicineMedical Innovation Center and State Key Laboratory of CardiologyShanghai East HospitalThe Institute for Biomedical Engineering & Nano ScienceTongji University School of MedicineShanghai200120China
| | - Ya Zhang
- Research Center for Translational MedicineMedical Innovation Center and State Key Laboratory of CardiologyShanghai East HospitalThe Institute for Biomedical Engineering & Nano ScienceTongji University School of MedicineShanghai200120China
| | - Daizong Ji
- Research Center for Translational MedicineMedical Innovation Center and State Key Laboratory of CardiologyShanghai East HospitalThe Institute for Biomedical Engineering & Nano ScienceTongji University School of MedicineShanghai200120China
| | - Yingying Lv
- Research Centre of Nanoscience and NanotechnologyCollege of ScienceShanghai UniversityShanghai200444China
| | - Menahem Y. Rotenberg
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Yin Fang
- Research Center for Translational MedicineMedical Innovation Center and State Key Laboratory of CardiologyShanghai East HospitalThe Institute for Biomedical Engineering & Nano ScienceTongji University School of MedicineShanghai200120China
| |
Collapse
|
8
|
Li C, Bian Y, Zhao Z, Liu Y, Guo Y. Advances in Biointegrated Wearable and Implantable Optoelectronic Devices for Cardiac Healthcare. CYBORG AND BIONIC SYSTEMS 2024; 5:0172. [PMID: 39431246 PMCID: PMC11486891 DOI: 10.34133/cbsystems.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/22/2024] Open
Abstract
With the prevalence of cardiovascular disease, it is imperative that medical monitoring and treatment become more instantaneous and comfortable for patients. Recently, wearable and implantable optoelectronic devices can be seamlessly integrated into human body to enable physiological monitoring and treatment in an imperceptible and spatiotemporally unconstrained manner, opening countless possibilities for the intelligent healthcare paradigm. To achieve biointegrated cardiac healthcare, researchers have focused on novel strategies for the construction of flexible/stretchable optoelectronic devices and systems. Here, we overview the progress of biointegrated flexible and stretchable optoelectronics for wearable and implantable cardiac healthcare devices. Firstly, the device design is addressed, including the mechanical design, interface adhesion, and encapsulation strategies. Next, the practical applications of optoelectronic devices for cardiac physiological monitoring, cardiac optogenetics, and nongenetic stimulation are presented. Finally, an outlook on biointegrated flexible and stretchable optoelectronic devices and systems for intelligent cardiac healthcare is discussed.
Collapse
Affiliation(s)
- Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangshuang Bian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyuan Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Zhao L, Chang Z, Guo B, Lu Y, Lu X, Ren Q, Lv A, Nie J, Ji D, Rotenberg MY, Wang B, Zhang Y, Fang Y. Robust, stretchable bioelectronic interfaces for cardiac pacing enabled by interfacial transfer of laser-induced graphene via water-response, nonswellable PVA gels. Biosens Bioelectron 2024; 261:116453. [PMID: 38850739 DOI: 10.1016/j.bios.2024.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Implantable cardiac pacemakers are crucial therapeutic tools for managing various cardiac conditions. For effective pacing, electrodes should exhibit flexibility, deformability, biocompatibility, and high conductivity/capacitance. Laser-induced graphene (LIG) shows promise due to its exceptional electrical and electrochemical properties. However, the fragility of LIG and the non-stretchability of polyimide substrates pose challenges when interfacing with the beating heart. Here, we present a simple method for fabricating robust, flexible, and stretchable bioelectronic interfaces by transferring LIG via water-responsive, nonswellable polyvinyl alcohol (PVA) gels. PVA solution penetrates the porous structure of LIG and solidifies into PVA xerogel as the solvent evaporates. The robust PVA xerogel enables the smooth transfer of LIG and prevents stretching of the LIG network during this process, which helps maintain its conductivity. When hydrated, the xerogel becomes a stable, nonswellable hydrogel. This gives the LIG-PVA hydrogel (LIG-PVA-H) composites with excellent conductivity (119.7 ± 4.3Ω sq-1), high stretchability (up to 420%), reliability (cyclic stretch under 15% strain, with ∼ 1-time resistance increase), and good stability in phosphate buffered saline. The LIG-PVA-H composites were used as biointerfaces for electrocardiogram signal recording and electrical pacing on rat hearts ex vivo and in vivo, using commercial setups and a custom-built implantable wireless device. This work expands the application of LIG in bioelectronic interfaces and facilitates the development of electrotherapy for cardiac diseases.
Collapse
Affiliation(s)
- Lei Zhao
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhiqiang Chang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Bihan Guo
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuhan Lu
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Xinxin Lu
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Qinjuan Ren
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Ailin Lv
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Jianfang Nie
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Daizong Ji
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Menahem Y Rotenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Bingfang Wang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Ya Zhang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Yin Fang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
10
|
Ramadan A, Chleilat E, Martinez-Navarro H, Brennan-McLean J, Copier J, Caldwell J, Greiner J, Martínez Díaz P, Sobota V. Gordon Research Conference on Cardiac Arrhythmia Mechanisms 2023: early career investigators' views on emerging concepts and technologies. J Physiol 2024; 602:5151-5153. [PMID: 37462064 DOI: 10.1113/jp284666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/28/2023] [Indexed: 10/22/2024] Open
Affiliation(s)
- Ahmed Ramadan
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Enaam Chleilat
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, and Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Hector Martinez-Navarro
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Jaclyn Brennan-McLean
- American Association for the Advancement of Science (AAAS) Science and Technology Policy Fellowships Program, Washington, DC, USA
| | - Jaël Copier
- Amsterdam UMC location University of Amsterdam, Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & arrhythmias, Amsterdam, The Netherlands
| | - Jessica Caldwell
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Joachim Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, and Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Patricia Martínez Díaz
- Karlsruhe Institute of Technology (KIT), Institute of Biomedical Engineering, Karlsruhe, Germany
| | - Vladimír Sobota
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| |
Collapse
|
11
|
Paramasivam G, Palem VV, Meenakshy S, Suresh LK, Gangopadhyay M, Antherjanam S, Sundramoorthy AK. Advances on carbon nanomaterials and their applications in medical diagnosis and drug delivery. Colloids Surf B Biointerfaces 2024; 241:114032. [PMID: 38905812 DOI: 10.1016/j.colsurfb.2024.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/23/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Carbon nanomaterials are indispensable due to their unique properties of high electrical conductivity, mechanical strength and thermal stability, which makes them important nanomaterials in biomedical applications and waste management. Limitations of conventional nanomaterials, such as limited surface area, difficulty in fine tuning electrical or thermal properties and poor dispersibility, calls for the development of advanced nanomaterials to overcome such limitations. Commonly, carbon nanomaterials were synthesized by chemical vapor deposition (CVD), laser ablation or arc discharge methods. The advancement in these techniques yielded monodispersed carbon nanotubes (CNTs) and allows p-type and n-type doping to enhance its electrical and catalytic activities. The functionalized CNTs showed exceptional mechanical, electrical and thermal conductivity (3500-5000 W/mK) properties. On the other hand, carbon quantum dots (CQDs) exhibit strong photoluminescence properties with high quantum yield. Carbon nanohorns are another fascinating type of nanomaterial that exhibit a unique structure with high surface area and excellent adsorption properties. These carbon nanomaterials could improve waste management by adsorbing pollutants from water and soil, enabling precise environmental monitoring, while enhancing wastewater treatment and drug delivery systems. Herein, we have discussed the potentials of all these carbon nanomaterials in the context of innovative waste management solutions, fostering cleaner environments and healthier ecosystems for diverse biomedical applications such as biosensing, drug delivery, and environmental monitoring.
Collapse
Affiliation(s)
- Gokul Paramasivam
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 602105, India.
| | - Vishnu Vardhan Palem
- Department of Biomedical Engineering, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, 641022 India
| | - Simi Meenakshy
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Lakshmi Krishnaa Suresh
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Moumita Gangopadhyay
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Santhy Antherjanam
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, No.162, Poonamallee High Road, Velappanchavadi, Chennai, Tamil Nadu 600077, India.
| |
Collapse
|
12
|
Lu D, Fan X. Insights into the prospects of nanobiomaterials in the treatment of cardiac arrhythmia. J Nanobiotechnology 2024; 22:523. [PMID: 39215361 PMCID: PMC11363662 DOI: 10.1186/s12951-024-02805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiac arrhythmia, a disorder of abnormal electrical activity of the heart that disturbs the rhythm of the heart, thereby affecting its normal function, is one of the leading causes of death from heart disease worldwide and causes millions of deaths each year. Currently, treatments for arrhythmia include drug therapy, radiofrequency ablation, cardiovascular implantable electronic devices (CIEDs), including pacemakers, defibrillators, and cardiac resynchronization therapy (CRT). However, these traditional treatments have several limitations, such as the side effects of medication, the risks of device implantation, and the complications of invasive surgery. Nanotechnology and nanomaterials provide safer, effective and crucial treatments to improve the quality of life of patients with cardiac arrhythmia. The large specific surface area, controlled physical and chemical properties, and good biocompatibility of nanobiomaterials make them promising for a wide range of applications, such as cardiovascular drug delivery, tissue engineering, and the diagnosis and therapeutic treatment of diseases. However, issues related to the genotoxicity, cytotoxicity and immunogenicity of nanomaterials remain and require careful consideration. In this review, we first provide a brief overview of cardiac electrophysiology, arrhythmia and current treatments for arrhythmia and discuss the potential applications of nanobiomaterials before focusing on the promising applications of nanobiomaterials in drug delivery and cardiac tissue repair. An in-depth study of the application of nanobiomaterials is expected to provide safer and more effective therapeutic options for patients with cardiac arrhythmia, thereby improving their quality of life.
Collapse
Affiliation(s)
- Dingkun Lu
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohan Fan
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Du X, Wang H, Wang Y, Cao Z, Yang L, Shi X, Zhang X, He C, Gu X, Liu N. An Ultra-Conductive and Patternable 40 nm-Thick Polymer Film for Reliable Emotion Recognition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403411. [PMID: 38804620 DOI: 10.1002/adma.202403411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Understanding psychology is an important task in modern society which helps predict human behavior and provide feedback accordingly. Monitoring of weak psychological and emotional changes requires bioelectronic devices to be stretchable and compliant for unobtrusive and high-fidelity signal acquisition. Thin conductive polymer film is regarded as an ideal interface; however, it is very challenging to simultaneously balance mechanical robustness and opto-electrical property. Here, a 40 nm-thick film based on photolithographic double-network conductive polymer mediated by graphene layer is reported, which concurrently enables stretchability, conductivity, and conformability. Photolithographic polymer and graphene endow the film photopatternability, enhance stress dissipation capability, as well as improve opto-electrical conductivity (4458 S cm-1@>90% transparency) through molecular rearrangement by π-π interaction, electrostatic interaction, and hydrogen bonding. The film is further applied onto corrugated facial skin, the subtle electromyogram is monitored, and machine learning algorithm is performed to understand complex emotions, indicating the outstanding ability for stretchable and compliant bioelectronics.
Collapse
Affiliation(s)
- Xiaojia Du
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hai Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yunfei Wang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Zhiqiang Cao
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Leyi Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaohu Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaoxu Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaodan Gu
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
- Beijing Graphene Institute, Beijing, 100095, China
| |
Collapse
|
14
|
Kammarchedu V, Asgharian H, Zhou K, Soltan Khamsi P, Ebrahimi A. Recent advances in graphene-based electroanalytical devices for healthcare applications. NANOSCALE 2024; 16:12857-12882. [PMID: 38888429 PMCID: PMC11238565 DOI: 10.1039/d3nr06137j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Graphene, with its outstanding mechanical, electrical, and biocompatible properties, stands out as an emerging nanomaterial for healthcare applications, especially in building electroanalytical biodevices. With the rising prevalence of chronic diseases and infectious diseases, such as the COVID-19 pandemic, the demand for point-of-care testing and remote patient monitoring has never been greater. Owing to their portability, ease of manufacturing, scalability, and rapid and sensitive response, electroanalytical devices excel in these settings for improved healthcare accessibility, especially in resource-limited settings. The development of different synthesis methods yielding large-scale graphene and its derivatives with controllable properties, compatible with device manufacturing - from lithography to various printing methods - and tunable electrical, chemical, and electrochemical properties make it an attractive candidate for electroanalytical devices. This review article sheds light on how graphene-based devices can be transformative in addressing pressing healthcare needs, ranging from the fundamental understanding of biology in in vivo and ex vivo studies to early disease detection and management using in vitro assays and wearable devices. In particular, the article provides a special focus on (i) synthesis and functionalization techniques, emphasizing their suitability for scalable integration into devices, (ii) various transduction methods to design diverse electroanalytical device architectures, (iii) a myriad of applications using devices based on graphene, its derivatives, and hybrids with other nanomaterials, and (iv) emerging technologies at the intersection of device engineering and advanced data analytics. Finally, some of the major hurdles that graphene biodevices face for translation into clinical applications are discussed.
Collapse
Affiliation(s)
- Vinay Kammarchedu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Heshmat Asgharian
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Keren Zhou
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Pouya Soltan Khamsi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Aida Ebrahimi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
15
|
Liu S, Akinwande D, Kireev D, Incorvia JAC. Graphene-Based Artificial Dendrites for Bio-Inspired Learning in Spiking Neuromorphic Systems. NANO LETTERS 2024. [PMID: 38819288 DOI: 10.1021/acs.nanolett.4c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Analog neuromorphic computing systems emulate the parallelism and connectivity of the human brain, promising greater expressivity and energy efficiency compared to those of digital systems. Though many devices have emerged as candidates for artificial neurons and artificial synapses, there have been few device candidates for artificial dendrites. In this work, we report on biocompatible graphene-based artificial dendrites (GrADs) that can implement dendritic processing. By using a dual side-gate configuration, current applied through a Nafion membrane can be used to control device conductance across a trilayer graphene channel, showing spatiotemporal responses of leaky recurrent, alpha, and Gaussian dendritic potentials. The devices can be variably connected to enable higher-order neuronal responses, and we show through data-driven spiking neural network simulations that spiking activity is reduced by ≤15% without accuracy loss while low-frequency operation is stabilized. This positions the GrADs as strong candidates for energy efficient bio-interfaced spiking neural networks.
Collapse
Affiliation(s)
- Samuel Liu
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Deji Akinwande
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Dmitry Kireev
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jean Anne C Incorvia
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| |
Collapse
|
16
|
Han SI, Sunwoo SH, Park CS, Lee SP, Hyeon T, Kim DH. Next-Generation Cardiac Interfacing Technologies Using Nanomaterial-Based Soft Bioelectronics. ACS NANO 2024; 18:12025-12048. [PMID: 38706306 DOI: 10.1021/acsnano.4c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Cardiac interfacing devices are essential components for the management of cardiovascular diseases, particularly in terms of electrophysiological monitoring and implementation of therapies. However, conventional cardiac devices are typically composed of rigid and bulky materials and thus pose significant challenges for effective long-term interfacing with the curvilinear surface of a dynamically beating heart. In this regard, the recent development of intrinsically soft bioelectronic devices using nanocomposites, which are fabricated by blending conductive nanofillers in polymeric and elastomeric matrices, has shown great promise. The intrinsically soft bioelectronics not only endure the dynamic beating motion of the heart and maintain stable performance but also enable conformal, reliable, and large-area interfacing with the target cardiac tissue, allowing for high-quality electrophysiological mapping, feedback electrical stimulations, and even mechanical assistance. Here, we explore next-generation cardiac interfacing strategies based on soft bioelectronic devices that utilize elastic conductive nanocomposites. We first discuss the conventional cardiac devices used to manage cardiovascular diseases and explain their undesired limitations. Then, we introduce intrinsically soft polymeric materials and mechanical restraint devices utilizing soft polymeric materials. After the discussion of the fabrication and functionalization of conductive nanomaterials, the introduction of intrinsically soft bioelectronics using nanocomposites and their application to cardiac monitoring and feedback therapy follow. Finally, comments on the future prospects of soft bioelectronics for cardiac interfacing technologies are discussed.
Collapse
Affiliation(s)
- Sang Ihn Han
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Chan Soon Park
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Seung-Pyo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Lee H, Johnson Z, Denton S, Liu N, Akinwande D, Porter E, Kireev D. A non-invasive approach to skin cancer diagnosis via graphene electrical tattoos and electrical impedance tomography. Physiol Meas 2024; 45:055003. [PMID: 38599226 DOI: 10.1088/1361-6579/ad3d26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Objective.Making up one of the largest shares of diagnosed cancers worldwide, skin cancer is also one of the most treatable. However, this is contingent upon early diagnosis and correct skin cancer-type differentiation. Currently, methods for early detection that are accurate, rapid, and non-invasive are limited. However, literature demonstrating the impedance differences between benign and malignant skin cancers, as well as between different types of skin cancer, show that methods based on impedance differentiation may be promising.Approach.In this work, we propose a novel approach to rapid and non-invasive skin cancer diagnosis that leverages the technologies of difference-based electrical impedance tomography (EIT) and graphene electronic tattoos (GETs).Main results.We demonstrate the feasibility of this first-of-its-kind system using both computational numerical and experimental skin phantom models. We considered variations in skin cancer lesion impedance, size, shape, and position relative to the electrodes and evaluated the impact of using individual and multi-electrode GET (mGET) arrays. The results demonstrate that this approach has the potential to differentiate based on lesion impedance, size, and position, but additional techniques are needed to determine shape.Significance.In this way, the system proposed in this work, which combines both EIT and GET technology, exhibits potential as an entirely non-invasive and rapid approach to skin cancer diagnosis.
Collapse
Affiliation(s)
- Hannah Lee
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America
| | - Zane Johnson
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States of America
| | - Spencer Denton
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America
| | - Ning Liu
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America
| | - Deji Akinwande
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, United States of America
| | - Emily Porter
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Dmitry Kireev
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, United States of America
- Department of Biomedical Engineering, The University of Massachusetts Amherst, Amherst, MA, United States of America
| |
Collapse
|
18
|
Baines O, Sha R, Kalla M, Holmes AP, Efimov IR, Pavlovic D, O’Shea C. Optical mapping and optogenetics in cardiac electrophysiology research and therapy: a state-of-the-art review. Europace 2024; 26:euae017. [PMID: 38227822 PMCID: PMC10847904 DOI: 10.1093/europace/euae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
State-of-the-art innovations in optical cardiac electrophysiology are significantly enhancing cardiac research. A potential leap into patient care is now on the horizon. Optical mapping, using fluorescent probes and high-speed cameras, offers detailed insights into cardiac activity and arrhythmias by analysing electrical signals, calcium dynamics, and metabolism. Optogenetics utilizes light-sensitive ion channels and pumps to realize contactless, cell-selective cardiac actuation for modelling arrhythmia, restoring sinus rhythm, and probing complex cell-cell interactions. The merging of optogenetics and optical mapping techniques for 'all-optical' electrophysiology marks a significant step forward. This combination allows for the contactless actuation and sensing of cardiac electrophysiology, offering unprecedented spatial-temporal resolution and control. Recent studies have performed all-optical imaging ex vivo and achieved reliable optogenetic pacing in vivo, narrowing the gap for clinical use. Progress in optical electrophysiology continues at pace. Advances in motion tracking methods are removing the necessity of motion uncoupling, a key limitation of optical mapping. Innovations in optoelectronics, including miniaturized, biocompatible illumination and circuitry, are enabling the creation of implantable cardiac pacemakers and defibrillators with optoelectrical closed-loop systems. Computational modelling and machine learning are emerging as pivotal tools in enhancing optical techniques, offering new avenues for analysing complex data and optimizing therapeutic strategies. However, key challenges remain including opsin delivery, real-time data processing, longevity, and chronic effects of optoelectronic devices. This review provides a comprehensive overview of recent advances in optical mapping and optogenetics and outlines the promising future of optics in reshaping cardiac electrophysiology and therapeutic strategies.
Collapse
Affiliation(s)
- Olivia Baines
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Rina Sha
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Manish Kalla
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Igor R Efimov
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Medicine, Division of Cardiology, Northwestern University, Evanston, IL, USA
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| |
Collapse
|
19
|
Katiyar AK, Hoang AT, Xu D, Hong J, Kim BJ, Ji S, Ahn JH. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chem Rev 2024; 124:318-419. [PMID: 38055207 DOI: 10.1021/acs.chemrev.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Flexible electronics have recently gained considerable attention due to their potential to provide new and innovative solutions to a wide range of challenges in various electronic fields. These electronics require specific material properties and performance because they need to be integrated into a variety of surfaces or folded and rolled for newly formatted electronics. Two-dimensional (2D) materials have emerged as promising candidates for flexible electronics due to their unique mechanical, electrical, and optical properties, as well as their compatibility with other materials, enabling the creation of various flexible electronic devices. This article provides a comprehensive review of the progress made in developing flexible electronic devices using 2D materials. In addition, it highlights the key aspects of materials, scalable material production, and device fabrication processes for flexible applications, along with important examples of demonstrations that achieved breakthroughs in various flexible and wearable electronic applications. Finally, we discuss the opportunities, current challenges, potential solutions, and future investigative directions about this field.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Duo Xu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
20
|
Song D, Li X, Jang M, Lee Y, Zhai Y, Hu W, Yan H, Zhang S, Chen L, Lu C, Kim K, Liu N. An Ultra-Thin MXene Film for Multimodal Sensing of Neuroelectrical Signals with Artifacts Removal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304956. [PMID: 37533340 DOI: 10.1002/adma.202304956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Indexed: 08/04/2023]
Abstract
Neuroelectrical signals transmitted onto the skin tend to decay to an extremely weak level, making them highly susceptible to interference from the environment and body movement. Meanwhile, for comprehensively understanding cognitive nerve conduction, multimodal sensing of neural signals, such as magnetic resonance imaging (MRI) and functional near-infrared spectroscopy (fNIRS), is highly required. Previous metal or polymer conductors cannot either provide a seamless on-skin feature for accurate sensing of neuroelectrical signals or be compatible with multimodal imaging techniques without opto- and magnet- artifacts. Herein, a ≈20 nm thick MXene film that is able to simultaneously detect electrophysiological signals and perform imaging by MRI and fNIRS with high fidelity is reported. The ultrathin film is made of crosslinked Ti3 C2 Tx film via poly (3,4-ethylene dioxythiophene): polystyrene sulfonate (PEDOT: PSS), showing a record high electroconductivity and transparency combination (11 000 S cm-1 @89%). Among them, PEDOT: PSS not only plays a cross-linking role to stabilize MXene film but also shortens the interlayer distance for effective charge transfer and high transparency. Thus, it can achieve a low interfacial impedance with skin or neural surfaces for accurate recording of electrophysiological signals with low motion artifacts. Besides, the high transparency originating from the ultrathin feature leads to good compatibility with fNIRS and MRI without optical and magnetic artifacts, enabling multimodal cognitive neural monitoring during prolonged use.
Collapse
Affiliation(s)
- Dekui Song
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Xueli Li
- College of Chemical Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Myeongjin Jang
- Department of Physics, Yonsei University, 03722, Seoul, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Yangjin Lee
- Department of Physics, Yonsei University, 03722, Seoul, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Yu Zhai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China
| | - Wenya Hu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Song Zhang
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, 100875, Beijing, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China
| | - Kwanpyo Kim
- Department of Physics, Yonsei University, 03722, Seoul, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, China
- Beijing Graphene Institute, 100095, Beijing, China
| |
Collapse
|
21
|
Chen Z, Lin Z, Obaid SN, Rytkin E, George SA, Bach C, Madrid M, Liu M, LaPiano J, Fehr A, Shi X, Quirion N, Russo B, Knight H, Aduwari A, Efimov IR, Lu L. Soft, bioresorbable, transparent microelectrode arrays for multimodal spatiotemporal mapping and modulation of cardiac physiology. SCIENCE ADVANCES 2023; 9:eadi0757. [PMID: 37406128 DOI: 10.1126/sciadv.adi0757] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023]
Abstract
Transparent microelectrode arrays (MEAs) that allow multimodal investigation of the spatiotemporal cardiac characteristics are important in studying and treating heart disease. Existing implantable devices, however, are designed to support chronic operational lifetimes and require surgical extraction when they malfunction or are no longer needed. Meanwhile, bioresorbable systems that can self-eliminate after performing temporary functions are increasingly attractive because they avoid the costs/risks of surgical extraction. We report the design, fabrication, characterization, and validation of a soft, fully bioresorbable, and transparent MEA platform for bidirectional cardiac interfacing over a clinically relevant period. The MEA provides multiparametric electrical/optical mapping of cardiac dynamics and on-demand site-specific pacing to investigate and treat cardiac dysfunctions in rat and human heart models. The bioresorption dynamics and biocompatibility are investigated. The device designs serve as the basis for bioresorbable cardiac technologies for potential postsurgical monitoring and treating temporary patient pathological conditions in certain clinical scenarios, such as myocardial infarction, ischemia, and transcatheter aortic valve replacement.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Zexu Lin
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Sofian N Obaid
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Eric Rytkin
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Sharon A George
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Christopher Bach
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Micah Madrid
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Miya Liu
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Jessica LaPiano
- MedStar Georgetown University Hospital, Washington, DC 20037, USA
| | - Amy Fehr
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xinyu Shi
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Nathaniel Quirion
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Benjamin Russo
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Helen Knight
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Anthony Aduwari
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine (Cardiology), Northwestern University, Chicago, IL 60611, USA
| | - Luyao Lu
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|