1
|
Zhao YH, Ji YR, Chen XQ, Li J, Wang PF, Liu ZL, Shu J, Yi TF. Synergistic regulation of different coordination shells of iron centers by sulfur and phosphorus enables efficient oxygen reduction in zinc-air batteries. J Colloid Interface Sci 2025; 688:161-171. [PMID: 39999489 DOI: 10.1016/j.jcis.2025.02.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
The modulation of the coordination environment of Fe-N4 active sites is crucial for enhancing the oxygen reduction catalytic activity of FeNC. However, comprehensively investigating the synergistic regulation of diverse coordination shells of Fe centers by various non-metallic heteroatoms poses a significant challenge. In this study, iron/sulfur/phosphorus/nitrogen-doped carbon nanotubes (FeNCSP) were synthesized through a two-step process that includes a solvothermal method followed by one-step calcination. The introduction of sulfur (S) and phosphorus (P) atoms facilitates the synergistic regulation of the first and second coordination shells of the Fe site, leading to the formation of an asymmetric coordination structure. This structural modification optimizes the electronic configuration of Fe sites and improves the adsorption energies of oxygen intermediates. Additionally, the uniformly thin-walled carbon nanotubes enhance the accessibility of active sites and improve the kinetics of the oxygen reduction reaction (ORR). The FeNCSP exhibits outstanding ORR catalytic activity, with a half-wave potential of 0.875 V, surpassing that of commercial Pt/C. Furthermore, the FeNCSPbased zinc-air battery (ZAB) shows a remarkable peak power density (158 mW cm-2) and a high discharge specific capacity (817 mAh g-1@50 mA cm-2). This work elucidates the structure-activity relationship between the coordination environment of Fe-N4 active sites and ORR catalytic performance, providing a novel perspective for designing and optimizing transition metal-nitrogen-carbon catalysts.
Collapse
Affiliation(s)
- Yi-Han Zhao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Yu-Rui Ji
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xing-Qi Chen
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Jing Li
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China
| | - Peng-Fei Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Zong-Lin Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Jie Shu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ting-Feng Yi
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| |
Collapse
|
2
|
Zhang L, Xu Q, Xia L, Jiang W, Wang K, Cao P, Chen Q, Huang M, García de Arquer FP, Zhou Y. Asymmetrically tailored catalysts towards electrochemical energy conversion with non-precious materials. Chem Soc Rev 2025; 54:5108-5145. [PMID: 40277188 DOI: 10.1039/d4cs00710g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Electrocatalytic technologies, such as water electrolysis and metal-air batteries, enable a path to sustainable energy storage and conversion into high-value chemicals. These systems rely on electrocatalysts to drive redox reactions that define key performance metrics such as activity and selectivity. However, conventional electrocatalysts face inherent trade-offs between activity, stability, and scalability particularly due to the reliance on noble metals. Asymmetrically tailored electrocatalysts (ATEs) - systems that are being exploited for non-symmetric designs in composition, size, shape, and coordination environments - offer a path to overcome these barriers. Here, we summarize recent developments in ATEs, focusing on asymmetric coupling strategies employed in designing these systems with non-precious transition metal catalysts (TMCs). We explore tailored asymmetries in composition, size, and coordination environments, highlighting their impact on catalytic performance. We analyze the electrocatalytic mechanisms underlying ATEs with an emphasis on their roles in water-splitting and metal-air batteries. Finally, we discuss the challenges and opportunities in advancing the performance of these technologies through rational ATE designs.
Collapse
Affiliation(s)
- Lei Zhang
- School of Materials Science and Engineering, Anhui Province Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Qiaoling Xu
- School of Materials Science and Engineering, Anhui Province Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), 08860, Spain.
| | - Wulyu Jiang
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), 08860, Spain.
| | - Kaiwen Wang
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), 08860, Spain.
| | - Pengfei Cao
- Forschungszentrum Jülich GmbH, ER-C, 52425 Jülich, Germany
| | - Qiang Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Ming Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), 08860, Spain.
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, P. R. China.
| |
Collapse
|
3
|
Li PH, Yang YF, Song ZY, Liang B, Zhao YH, Cai X, Liu ZH, Lin JY, Yang M, Xiao X, Zhang J, Liu WQ, Huang XJ. Potential-Driven Dynamic Spring-Effect of Pd─Cu Dual-Atoms Empowered Stability and Activity for Electrocatalytic Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501393. [PMID: 40285588 DOI: 10.1002/advs.202501393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Atomic-level catalysts are extensively applied in heterogeneous catalysis fields. However, it is a general but ineluctable issue that active metal atoms may migrate, aggregate, deactivate, or leach during reaction processes, suppressing their catalytic performances. Designing superior intrinsic-structural stability of atomic-level catalysts with high activity and revealing their dynamic structure evolution is vital for their wide applications in complex reactions or harsh conditions. Herein, high-stable Pd─Cu dual-atom catalysts with PdN3─CuN3 coordination structure are engineered via strong chelation of Cu2+-ions with electron pairs from palladium-source, achieving the highest turnover frequency under the lowest overpotential for Cr(VI) electrocatalytic reduction detection in strong-acid electrolytes. In situ X-ray absorption fine structure spectra reveal dynamic "spring-effect" of Cu─Pd and Cu─N bonds that are reversibly stretched with potential changes and can be recovered at 0.6 V for regeneration. The modulated electron-orbit coupling effect of Pd─Cu pairs prevents Cu-atoms from aggregating as metallic nanoparticles. Pd─Cu dual-atoms interact with two O atoms of H2CrO4, forming stable bridge configurations and transferring electrons to promote Cr─O bond dissociation, which prominently decreases reaction energy barriers. This work provides a feasible route to boost the stability and robustness of metal single-atoms that are easily affected by reaction conditions for sustainable catalytic applications.
Collapse
Affiliation(s)
- Pei-Hua Li
- Institute of Environment, Hefei Comprehensive National Science Center, Hefei, 230088, P. R. China
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yuan-Fan Yang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Zong-Yin Song
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Bo Liang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yong-Huan Zhao
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Xin Cai
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Zi-Hao Liu
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Jing-Yi Lin
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Meng Yang
- Institute of Environment, Hefei Comprehensive National Science Center, Hefei, 230088, P. R. China
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Xiangyu Xiao
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wen-Qing Liu
- Institute of Environment, Hefei Comprehensive National Science Center, Hefei, 230088, P. R. China
| | - Xing-Jiu Huang
- Institute of Environment, Hefei Comprehensive National Science Center, Hefei, 230088, P. R. China
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
4
|
Cao P, Mu X, Chen F, Wang S, Liao Y, Liu H, Du Y, Li Y, Peng Y, Gao M, Liu S, Wang D, Dai Z. Breaking symmetry for better catalysis: insights into single-atom catalyst design. Chem Soc Rev 2025; 54:3848-3905. [PMID: 40079812 DOI: 10.1039/d4cs01031k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Breaking structural symmetry has emerged as a powerful strategy for fine-tuning the electronic structure of catalytic sites, thereby significantly enhancing the electrocatalytic performance of single-atom catalysts (SACs). The inherent symmetric electron density in conventional SACs, such as M-N4 configurations, often leads to suboptimal adsorption and activation of reaction intermediates, limiting their catalytic efficiency. By disrupting this symmetry of SACs, the electronic distribution around the active center can be modulated, thereby improving both the selectivity and adsorption strength for key intermediates. These changes directly impact the reaction pathways, lowering energy barriers, and enhancing catalytic activity. However, achieving precise modulation through SAC symmetry breaking for better catalysis remains challenging. This review focuses on the atomic-level symmetry-breaking strategies of catalysts, including charge breaking, coordination breaking, and geometric breaking, as well as their electrocatalytic applications in electronic structure tuning and active site modulation. Through modifications to the M-N4 framework, three primary configurations are achieved: unsaturated coordination M-Nx(x=1,2,3), non-metallic doping MX-Nx(x=1,2,3), and bimetallic doping M1M2-N4. Advanced characterization techniques combined with density functional theory (DFT) elucidate the impact of these strategies on oxidation, reduction, and bifunctional catalytic reactions. This review highlights the significance of symmetry-breaking structures in catalysis and underscores the need for further research to achieve precise control at the atomic-level.
Collapse
Affiliation(s)
- Pingping Cao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xueqin Mu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Fanjiao Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Shengchen Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yuru Liao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Hui Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yapeng Du
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yuxuan Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yudi Peng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Mingzhu Gao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Suli Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Zhihui Dai
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Wang Q, Lyu L, Hu X, Fan W, Shang C, Huang Q, Li Z, Zhou Z, Kang YM. Tailoring the Surface Curvature of the Supporting Carbon to Tune the d-Band Center of Fe-N-C Single-Atom Catalysts for Zinc-Urea-Air Batteries. Angew Chem Int Ed Engl 2025; 64:e202422920. [PMID: 39891591 DOI: 10.1002/anie.202422920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/01/2025] [Accepted: 01/30/2025] [Indexed: 02/03/2025]
Abstract
The catalytic activities of the Fe-N-C single-atom catalysts (SACs) are associated with the varying atomic interactions through its characteristic coordination geometry. Yet, modulation of the surface curvature of carbon acting as a supporting body has not been investigated. Herein, we report the superior catalytic activity for the oxygen reduction reaction (ORR) and enhanced performance for urea oxidation reaction (UOR) of single Fe atoms anchored on a highly curved N-doped carbon dodecahedron with concave morphology (Fe SA/NhcC). Theoretical calculations and in situ spectroscopy disclose that the curvature of the carbon support helps to shorten the bond length of Fe-N, spatially redistributing the charges around the Fe and thereby lowering the d-band center toward optimal adsorption for oxygenated species. The Fe SA/NhcC catalyst displays an ultrahigh half-wave potential of 0.926 V for ORR and a small potential difference of 0.686 V for bifunctional ORR/UOR. A rechargeable Zn-urea-air battery with the Fe SA/NhcC cathode displays robust discharge durability, excellent cycling lifespan and higher energy efficiency compared to conventional Zn-air batteries. This work provides new insight into promoting the catalytic activity of SACs through varying the surface curvature of the supporting carbon, tailoring geometric configuration and electronic states of SACs.
Collapse
Affiliation(s)
- Qichen Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Lulu Lyu
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Xu Hu
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center (ReCast), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China
| | - Wenqi Fan
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chunyan Shang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qirui Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zhipeng Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zhen Zhou
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center (ReCast), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yong-Mook Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Battery-Smart Factory, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Gu CH, Du M, Han RY, Zhang AY, Yu HQ, Xing M. Ultrafast Water Purification by Template-Free Nanoconfined Catalysts Derived from Municipal Sludge. Angew Chem Int Ed Engl 2025; 64:e202423629. [PMID: 39823146 DOI: 10.1002/anie.202423629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Nanoconfinement at the interface of heterogeneous Fenton-like catalysts offers promising avenues for advancing oxidation processes in water purification. Herein, we introduce a template-free strategy for synthesizing nanoconfined catalysts from municipal sludge (S-NCCs), specifically engineered to optimize reactive oxygen species (ROS) generation and utilization for rapid pollutant degradation. Using selective hydrofluoric acid corrosion, we create an architecture that confines atomically dispersed Fe centers within a micro-mesoporous carbon matrix in situ. This method maximizes the utilization of silicon and aluminum content from sludge, prevents metal agglomeration, and precisely regulates the chemical environment of Fe active sites. As a result, the S-NCCs promote a transition from nonradical to hybrid radical/nonradical reaction mechanisms, significantly enhancing ROS efficiency, stability, and pollutant degradation rates. These catalysts demonstrate exceptional pollutant removal performance, achieving a 261-fold increase in degradation efficiency for compounds such as phenol and sulfamethoxazole compared to unconfined analogs, outperforming most state-of-the-art Fenton-like systems. Our findings highlight the transformative potential of nanoconfined catalysis in environmental applications, providing an effective and scalable solution for sustainable water purification.
Collapse
Affiliation(s)
- Chao-Hai Gu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meng Du
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ru-Yi Han
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ai-Yong Zhang
- Anhui Engineering Laboratory for Rural Water Environment and Resources, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
7
|
Sun J, Shen M, Chang AJ, Cui S, Xiu H, Wang P, Li X, Ni Y. Biological Neural Network-Inspired Micro/Nano-Fibrous Carbon Aerogel for Coupling Fe Atomic Clusters With Fe-N 4 Single Atoms to Enhance Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500419. [PMID: 40042413 DOI: 10.1002/smll.202500419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Indexed: 04/17/2025]
Abstract
Nitrogen-coordinated metal single atoms catalysts, especially with M-N4 configuration confined within the carbon matrix, emerge as a frontier of electrocatalytic research for enhancing the sluggish kinetics of oxygen reduction reaction (ORR). Nevertheless, due to the highly planar D4h symmetry configuration in M-N4, their adsorption behavior toward oxygen intermediates is limited, undesirably elevating the energy barriers associated with ORR. Moreover, the structural engineering of the carbon substrate also poses significant challenges. Herein, inspired by the biological neural network (BNN), a reticular nervous system for high-speed signal processing and transmitting, a comprehensive structural biomimetic strategy is proposed for tailoring Fe-N4 single atoms (Fe SAs) coupled with Fe atomic clusters (Fe ACs) active sites, which are anchored onto chitosan microfibers/nanofibers-based carbon aerogel (CMNCA-FeSA+AC) with continuous conductive channels and an oriented porous architecture. Theoretical analysis reveals the synergistic effect of Fe SAs and Fe ACs for optimizing their electronic structures and expediting the ORR. The ingenious biomimetic strategy will shed light on the topology engineering and structural optimization of efficient electrocatalysts for advanced electrochemical energy conversion devices.
Collapse
Affiliation(s)
- Jiaojiao Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Mengxia Shen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - A-Jun Chang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Shiqiang Cui
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Huijuan Xiu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Pengbo Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xia Li
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
8
|
Li W, Wang Y, Li Y. Cobalt-Doped MnFe 2O 4 Spinel Coupled with Nitrogen-Doped Reduced Graphene Oxide: Enhanced Oxygen Electrocatalytic Activity for Zinc-Air Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5981-5995. [PMID: 40025763 DOI: 10.1021/acs.langmuir.4c04716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
MFCO spinel anchored on N-rGO is synthesized by a two-step hydrothermal method as a bifunctional electrocatalyst. Its physicochemical properties have been characterized and tested, and it is applied to zinc-air batteries. The experimental and theoretical calculations show that the MFCO is uniformly distributed on the surface of N-rGO. When MFCO is anchored on the conducting N-rGO, a synergistic effect occurs between the Co-N bonds, which changes the arrangement of the C-N bonds from the sp2 orientation to the sp3 form. The ORR catalytic pathway of the MFCO/N-rGO electrocatalyst is dominated by 4-electron transfer, with a half-wave potential of 0.8003 V, an overpotential value of 352 mV, and a small potential difference (ΔE = 0.78 V). With a charge/discharge voltage difference of about 0.88 V, the voltage gap remains almost unchanged for a long period after 650 h, showing excellent stability. The improved catalytic performance is attributed to Co acting as an active site, and the doping of Co induces the Jahn-Teller effect, which alters the electronic structure of spinel, shifts the d-band center upward, enhances the adsorption of oxygen intermediates, and promotes the oxygen electrocatalytic reaction. This study provides a low-cost and promising bifunctional oxygen electrocatalyst for zinc-air batteries.
Collapse
Affiliation(s)
- Wolong Li
- Sanya Offshore Oil&Gas Research Institute of Northeast Petroleum University, Sanya, Hainan 572025, China
- School of Mechanical Science and Engineering, Northeast Petroleum University, 199 Fazhan Road, Daqing 163318, P. R. China
| | - Yong Wang
- Sanya Offshore Oil&Gas Research Institute of Northeast Petroleum University, Sanya, Hainan 572025, China
- School of Mechanical Science and Engineering, Northeast Petroleum University, 199 Fazhan Road, Daqing 163318, P. R. China
- Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, Daqing, Heilongjiang 163318, China
| | - Yongcun Li
- Sanya Offshore Oil&Gas Research Institute of Northeast Petroleum University, Sanya, Hainan 572025, China
- School of Mechanical Science and Engineering, Northeast Petroleum University, 199 Fazhan Road, Daqing 163318, P. R. China
- Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, Daqing, Heilongjiang 163318, China
| |
Collapse
|
9
|
Meng D, Zheng J, Guo J, Zhang A, Wang Z. Synergistic Catalysis in Fe─In Diatomic Sites Anchored on Nitrogen-Doped Carbon for Enhanced CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408146. [PMID: 39891305 DOI: 10.1002/smll.202408146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Diatomic catalysts are promising for the electrochemical CO2 reduction reaction (CO2RR) due to their maximum atom utilization and the presence of multiple active sites. However, the atomic-scale design of diatomic catalysts and the elucidation of synergistic catalytic mechanisms between multiple active centers remain challenging. In this study, heteronuclear Fe─In diatomic sites anchored on nitrogen-doped carbon (FeIn DA/NC) are constructed. The FeIn DA/NC electrocatalyst achieves a CO Faradaic efficiency exceeding 90% across a wide range of applied potentials from -0.4 to -0.7 V, with a peak efficiency of 99.1% at -0.5 V versus the reversible hydrogen electrode. In situ, attenuated total reflection surface-enhanced infrared absorption spectroscopy and density functional theory calculations reveal that the synergistic interaction between Fe and In diatomic sites induce an asymmetric charge distribution, which promote the adsorption of CO2 at the Fe site and lowered the energy barrier for the formation of *COOH. Moreover, the unique Fe─In diatomic site structure increase the adsorption energy of *OH through a bridging interaction, which decrease the energy barrier for water dissociation and further promoted CO2RR activity.
Collapse
Affiliation(s)
- Dapeng Meng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jingxuan Zheng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Junxin Guo
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Anyu Zhang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhao Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
10
|
Liu L, Ma S, Deng YP, Tang B, Zhang Y, Yan W, Jiang Y, Chen Z. Constructing Artificial Zincophilic Interphases Based on Indium-Organic Frameworks as Zinc Dendrite Constraint for Rechargeable Zinc-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409545. [PMID: 40012342 DOI: 10.1002/smll.202409545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/15/2025] [Indexed: 02/28/2025]
Abstract
The practical application of zinc (Zn)-air batteries is largely restricted by their inferior cyclability, especially under fast-charging conditions. Uneven Zn plating and dendrite formation result in their short circuits. In this work, an artificial solid-electrolyte interphase (SEI) is constructed using indium-organic frameworks (IOF) on the Zn anode. It contains a hybrid architecture that integrates chemical and morphological contributions to regulate Zn plating behaviors and constrain dendrite growth. The atomically dispersed In3+ provides zincophilic sites to tune Zn nucleation kinetics and promote preferential growth along (002) crystal facet. Meanwhile, IOF exhibits nanosheets-assembled microspheres with a well-ordered porous architecture, which promotes mass transfer and affords space for Zn electrodeposition. The influence of SEI microstructure on Zn plating/stripping behavior is further investigated and validated by the post-cycling characterizations. With IOF based SEI, Zn symmetric cells perform stable cycling for over 1750 h at 10 mA cm-2. When powering Zn-air batteries, their cycling life is extended to 800 h, which is approximately four times longer than that of pristine Zn foil.
Collapse
Affiliation(s)
- Ling Liu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Saifei Ma
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Ya-Ping Deng
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Bing Tang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Yining Zhang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Yi Jiang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Zhongwei Chen
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
11
|
Askari S, Dwivedi S, Alivand MS, Lim KH, Biniaz P, Zavabeti A, Kawi S, Hill MR, van Duin AC, Tanksale A, Majumder M, Chakraborty Banerjee P. Synergy of Pyridinic-N and Co Single Atom Sites for Enhanced Oxygen Redox Reactions in High-Performance Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411574. [PMID: 39888158 PMCID: PMC11899499 DOI: 10.1002/smll.202411574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/06/2025] [Indexed: 02/01/2025]
Abstract
Cobalt single-atom catalysts (SACs) have the potential to act as bi-functional electrocatalysts for the oxygen-redox reactions in metal-air batteries. However, achieving both high performance and stability in these SACs has been challenging. Here, a novel and facile synthesis method is used to create cobalt-doped-nitrogen-carbon structures (Co-N-C) containing cobalt-SACs by carbonizing a modified ZIF-11. HAADF-STEM images and EXAFS spectra confirmed that the structure with the lowest cobalt concentration contains single cobalt atoms coordinated with four nitrogen atoms (Co-N₄). Electrochemical tests showed that this electrocatalyst performed exceptionally well in both oxygen reduction reaction (ORR) (E1/2 ≈ 0.859 V) and oxygen evolution reaction (OER) (Ej = 10: 1.544 V), with excellent stability. When used as a bi-functional electrocatalyst in the air cathode of a rechargeable zinc-air battery (ZAB), a peak power density of 178.6.1 mW cm-2, a specific capacity of 799 mA h gZn -1 and a cycle-life of 1580 is achieved. Density functional theory (DFT) calculations revealed that the concentration and the position of the pyridinic nitrogen with Co play a critical role in determining the overpotential of this electrocatalyst for oxygen-redox reactions. The unprecedented performance of this electrocatalyst can bring paradigm changes in the practical realization and application of metal-air batteries.
Collapse
Affiliation(s)
- Saeed Askari
- Department of Chemical and Biological EngineeringMonash UniversityClaytonVictoria3800Australia
| | - Swarit Dwivedi
- Department of Chemical and Biological EngineeringMonash UniversityClaytonVictoria3800Australia
| | - Masood S. Alivand
- Department of Chemical and Biological EngineeringMonash UniversityClaytonVictoria3800Australia
| | - Kang Hui Lim
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Parisa Biniaz
- Department of Chemical and Biological EngineeringMonash UniversityClaytonVictoria3800Australia
| | - Ali Zavabeti
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Matthew R Hill
- Department of Materials Science and EngineeringMonash UniversityClaytonVictoria3800Australia
| | - Adri C.T. van Duin
- Department of Mechanical EngineeringPennsylvania State UniversityUniversity ParkPA16802USA
| | - Akshat Tanksale
- Department of Chemical and Biological EngineeringMonash UniversityClaytonVictoria3800Australia
| | - Mainak Majumder
- Nanoscale Science and Engineering Laboratory (NSEL)Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVictoria3168Australia
- ARC Research Hub for Advanced Manufacturing with Two‐Dimensional Materials (AM2D)Monash UniversityClaytonVictoria3800Australia
| | | |
Collapse
|
12
|
Song Q, Gong Z, Liu J, Huang K, Ye G, Niu S, Fei H. Boosting the Hydrogen Evolution Activity of a Low-Coordinated Co─N─C Catalyst via Vacancy Defect-Mediated Alteration of the Intermediate Adsorption Configuration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415665. [PMID: 39804785 PMCID: PMC11884577 DOI: 10.1002/advs.202415665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/21/2024] [Indexed: 01/16/2025]
Abstract
The cobalt-nitrogen-carbon (Co─N─C) single-atom catalysts (SACs) are promising alternatives to precious metals for catalyzing the hydrogen evolution reaction (HER) and their activity is highly dependent on the coordination environments of the metal centers. Herein, a NaHCO3 etching strategy is developed to introduce abundant in-plane pores within the carbon substrates that further enable the construction of low-coordinated and asymmetric Co─N3 sites with nearby vacancy defects in a Co─N─C catalyst. This catalyst exhibits a high HER activity with an overpotential (η) of merely 78 mV to deliver a current density of 10 mA cm-2, a Tafel slope of 45.2 mV dec-1, and a turnover frequency of 1.67 s-1 (at η = 100 mV). Experimental investigations and theoretical calculations demonstrate that the vacancy defects neighboring the Co─N3 sites can modulate the electronic structure of the catalyst and alter the adsorption configuration of the H intermediate from the typical atop mode to the side mode, resulting in weakened H adsorption strength and thus improved HER activity. This work provides an efficient strategy to regulate the coordination environment of SACs for improved catalytic performance and sheds light on the atomic-level understanding of the structure-activity relationships.
Collapse
Affiliation(s)
- Qianwei Song
- State Key Laboratory for Chemo/Biosensing and ChemometricsAdvanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Zhichao Gong
- State Key Laboratory for Chemo/Biosensing and ChemometricsAdvanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Jianbin Liu
- State Key Laboratory for Chemo/Biosensing and ChemometricsAdvanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Kang Huang
- State Key Laboratory for Chemo/Biosensing and ChemometricsAdvanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Gonglan Ye
- State Key Laboratory for Chemo/Biosensing and ChemometricsAdvanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Shuwen Niu
- College of Chemistry and Chemical Engineering InstitutionQingdao UniversityQingdao266071P. R. China
| | - Huilong Fei
- State Key Laboratory for Chemo/Biosensing and ChemometricsAdvanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| |
Collapse
|
13
|
Wang N, Li J, Hei J, Chen X, Yin X, Yin Y, Kong Y, Cui L. Ionic-Liquid Synthesis of Atomic Molybdenum Nitride Clusters as Bifunctional Oxygen Reduction and Evolution Reactions Electrocatalysts for Alkaline Zn-Air Battery. Chemistry 2025; 31:e202403706. [PMID: 39790003 DOI: 10.1002/chem.202403706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Transition-metal nitrides (TMNs) have garnered considerable attention for energy conversion applications owing to their exceptional electronic structures and high catalytic activities. However, the scarcity of active sites in TMNs impedes their large-scale application. This study describes the use of wetness impregnation and ionic-liquid methods to enhance the electrocatalytic efficiency of molybdenum nitride (MoN) atomic clusters finely dispersed on nitrogen-doped carbon (MoN@NC) substrates. The as-synthesized electrocatalysts feature atomically dispersed MoN clusters, achieving an impressive onset potential of 0.93 V vs. RHE for the oxygen reduction reaction (ORR) and maintaining an overpotential of just 295 mV at a current density of 10 mA/cm2 for the oxygen evolution reaction (OER). The MoN@NC-based zinc-air battery demonstrated a high-power density of 151 mW/cm2, a robust specific discharge capacity of 759 mAh/gZn at 20 mA/cm2, and superior charge-discharge cycling stability exceeding 190 cycles. The detailed experimental characterization revealed that the uniformly dispersed MoN clusters served as the primary active sites driving the observed catalytic performance. Additionally, the present findings suggested significant correlations between the phase of the material, crystallization, atomic cluster distribution, support porosity, and nitridation temperature. These insights are expected to refine strategies for achieving atomically dispersed nitrides with optimized ORR performance.
Collapse
Affiliation(s)
- Nannan Wang
- Key Laboratory of New Energy Conversion and Storage, Chaohu University, Hefei, 238000, China
| | - Jing Li
- Key Laboratory of New Energy Conversion and Storage, Chaohu University, Hefei, 238000, China
| | - Jinpei Hei
- Key Laboratory of New Energy Conversion and Storage, Chaohu University, Hefei, 238000, China
| | - Xiaodong Chen
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Xiaojie Yin
- Key Laboratory of New Energy Conversion and Storage, Chaohu University, Hefei, 238000, China
| | - Yanjun Yin
- Key Laboratory of New Energy Conversion and Storage, Chaohu University, Hefei, 238000, China
| | - Yaqiong Kong
- Key Laboratory of New Energy Conversion and Storage, Chaohu University, Hefei, 238000, China
| | - Lifeng Cui
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
14
|
Hu H, Wang J, Liao K, Chen Z, Zhang S, Sun B, Wang X, Ren X, Lin J, Han X. Clarifying the Active Structure and Reaction Mechanism of Atomically Dispersed Metal and Nonmetal Sites with Enhanced Activity for Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416126. [PMID: 39718226 DOI: 10.1002/adma.202416126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Indexed: 12/25/2024]
Abstract
Atomically dispersed transition metal (ADTM) catalysts are widely implemented in energy conversion reactions, while the similar properties of TMs make it difficult to continuously improve the activity of ADTMs via tuning the composition of metals. Introducing nonmetal sites into ADTMs may help to effectively modulate the electronic structure of metals and significantly improve the activity. However, it is difficult to achieve the co-existence of ADTMs with nonmetal atoms and clarify their synergistic effect on the catalytic mechanism. Therefore, elucidating the active sites within atomically dispersed metal-nonmetal materials and unveiling catalytic mechanism is highly important. Herein, a novel hybrid catalyst, with coexistence of Co single-atoms and Co─Se dual-atom sites (Co─Se/Co/NC), is successfully synthesized and exhibits remarkable performance for oxygen reduction reaction (ORR). Theoretical results demonstrate that the Se sites can effectively modulate the charge redistribution at Co active sites. Furthermore, the synergistic effect between Co single-atom sites and Co─Se dual-atom sites can further adjust the d-band center, optimize the adsorption/desorption behavior of intermediates, and finally accelerate the ORR kinetics. This work has clearly clarified the reaction mechanism and shows the great potential of atomically dispersed metal-nonmetal nanomaterials for energy conversion and storage applications.
Collapse
Affiliation(s)
- Hui Hu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Jiajun Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Kang Liao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Zanyu Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Shiyu Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Buwei Sun
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Xin Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Xixi Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Jianguo Lin
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
- National Innovation Platform for Industry-Education Integration of Energy Storage Technology, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
15
|
Peng H, Wang W, Gao J, Jiang F, Li B, Wang Y, Wu Y, Wang Y, Li J, Peng J, Hu W, Wen Z, Wang D, Zhang E, Zhai M. Symmetry Breaking in Rationally Designed Copper Oxide Electrocatalyst Boosts the Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411928. [PMID: 39680478 PMCID: PMC11809328 DOI: 10.1002/advs.202411928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Oxygen reduction reaction (ORR) kinetics is critically dependent on the precise modulation of the interactions between the key oxygen intermediates and catalytic active sites. Herein, a novel electrocatalyst is reported, featuring nitrogen-doped carbon-supported ultra-small copper oxide nanoparticles with the broken-symmetry C4v coordination filed sites, achieved by a mild γ-ray radiation-induced method. The as-synthesized catalyst exhibits an excellent ORR activity with a half-wave potential of 0.873 V and shows no obvious decay over 50 h durability in alkaline solution. This superior catalytic activity is further corroborated by the high-performance in both primary and rechargeable Zn-air batteries with an ultrahigh-peak-power density (255.4 mW cm-2) and robust cycling stability. The experimental characterizations and density functional theory calculations show that the surface Cu atoms are configured in a compressed octahedron coordination. This geometric arrangement interacts with the key intermediate OH*, facilitating localized charge transfer and thereby weakening the Cu─O bond, which promotes the efficient transformation of OH* to OH- and the subsequent desorption, and markedly accelerates kinetics of the rate-determining step in the reaction. This study provides new insights for developing the utilization of γ-ray radiation chemistry to construct high-performance metal oxide-based catalysts with broken symmetry toward ORR.
Collapse
Affiliation(s)
- Haoyu Peng
- Beijing National Laboratory for Molecular SciencesRadiochemistry and Radiation Chemistry Key Laboratory of Fundamental ScienceThe Key Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Weiyi Wang
- Hefei National Research Center for Physical Sciences at the MicroscaleDepartment of Chemical PhysicsUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Jiyuan Gao
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Provincial Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
| | - Fan Jiang
- Beijing National Laboratory for Molecular SciencesRadiochemistry and Radiation Chemistry Key Laboratory of Fundamental ScienceThe Key Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Bowei Li
- Future Photovoltaic Research CenterGlobal Institute of Future TechnologyShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Yicheng Wang
- Beijing National Laboratory for Molecular SciencesRadiochemistry and Radiation Chemistry Key Laboratory of Fundamental ScienceThe Key Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Yiqian Wu
- Beijing National Laboratory for Molecular SciencesRadiochemistry and Radiation Chemistry Key Laboratory of Fundamental ScienceThe Key Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Yue Wang
- Beijing National Laboratory for Molecular SciencesRadiochemistry and Radiation Chemistry Key Laboratory of Fundamental ScienceThe Key Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Jiuqiang Li
- Beijing National Laboratory for Molecular SciencesRadiochemistry and Radiation Chemistry Key Laboratory of Fundamental ScienceThe Key Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Jing Peng
- Beijing National Laboratory for Molecular SciencesRadiochemistry and Radiation Chemistry Key Laboratory of Fundamental ScienceThe Key Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Wei Hu
- Hefei National Research Center for Physical Sciences at the MicroscaleDepartment of Chemical PhysicsUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Provincial Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
| | - Dingsheng Wang
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Erhuan Zhang
- Future Battery Research CenterInstitute of Future TechnologyShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Maolin Zhai
- Beijing National Laboratory for Molecular SciencesRadiochemistry and Radiation Chemistry Key Laboratory of Fundamental ScienceThe Key Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| |
Collapse
|
16
|
Li Z, Deng Z, Dong Y, Li Y, Zhang H, Wang X, Li G. Revealing the role of 1T- & 2H- molybdenum Disulfide/Nickel sulfide heterojunction for efficient overall water splitting. J Colloid Interface Sci 2025; 678:666-675. [PMID: 39216394 DOI: 10.1016/j.jcis.2024.08.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
In the ongoing quest for cost-effective and durable electrocatalysts for hydrogen production-a critical element of sustainable energy transformation-the 1T phase of Molybdenum Disulfide (MoS2) faces challenges due to its thermodynamic instability and the trade-off between efficiency and durability. Conversely, the 2H phase of MoS2, often disregarded in favor of the metallic 1T phase, suffers from its inert nature and limited active sites. To overcome these limitations, this study employs a straightforward hydrothermal synthesis strategy that couples both 1T and 2H phases of MoS2 with Ni3S2, forming 1T- and 2H- MoS2/Ni3S2 heterojunctions. Enhanced by Ni3S2's abundant active sites, improved electron transport capabilities, synergistic interface effects, and better structural stability, these heterojunctions achieve a high current density exceeding 500 mA cm-2 at low overpotentials, along with prolonged durability for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline electrolytes. Remarkably, an electrolyzer assembly utilizing 1T-MoS2/Ni3S2 as the cathode and 2H-MoS2/Ni3S2 as the anode demonstrates a competitive voltage of 1.58 V at 20 mA cm-2, showcasing superior performance in overall water splitting compared to other non-noble metal-based electrocatalysts. This study not only offers a viable method for synthesizing efficient and stable electrocatalysts for water splitting using transition metal-based heterogeneous structures but also addresses the fundamental challenges associated with 1T and 2H phases of MoS2.
Collapse
Affiliation(s)
- Zeming Li
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada; Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Zhiping Deng
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Yan Dong
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Yue Li
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Ge Li
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
17
|
Luo Q, Wang K, Zhang Q, Ding W, Wang R, Li L, Peng S, Ji D, Qin X. Tailoring Single-Atom Coordination Environments in Carbon Nanofibers via Flash Heating for Highly Efficient Bifunctional Oxygen Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202413369. [PMID: 39162070 DOI: 10.1002/anie.202413369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/21/2024]
Abstract
The rational design of carbon-supported transition metal single-atom catalysts necessitates precise atomic positioning within the precursor. However, structural collapse during pyrolysis can occlude single atoms, posing significant challenges in controlling both their utilization and coordination environment. Herein, we present a surface atom adsorption-flash heating (FH) strategy, which ensures that the pre-designed carbon nanofiber structure remains intact during heating, preventing unforeseen collapse effects and enabling the formation of metal atoms in nano-environments with either tetra-nitrogen or penta-nitrogen coordination at different flash heating temperatures. Theoretical calculations and in situ Raman spectroscopy reveal that penta-nitrogen coordinated cobalt atoms (Co-N5) promote a lower energy pathway for oxygen reduction and oxygen evolution reactions compared to the commonly formed Co-N4 sites. This strategy ensures that Co-N5 sites are fully exposed on the surface, achieving exceptionally high atomic utilization. The turnover frequency (65.33 s-1) is 47.4 times higher than that of 20 % Pt/C under alkaline conditions. The porous, flexible carbon nanofibers significantly enhance zinc-air battery performance, with a high peak power density (273.8 mW cm-2), large specific capacity (784.2 mAh g-1), and long-term cycling stability over 600 h. Additionally, the flexible fiber-shaped zinc-air battery can power wearable devices, demonstrating significant potential in flexible electronics applications.
Collapse
Affiliation(s)
- Qingliang Luo
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Kangkang Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Qiangqiang Zhang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Wei Ding
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Rongwu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016, China
| | - Dongxiao Ji
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaohong Qin
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
18
|
Liang H, Hui S, Zhang L, Tao K, Chen Q, Lu W, Wu H. High-Density Dual Atoms Pairs Coupling for Efficient Electromagnetic Wave Absorbers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408396. [PMID: 39604231 DOI: 10.1002/smll.202408396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Dual atoms (DAs), characterized by flexible structural tunability and high atomic utilization, hold significant promise for atom-level coordination engineering. However, the rational design with high-density heterogeneous DAs pairs to promote electromagnetic wave (EMW) absorption performance remains a challenge. In this study, high-density Ni─Cu pairs coupled DAs absorbers are precisely constructed on a nitrogen-rich carbon substrate, achieving an impressive metal loading amount of 4.74 wt.%, enabling a huge enhancement of the effective absorption bandwidth (EAB) of EMW from 0 to 7.8 GHz. Furthermore, the minimum reflection loss (RLmin) is -70.96 dB at a matching thickness of 3.60 mm, corresponding to an absorption of >99.99% of the incident energy. Both experimental results and theoretical calculations indicate that the synergistic effect of coupled Ni─Cu pairs DAs sites results in the transfer of electron-rich sites from the initial N sites to the Cu sites, which induces a strong asymmetric polarization loss by this redistribution of local charge and significantly improves the EMW absorption performance. This work not only provides a strategy for the preparation of high-density DA pairs but also demonstrates the role of coupled DA pairs in precisely tuning coordination symmetry at the atomic level.
Collapse
Affiliation(s)
- Hongsheng Liang
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, P. R. China
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shengchong Hui
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnic University, Xi'an, 710072, P. R. China
| | - Wei Lu
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
19
|
Zhang S, Liu S, Cao W, Luo J, Gu Y, Liu X, Tan P, Wang Z, Pan J. Microwave heating-assisted synthesis of ultrathin platinum-based trimetallic nanosheets as highly stable catalysts towards oxygen reduction reaction in acidic medium. J Colloid Interface Sci 2024; 675:1108-1118. [PMID: 39059077 DOI: 10.1016/j.jcis.2024.07.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
There are currently almost no ternary platinum-based nanosheets used for acidic oxygen reduction reactions (ORR) due to the difficulty in synthesizing ternary nanosheets with high Pt content. In this work, several ultrathin platinum-palladium-copper nanosheets (PtPdCu NSs) with a thickness of around 1.90 nm were prepared via a microwave heating-assisted method. Microwave heating allows a large number of Pt atoms to deposit into PdCu nanosheets, forming Pt-based ternary nanosheets with high Pt content. Among them, Pt38Pd50Cu12 NSs catalyst displays the highest mass activity (MA) measured in 0.1 M HClO4 of 0.932 A/mgPt+Pd which is 8.6 times of that Pt/C. Besides, Pt38Pd50Cu12 NSs catalyst also exhibits excellent stability with an extremely low MA attenuation after 80,000 cycles accelerated durability testing (ADT) tests. In the single cell tests, the Pt38Pd50Cu12 NSs catalyst manifests higher maximum power density of 796 mW cm-2 than Pt/C of 606 mW cm-2. Density functional theory (DFT) calculations indicate the weaker adsorption between Pt and O-species in Pt38Pd50Cu12 NSs leads to a significant enhancement of ORR activity. This study provides a new strategy to design and prepare ultrathin Pt-based trimetallic nanosheets as efficient and durable ORR catalysts.
Collapse
Affiliation(s)
- Shaohui Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha 410083, China
| | - Suying Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wei Cao
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Juan Luo
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha 410083, China
| | - Yuke Gu
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha 410083, China
| | - Xuanzhi Liu
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha 410083, China
| | - Pengfei Tan
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha 410083, China.
| | - Ziyu Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Jun Pan
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha 410083, China.
| |
Collapse
|
20
|
Gao S, Lian K, Wang X, Liu X, Abdukayum A, Kong Q, Hu G. Recent Achievements in Heterogeneous Bimetallic Atomically Dispersed Catalysts for Zn-Air Batteries: A Minireview. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406776. [PMID: 39363812 DOI: 10.1002/smll.202406776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Rechargeable Zn-air batteries (ZABs) hold promise as the next-generation energy-storage devices owing to their affordability, environmental friendliness, and safety. However, cathodic catalysts are easily inactivated in prolonged redox potential environments, resulting in inadequate energy efficiency and poor cycle stability. To address these challenges, anodic active sites require multiple-atom combinations, that is, ensembles of metals. Heterogeneous bimetallic atomically dispersed catalysts (HBADCs), consisting of heterogeneous isolated single atoms and atomic pairs, are expected to synergistically boost the cyclic oxygen reduction and evolution reactions of ZABs owing to their tuneable microenvironments. This minireview revisits recent achievements in HBADCs for ZABs. Coordination environment engineering and catalytic substrate structure optimization strategies are summarized to predict the innovation direction for HBADCs in ZAB performance enhancement. These HBADCs are divided into ferrous and nonferrous dual sites with unique microenvironments, including synergistic effects, ion modulation, electronic coupling, and catalytic activity. Finally, conclusions and perspectives relating to future challenges and potential opportunities are provided to optimise the performance of ZABs.
Collapse
Affiliation(s)
- Sanshuang Gao
- Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Kang Lian
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xinzhong Wang
- Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Abdukader Abdukayum
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, China
| | - Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| |
Collapse
|
21
|
Zhang S, Liu S, Luo J, Gu Y, Liu X, Liu F, Tan P, Pan J. Highly-Branched PtCu Nanocrystals with Low-Coordination for Enhanced Oxygen Reduction Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407869. [PMID: 39363644 DOI: 10.1002/smll.202407869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Low-coordination platinum-based nanocrystals emanate great potential for catalyzing the oxygen reduction reactions (ORR) in fuel cells, but are not widely applied owing to poor structural stability. Here, several PtCu nanocrystals (PtCu NCs) with low coordination numbers were prepared via a facile one-step method, while the desirable catalyst structures were easily obtained by adjusting the reaction parameters. Wherein, the Pt1Cu1 NCs catalyst with abundant twin boundaries and high-index facets displays 15.25 times mass activity (1.647 A mgPt -1 at 0.9 VRHE) of Pt/C owing to the abundant effective active sites, low-coordination numbers and appropriate compressive strain. More importantly, the core-shell and highly developed dendritic structures in Pt1Cu1 NCs catalyst give it an extremely high stability with only 17.2% attenuation of mass activity while 61.1% for Pt/C after the durability tests (30 000 cycles). In H2-O2 fuel cells, Pt1Cu1 NCs cathode also exhibits a higher peak power density and a longer-term lifetime than Pt/C cathode. Moreover, theoretical calculations imply that the weaker adsorption of intermediate products and the lower formation energy barrier of OOH* in Pt1Cu1 NCs collaboratively boost the ORR process. This work offers a morphology tuning approach to prepare and stabilize the low-coordination platinum-based nanocrystals for efficient and stable ORR.
Collapse
Affiliation(s)
- Shaohui Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha, 410083, P. R. China
| | - Suying Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Juan Luo
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha, 410083, P. R. China
| | - Yuke Gu
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha, 410083, P. R. China
| | - Xuanzhi Liu
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha, 410083, P. R. China
| | - Feng Liu
- Yunnan Precious Metals Lab Co., Ltd., Kunming, Yunnan, 650106, China
| | - Pengfei Tan
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha, 410083, P. R. China
| | - Jun Pan
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha, 410083, P. R. China
| |
Collapse
|
22
|
Cui M, Yuan Y, Wu Y, Che Z, Li P, Yang X, Chen Y, Hu W, Wang J, Wang S, Guo Y, Wu Z. Graphdiyne-Induced CoN/CoS 2 Heterojunction: Boosting Efficiency for Bifunctional Oxygen Electrochemistry in Zinc-Air Batteries. CHEMSUSCHEM 2024; 17:e202400832. [PMID: 38845094 DOI: 10.1002/cssc.202400832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Indexed: 08/09/2024]
Abstract
The performance of zinc-air battery is constrained by the sluggish rate of oxygen electrode reaction, particularly under high current discharge conditions where the kinetic process of the oxygen reduction reaction (ORR) decelerates significantly. To address this challenge, we present a novel phase transition strategy that facilitates the creation of a heteroatom-doped heterointerface (CoN/CoS2). The meticulously engineered CoN/CoS2/NC electrocatalyst displays a superior ORR half-wave potential of 0.87 V and an OER overpotential of 320 mV at 10 mA cm-2. Experimental and computational analysis confirm that the CoN/CoS2 heterostructure optimizes local charge distribution, accelerates electron transfer, and tunes active sites for enhanced catalysis. Notably, this heterojunction improves stability by resisting corrosion and degradation under harsh alkaline conditions, thus demonstrating superior performance and longevity in a custom-made liquid zinc-air battery. This research provides valuable practical and theoretical foundations for designing efficient heterointerfaces in electrocatalysis applications.
Collapse
Affiliation(s)
- Min Cui
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Yanan Yuan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Yue Wu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Zhongmei Che
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Peixuan Li
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Xiaochen Yang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Yuqi Chen
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Wei Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Jingui Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Shuai Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
- Nankai University, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Tianjin, 300071, P.R. China
| | - Yingshu Guo
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Zexing Wu
- Qingdao University of Science and Technology, Key Laboratory of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao, 266042, Shandong, P.R. China
| |
Collapse
|
23
|
Wan Z, Ma Z, Xu H, Yuan H, Wu Y, Deng X, Li J, Wang X. Reconfiguring FeN 4 sites through axial Fe 2O 3 clusters to enhance d-orbital electronic delocalization for improved oxygen reduction reaction. J Colloid Interface Sci 2024; 680:776-786. [PMID: 39580928 DOI: 10.1016/j.jcis.2024.11.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Effectively controlling the electronic configuration of metal sites within single-atom catalysts (SACs) is essential for improving their oxygen reduction reaction (ORR) performance. Here, we construct hybrid catalysts featuring Fe single atoms and Fe2O3 clusters (Fe SACs/Fe2O3@NHPC) to realize highly efficient ORR. Specifically, the Fe SACs/Fe2O3@NHPC delivers a remarkable half-wave potential (E1/2) of 0.893 V and endures 30,000 cycles with only 12 mV E1/2 loss in alkaline media. Liquid zinc-air batteries (ZABs) utilizing Fe SACs/Fe2O3@NHPC output a power density of 192.7 mW cm-2 and demonstrate rechargeability over 370 h without noticeable voltage degradation. Furthermore, theoretical calculations indicate that the axially coordinated Fe2O3 clusters significantly promote electronic delocalization in the 3d orbitals of the Fe sites. This electronic structure regulation strategy optimizes the hybridization between Fe-3d orbitals and O-2p orbitals, thereby facilitating the *OH dissociation process. This research not only provides intensive insight into the synergistic interactions and complementary effects between single-atom sites and clusters in hybrid catalysts but also lays the groundwork for designing SACs.
Collapse
Affiliation(s)
- Zihao Wan
- Laboratory of Advanced Materials and Energy Electrochemistry, Institute of New Carbon Materials, College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zizai Ma
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Hongfei Xu
- Laboratory of Advanced Materials and Energy Electrochemistry, Institute of New Carbon Materials, College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hefeng Yuan
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China
| | - Yun Wu
- Department of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiaoyang Deng
- Laboratory of Advanced Materials and Energy Electrochemistry, Institute of New Carbon Materials, College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinping Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaoguang Wang
- Laboratory of Advanced Materials and Energy Electrochemistry, Institute of New Carbon Materials, College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
24
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
25
|
Cheng J, Zhang Z, Shao J, Wang T, Li R, Zhang W. Construction of an Axial Charge Transfer Channel Between Single-Atom Fe Sites and Nitrogen-Doped Carbon Supports for Boosting Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402583. [PMID: 38804883 DOI: 10.1002/smll.202402583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The introduction of axial-coordinated heteroatoms in Fe─N─C single-atom catalysts enables the significant enhancement of their oxygen reduction reaction (ORR) performance. However, the interaction relationship between the axial-coordinated heteroatoms and their carbon supports is still unclear. In this work, a gas phase surface treatment method is proposed to prepare a series of X─Fe─N─C (X = O, P, and S) single-atom catalysts with axial X-coordination on graphitic-N-rich carbon supports. Synchrotron-based X-ray absorption near-edge structure spectra and X-ray photoelectron spectroscopy indicate the formation of an axial charge transfer channel between the graphitic-N-rich carbon supports and single-atom Fe sites by axial O atoms in O─Fe─N─C. As a result, the O─Fe─N─C exhibits excellent ORR performance with a half-wave potential of 0.905 V versus RHE and a high specific capacity of 884 mAh g-1 for zinc-air battery, which is superior to other X─Fe─N─C catalysts without axial charge transfer and the commercial Pt/C catalyst. This work not only demonstrates a general synthesis strategy for the preparation of single-atom catalysts with axial-coordinated heteroatoms, but also presents insights into the interaction between single-atom active sites and doped carbon supports.
Collapse
Affiliation(s)
- Jiahao Cheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zheng Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jibin Shao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Tang Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Rui Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wang Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
26
|
Zhang S, Yi J, Liu M, Shi L, Chen M, Wu L. High-Density Atomically Dispersed Metals Activate Adjacent Nitrogen/Carbon Sites for Efficient Ammonia Electrosynthesis from Nitrate. ACS NANO 2024; 18:26722-26732. [PMID: 39292647 DOI: 10.1021/acsnano.4c06754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
While electrocatalytic reduction of nitrate to ammonia presents a sustainable solution for addressing both the environmental and energy issues within the nitrogen cycle, it remains a great challenge to achieve high selectivity and activity due to undesired side reactions and sluggish reaction kinetics. Here, we fabricate a series of metal-N-C catalysts that feature hierarchically ordered porous structure and high-density atomically dispersed metals (HD M1/PNC). Specifically, the as-prepared HD Fe1/PNC catalyst achieves an ammonia production rate of 21.55 mol gcat-1 h-1 that is at least 1 order of magnitude enhancement compared with that of the reported metal-N-C catalysts, while maintaining a 92.5% Faradaic efficiency when run at 500 mA cm-2 for 300 h. In addition to abundant active sites, such high performance benefits from the fact that the high-density Fe can more significantly activate the adjacent N/C sites through charge redistribution for improved water adsorption/dissociation, providing sufficient active hydrogen to Fe sites for nitrate ammoniation, compared with the low-density counterpart. This finding deepens the understanding of high-density metal-N-C materials at the atomic scale and may further be used for designing other catalysts.
Collapse
Affiliation(s)
- Sai Zhang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Jianjian Yi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Mengdi Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Lan Shi
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Min Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
27
|
Huang S, Lin F, Wang S, Zeng X, Ling H, Hu X, Shen Z, Cao D. Asymmetric Microenvironment Tailoring Strategies of Atomically Dispersed Dual-Site Catalysts for Oxygen Reduction and CO 2 Reduction Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407974. [PMID: 39152929 DOI: 10.1002/adma.202407974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Dual-atom catalysts (DACs) with atomically dispersed dual-sites, as an extension of single-atom catalysts (SACs), have recently become a new hot topic in heterogeneous catalysis due to their maximized atom efficiency and dual-site diverse synergy, because the synergistic diversity of dual-sites achieved by asymmetric microenvironment tailoring can efficiently boost the catalytic activity by optimizing the electronic structure of DACs. Here, this work first summarizes the frequently-used experimental synthesis and characterization methods of DACs. Then, four synergistic catalytic mechanisms (cascade mechanism, assistance mechanism, co-adsorption mechanism and bifunction mechanism) and four key modulating methods (active site asymmetric strategy, transverse/axial-modification engineering, distance engineering and strain engineering) are elaborated comprehensively. The emphasis is placed on the effects of asymmetric microenvironment of DACs on oxygen/carbon dioxide reduction reaction. Finally, some perspectives and outlooks are also addressed. In short, the review summarizes a useful asymmetric microenvironment tailoring strategy to speed up synthesis of high-performance electrocatalysts for different reactions.
Collapse
Affiliation(s)
- Shiqing Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanmiao Lin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaofei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hao Ling
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Xiayi Hu
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Zhigang Shen
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| |
Collapse
|
28
|
Yang X, Lin L, Guo X, Zhang S. Design of Multifunctional Electrocatalysts for ORR/OER/HER/HOR: Janus Makes Difference. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404000. [PMID: 38809060 DOI: 10.1002/smll.202404000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 05/30/2024]
Abstract
Multifunctional electrocatalysts for hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) have broad application prospects; However, realization of such kinds of materials remain difficulties because it requires the materials to have not only unique electronic properties, but multiple active centers to deal with different reactions. Here, employing density functional theory (DFT) computations, it is demonstrated that by decorating the Janus-type 2D transition metal dichalcogenide (TMD) of TaSSe with the single atoms, the materials can achieve multifunctionality to catalyze the ORR/OER/HER/HOR. Out of sixteen catalytic systems, Pt-VS (i.e., Pt atom embedded in the sulfur vacancy), Pd-VSe, and Pt-VSe@TaSSe are promising multifunctional catalysts with superior stability. Among them, the Pt-VS@TaSSe catalyst exhibits the highest activity with theoretical overpotentials ηORR = 0.40 V, ηOER = 0.39 V, and ηHER/HOR = 0.07 V, respectively, better than the traditional Pt (111), IrO2 (110). The interplays between the catalyst and the reaction intermediate over the course of the reaction are then systematically investigated. Generally, this study presents a viable approach for the design and development of advanced multifunctional electrocatalysts. It enriches the application of Janus, a new 2D material, in electrochemical energy storage and conversion technology.
Collapse
Affiliation(s)
- Xinyu Yang
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Long Lin
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiangyu Guo
- School of Science, Constructor University, 28759, Bremen, Germany
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices Ministry of Industry and Information Technology, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
29
|
Gao S, Chen Y, Zhang Y, Wang Y. Dual-Metal-Site Metal-Organic Frameworks for Oxygen Reduction: The Crucial Role of Environmental Species Covering on the Secondary Site. J Phys Chem Lett 2024; 15:9780-9786. [PMID: 39291861 DOI: 10.1021/acs.jpclett.4c02334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Macrocycle-based dual-metal-site metal-organic frameworks emerge as promising catalysts whose activity can be conveniently manipulated via metal node modification. However, how the metal node affects catalysis remains unclear. Herein, using first-principles calculations, we provide new mechanistic insight into dual-metal-site catalysis, where the recently synthesized M1-CoOAPc materials (M1 = Co, Ni, Cu; OAPc = octaaminophthalocyanine) are adopted for demonstration. The modeling results explain experimental measurements of Ni- and Cu-CoOAPc for facilitating oxygen reduction while highlighting a contradiction between the theoretical and experimental activity of Co-CoOAPc. Remarkably, this contradiction is attributed to the inherent H2O adsorption on Co nodes, which is usually neglected in dual-metal-site studies. We expand M1-CoOAPc with other metal nodes and find that Fe-CoOAPc (involving *H2O on the Fe nodes) exhibits a desirable theoretical half-wave potential of 0.82 V, as revealed from constant-potential and microkinetic modeling. This work improves the understanding of dual-metal-site catalysis by uncovering the impact of environmental species covering on the secondary site.
Collapse
Affiliation(s)
- Shurui Gao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, P.R. China
| | - Yuheng Chen
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, P.R. China
| | - Yuwei Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, P.R. China
| | - Yu Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, P.R. China
| |
Collapse
|
30
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han Y. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 PMCID: PMC11580296 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N. Tiwari
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Krishan Kumar
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
| | - Moein Safarkhani
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
- School of ChemistryDamghan UniversityDamghan36716‐45667Iran
| | - Muhammad Umer
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - A. T. Ezhil Vilian
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Ana Beloqui
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
- IKERBASQUEBasque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Young‐Kyu Han
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| |
Collapse
|
31
|
Li X, Qin J, Lin Q, Yi X, Yan C, Zhang J, Dong J, Yu K, Zhang S, Xie C, Yang H, Xiao W, Li W, Wang J, Li X. Electron Spin Broken-Symmetry of Fe-Co Diatomic Pairs to Promote Kinetics of Bifunctional Oxygen Electrocatalysis for Zinc-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401187. [PMID: 38877642 PMCID: PMC11425208 DOI: 10.1002/advs.202401187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Indexed: 06/16/2024]
Abstract
Designing bifunctional catalysts to reduce the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) reaction barriers while accelerating the reaction kinetics is perceived to be a promising strategy to improve the performance of Zinc-air batteries. Unsymmetric configuration in single-atom catalysts has attracted attention due to its unique advantages in regulating electron orbitals. In this work, a seesaw effect in unsymmetric Fe-Co bimetallic monoatomic configurations is proposed, which can effectively improve the OER/ORR bifunctional activity of the catalyst. Compared with the symmetrical model of Fe-Co, a strong charge polarization between Co and Fe atoms in the unsymmetric model is detected, in whom the spin-down electrons around Co atoms are much higher than those spin-up electrons. The seesaw effect occurred between Co atoms and Fe atoms, resulting in a negative shift of the d-band center, which means that the adsorption of oxygen intermediates is weakened and more conducive to their dissociation. The optimized reaction kinetics of the catalyst leads to excellent performance in ZABs, with a peak power density of 215 mW cm-2 and stable cycling for >1300 h and >4000 cycles. Flexible Zinc-air batteries have also gained excellent performance to demonstrate their potential in the field of flexible wearables.
Collapse
Affiliation(s)
- Xiaokang Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Jian Qin
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
- Department of Materials Science and Engineering, Macau University of Science and Technology, Macau, 999078, China
| | - Qingxin Lin
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Xiaoyu Yi
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Cheng Yan
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Jianhua Zhang
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Jinjuan Dong
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Kang Yu
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Shenglong Zhang
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Chong Xie
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Huijuan Yang
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Wei Xiao
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Wenbin Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Jingjing Wang
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Xifei Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
32
|
Wang H, Niu X, Liu W, Yin R, Dai J, Guo W, Kong C, Ma L, Ding X, Wu F, Shi W, Deng T, Cao X. S-Block Metal Mg-Mediated Co─N─C as Efficient Oxygen Electrocatalyst for Durable and Temperature-Adapted Zn-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403865. [PMID: 38965796 PMCID: PMC11425636 DOI: 10.1002/advs.202403865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/14/2024] [Indexed: 07/06/2024]
Abstract
In the quest to enhance Zn-air batteries (ZABs) for operating across a wide spectrum of temperatures, synthesizing robust oxygen electrocatalysts is paramount. Conventional strategies focusing on orbital hybridization of d-d and p-d aim to moderate the excessive interaction between the d-band of the transition metal active site and oxygen intermediate, yet often yield suboptimal performance. Herein, an innovative s-block metal modulation is reported to refine the electronic structure and catalytic behavior of Co─NC catalysts. Employing density functional theory (DFT) calculations, it is revealed that incorporating Mg markedly depresses the d-band center of Co sites, thereby fine-tuning the adsorption energy of the oxygen reduction reaction (ORR) intermediate. Consequently, the Mg-modified Co─NC catalyst (MgCo─NC) unveils remarkable intrinsic ORR activity with a significantly reduced activation energy (Ea) of 10.0 kJ mol-1, outstripping the performance of both Co─NC (17.6 kJ mol-1), benchmark Pt/C (15.9 kJ mol-1), and many recent reports. Moreover, ZABs outfitted with the finely tuned Mg0.1Co0.9─NC realize a formidable power density of 157.0 mW cm-2, paired with an extremely long cycle life of 1700 h, and an exceptionally minimal voltage gap decay rate of 0.006 mV h-1. Further, the Mg0.1Co0.9─NC-based flexible ZAB presents a mere 2% specific capacity degradation when the temperature fluctuates from 25 to -20 °C, underscoring its robustness and suitability for practical deployment in diverse environmental conditions.
Collapse
Affiliation(s)
- Henan Wang
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xinxin Niu
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wenxian Liu
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ruilian Yin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jiale Dai
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wei Guo
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Chao Kong
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Lu Ma
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xia Ding
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Fangfang Wu
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wenhui Shi
- Center for Membrane and Water Science and Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Tianqi Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Xiehong Cao
- College of Materials Science and Engineering, Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
33
|
Liu L, He Q, Dong S, Wang M, Song Y, Diao H, Yuan D. Building synergistic multiple active sites in branch-leaf nanostructured carbon nanofiber derived from MOF/COF hybrid for flexible wearable Zn-air battery. J Colloid Interface Sci 2024; 666:35-46. [PMID: 38583208 DOI: 10.1016/j.jcis.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) have attracted growing attention in electrochemical energy storage and conversion systems (e.g., Zn-air batteries, ZABs) owing to their structural tunability, ordered porosity and high specific surface area. In this work, for the first time, the three-dimensional (3D) highly open catalyst (CNFs/CoZn-MOF@COF) possessing hierarchical porous structure and high-density active sites of uniform cobalt (Co) nanoparticles and metal-Nx (M-Nx, M = Co and Zn) is demonstrated, which is fabricated using electrospinning technique in combination with MOF/COF hybridization strategy and direct pyrolysis. Benefiting from the well-designed branch-leaf nanostructures, plentiful and uniform active sites on the MOF/COF-derived carbon frameworks, as well as the synergistic effect of multiple active sites, CNFs/CoZn-MOF@COF catalyst achieves superior electrocatalytic activity and stability towards both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with a small potential gap (ΔE = 0.75 V). In situ Raman spectroscopy and X-ray photoelectron spectroscopy results indicate that the CoOOH intermediates are the main active species during OER/ORR. Significantly, both aqueous and all-solid-state rechargeable ZABs assembled with CNFs/CoZn-MOF@COF as the air cathode show high open-circuit potential, outstanding peak power density, large capacity and long cycle life. More impressively, the obtained all-solid-state ZAB also displays superb mechanical flexibility and device stability under different, showcasing great application deformations potential in portable and wearable electronics. This work provides a new insight into the design and exploitation of bifunctional catalysts from MOF/COF hybrid materials for energy storage and conversion devices.
Collapse
Affiliation(s)
- Longlong Liu
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, China
| | - Quanfeng He
- College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, Fujian, China
| | - Senjie Dong
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, China
| | - Minghui Wang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, China
| | - Yuqian Song
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, China
| | - Han Diao
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, China
| | - Ding Yuan
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, China.
| |
Collapse
|
34
|
Gu CH, Wang S, Zhang AY, Liu C, Jiang J, Yu HQ. Tuning electronic structure of metal-free dual-site catalyst enables exclusive singlet oxygen production and in-situ utilization. Nat Commun 2024; 15:5771. [PMID: 38982107 PMCID: PMC11535063 DOI: 10.1038/s41467-024-50240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024] Open
Abstract
Developing eco-friendly catalysts for effective water purification with minimal oxidant use is imperative. Herein, we present a metal-free and nitrogen/fluorine dual-site catalyst, enhancing the selectivity and utilization of singlet oxygen (1O2) for water decontamination. Advanced theoretical simulations reveal that synergistic fluorine-nitrogen interactions modulate electron distribution and polarization, creating asymmetric surface electron configurations and electron-deficient nitrogen vacancies. These properties trigger the selective generation of 1O2 from peroxymonosulfate (PMS) and improve the utilization of neighboring reactive oxygen species, facilitated by contaminant enrichment at the fluorine-carbon Lewis-acid adsorption sites. Utilizing these insights, we synthesize the catalyst through montmorillonite (MMT)-assisted pyrolysis (NFC/M). This method leverages the role of MMT as an in-situ layer-stacked template, enabling controlled decomposition of carbon, nitrogen, and fluorine precursors and resulting in a catalyst with enhanced structural adaptability, reactive site accessibility, and mass-transfer capacity. The NFC/M demonstrates an impressive 290.5-fold increase in phenol degradation efficiency than the single-site analogs, outperforming most of metal-based catalysts. This work not only underscores the potential of precise electronic and structural manipulations in catalyst design but also advances the development of efficient and sustainable solutions for water purification.
Collapse
Affiliation(s)
- Chao-Hai Gu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Song Wang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Ai-Yong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
- Anhui Engineering Laboratory for Rural Water Environment and Resources, School of Civil Engineering, Hefei University of Technology, Hefei, China.
| | - Chang Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China.
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
35
|
Zhou S, Chen C, Xia J, Li L, Qian X, Yin F, He G, Chen Q, Chen H. FeN 3S 1─OH Single-Atom Sites Anchored on Hollow Porous Carbon for Highly Efficient pH-Universal Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310224. [PMID: 38321843 DOI: 10.1002/smll.202310224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/27/2023] [Indexed: 02/08/2024]
Abstract
Regulating the asymmetric active center of a single-atom catalyst to optimize the binding energy is critical but challenging to improve the overall efficiency of the electrocatalysts. Herein, an effective strategy is developed by introducing an axial hydroxyl (OH) group to the Fe─N4 center, simultaneously assisting with the further construction of asymmetric configurations by replacing one N atom with one S atom, forming FeN3S1─OH configuration. This novel structure can optimize the electronic structure and d-band center shift to reduce the reaction energy barrier, thereby promoting oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activities. The optimal catalyst, FeSA-S/N-C (FeN3S1─OH anchored on hollow porous carbon) displays remarkable ORR performance with a half-wave potential of 0.92, 0.78, and 0.64 V versus RHE in 0.1 m KOH, 0.5 m H2SO4, and 0.1 m PBS, respectively. The rechargeable liquid Zn-air batteries (LZABs) equipped with FeSA-S/N-C display a higher power density of 128.35 mW cm-2, long-term operational stability of over 500 h, and outstanding reversibility. More importantly, the corresponding flexible solid-state ZABs (FSZABs@FeSA-S/N-C) display negligible voltage changes at different bending angles during the charging and discharging processes. This work provides a new perspective for the design and optimization of asymmetric configuration for single-atom catalysts applied to the area of energy conversion and storage.
Collapse
Affiliation(s)
- Shilong Zhou
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Chao Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Jiawei Xia
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Xingyue Qian
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Fengxiang Yin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Qun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
36
|
Tang L, Peng H, Kang J, Chen H, Zhang M, Liu Y, Kim DH, Liu Y, Lin Z. Zn-based batteries for sustainable energy storage: strategies and mechanisms. Chem Soc Rev 2024; 53:4877-4925. [PMID: 38595056 DOI: 10.1039/d3cs00295k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Batteries play a pivotal role in various electrochemical energy storage systems, functioning as essential components to enhance energy utilization efficiency and expedite the realization of energy and environmental sustainability. Zn-based batteries have attracted increasing attention as a promising alternative to lithium-ion batteries owing to their cost effectiveness, enhanced intrinsic safety, and favorable electrochemical performance. In this context, substantial endeavors have been dedicated to crafting and advancing high-performance Zn-based batteries. However, some challenges, including limited discharging capacity, low operating voltage, low energy density, short cycle life, and complicated energy storage mechanism, need to be addressed in order to render large-scale practical applications. In this review, we comprehensively present recent advances in designing high-performance Zn-based batteries and in elucidating energy storage mechanisms. First, various redox mechanisms in Zn-based batteries are systematically summarized, including insertion-type, conversion-type, coordination-type, and catalysis-type mechanisms. Subsequently, the design strategies aiming at enhancing the electrochemical performance of Zn-based batteries are underscored, focusing on several aspects, including output voltage, capacity, energy density, and cycle life. Finally, challenges and future prospects of Zn-based batteries are discussed.
Collapse
Affiliation(s)
- Lei Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Haojia Peng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Jiarui Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Han Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Dong Ha Kim
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Yijiang Liu
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China.
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
37
|
Liu Y, Li J, Lv Z, Fan H, Dong F, Wang C, Chen X, Liu R, Tian C, Feng X, Yang W, Wang B. Efficient Proton-exchange Membrane Fuel Cell Performance of Atomic Fe Sites via p-d Hybridization with Al Dopants. J Am Chem Soc 2024; 146:12636-12644. [PMID: 38676645 DOI: 10.1021/jacs.4c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Orbital hybridization to regulate the electronic structures and surface chemisorption properties of transition metals is of great importance for boosting the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs). Herein, we developed a core-shell rambutan-like nanocarbon catalyst (FeAl-RNC) with atomically dispersed Fe-Al atom pairs from metal-organic framework (MOF) material. Experimental and theoretical results demonstrate that the strong p-d orbital hybridization between Al and Fe results in an asymmetric electron distribution with moderate adsorption strength of oxygen intermediates, rendering enhanced intrinsic ORR activity. Additionally, the core-shell rambutan-like structure of FeAl-RNC with abundant micropores and macropores can enhance the density of active sites, stability, and transport pathways in PEMFC. The FeAl-RNC-based PEMFC achieves excellent activity (68.4 mA cm-2 at 0.9 V), high peak power (1.05 W cm-2), and good stability with only 7% current loss after 100 h at 0.7 V under H2-O2 condition.
Collapse
Affiliation(s)
- Yarong Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jiaxin Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zunhang Lv
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Haiyang Fan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Feilong Dong
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Changli Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xianchun Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Rui Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chongao Tian
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wenxiu Yang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
38
|
Shu C, Zhang W, Zhan J, Yu F. Anchoring covalent organic polymers on supports with tunable functional groups boosting the oxygen reduction performance under pH-universal conditions. J Colloid Interface Sci 2024; 661:923-929. [PMID: 38330664 DOI: 10.1016/j.jcis.2024.01.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Iron phthalocyanine (FePc) is an attractive nonprecious metal candidate for electrocatalytic oxygen reduction reaction (ORR). However, its low catalytic performance under acidic and neutral conditions limits its practical application. Herein, the FePc-based covalent organic polymers (COPFePc) polymerized in situ on the functionalized multiwalled carbon nanotubes (R-MWCNT) containing different electron-withdrawing or electron-donating groups (COPFePc/R-MWCNT, R = COOH, OH or NH2) were synthesized for ORR. Among them, COPFePc/COOH-MWCNT exhibited the best ORR performance under pH-universal conditions (acidic, neutral, and alkaline). Density-functional theory (DFT) calculations demonstrate that the electron-withdrawing or electron-donating effect of the functional groups in COPFePc/R-MWCNT causes charge redistribution of the active center Fe. The COOH functional group with an electron-withdrawing ability shifts the d-band center of Fe away from the Fermi energy level and reduces the binding strength of oxygen-containing intermediates, accelerating the ORR kinetics and optimizing the catalytic activity.
Collapse
Affiliation(s)
- Chonghong Shu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Wenlin Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China.
| | - Jiayu Zhan
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Fengshou Yu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
39
|
Pei Z, Zhang H, Guo Y, Luan D, Gu X, Lou XWD. Atomically Dispersed Fe Sites Regulated by Adjacent Single Co Atoms Anchored on N-P Co-Doped Carbon Structures for Highly Efficient Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306047. [PMID: 37496431 DOI: 10.1002/adma.202306047] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/16/2023] [Indexed: 07/28/2023]
Abstract
Manipulating the coordination environment and electron distribution for heterogeneous catalysts at the atomic level is an effective strategy to improve electrocatalytic performance but remains challenging. Herein, atomically dispersed Fe and Co anchored on nitrogen, phosphorus co-doped carbon hollow nanorod structures (FeCo-NPC) are rationally designed and synthesized. The as-prepared FeCo-NPC catalyst exhibits significantly boosted electrocatalytic kinetics and greatly upshifts the half-wave potential for the oxygen reduction reaction. Furthermore, when utilized as the cathode, the FeCo-NPC catalyst also displays excellent zinc-air battery performance. Experimental and theoretical results demonstrate that the introduction of single Co atoms with Co-N/P coordination around isolated Fe atoms induces asymmetric electron distribution, resulting in the suitable adsorption/desorption ability for oxygen intermediates and the optimized reaction barrier, thereby improving the electrocatalytic activity.
Collapse
Affiliation(s)
- Zhihao Pei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| | - Huabin Zhang
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yan Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiaojun Gu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
40
|
Kong YC, Wang DL, Zhang JJ, Yang YX, Xu CH, Javed R, Zhao H, Ye D, Zhao W. Elevating sensing capability via dual-atom catalysts boosted luminol cathodic electrochemiluminescence. Anal Chim Acta 2024; 1295:342322. [PMID: 38355223 DOI: 10.1016/j.aca.2024.342322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND The advancement of highly sensitive electrochemiluminescence (ECL) biosensors has garnered escalating interest over time. Owing to the distinctive physicochemical attributes, the signal amplification strategy facilitated by functional nanomaterials has achieved notable milestones. Single-atom catalysts (SACs), featuring atomically dispersed metal active sites, have garnered significant attention. SACs offer unprecedented control over active sites and surface structures at the atomic level. However, to fully harness their potential, ongoing efforts focus on strategies to enhance the catalytic performance of SACs, profoundly influencing both the sensitivity and selectivity of SACs-based sensing platforms. RESULTS In this study, we focused on the synthesis and application of Fe-Co-PNC dual-atom catalysts (DACs) with the incorporation of phosphorus, aiming to enhance catalytic efficiency, particularly in the context of the oxygen reduction reaction (ORR) correlated cathodic luminol ECL. The synergistic effects arising from the combination of Fe and Co in DACs were explored by ECL emission. Comparative studies with Fe-PNC SACs highlighted the superior catalytic performance of Fe-Co-PNC DACs. The ECL sensing platform exhibited excellent sensitivity, which provided a fast detection of Trolox with a wide linear range (0.1 μM-1.0 mM) and a low detection limit (LOD) of 0.03 μM. The platform demonstrated remarkable reproducibility and long-term stability, showcasing its potential for practical biosensing applications. SIGNIFICANCE This study introduced the novel concept of Fe-Co-PNC DACs. The demonstrated synergistic effects and enhanced catalytic efficiency of DACs offer new avenues for the rational design of advanced catalysts. The successful application in the sensitive detection of Trolox emphasizes their potential significance in biosensing. It not only expands our understanding of SACs but also opens doors for the development of efficient and stable catalysts with broader applications.
Collapse
Affiliation(s)
- Yan-Chen Kong
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Dan-Ling Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jing-Jing Zhang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yu-Xin Yang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Cong-Hui Xu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Rida Javed
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Hongbin Zhao
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Daixin Ye
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China.
| | - Wei Zhao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
41
|
Jia Z, Kong X, Liu Z, Zhao X, Zhao X, He F, Zhao Y, Zhang M, Yang P. State-of-the-Art Two-Dimensional Metal Phosphides for High Performance Lithium-ion Batteries: Progress and Prospects. CHEMSUSCHEM 2024; 17:e202301386. [PMID: 37953461 DOI: 10.1002/cssc.202301386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Lithium-ion batteries (LIBs) with high energy density, long cycle life and safety have earned recognition as outstanding energy storage devices, and have been used in extensive applications, such as portable electronics and new energy vehicles. However, traditional graphite anodes deliver low specific capacity and inferior rate performance, which is difficult to satisfy ever-increasing demands in LIBs. Very recently, two-dimensional metal phosphides (2D MPs) emerge as the cutting-edge materials in LIBs due to their overwhelming advantages including high theoretical capacity, excellent conductivity and short lithium diffusion pathway. This review summarizes the up-to-date advances of 2D MPs from typical structures, main synthesis methods and LIBs applications. The corresponding lithium storage mechanism, and relationship between 2D structure and lithium storage performance is deeply discussed to provide new enlightening insights in application of 2D materials for LIBs. Several potential challenges and inspiring outlooks are highlighted to provide guidance for future research and applications of 2D MPs.
Collapse
Affiliation(s)
- Zhuoming Jia
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Xianglong Kong
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Zhiliang Liu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Xiaohan Zhao
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Xudong Zhao
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Fei He
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Ying Zhao
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Milin Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Piaoping Yang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| |
Collapse
|
42
|
Liu L, Liu T, Xu C, Zhao W, Fan J, Liu J, Ma X, Fu W. FeCoCuMnRuB Nanobox with Dual Driving of High-Entropy and Electron-Trap Effects as the Efficient Electrocatalyst for Water Oxidation. NANO LETTERS 2024; 24:2831-2838. [PMID: 38385633 DOI: 10.1021/acs.nanolett.3c04962] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
High-entropy borides hold potential as electrocatalysts for water oxidation. However, the synthesis of the tailored nanostructures remains a challenge due to the thermodynamic immiscibility of polymetallic components. Herein, a FeCoCuMnRuB nanobox decorated with a nanosheet array was synthesized for the first time by a "coordination-etch-reduction" method. The FeCoCuMnRuB nanobox has various structural characteristics to express the catalytic performance; meanwhile, it combines the high-entropy effect of multiple components with the electron trap effect induced by electron-deficient B, synergistically regulating its electronic structure. As a result, FeCoCuMnRuB nanobox exhibits enhanced OER activity with a low overpotential (η10 = 233 mV), high TOF value (0.0539 s-1), small Tafel slope (61 mV/dec), and a satisfactory stability for 200 h, outperforming the high-entropy alloy and low-entropy borides. This work develops a high entropy and electron-deficient B-driven strategy for motivating the catalytic performance of water oxidation, which broadens the structural diversity and category of high-entropy materials.
Collapse
Affiliation(s)
- Li Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Tinghui Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Can Xu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Wanyi Zhao
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Junping Fan
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Jing Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Xinguo Ma
- School of Science, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| |
Collapse
|
43
|
Peng Q, Chen Z, Zhang Y, Geng Z, Wang L, Dong X, Wang J, Zhong Q. Intermittent investigations on attenuation mechanism of rechargeable zinc-air batteries during charge/discharge cycles. Chemphyschem 2024; 25:e202300610. [PMID: 38264930 DOI: 10.1002/cphc.202300610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
Rechargeable zinc-air batteries (RZABs) are an ideal substitute for energy storage, but the short cycle longevity during long-term charge/discharge operation is one of the bottleneck factors that seriously restrict commercial application. Herein, the FeCo alloy/N, S co-doped carbon aerogel (NSCA/FeCo) were prepared as catalysts of cathode for RZABs. We investigated the polarization and impedance on long-term cycles during the battery operation to explore the attenuation mechanism. The results indicated that the roundtrip efficiency of batteries during charge/discharge cycles reduced fast initially and then slow. Besides, the comparative experiment was tested through the replacement of a new electrolyte and a zinc sheet. It is manifested that the failure of the battery is mainly due to the attenuation of the air cathode performance. Therefore, to further disclose the influencing factors and internal mechanisms of air cathode performance degradation, we conducted a series of characterization and testing, including the hydrophilicity, surface morphology, elemental composition, and electrochemical performance of three-electrode systems at different cycle times. This work not only provides a theoretical basis for deeply comprehending the attenuation mechanism of the cathode but also serves a reference for the material design and operating condition optimization of RZABs.
Collapse
Affiliation(s)
- Qiuyue Peng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Zhaotian Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Yiwen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Zirui Geng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Lilan Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Xinyao Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Juan Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Qin Zhong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| |
Collapse
|
44
|
Li Y, Li Y, Sun H, Gao L, Jin X, Li Y, Lv Z, Xu L, Liu W, Sun X. Current Status and Perspectives of Dual-Atom Catalysts Towards Sustainable Energy Utilization. NANO-MICRO LETTERS 2024; 16:139. [PMID: 38421549 PMCID: PMC10904713 DOI: 10.1007/s40820-024-01347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
The exploration of sustainable energy utilization requires the implementation of advanced electrochemical devices for efficient energy conversion and storage, which are enabled by the usage of cost-effective, high-performance electrocatalysts. Currently, heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications. Compared to conventional catalysts, atomically dispersed metal atoms in carbon-based catalysts have more unsaturated coordination sites, quantum size effect, and strong metal-support interactions, resulting in exceptional catalytic activity. Of these, dual-atomic catalysts (DACs) have attracted extensive attention due to the additional synergistic effect between two adjacent metal atoms. DACs have the advantages of full active site exposure, high selectivity, theoretical 100% atom utilization, and the ability to break the scaling relationship of adsorption free energy on active sites. In this review, we summarize recent research advancement of DACs, which includes (1) the comprehensive understanding of the synergy between atomic pairs; (2) the synthesis of DACs; (3) characterization methods, especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy; and (4) electrochemical energy-related applications. The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules, such as oxygen reduction reaction, CO2 reduction reaction, hydrogen evolution reaction, and N2 reduction reaction. The future research challenges and opportunities are also raised in prospective section.
Collapse
Affiliation(s)
- Yizhe Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yajie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Hao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Liyao Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiangrong Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhi Lv
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lijun Xu
- Xinjiang Coal Mine Mechanical and Electrical Engineering Technology Research Center, Xinjiang Institute of Engineering, Ürümqi, 830023, Xinjiang Uygur Autonomous Region, People's Republic of China.
| | - Wen Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
45
|
Nazir G, Rehman A, Lee JH, Kim CH, Gautam J, Heo K, Hussain S, Ikram M, AlObaid AA, Lee SY, Park SJ. A Review of Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives. NANO-MICRO LETTERS 2024; 16:138. [PMID: 38421464 PMCID: PMC10904712 DOI: 10.1007/s40820-024-01328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 03/02/2024]
Abstract
Zinc-air batteries (ZABs) are gaining attention as an ideal option for various applications requiring high-capacity batteries, such as portable electronics, electric vehicles, and renewable energy storage. ZABs offer advantages such as low environmental impact, enhanced safety compared to Li-ion batteries, and cost-effectiveness due to the abundance of zinc. However, early research faced challenges due to parasitic reactions at the zinc anode and slow oxygen redox kinetics. Recent advancements in restructuring the anode, utilizing alternative electrolytes, and developing bifunctional oxygen catalysts have significantly improved ZABs. Scientists have achieved battery reversibility over thousands of cycles, introduced new electrolytes, and achieved energy efficiency records surpassing 70%. Despite these achievements, there are challenges related to lower power density, shorter lifespan, and air electrode corrosion leading to performance degradation. This review paper discusses different battery configurations, and reaction mechanisms for electrically and mechanically rechargeable ZABs, and proposes remedies to enhance overall battery performance. The paper also explores recent advancements, applications, and the future prospects of electrically/mechanically rechargeable ZABs.
Collapse
Affiliation(s)
- Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
| | - Adeela Rehman
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jong-Hoon Lee
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| | - Choong-Hee Kim
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| | - Jagadis Gautam
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| | - Kwang Heo
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul, 05006, Republic of Korea.
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan
| | - Abeer A AlObaid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
46
|
Shu X, Tan D, Wang Y, Ma J, Zhang J. Bimetal-bridging Nitrogen Coordination in Carbon-based Electrocatalysts for pH-universal Oxygen Reduction. Angew Chem Int Ed Engl 2024; 63:e202316005. [PMID: 38063141 DOI: 10.1002/anie.202316005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 01/13/2024]
Abstract
Electrocatalysts with atomically dispersed metal sites (e.g., metal-nitrogen-carbon) have been deemed as promising alternatives for noble-metal catalysts in couples of electrocatalytic reactions. However, the modulation of such atomic sites and the understanding of their interactions are still highly challenging. Herein, we propose a unique supermolecule assembly-profile coating strategy to prepare a series of diatomic electrocatalysts by profile coating of eight Prussian blue analogues (PBAs) on supramolecular supports respectively as bimetallic sources. The detailed microstructure analysis revealed that the metal-nitrogen-carbon sites with four- (Zn-N4 ) and five-coordination (Fe-N5 ) via the nitrogen coordination are similar to the cytochrome c oxidases. For promising electrocatalysis, such unique microstructure is able to activate oxygen molecules due to nitrogen-bonding coordination with bimetal sites, thus leading to efficient four-electron oxygen reduction in alkaline, neutral, and acid electrolytes. Especially, zinc group elements (e.g., Zn and Cd) with d10 electron configuration would significantly boost the nitrogen-bonding coordination with bimetal sites to enhance electrocatalytic activity. The proof-of-concept for the general synthesis of advanced electrocatalysts with controllable bimetal active sites and the mechanistic understanding will promote the promising electrocatalysis by applying the similar principles.
Collapse
Affiliation(s)
- Xinxin Shu
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Dongxing Tan
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yueqing Wang
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jizhen Ma
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jintao Zhang
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
47
|
Liu L, Zhang J, Zhao Y, Zhang M, Wu L, Yang P, Liu Z. Research progress on direct borohydride fuel cells. Chem Commun (Camb) 2024; 60:1965-1978. [PMID: 38273804 DOI: 10.1039/d3cc06169h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The rapid development of industry has accelerated the utilization and consumption of fossil energy, resulting in an increasing shortage of energy resources and environmental pollution. Therefore, it is crucial to explore new energy storage devices using renewable and environment-friendly energy as fuel. Direct borohydride fuel cells (DBFCs) are expected to be a feasible and efficient energy storage device by virtue of the read availability of raw materials, non-toxicity of products, and excellent operational stability. Moreover, while utilizing H2O2 as an oxidant, a significant theoretical energy density of 17 kW h kg-1 can be achieved, indicating the broad application prospect of DBFCs in long-range operation and oxygen-free environment. This review summarizes the research progress on DBFCs in term of reaction kinetics, electrode materials, membrane materials, architecture, and electrolytes. In addition, we predict the future research challenges and feasible research directions, considering both performance and cost. We hope this review will help guide future studies on DBFCs.
Collapse
Affiliation(s)
- Liu Liu
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| | - Junming Zhang
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| | - Ying Zhao
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| | - Milin Zhang
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| | - Linzhi Wu
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| | - Zhiliang Liu
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| |
Collapse
|
48
|
Zhang Y, Lou J, Wei J, Zhou Y, Wang H, Wang L, Wang Q, Li X, Song X. Dual-outward contraction-induced construction of 2D hollow carbon superstructures. Chem Commun (Camb) 2024; 60:1567-1570. [PMID: 38224451 DOI: 10.1039/d3cc06156f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
A novel dual-outward contraction mechanism is applied to construct 2D hollow carbon superstructures (HCSs) via pyrolysis of hybrid ZIF superstructures. One outward contraction stress is offered by the in situ formed thin carbon shell, while another originates from the interconnected facets of ZIF polyhedra within the ZIF superstructure.
Collapse
Affiliation(s)
- Yaqi Zhang
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Jiali Lou
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Jiamin Wei
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Yajing Zhou
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Haifeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer, Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Liangbiao Wang
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Qing Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer, Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Xiaokai Song
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| |
Collapse
|
49
|
Cui K, Tang X, Xu X, Kou M, Lyu P, Xu Y. Crystalline Dual-Porous Covalent Triazine Frameworks as a New Platform for Efficient Electrocatalysis. Angew Chem Int Ed Engl 2024; 63:e202317664. [PMID: 38131249 DOI: 10.1002/anie.202317664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Crystalline covalent triazine frameworks (CTFs) have gained considerable interest in energy and catalysis owing to their well-defined nitrogen-rich π-conjugated porosity and superior physicochemical properties, however, suffer from very limited molecular structures. Herein we report a novel solvent-free FeCl3 -catalyzed polymerization of 2, 6-pyridinedicarbonitrile (DCP) to achieve the first synthesis of crystalline, dual-porous, pyridine-based CTF (Fe-CTF). The FeCl3 could not only act as a highly active Lewis acid catalyst for promoting the two-dimensional ordered polymerization of DCP monomers, but also in situ coordinate with the tridentate chelators generated between pyridine and triazine groups to yield unique Fe-N3 single-atom active sites in Fe-CTF. Abundant few-layer crystalline nanosheets (Fe-CTF NSs) could be prepared through simple ball-milling exfoliation of the bulk layered Fe-CTF and exhibited remarkable electrocatalytic performance for oxygen reduction reaction (ORR) with a half-wave potential and onset potential up to 0.902 and 1.02 V respectively, and extraordinary Zn-air battery performance with an ultrahigh specific capacity and power density of 811 mAh g-1 and 230 mW cm-2 respectively. By combining operando X-ray absorption spectroscopy with density functional theory calculations, we revealed a dynamic and reversible evolution of Fe-N3 to Fe-N2 during the electrocatalytic process, which could further accelerate the electrocatalytic reaction.
Collapse
Affiliation(s)
- Kai Cui
- School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Xiaoliang Tang
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Xiaopei Xu
- College of Science, Henan University of Technology, Zhengzhou, 450001, Henan Province, China
| | - Manchang Kou
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Pengbo Lyu
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
50
|
Zhong J, Liang Z, Liu N, Xiang Y, Yan B, Zhu F, Xie X, Gui X, Gan L, Yang HB, Yu D, Zeng Z, Yang G. Engineering Symmetry-Breaking Centers and d-Orbital Modulation in Triatomic Catalysts for Zinc-Air Batteries. ACS NANO 2024. [PMID: 38315041 DOI: 10.1021/acsnano.3c08839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Unraveling the configuration-activity relationship and synergistic enhancement mechanism (such as real active center, electron spin-state, and d-orbital energy level) for triatomic catalysts, as well as their intrinsically bifunctional oxygen electrocatalysis, is a great challenge. Here we present a triatomic catalyst (TAC) with a trinuclear active structure that displays extraordinary oxygen electrocatalysis for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), greatly outperforming the counterpart of single-atom and diatomic catalysts. The aqueous Zn-air battery (ZAB) equipped with a TAC-based cathode exhibits extraordinary rechargeable stability and ultrarobust cycling performance (1970 h/3940 cycles at 2 mA cm-2, 125 h/250 cycles at 10 mA cm-2 with negligible voltage decay), and the quasi-solid-state ZAB displays outstanding rechargeability and low-temperature adaptability (300 h/1800 cycles at 2 mA cm-2 at -60 °C), outperforming other state-of-the-art ZABs. The experimental and theoretical analyses reveal the symmetry-breaking CoN4 configuration under incorporation of neighboring metal atoms (Fe and Cu), which leads to d-orbital modulation, a low-shift d band center, weakened binding strength to the oxygen intermediates, and decreased energy barrier for bifunctional oxygen electrocatalysis. This rational tricoordination design as well as an in-depth mechanism analysis indicate that hetero-TACs can be promisingly applied in various electrocatalysis applications.
Collapse
Affiliation(s)
- Junjie Zhong
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhanhao Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Ning Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Yucui Xiang
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, People's Republic of China
| | - Bo Yan
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Fangyuan Zhu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Liyong Gan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, People's Republic of China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhiping Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|