1
|
Park Y, Lee J, Lee H, Park JB, Yun J, Lee CU, Moon S, Lee S, Kim S, Kim JH, Kim D, Han J, Kim DW, Moon J. Elucidating the Chirality-Induced Spin Selectivity Effect of Co-Doped NiO Deposited on Ni Foam for Highly Stable Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18228-18242. [PMID: 40080125 PMCID: PMC11955944 DOI: 10.1021/acsami.4c20630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/04/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
The urgent need to alleviate global warming and limit the consumption of fossil fuels has prompted the development of rechargeable Zn-air batteries (ZABs) considering their superior energy density, safety, and cost-effectiveness. However, the sluggish reaction kinetics of the oxygen evolution reaction (OER) and the unfavorable properties of conventional OER catalysts (including low electrical conductivity and the use of active site-blocking binders) hinder the development of practically viable ZABs. Herein, we report a distinct approach for directly synthesizing cobalt-doped nickel oxide (Co-NiO) with a chiral structure on porous Ni foam via a one-step hydrothermal process. The chirality-induced spin selectivity (CISS) boosts the OER kinetics, while Co doping elevates the electrical conductivity and the abundance of active sites on the catalyst. The chiral Co-NiO demonstrates an OER current density of 10 mA cm-2 at 1.58 V versus the reversible hydrogen electrode, outperforming both achiral Co-NiO and undoped NiO. Furthermore, a chiral Co-NiO-based rechargeable ZAB demonstrates a high open-circuit potential (1.57 V), a low charge/discharge overpotential (0.71 V), and excellent stability for 960 h (40 days) because the CISS effect mitigates the production of the corrosive singlet oxygen. These results represent a prominent pathway for the advancement of ZABs using the low-cost oxygen evolution catalyst modulated by the CISS effect and heteroatomic doping.
Collapse
Affiliation(s)
- Young
Sun Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jeongyoub Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hyungsoo Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jung Been Park
- School
of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Juwon Yun
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Chan Uk Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Subin Moon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Soobin Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jun Hwan Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Donghyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jimin Han
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Dong-Wan Kim
- School
of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jooho Moon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| |
Collapse
|
2
|
Liu Y, Wang Z, Hu G, Chen X, Xu K, Guo Y, Xie Y, Wu C. Precision Intercalation of Organic Molecules in 2D Layered Materials: From Interface Chemistry to Low-Dimensional Physics. PRECISION CHEMISTRY 2025; 3:51-71. [PMID: 40018453 PMCID: PMC11863159 DOI: 10.1021/prechem.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 03/01/2025]
Abstract
The past few decades have witnessed significant development in intercalation chemistry research aimed at precisely controlling material properties. Intercalation, as a powerful surface and interface synthesis strategy, facilitates the insertion of external guests into van der Waals (vdW) gaps in two-dimensional (2D) layered materials, inducing various modulation effects (the weakening of interlayer interactions, changes in electronic structures, interfacial charge transfer, and symmetry manipulation) to tailor material properties while preserving intralayer covalent bonds. Importantly, benefiting from the very diverse structures and properties of organic molecules, their intercalation enables the integration of various molecules with a wide array of 2D materials, resulting in the creation of numerous organic-inorganic hybrid superlattices with exotic properties, which brings extensive potential applications in fields such as spintronics, superconductor electronics, optoelectronics, and thermoelectrics. Herein, based on recent advancements in organic intercalation systems, we briefly discuss a summary and classification of various organic guest species. We also discuss three modulation effects induced by organic intercalation and further introduce intriguing modulations in physicochemical properties, including superconductivity, magnetism, thermoelectricity and thermal conductivity, chiral-induced spin selectivity (CISS) effects, and interlayer-confined chemical reaction. Finally, we offer insights into future research opportunities and emerging challenges in organic intercalation systems.
Collapse
Affiliation(s)
- Yang Liu
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ziren Wang
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guoliang Hu
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaomeng Chen
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ke Xu
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yuqiao Guo
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Xie
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Changzheng Wu
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
3
|
Wan Z, Qian Q, Huang Y, Duan X. Layered hybrid superlattices as designable quantum solids. Nature 2024; 635:49-60. [PMID: 39506149 DOI: 10.1038/s41586-024-07858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/19/2024] [Indexed: 11/08/2024]
Abstract
Crystalline solids typically show robust long-range structural ordering, vital for their remarkable electronic properties and use in functional electronics, albeit with limited customization space. By contrast, synthetic molecular systems provide highly tunable structural topologies and versatile functionalities but are often too delicate for scalable electronic integration. Combining these two systems could harness the strengths of both, yet realizing this integration is challenging owing to distinct chemical bonding structures and processing conditions. Two-dimensional atomic crystals comprise crystalline atomic layers separated by non-bonding van der Waals gaps, allowing diverse atomic or molecular intercalants to be inserted without disrupting existing covalent bonds. This enables the creation of a diverse set of layered hybrid superlattices (LHSLs) composed of alternating crystalline atomic layers of variable electronic properties and self-assembled atomic or molecular interlayers featuring customizable chemical compositions and structural motifs. Here we outline strategies to prepare LHSLs and discuss emergent properties. With the versatile molecular design strategies and modular assembly processes, LHSLs offer vast flexibility for weaving distinct chemical constituents and quantum properties into monolithic artificial solids with a designable three-dimensional potential landscape. This opens unprecedented opportunities to tailor charge correlations, quantum properties and topological phases, thereby defining a rich material platform for advancing quantum information science.
Collapse
Affiliation(s)
- Zhong Wan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Qi Qian
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Chae K, Mohamad NARC, Kim J, Won DI, Lin Z, Kim J, Kim DH. The promise of chiral electrocatalysis for efficient and sustainable energy conversion and storage: a comprehensive review of the CISS effect and future directions. Chem Soc Rev 2024; 53:9029-9058. [PMID: 39158537 DOI: 10.1039/d3cs00316g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The integration of chirality, specifically through the chirality-induced spin selectivity (CISS) effect, into electrocatalytic processes represents a pioneering approach for enhancing the efficiency of energy conversion and storage systems. This review delves into the burgeoning field of chiral electrocatalysis, elucidating the fundamental principles, historical development, theoretical underpinnings, and practical applications of the CISS effect across a spectrum of electrocatalytic reactions, including the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). We explore the methodological advancements in inducing the CISS effect through structural and surface engineering and discuss various techniques for its measurement, from magnetic conductive atomic force microscopy (mc-AFM) to hydrogen peroxide titration. Furthermore, this review highlights the transformative potential of the CISS effect in addressing the key challenges of the NRR and CO2RR processes and in mitigating singlet oxygen formation in metal-air batteries, thereby improving their performance and durability. Through this comprehensive overview, we aim to underscore the significant role of incorporating chirality and spin polarization in advancing electrocatalytic technologies for sustainable energy applications.
Collapse
Affiliation(s)
- Kyunghee Chae
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Nur Aqlili Riana Che Mohamad
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Jeonghyeon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong-Il Won
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Zhiqun Lin
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Jeongwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| |
Collapse
|
5
|
Bloom BP, Chen Z, Lu H, Waldeck DH. A chemical perspective on the chiral induced spin selectivity effect. Natl Sci Rev 2024; 11:nwae212. [PMID: 39144747 PMCID: PMC11321253 DOI: 10.1093/nsr/nwae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/30/2024] [Accepted: 05/30/2024] [Indexed: 08/16/2024] Open
Abstract
This review discusses opportunities in chemistry that are enabled by the chiral induced spin selectivity (CISS) effect. First, the review begins with a brief overview of the seminal studies on CISS. Next, we discuss different chiral material systems whose properties can be tailored through chemical means, with a special emphasis on hybrid organic-inorganic layered materials that exhibit some of the largest spin filtering properties to date. Then, we discuss the promise of CISS for chemical reactions and enantioseparation before concluding.
Collapse
Affiliation(s)
- Brian P Bloom
- Department of Chemistry, University of Pittsburgh, Pittsburgh 15260, USA
| | - Zhongwei Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Haipeng Lu
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh 15260, USA
| |
Collapse
|
6
|
Chen Z, Li X, Ma H, Zhang Y, Peng J, Ma T, Cheng Z, Gracia J, Sun Y, Xu ZJ. Spin-dependent electrocatalysis. Natl Sci Rev 2024; 11:nwae314. [PMID: 39363911 PMCID: PMC11448474 DOI: 10.1093/nsr/nwae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
The shift towards sustainable energy requires efficient electrochemical conversion technologies, emphasizing the crucial need for robust electrocatalyst design. Recent findings reveal that the efficiency of some electrocatalytic reactions is spin-dependent, with spin configuration dictating performance. Consequently, understanding the spin's role and controlling it in electrocatalysts is important. This review succinctly outlines recent investigations into spin-dependent electrocatalysis, stressing its importance in energy conversion. It begins with an introduction to spin-related features, discusses characterization techniques for identifying spin configurations, and explores strategies for fine-tuning them. At the end, the article provides insights into future research directions, aiming to reveal more unknown fundamentals of spin-dependent electrocatalysis and encourage further exploration in spin-related research and applications.
Collapse
Affiliation(s)
- Zhengjie Chen
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Xiaoning Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Science, RMIT University, Melbourne 3000, Australia
| | - Hao Ma
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuwei Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jing Peng
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne 3000, Australia
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials (ISEM), Faculty of Engineering and Information Sciences, Innovation Campus, University of Wollongong, North Wollongong 2500, Australia
| | - Jose Gracia
- MagnetoCat SL, General Polavieja 9 3I, Alicante 03012, Spain
| | - Yuanmiao Sun
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Center for Advanced Catalysis Science and Technology, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
7
|
Ma S, Lee H, Moon J. Chirality-Induced Spin Selectivity Enables New Breakthrough in Electrochemical and Photoelectrochemical Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405685. [PMID: 38963061 DOI: 10.1002/adma.202405685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Indexed: 07/05/2024]
Abstract
To facilitate the transition from a carbon-energy-dependent society to a sustainable society, conventional engineering strategies, which encounter limitations associated with intrinsic material properties, should undergo the paradigm shift. From a theoretical viewpoint, the spin-dependent feature of oxygen evolution reaction (OER) reveals the potential of a spin-polarization strategy in enhancing the performance of electrochemical (EC) reactions. The chirality-induced spin selectivity (CISS) phenomenon attracts unprecedented attention owing to its potential utility in achieving novel breakthroughs. This paper starts with the experimental results aimed at enhancing the efficiency of the spin-dependent OER focusing on the EC system based on the CISS phenomenon. The applicability of spin-polarization to EC system is verified through various analytical methodologies to clarify the theoretical groundwork and mechanisms underlying the spin-dependent reaction pathway. The discussion is then extended to effective spin-control strategies in photoelectrochemical system based on the CISS effect. Exploring the influence of spin-state control on the kinetic and thermodynamic aspects, this perspective also discusses the effect of spin polarization induced by the CISS phenomenon on spin-dependent OER. Lastly, future directions for enhancing the performance of spin-dependent redox systems are discussed, including expansion to various chemical reactions and the development of materials with spin-control capabilities.
Collapse
Affiliation(s)
- Sunihl Ma
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hyungsoo Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jooho Moon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
8
|
Zhao W, Yang J, Xu F, Weng B. Recent Advancements on Spin Engineering Strategies for Highly Efficient Electrocatalytic Oxygen Evolution Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401057. [PMID: 38587966 DOI: 10.1002/smll.202401057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Oxygen evolution reaction (OER) is a widely employed half-electrode reaction in oxygen electrochemistry, in applications such as hydrogen evolution, carbon dioxide reduction, ammonia synthesis, and electrocatalytic hydrogenation. Unfortunately, its slow kinetics limits the commercialization of such applications. It is therefore highly imperative to develop highly robust electrocatalysts with high activity, long-term durability, and low noble-metal contents. Previously intensive efforts have been made to introduce the advancements on developing non-precious transition metal electrocatalysts and their OER mechanisms. Electronic structure tuning is one of the most effective and interesting ways to boost OER activity and spin angular momentum is an intrinsic property of the electron. Therefore, modulation on the spin states and the magnetic properties of the electrocatalyst enables the changes on energy associated with interacting electron clouds with radical absorbance, affecting the OER activity and stability. Given that few review efforts have been made on this topic, in this review, the-state-of-the-art research progress on spin-dependent effects in OER will be briefed. Spin engineering strategies, such as strain, crystal surface engineering, crystal doping, etc., will be introduced. The related mechanism for spin manipulation to boost OER activity will also be discussed. Finally, the challenges and prospects for the development of spin catalysis are presented. This review aims to highlight the significance of spin engineering in breaking the bottleneck of electrocatalysis and promoting the practical application of high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Wenli Zhao
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jieyu Yang
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Fenghua Xu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Baicheng Weng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
9
|
Chen J, Pang M, Yang M, Gao F, Zhang B, Zang L, Li Z, Guo P. Chiral Effect on the Electrochemistry of Magnetic Ferrite Colloidal Nanocrystal Assembly Modified by Amino Acids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15171-15177. [PMID: 38980828 DOI: 10.1021/acs.langmuir.4c01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Chirality on the molecular or nanometer scale is particularly significant in chemistry, materials science, and biomedicine. Chiral electrochemical reactions on solid surfaces are currently a hot research topic. Herein, a chiral solid surface is constructed in aqueous solutions by mixing chiral molecules, d- and l-glutamic, with γ-Fe2O3 and Fe3O4 nanoparticles (NPs) and MnFe2O4 colloidal nanocrystal assembly (CNA). Cyclic voltammetry and differential pulse voltammetry measurements are conducted in a phosphate buffer solution (PBS) containing ascorbic acid (AA) or isoascorbic acid (IAA), and a chiral effect appears on the electroreduction of ferric ions of amino acid-modified magnetic samples. A negative or positive potential shift is observed, respectively, for magnetic structures modified by l- and d-glutamic acid in aqueous AA electrolyte, while the opposite is observed for these samples in IAA electrolyte. The reduction peak current increases by 0.8-1.2 times for the electrodes modified with l- and d-glutamate molecules, improving the electron transport efficiency. The chiral effect is absent when the electrolytes contain achiral uric acid or dopamine, or even chiral l-/d-/ld-tartaric acid. The chiral recognition between d-/l-glutamic acid and AA/IAA at the electrochemical interface is suggested to be related to their spinal configurations. These observations will be helpful for the rational design of inorganic functional chiral micro/nanostructures.
Collapse
Affiliation(s)
- Jianyu Chen
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Mingyuan Pang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Min Yang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Fahui Gao
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Ben Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Lei Zang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Ze Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
10
|
Bloom BP, Paltiel Y, Naaman R, Waldeck DH. Chiral Induced Spin Selectivity. Chem Rev 2024; 124:1950-1991. [PMID: 38364021 PMCID: PMC10906005 DOI: 10.1021/acs.chemrev.3c00661] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024]
Abstract
Since the initial landmark study on the chiral induced spin selectivity (CISS) effect in 1999, considerable experimental and theoretical efforts have been made to understand the physical underpinnings and mechanistic features of this interesting phenomenon. As first formulated, the CISS effect refers to the innate ability of chiral materials to act as spin filters for electron transport; however, more recent experiments demonstrate that displacement currents arising from charge polarization of chiral molecules lead to spin polarization without the need for net charge flow. With its identification of a fundamental connection between chiral symmetry and electron spin in molecules and materials, CISS promises profound and ubiquitous implications for existing technologies and new approaches to answering age old questions, such as the homochiral nature of life. This review begins with a discussion of the different methods for measuring CISS and then provides a comprehensive overview of molecules and materials known to exhibit CISS-based phenomena before proceeding to identify structure-property relations and to delineate the leading theoretical models for the CISS effect. Next, it identifies some implications of CISS in physics, chemistry, and biology. The discussion ends with a critical assessment of the CISS field and some comments on its future outlook.
Collapse
Affiliation(s)
- Brian P. Bloom
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yossi Paltiel
- Applied
Physics Department and Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute, Rehovot 76100, Israel
| | - David H. Waldeck
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
11
|
Tirion SH, van Wees BJ. Mechanism for Electrostatically Generated Magnetoresistance in Chiral Systems without Spin-Dependent Transport. ACS NANO 2024; 18:6028-6037. [PMID: 38353652 PMCID: PMC10906072 DOI: 10.1021/acsnano.3c12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
Significant attention has been drawn to electronic transport in chiral materials coupled to ferromagnets in the chirality-induced spin selectivity (CISS) effect. A large magnetoresistance (MR) is usually observed, which is widely interpreted to originate from spin (dependent) transport. However, there are severe discrepancies between the experimental results and the theoretical interpretations, most notably the apparent failure of the Onsager reciprocity relations in the linear response regime. We provide an alternative mechanism for the two terminal MR in chiral systems coupled to a ferromagnet. For this, we point out that it was observed experimentally that the electrostatic contact potential of chiral materials on a ferromagnet depends on the magnetization direction and chirality. The mechanism that we provide causes the transport barrier to be modified by the magnetization direction, already in equilibrium, in the absence of a bias current. This strongly alters the charge transport through and over the barrier, not requiring spin transport. This provides a mechanism that allows the linear response resistance to be sensitive to the magnetization direction and also explains the failure of the Onsager reciprocity relations. We propose experimental configurations to confirm our alternative mechanism for MR.
Collapse
Affiliation(s)
- Sytze H. Tirion
- Zernike Institute for Advanced
Materials, University of Groningen, NL-9747AG Groningen, The Netherlands
| | - Bart J. van Wees
- Zernike Institute for Advanced
Materials, University of Groningen, NL-9747AG Groningen, The Netherlands
| |
Collapse
|