1
|
Hu R, Jiang X, Zhu L, Meng R, Yang R, Sun W, Zhao Z, Lyu Y, Huang R, Xue F, Shi M, Zhou Z, Shen J, Xie C. Overcoming radiation-induced PD-L1 and COX-2 upregulation by nitric oxide gas nanogenerator to sensitize radiotherapy of lung cancer. Biomaterials 2025; 321:123335. [PMID: 40222258 DOI: 10.1016/j.biomaterials.2025.123335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Currently, certain lung cancer patients exhibit resistance to radiotherapy due to reduced DNA damage under hypoxic conditions and the cytoprotective and immune-resistance effect caused by increased programmed death ligand-1 (PD-L1) and Cyclooxygenase 2 (COX-2) expression after radiotherapy. At present, existing nanoparticles or drugs could hardly effectively, and easily address these obstacles faced by highly effective radiotherapy simultaneously, especially the simultaneous depression of PD-L1 and COX-2. In this study, it is newly proved that some typical nitric oxide (NO) gas donors could co-inhibit PD-L1 and COX-2 expression, revealing the possible not fully proven role of NO in reversing tumor immunotherapy resistance. Then, to realize selective NO generation in tumors, a simple tumor glutathione (GSH) responsive NO gas nanogenerator named SAB-NO nanoparticles was designed and prepared, which was composed of the NO donor Isoamyl Nitrite conjugated with serum albumin (SAB). By doing this, SAB-NO nanoparticles more effectively sensitized radiotherapy through breaking the cytoprotective effects faced by radiotherapy in vitro by generating more DNA damage through reversing tumor hypoxia and impairing the DNA damage repair process through decreasing PD-L1 expression. Then, the combination therapy of SAB-NO nanoparticles and radiotherapy effectively transformed cold tumors into hot ones through avoiding some potential immune-resistance effects induced by radiotherapy treatment alone through PD-L1 and COX-2 co-inhibition. In conclusion, the combined treatment of radiotherapy and SAB-NO nanoparticles finally almost completely suppressed the growth of lung tumors, revealing the novel role of NO donors in sensitizing tumor immunotherapy by avoiding the potential cytoprotective and immune-resistance effects.
Collapse
Affiliation(s)
- Rui Hu
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xin Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lijie Zhu
- The Pharmaceutical Department of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325030, Zhejiang, China
| | - Rui Meng
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Rongbo Yang
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhenzhou Zhao
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yuehua Lyu
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ruoyuan Huang
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Fei Xue
- Department of Radiotherapy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Mengke Shi
- Department of Radiotherapy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China.
| | - Congying Xie
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
2
|
Liu Y, Si L, Liu Y, Li S, Zhang X, Jiang S, Liu W, Li X, Zhang L, Zheng H, Liu Z, Hu J, Chen J. Construction of a programmed activation nanosystem based on intracellular hypoxia in cisplatin-resistant tumor cells for reversing cisplatin resistance. Mater Today Bio 2025; 32:101709. [PMID: 40230650 PMCID: PMC11995088 DOI: 10.1016/j.mtbio.2025.101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
Cancer poses a significant threat to human life and health. Cancers treated with cisplatin invariably develop drug resistance. This challenge can be overcome by identifying and exploiting the vulnerabilities acquired by drug-resistant cancer cells, paving the way for finding effective novel treatment options for cisplatin-resistant cancers. Our previous study revealed that cisplatin resistance in cancer cells comes at the cost of increased intracellular hypoxia. In this study, we used 2-nitroimidazole modified hyaluronic acid (HA-NI) as the carrier. The cisplatin-resistant tumor cell specific intracellular hypoxia programmed activation nanomedicine (T/C@HN NPs) was constructed by the hypoxic toxic drug tirapazamine (TPZ) and encapsulating chlorin e6 (Ce6) into HA-NI using polymer assembly technology. The amphiphilic carrier could release free Ce6 molecules under the stimulation of intracellular hypoxic environment, and exhibit specific "activated state" photodynamic properties in cisplatin-resistant tumor cells. Upon irradiation, Ce6-mediated photodynamic therapy further intensifies hypoxia, amplifying its cytotoxicity. This project systematically evaluated the effects of T/C@HN NPs on the identification and recognition of cisplatin-resistant tumors using drug-resistant patient-derived xenograft (PDX) models. This study provides a promising avenue for the development of novel treatment of cisplatin-resistant tumors.
Collapse
Affiliation(s)
- Yurong Liu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Longqing Si
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yunheng Liu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Song Li
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xiaokang Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Shaojing Jiang
- Yantai Engineering Research Center for Digital Technology of Stomatology, School of Stomatology, Binzhou Medical University, Yantai, 264003, China
| | - Wenjing Liu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xiaolin Li
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lianguo Zhang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Hongxia Zheng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Zhonghao Liu
- Yantai Engineering Research Center for Digital Technology of Stomatology, School of Stomatology, Binzhou Medical University, Yantai, 264003, China
| | - Jinghui Hu
- Yantai Engineering Research Center for Digital Technology of Stomatology, School of Stomatology, Binzhou Medical University, Yantai, 264003, China
| | - Jing Chen
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| |
Collapse
|
3
|
Liu Y, Zeng Y, Wang S, Chen J, Wang Z, Zhao Y, Gong K, Wang G. LncRNA16 inhibits pyroptosis and promotes platinum resistance in non-small cell lung cancer by sponging miRNA1827 to regulate MBD3/GSDME expression. Cancer Cell Int 2025; 25:192. [PMID: 40413520 DOI: 10.1186/s12935-025-03812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 05/08/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Platinum-based chemotherapy is the standard first-line cancer treatment. However, patients experience relapses due to chemoresistance. We found that long non-coding RNA 16 (lncRNA16) promotes platinum resistance and inhibits cell death in non-small cell lung cancer (NSCLC). However, the type of cell death inhibited by lncRNA16 remains unknown. METHODS The biological roles of lncRNA16 and microRNA 1827 (miRNA1827) in cell proliferation and colony formation were determined using functional experiments. Dual-luciferase reporter and RNA immunoprecipitation assays were performed to confirm the interactions between lncRNA16 and miRNA1827. In vivo patient-derived tumor xenograft (PDX) models were used to investigate the effects of miRNA1827 agomir on platinum resistance. RESULTS Pyroptosis was inhibited in platinum-resistant NSCLC cells. LncRNA16 contributed to the expression of methyl-CpG binding domain protein 3 (MBD3) by sponging miRNA1827, thereby inhibiting gasdermin E (GSDME) expression, which inhibited pyroptosis in platinum-resistant NSCLC. The miRNA1827 agomir repressed platinum resistance in vitro experiments and in vivo PDX models. CONCLUSION We identified a novel function of lncRNA16 in inhibiting pyroptosis and proposed an effective therapeutic drug, the miRNA1827 agomir, for chemosensitization. This study offers a potential strategy for treating patients with NSCLC, especially those with platinum resistance.
Collapse
Affiliation(s)
- Yanfang Liu
- Department of Oncology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410021, China
| | - Yuanjun Zeng
- Department of Pathology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Sikai Wang
- Department of Oncology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410021, China
| | - Jiangyan Chen
- Department of Oncology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410021, China
| | - Zhouqi Wang
- Traditional Chinese Medicine, Medical School of Shanxi Datong University, Datong, Shanxi Province, China
| | - Yang Zhao
- Department of Oncology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410021, China
| | - Kuiyu Gong
- Department of Oncology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410021, China.
| | - Guihua Wang
- Department of Oncology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410021, China.
| |
Collapse
|
4
|
Huang J, Hu F, Zhang H, Cao Z, Xiao H, Yang Z, Jin Q, Shang K. Ultrasound-Triggered Nanoparticles Induce Cuproptosis for Enhancing Immunogenic Sonodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2504228. [PMID: 40357877 DOI: 10.1002/adma.202504228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/16/2025] [Indexed: 05/15/2025]
Abstract
Cuproptosis, as a novel mechanism of cell death, holds significant promise for tumor therapy. However, existing studies typically employ methods to induce cuproptosis through endogenous or exogenous pathways, which often fail to achieve precise control in both space and time. Herein, polymeric nanoparticles (RC NPs) are developed that enable precise activation of cuproptosis through acoustic control for tumor-specific treatment. The nanoparticles are fabricated via self-assembly of a degradable, acoustic-sensitive polymer (Poly RA) and a metal-ion-loadable polyphenol-structured polymer (Poly MPN). Ultrasound stimulation cleaved the RC NPs, generating reactive oxygen species (ROS) and promoting the release of copper ions from Poly MPN, leading to the aggregation of lipoylated proteins and depletion of iron-sulfur cluster proteins to introduce cuproptosis. Subsequently, the RC NPs successfully activated the immune system of mice, promoting the maturation of antigen-presenting cells and the activation of T lymphocytes. The nanoparticles exhibited good biosafety and significant tumor inhibition in both orthotopic and patient-derived xenograft (PDX) models. These novel nanoparticles provide a promising modality for the treatment of highly aggressive cancers and a valuable avenue for future clinical applications.
Collapse
Affiliation(s)
- Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Fuzhen Hu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zheng Cao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhiying Yang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Qionghua Jin
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Kun Shang
- Department of Nuclear Medicine, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
5
|
Huang C, Li J, Wu R, Li Y, Zhang C. Targeting pyroptosis for cancer immunotherapy: mechanistic insights and clinical perspectives. Mol Cancer 2025; 24:131. [PMID: 40319304 PMCID: PMC12049004 DOI: 10.1186/s12943-025-02344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025] Open
Abstract
Pyroptosis is a distinct form of programmed cell death characterized by the rupture of the cell membrane and robust inflammatory responses. Increasing evidence suggests that pyroptosis significantly affects the tumor microenvironment and antitumor immunity by releasing damage-associated molecular patterns (DAMPs) and pro-inflammatory mediators, thereby establishing it as a pivotal target in cancer immunotherapy. This review thoroughly explores the molecular mechanisms underlying pyroptosis, with a particular focus on inflammasome activation and the gasdermin family of proteins (GSDMs). It examines the role of pyroptotic cell death in reshaping the tumor immune microenvironment (TIME) involving both tumor and immune cells, and discusses recent advancements in targeting pyroptotic pathways through therapeutic strategies such as small molecule modulators, engineered nanocarriers, and combinatory treatments with immune checkpoint inhibitors. We also review recent advances and future directions in targeting pyroptosis to enhance tumor immunotherapy with immune checkpoint inhibitors, adoptive cell therapy, and tumor vaccines. This study suggested that targeting pyroptosis offers a promising avenue to amplify antitumor immune responses and surmount resistance to existing immunotherapies, potentially leading to more efficacious cancer treatments.
Collapse
Affiliation(s)
- Chen Huang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiayi Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ruiyan Wu
- West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yangqian Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chenliang Zhang
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
6
|
Zhou Y, Yan X, Wu Y, Qi Y, Yu T, Pan F, He L, Guo Z, Hu Z. Bacteria escape macrophage-mediated phagocytosis via targeting apurinic/apyrimidinic endonuclease 1 in sepsis. Int J Biol Macromol 2025; 305:141278. [PMID: 39984093 DOI: 10.1016/j.ijbiomac.2025.141278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Sepsis is a serious disease resulting from an imbalanced host response to bacterial infection, in which macrophages play a crucial role. However, the connection between bacterial infection and macrophage phagocytosis remains largely unknown. Here, we provide evidence supporting the role of apurinic/apyrimidinic endonuclease 1 (APE1) in regulating bacterial infection and macrophage immune function during sepsis. We confirmed down-regulation of APE1 expression in macrophages from both in vitro and in vivo septic models. APE1 deficiency significantly increases the mortality rate of septic mice. Experiments using fluorescent latex beads and Escherichia coli uptake demonstrated that reduced APE1 levels inhibit macrophage phagocytosis. Specifically, APE1 deficiency activates GSK3β, leading to the ubiquitination and subsequent proteasomal degradation of NRF2, thereby reducing the expression of phagocytic receptors. Additionally, APE1 participates in the process through its redox function. In conclusion, APE1 is a critical protein involved in the evasion of macrophage phagocytosis by bacteria. Our study suggests that targeting the APE1/NRF2 axis could serve as a promising therapeutic strategy for sepsis and bacterial infections.
Collapse
Affiliation(s)
- Yu Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Xinyu Yan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Ya Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Yannan Qi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Tingting Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China.
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China.
| |
Collapse
|
7
|
Guo D, Hou Y, Xu Q, Wang B, Zhang T, Cheng Q, Chen M, Huang L, Xing G, Qu S. J-type assembled Pt(IV)-coordinated carbon dots for near-infrared light-triggered pyroptosis. LIGHT, SCIENCE & APPLICATIONS 2025; 14:163. [PMID: 40234392 PMCID: PMC12000447 DOI: 10.1038/s41377-025-01834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/17/2025]
Abstract
Near-infrared (NIR) light-triggered pyroptosis based on biocompatible Pt(IV)-coordinated nanomedicine for tumor precision therapy is challenging. Here, we disclose a supramolecular approach to construct a hollow-spherical supra-(carbon dots) (HS-Pt-CDs) via ultrasound-assisted J-type assembly of Pt(IV)-coordinated carbon dots (Pt-CDs). The peculiar assembling behaviors arise from the steric hindrance and lattice distortion in the bowl-like Pt-CDs caused by the coordination of Pt(IV) atoms among the sp2 domains, which result in around 240 nm red-shifted absorption bands and promoting charge separation in the NIR region due to strong inter-molecular charge transfer (CT) in HS-Pt-CDs. The results reveal that HS-Pt-CDs exhibit excellent NIR light-activated photocatalytic capacities, involving the release of Pt(II) species, the generation of hydroxyl radicals, and acidification under 690 nm laser irradiation. Combined with the effective cellular uptake and tumor accumulation, HS-Pt-CDs can efficiently trigger cancer cell pyroptosis under 690 nm laser irradiation, resulting in the destruction of the primary tumor and effectively induction of strong immunogenic cell death (ICD), thereby evoking anti-tumor immune responses to suppress distant tumor and prevent cancer metastasis. Taken these merits, an important perspective of Pt(IV)-contained supra-CDs with outstanding NIR-triggered photocatalytic behaviors can be of great significance toward precision tumor phototherapy.
Collapse
Affiliation(s)
- Dongbo Guo
- State key laboratory of digital medical engineering, Sanya Research Institute of Hainan University, School of Biomedical Engineering, Hainan University, Sanya, 572025, China.
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999067, China.
| | - Yijie Hou
- State key laboratory of digital medical engineering, Sanya Research Institute of Hainan University, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
| | - Qin Xu
- State key laboratory of digital medical engineering, Sanya Research Institute of Hainan University, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
| | - Bingzhe Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999067, China
| | - Tesen Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999067, China
| | - Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999067, China
| | - Maohua Chen
- State key laboratory of digital medical engineering, Sanya Research Institute of Hainan University, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
| | - Linxuan Huang
- Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523109, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999067, China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999067, China.
| |
Collapse
|
8
|
Shi Y, Yu Q, Tan L, Wang Q, Zhu WH. Tumor Microenvironment-Responsive Polymer Delivery Platforms for Cancer Therapy. Angew Chem Int Ed Engl 2025:e202503776. [PMID: 40214115 DOI: 10.1002/anie.202503776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Most chemotherapeutic and bioimaging agents struggle with inadequate bioavailability, primarily due to their limited biocompatibility and lack of specificity in targeting, leading to low or decreased anticancer efficacy and inaccurate imaging. To surmount these obstacles, the development of stimuli-responsive polymer delivery platforms, predominantly leveraging the tumor microenvironment (TME), has emerged as a promising strategy. Therapeutic and diagnostic agents can be released controllably at the tumor site by virtue of the bond cleavage or hydrophobic to hydrophilic transformation of TME-sensitive linkages in TME-responsive systems, thus augmenting cancer treatment and imaging precision, while simultaneously attenuating the damage to healthy tissues and false imaging signals caused by non-specific drug leakage. In this comprehensive review, we scrutinize recent studies of TME-responsive polymer delivery platforms, encompassing pH-, ROS-, GSH-, enzyme-, and hypoxia-responsive vectors, significantly from the perspective of their molecular design and responsive mechanism, and further summarizing their bio-application in drug delivery and diagnostic imaging. Moreover, this review encapsulates the critical challenges and offers an insightful perspective on the future prospects of TME-responsive polymer delivery platforms in terms of molecular and vector design.
Collapse
Affiliation(s)
- Yiqi Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Qianqian Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Lijie Tan
- Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital of Fudan University, Shanghai, P.R. China
| | - Qi Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Center of Photosensitive Chemicals Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| |
Collapse
|
9
|
Li X, Xu Z. Applications of Matrix Metalloproteinase-9-Related Nanomedicines in Tumors and Vascular Diseases. Pharmaceutics 2025; 17:479. [PMID: 40284474 PMCID: PMC12030376 DOI: 10.3390/pharmaceutics17040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is implicated in tumor progression and vascular diseases, contributing to angiogenesis, metastasis, and extracellular matrix degradation. This review comprehensively examines the relationship between MMP-9 and these pathologies, exploring the underlying molecular mechanisms and signaling pathways involved. Specifically, we discuss the contribution of MMP-9 to tumor epithelial-mesenchymal transition, angiogenesis, and metastasis, as well as its involvement in a spectrum of vascular diseases, including macrovascular, cerebrovascular, and ocular vascular diseases. This review focuses on recent advances in MMP-9-targeted nanomedicine strategies, highlighting the design and application of responsive nanoparticles for enhanced drug delivery. These nanotherapeutic strategies leverage MMP-9 overexpression to achieve targeted drug release, improved tumor penetration, and reduced systemic toxicity. We explore various nanoparticle platforms, such as liposomes and polymer nanoparticles, and discuss their mechanisms of action, including degradation, drug release, and targeting specificity. Finally, we address the challenges posed by the heterogeneity of MMP-9 expression and their implications for personalized therapies. Ultimately, this review underscores the diagnostic and therapeutic potential of MMP-9-targeted nanomedicines against tumors and vascular diseases.
Collapse
Affiliation(s)
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
10
|
Zhong YT, Qiu ZW, Zhang KY, Lu ZM, Li ZF, Cen Y, Li SY, Cheng H. Plasma Membrane Targeted Photodynamic Nanoagonist to Potentiate Immune Checkpoint Blockade Therapy by Initiating Tumor Cell Pyroptosis and Depleting Infiltrating B Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415078. [PMID: 40012447 DOI: 10.1002/adma.202415078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/09/2025] [Indexed: 02/28/2025]
Abstract
Immune checkpoint blockade (ICB) therapy has achieved remarkable benefits in the treatment of malignant tumors, but the clinical response rates are unsatisfied due to the low tumor immunogenicity and the abundant immunosuppressive cells. Herein, a plasma membrane targeted photodynamic nanoagonist (designated as PMTPN) is developed to potentiate ICB therapy by initiating tumor cell pyroptosis and depleting infiltrating B cells. PMTPN is composed of a rationally designed chimeric peptide sequence loaded with Bruton's tyrosine kinase inhibitor (Ibrutinib). Notably, PMTPN is capable of sequentially targeting tumor and tumor cell membrane to trigger immunogenic pyroptosis and cause overwhelming release of cytokines, promoting dendritic cells maturation, and cytotoxic T lymphocytes (CTLs) activation. Meanwhile, PMTPN can also deplete infiltrating B cells and reduce the secretion of interleukin-10 to decrease immunosuppressive regulatory T cells and enhance CTLs infiltration. Beneficially, the synergistic immune modulating characteristics of PMTPN potentiate ICB therapy to simultaneously eliminate primary and distant tumors. This study offers a promising strategy to elevate the immunotherapeutic response rate in consideration of the complex immunosuppressive factors.
Collapse
Affiliation(s)
- Ying-Tao Zhong
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Zi-Wen Qiu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Ke-Yan Zhang
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Zhen-Ming Lu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Zhuo-Feng Li
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Yi Cen
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shi-Ying Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hong Cheng
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
11
|
Li Y, Wang N, Li H, Zhang X, Meng L, Yu Y, Wang S, Deng L. Biomineralization of Copper-Celastrol Nanohybrids for Synergistic Antitumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412802. [PMID: 40095444 DOI: 10.1002/smll.202412802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/26/2025] [Indexed: 03/19/2025]
Abstract
The therapeutic potential of celastrol (Cel) in cancer treatment has been constrained by its intrinsic hydrophobicity and the lack of efficient delivery systems. Herein, a biomineralization-based strategy is introduced to construct hybrid nanoparticles (Cel-TA-Cu NP) via Cel-Cu2⁺ coordination, followed by TA-Cu2⁺ crosslinking. Biomineralization, a nature-inspired process facilitating the controlled assembly of inorganic-organic structures, enables Cel to form coordination complexes with Cu2⁺, which subsequently serve as nucleation sites for tannic acid-mediated copper mineralization. Unlike conventional nanocarriers, this approach exploits the intrinsic metal-binding capacity of Cel to induce spontaneous mineralization, where Cu2⁺ serves both as a coordination center for drug encapsulation and as a therapeutic agent for chemodynamic therapy (CDT). The pH-responsive dissociation of metal-phenolic coordination ensures tumor-specific drug release, while the biomineralization process inherently enhances aqueous stability and bioavailability. Moreover, the rational design of Cel-TA-Cu NP enables a synergistic anticancer effect by simultaneously triggering apoptotic signaling pathways and amplifying oxidative stress-induced cytotoxicity. Overall, this biomineralization-based nanoplatform not only overcomes the inherent limitations of Cel but also integrates CDT to markedly enhance therapeutic efficacy, providing a promising avenue for advanced cancer treatment.
Collapse
Affiliation(s)
- Yifan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Na Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hanrong Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xingyun Zhang
- Immunology and Oncology Center, ICE Bioscience, Beijing, 100176, China
| | - Liuxian Meng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shihui Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Deng
- The People's Hospital of Gaozhou, National Drug Clinical Trial Institution, Gaozhou, 525200, China
| |
Collapse
|
12
|
Yao H, Su G, Hou H, Wang J, Sun Z, Li Z, Zhai Z, Li Y. Complications of Polyacrylamide Hydrogel Facial Injection: Clinical Studies and Literature Review. Aesthetic Plast Surg 2025; 49:1833-1841. [PMID: 39939475 DOI: 10.1007/s00266-025-04715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Polyacrylamide hydrogel (PAHG) is a new biomaterial that emerged in the last century and has been widely used in human filler procedures, such as injectable breast augmentation and facial contour improvement. However, as the implantation time of the material increases, various complications have been reported, which reflects that the safety of this material has not been adequately studied. Therefore, a more in-depth experimental analysis becomes particularly important. METHODS We collected lesion tissues from six patients with PAHG facial injection. The lesion tissues were examined histologically and molecularly. RESULTS Complications caused by PAHG facial injection included pain, subcutaneous nodules, swelling and gel displacement. Western blot revealed decreased expression of neural tissue markers, and increased expression of macrophage markers and oxidative stress-related factors. The results of this study provide new insights into the mechanism and development of PAHG facial injection complications. CONCLUSION This report explores the possible mechanism of PAHG complications after facial injection from a new perspective of oxidative stress and inflammation for the first time, which provides a reference for researchers and clinicians to further understand the characteristics of materials and strictly control surgical indications to reduce complications. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Haifeng Yao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
- Plastic Surgery Institute, Shandong Second Medical University, Weifang, 261053, China
| | - Gang Su
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
- Plastic Surgery Institute, Shandong Second Medical University, Weifang, 261053, China
| | - Hua Hou
- School of Clinical Medicine, Binzhou Medical College, Binzhou, 256600, China
| | - Jing Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
- Plastic Surgery Institute, Shandong Second Medical University, Weifang, 261053, China
| | - Zhenmin Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
| | - Zhaoxin Li
- Affiliated Traditional Chinese Medicine Hospital of Shandong Second Medical University, Weifang, 261053, China
| | - Zhaohui Zhai
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China.
- Plastic Surgery Institute, Shandong Second Medical University, Weifang, 261053, China.
| | - Yuli Li
- Qingdao Hospital, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong Province, China.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| |
Collapse
|
13
|
Wang Y, Hsu P, Hu H, Lin F, Wei X. Role of arachidonic acid metabolism in osteosarcoma prognosis by integrating WGCNA and bioinformatics analysis. BMC Cancer 2025; 25:445. [PMID: 40075313 PMCID: PMC11905593 DOI: 10.1186/s12885-024-13278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/02/2024] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Osteosarcoma is a rare tumor with poor clinical outcomes. New therapeutic targets are urgently needed. Previous research indicates that genes abnormally expressed in osteosarcoma are significantly involved in the arachidonic acid (AA) metabolic pathway. However, the role of arachidonic acid metabolism-related genes (AAMRGs) in osteosarcoma prognosis remains unknown. METHODS Osteosarcoma samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were classified into high-score and low-score groups based on AAMRGs scores obtained through ssGSEA analysis. The intersecting genes were identified from weighted gene co-expression network analysis (WGCNA), DEGs (osteosarcoma vs. normal) and DE-AAMRGs (high- vs. low-score). An AA metabolism predictive model of the five AAMRGs were established by Cox regression and the LASSO algorithm. Model performance was evaluated using Kaplan-Meier survival and receiver operating characteristic (ROC) curve analysis. In vitro experiments of the AA related biomarkers was validated. RESULTS Our study constructed an AAMRGs prognostic signature (CD36, CLDN11, STOM, EPYC, PANX3). K-M analysis indicated that patients in the low-risk group showed superior overall survival to high-risk group (p<0.05). ROC curves showed that all AUC values in the prognostic model exceeded 0.76. By ESTIMATE algorithms, we discovered that patients in high-risk groups had lower immune score, stromal score, and estimate score. Correlation analysis showed the strongest positive correlation between STOM and natural killer cells, and the highest negative association between PANX3 and central memory CD8 T cells. An AAMRGs prognostic signature was constructed for osteosarcoma prognosis. CONCLUSION The study suggested that a high level of AAMRGs might serve as a biomarker for poor prognosis in osteosarcoma and offers a potential explanation for the role of cyclooxygenase inhibitors in cancer. The five biomarkers (CD36, CLDN11, EPYC, PANX3, and STOM) were screened to construct an AAMRGs risk model with prognostic value, providing a new reference for the prognosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yaling Wang
- Department of Oncology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Peichun Hsu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Hu
- Shanghai Clinical Research Ward (SCRW), Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Lin
- Department of Oncology, Shanghai Eighth People's Hospital, Shanghai, China.
| | - Xiaokang Wei
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Zeng S, Chen C, Yu D, Jiang M, Li X, Liu X, Guo Z, Hao Y, Zhou D, Kim H, Kang H, Wang J, Chen Q, Li H, Peng X, Yoon J. A One Stone Three Birds Paradigm of Photon-Driven Pyroptosis Dye for Amplifying Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409007. [PMID: 39804952 PMCID: PMC11884606 DOI: 10.1002/advs.202409007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/17/2024] [Indexed: 01/16/2025]
Abstract
Activating the pyroptosis pathway of tumor cells by photodynamic therapy (PDT) for immunogenic cell death (ICD) is considered a valid strategy in pursuit of antitumor immunotherapy, but it remains a huge challenge due to the lack of reliable design guidelines. Moreover, it is often overlooked that conventional PDT can exacerbate the development of tumor immunosuppressive microenvironment, which is apparently unfavorable to clinical immunotherapy. The endoplasmic reticulum's (ER) pivotal role in cellular homeostasis and its emerging link to pyroptosis have galvanized interest in ER-centric imaging and therapeutics. Herein, using the targeted group-assisted strategy (TAGS), an intriguing cyclooxygenase-2-targeted photodynamic conjugate, Indo-Cy, strategically created, which exploits the enzyme's overabundance in the tumoral ER, especially under proinflammatory hypoxic conditions. This conjugate, with its highly precise ER imaging, embodies a trifunctional strategy: i) innovating an electron transfer mechanism, converting the hemicyanine moiety into an oxygen-independent type I photosensitizer, thereby navigating around the hypoxia constraints of traditional PDT; ii) executing precise ER-targeted PDT, amplifying caspase-1/GSDMD-mediated pyroptosis for ICD; 3) attenuating immunosuppressive pathways by inhibiting cyclooxygenase-2 downstream factors, including HIF-1α, PGE2, and VEGF. Indo-Cy's multimodal approach potently induces in vivo tumor pyroptosis and bolsters antitumor immunity, underscoring cyclooxygenase-2-targeted dyes' potential as a versatile oncotherapeutics.
Collapse
Affiliation(s)
- Shuang Zeng
- State Key Laboratory of Fine ChemicalsDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Chen Chen
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Dan Yu
- Shanghai Changzheng HospitalNaval Medical UniversityShanghai20000China
| | - Maojun Jiang
- School of ChemistryDalian University of TechnologyDalian116024China
| | - Xin Li
- School of ChemistryDalian University of TechnologyDalian116024China
| | - Xiaosheng Liu
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Zhihan Guo
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Yifu Hao
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Danhong Zhou
- State Key Laboratory of Fine ChemicalsDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Heejeong Kim
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul03760South Korea
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841South Korea
| | - Jingyun Wang
- State Key Laboratory of Fine ChemicalsDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Qixian Chen
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
- Innovation Center of Yangtze River DeltaZhejiang UniversityJiaxing314100China
| | - Haidong Li
- State Key Laboratory of Fine ChemicalsDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Xiaojun Peng
- State Key Laboratory of Fine ChemicalsDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Juyoung Yoon
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul03760South Korea
| |
Collapse
|
15
|
Liu Y, Yu D, Ge X, Huang L, Pan PY, Shen H, Pettigrew RI, Chen SH, Mai J. Novel platinum therapeutics induce rapid cancer cell death through triggering intracellular ROS storm. Biomaterials 2025; 314:122835. [PMID: 39276409 PMCID: PMC11560510 DOI: 10.1016/j.biomaterials.2024.122835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Induction of reactive oxygen species (ROS) production in cancer cells plays a critical role for cancer treatment. However, therapeutic efficiency remains challenging due to insufficient ROS production of current ROS inducers. We designed a novel platinum (Pt)-based drug named "carrier-platin" that integrates ultrasmall Pt-based nanoparticles uniformly confined within a poly(amino acids) carrier. Carrier-platin dramatically triggered a burst of ROS in cancer cells, leading to cancer cell death as quick as 30 min. Unlike traditional Pt-based drugs which induce cell apoptosis through DNA intercalation, carrier-platin with superior ROS catalytic activities induces a unique pattern of cancer cell death that is neither apoptosis nor ferroptosis and operates independently of DNA damage. Importantly, carrier-platin demonstrates superior anti-tumor efficacy against a broad spectrum of cancers, particularly those with multidrug resistance, while maintaining minimal systemic toxicity. Our findings reveal a distinct mechanism of action of Pt in cancer cell eradication, positioning carrier-platin as a novel category of anti-cancer chemotherapeutics.
Collapse
Affiliation(s)
- Yongbin Liu
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA.
| | - Dongfang Yu
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Xueying Ge
- School of Engineering Medicine/ENMED, Texas A&M University and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Lingyi Huang
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Ping-Ying Pan
- Center for Immunotherapy and Neal Cancer Center, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Roderic I Pettigrew
- School of Engineering Medicine/ENMED, Texas A&M University and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Shu-Hsia Chen
- Center for Immunotherapy and Neal Cancer Center, Houston Methodist Academic Institute, Houston, TX, 77030, USA; Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Chen Z, Luo Y, Jia Q, Yang Z, Liu Z, Cui C, Qiao C, Yang P, Wang Z. NIR-II Fluorescence Imaging-guided Photothermal Activated Pyroptosis For Precision Therapy Of Glioma. Chembiochem 2025; 26:e202400804. [PMID: 39797806 DOI: 10.1002/cbic.202400804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
The resistance of cancer cells to apoptosis poses a significant challenge in cancer therapy, driving the exploration of alternative cell death pathways such as pyroptosis, known for its rapid and potent effects. While initial efforts focused on chemotherapy-induced pyroptosis, concerns about systemic inflammation highlight the need for precise activation strategies. Photothermal therapy emerges as a promising non-invasive technique, minimizing pyroptosis-related side effects by targeting tumors spatially and temporally. However, accurately pinpointing tumors to avoid collateral damage remains a challenge. Thus, we utilize NIR-II fluorescence imaging to achieve precise PTT-induced pyroptosis activation in glioma. A polymer semiconductor-based PTT agent was developed with high optical stability, integrated with mesoporous silica to enhance its biocompatibility. These nanoparticles, stabilized through PEG modification and targeted with cRGD peptides, effectively induced pyroptosis in vitro. Furthermore, this design facilitated precise tumor imaging guidance and subsequent pyroptosis activation in vivo, presenting a promising strategy for glioma therapy with minimized adverse effects.
Collapse
Affiliation(s)
- Zhuang Chen
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuro-imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Yi Luo
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuro-imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Qian Jia
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuro-imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Zuo Yang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuro-imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Zebing Liu
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuro-imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Can Cui
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuro-imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Chaoqiang Qiao
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuro-imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Peng Yang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuro-imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Zhongliang Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuro-imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| |
Collapse
|
17
|
Wang D, Guan H. Cuproptosis: A new mechanism for anti-tumour therapy. Pathol Res Pract 2025; 266:155790. [PMID: 39729956 DOI: 10.1016/j.prp.2024.155790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
As an indispensable trace metal element in the organism, copper acts as a key catalytic cofactor in a wide range of biological processes. Copper homeostasis disorders can be caused by either copper excess or deficiency, and copper homeostasis disorders will affect the normal physiological functions of cells and induce cell death through a variety of mechanisms, such as the emerging cuproptosis model. The imbalance of copper homeostasis will lead to the occurrence of cancer, and copper is a key factor in cell signalling, so copper is involved in the development of cancer by promoting cell proliferation, angiogenesis and metastasis, etc. The therapeutic role of Cuproptosis as a hotspot of research in cancer has also attracted much attention. Therefore, this paper comprehensively searches the literature to review the roles and mechanisms of Cuproptosis in the treatment of malignant tumours, aiming to provide new insights into the role and mechanism of Cuproptosis in anti-malignant tumour therapy and present novel ideas and methods.
Collapse
Affiliation(s)
- Dong Wang
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Haoran Guan
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
18
|
Fan Q, He Y, Liu J, Liu Q, Wu Y, Chen Y, Dou Q, Shi J, Kong Q, Ou Y, Guo J. Large Language Model-Assisted Genotoxic Metal-Phenolic Nanoplatform for Osteosarcoma Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2403044. [PMID: 39670697 DOI: 10.1002/smll.202403044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Osteosarcoma, a leading primary bone malignancy in children and adolescents, is associated with a poor prognosis and a low global fertility rate. A large language model-assisted phenolic network (LLMPN) platform is demonstrated that integrates the large language model (LLM) GPT-4 into the design of multifunctional metal-phenolic network materials. Fine-tuned GPT-4 identified gossypol as a phenolic compound with superior efficacy against osteosarcoma after evaluating across a library of 60 polyphenols based on the correlation between experimental anti-osteosarcoma activity and multiplexed chemical properties of polyphenols. Subsequently, gossypol is then self-assembled into Cu2+-gossypol nanocomplexes with a hyaluronic acid surface modification (CuGOS NPs). CuGOS NPs has demonstrated the ability to induce genetic alterations and cell death in osteosarcoma cells, offering significant therapeutic benefits for primary osteosarcoma tumors and reducing metastasis without adverse effects on major organs or the genital system. This work presents an LLM-driven approach for engineering metal-organic nanoplatform and broadening applications by harnessing the capabilities of LLMs, thereby improving the feasibility and efficiency of research activities.
Collapse
Affiliation(s)
- Qingxin Fan
- Department of Orthopedics Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jialing Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qinling Liu
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yue Wu
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yuxing Chen
- Department of Orthopedics Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Qingyu Dou
- National Clinical Research Center for Geriatrics, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Shi
- Section of Science and Education, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan, 610041, China
| | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Section of Science and Education, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, Sichuan, 610041, China
| | - Yunsheng Ou
- Department of Orthopedics Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Departments of Chemical, Biological Engineering, The University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| |
Collapse
|
19
|
Xiao L, Lu Z, Fang H, Zhou Y, Che W, Zhang W, Bai X, Zhang D, Nie G, Cao H, Hou Y. Explorations of novel MDR-related hub genes and the potential roles TRIM9 played in drug-resistant hepatocellular carcinoma. Int J Biol Macromol 2025; 290:138949. [PMID: 39706432 DOI: 10.1016/j.ijbiomac.2024.138949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Current chemotherapeutic efficacy is limited by the rapid development of multidrug resistance (MDR) in hepatocellular carcinoma (HCC). In this study, 66 MDR-related hub genes in drug-resistant HCC were identified through combined analysis of differential expressed genes (DEGs), gene functional enrichment, Cox proportional regression, weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network construction. A prognostic risk model was established through the LASSO-Cox regression analysis. Based on the comparison of gene mutation frequency, tumor mutation burden (TMB) and immune infiltration in high- and low-risk groups, we explored the relationships between the MDR-related hub genes and immune regulation. The competitive endogenous RNA (ceRNA) network and associated non-coding RNAs (ncRNAs) were predicted to investigate the potential mechanisms. Five MDR-related hub genes in drug-resistant HCC were finally confirmed, namely ABCB6, FLNC, MCC, NAV3 and TRIM9. TRIM9 was identified as the most significant gene enhancing MDR. Inhibiting TRIM9 caused a decrease in the IC50 of doxorubicin (DOX), and significant increases in the intracellular uptake, retention and absorption of DOX in HepG2/ADR cells. These findings may provide new insights into the mechanism of MDR development. The MDR-related hub genes, especially TRIM9 may be targeted therapeutically to enhance the prognosis of patients with drug-resistant HCC.
Collapse
Affiliation(s)
- Li Xiao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi'an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi'an Medical University, Xi'an 710021, China; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Zheng Lu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hongming Fang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yujuan Zhou
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Wanlin Che
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Wenxuan Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xue Bai
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Danying Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Guochao Nie
- Guangxi Colleges and Universities Key Lab of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin, Guangxi 537000, China.
| | - Huiling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi'an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi'an Medical University, Xi'an 710021, China.
| | - Yingchun Hou
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
20
|
He T, Li Y, Li W, Zhang M, Wang G, Zhou P, Song G, Li W. Enhanced antitumor efficacy of STING agonist MSA-2 by lipid nanoparticles delivering circular IL-23 mRNA and platinum-modified MSA-2 combination. Mater Today Bio 2025; 30:101446. [PMID: 39866787 PMCID: PMC11762580 DOI: 10.1016/j.mtbio.2025.101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
A next-generation STING agonist MSA-2 is a promising tumor immunotherapy strategy. However, the methods for improving the anti-tumor efficacy of MSA-2 are a lot of effort. We have demonstrated antitumor effect of platinum-modified MSA-2 (MSA-2-Pt) was better than MSA-2. Here, we combined lipid nanoparticles delivering circular IL-23 mRNA (LNP@cIL-23) and MSA-2-Pt strategy, which showed good antitumor efficacy. Firstly, we synthesized a new series of ionizable phospholipids and formulated and optimized an LNP36 for delivering circular IL-23 mRNA. Then, the combination of LNP36@cIL-23 mRNA and MSA-2-Pt induced tumor cell death and immune activation in the tumor with a single i.t. injection. Finally, the combination of LNP36@cIL-23 mRNA and MSA-2-Pt significantly decreased the melanoma B16F10 tumor and prolonged the survival, demonstrating significant anti-tumor effects. This finding provides promising new avenues for STING activation strategies in tumor immunotherapy.
Collapse
Affiliation(s)
- Tian He
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, 226000, China
| | - Yating Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, 226000, China
| | - Weiqi Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, 226000, China
| | - Muqing Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, 226000, China
| | - Guishuan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, 226000, China
| | - Peng Zhou
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, 226000, China
| | - Guoqi Song
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226000, China
| | - Wenqing Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, 226000, China
| |
Collapse
|
21
|
Wang Y, Khan SS, Ullah I, Rady A, Aldahmash B, Yu Y, Liu L, Zhu X. One pot synthesis of SeTe-ZnO nanoparticles for antibacterial and wound healing applications. RSC Adv 2025; 15:3439-3447. [PMID: 39906629 PMCID: PMC11791623 DOI: 10.1039/d4ra06594h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/26/2025] [Indexed: 02/06/2025] Open
Abstract
Bacterial infections, particularly those involving biofilms, pose significant treatment challenges due to their resistance to traditional antibiotics. Herein, this research explores the integration of selenium-tellurium nanoparticles (SeTe NP) and zinc oxide (ZnO) NP to create hybrid NP with dual photodynamic and photothermal properties. The synthesized SeTe-ZnO NP demonstrated significant efficacy against both Gram-positive Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis) and Gram-negative Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) bacteria, effectively disrupting biofilm formation and promoting wound healing. In vivo studies further confirmed the biocompatibility and superior wound healing capabilities of SeTe-ZnO NP, highlighting their potential as a versatile and effective treatment for bacterial infections and wound care.
Collapse
Affiliation(s)
- Yushu Wang
- The People's Hospital of Gaozhou, National Drug Clinical Trial Institution Gaozhou City 525200 China
| | - Shahin Shah Khan
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road Beijing 100029 China
| | - Irfan Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road Beijing 100029 China
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Badr Aldahmash
- Department of Zoology, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Beijing 100029 China
| | - Luo Liu
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road Beijing 100029 China
| | - Xiulong Zhu
- The People's Hospital of Gaozhou, National Drug Clinical Trial Institution Gaozhou City 525200 China
| |
Collapse
|
22
|
Hu Y, Yu Q, Li X, Wang J, Guo L, Huang L, Gao W. Nanoformula Design for Inducing Non-Apoptotic Cell Death Regulation: A Powerful Booster for Cancer Immunotherapy. Adv Healthc Mater 2025; 14:e2403493. [PMID: 39632361 DOI: 10.1002/adhm.202403493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Indexed: 12/07/2024]
Abstract
Cancer treatment has witnessed revolutionary advancements marked by the emergence of immunotherapy, specifically immune checkpoint blockade (ICB). However, the inherent low immunogenicity of tumor cells and the intricate immunosuppressive network within the tumor microenvironment (TME) pose significant challenges to the further development of immunotherapy. Nanotechnology has ushered in unprecedented opportunities and vast prospects for tumor immunotherapy. Nevertheless, traditional nano-formulations often rely on inducing apoptosis to kill cancer cells, which encounters the issue of immune silencing, hindering effective tumor immune activation. The non-apoptotic modes of regulated cell death (RCD), including pyroptosis, ferroptosis, autophagy, necroptosis, and cuproptosis, have gradually garnered attention. These non-apoptotic cell death pathways can induce effective immunogenic cell death (ICD), enhancing cancer immunotherapy. This review comprehensively explores advanced nano-formulation design strategies and their applications in enhancing cancer immunotherapy by promoting non-apoptotic RCD in recent years. It also discusses the potential advantages of these strategies in inducing tumor-specific non-apoptotic RCD. By deeply understanding the significance of non-apoptotic RCD in synergistic cancer immunotherapy, this article provides valuable insights for developing more advanced nano-delivery systems that can robustly induce highly immunogenic non-apoptotic modes, offering novel research and development avenues to address the clinical challenges encountered by immunotherapy represented by ICB.
Collapse
Affiliation(s)
- Yi Hu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Qing Yu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
23
|
Cao S, Li H, Ye X, Xing X, Xie Y, Zeng X, Liu H, Zhong X, Yang X, Xing W, Zhu C, Wu X. Shikonin induces the apoptosis and pyroptosis of EGFR-T790M-mutant drug-resistant non-small cell lung cancer cells via the degradation of cyclooxygenase-2. Eur J Med Res 2024; 29:611. [PMID: 39702296 DOI: 10.1186/s40001-024-02187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The T790M mutation in the epidermal growth factor receptor (EGFR) gene is the primary cause of resistance to EGFR-tyrosine kinase inhibitor (TKI) therapy in non-small cell lung cancer (NSCLC) patients. Previous research demonstrated that certain traditional Chinese medicine (TCM) monomers exhibit anti-tumor effects against various malignancies. This study aims to investigate the potentials of shikonin screened from a TCM monomer library containing 1060 monomers in killing EGFR-T790M drug-resistant NSCLC cells and elucidate the underlying mechanisms. METHODS MTT method was used to screen for the TCM monomers with significant killing effects on H1975 cells carrying the EGFR-T790M mutation. The influences of the identified monomer shikonin on cell growth were determined by the colony formation assay. Annexin-V/PI staining and JC-1 staining were applied to detect the effects of shikonin on cell apoptosis. The influences of shikonin on cell membrane integrity were detected by lactate dehydrogenase (LDH) release assay. Reactive oxygen species (ROS) generation was analyzed using DCFH-DA as probe. The mechanisms of shikonin affecting the stability of cyclooxygenase-2 (COX-2) were evaluated by using specific inhibitors for protein degradation pathways. Western blotting was performed to assess the effects of the alteration of COX-2 expression or enzymatic activity on the related signal pathways as well as the apoptotic and pyroptotic markers. RESULTS Shikonin was identified as a potent cytotoxic compound against EGFR-T790M-mutant NSCLC cells. Shikonin induced cell apoptosis and pyroptosis by triggering the activation of the caspase cascade and cleavage of poly (ADP-ribose) polymerase and gasdermin E by elevating intracellular ROS levels. Further investigations revealed that shikonin induced the degradation of COX-2 via the proteasome pathway, thereby decreasing COX-2 protein level and enzymatic activity and subsequently inhibiting the downstream PDK1/Akt and Erk1/2 signaling pathways through the induction of ROS production. Notably, COX-2 overexpression attenuated shikonin-induced apoptosis and pyroptosis, whereas COX-2 inhibition with celecoxib enhanced the cytotoxic effects of shikonin. CONCLUSIONS Combination treatment with shikonin and COX-2 inhibitor may be a suitable therapeutic strategy for EGFR-T790M-mutant NSCLC treatment.
Collapse
Affiliation(s)
- Shaoyi Cao
- Department of Immunology and Microbiology, College of Life Science and Technology, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, No. 601 Huangpu Avenue West, Tianhe, Guangzhou, 510632, China
| | - Huaqiu Li
- Department of Immunology and Microbiology, College of Life Science and Technology, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, No. 601 Huangpu Avenue West, Tianhe, Guangzhou, 510632, China
| | - Xiaoyan Ye
- Department of Immunology and Microbiology, College of Life Science and Technology, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, No. 601 Huangpu Avenue West, Tianhe, Guangzhou, 510632, China
| | - Xinxing Xing
- Department of Immunology and Microbiology, College of Life Science and Technology, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, No. 601 Huangpu Avenue West, Tianhe, Guangzhou, 510632, China
| | - Yonghuan Xie
- Department of Immunology and Microbiology, College of Life Science and Technology, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, No. 601 Huangpu Avenue West, Tianhe, Guangzhou, 510632, China
| | - Xiangfeng Zeng
- Department of Immunology and Microbiology, College of Life Science and Technology, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, No. 601 Huangpu Avenue West, Tianhe, Guangzhou, 510632, China
| | - Hongjiao Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Zhujiang New Town, Tianhe, Guangzhou, 510623, China
| | - Xing Zhong
- The First Clinical Medical College, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xinyi Yang
- Department of Immunology and Microbiology, College of Life Science and Technology, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, No. 601 Huangpu Avenue West, Tianhe, Guangzhou, 510632, China
| | - Wenxiu Xing
- Department of Immunology and Microbiology, College of Life Science and Technology, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, No. 601 Huangpu Avenue West, Tianhe, Guangzhou, 510632, China
| | - Cairong Zhu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Zhujiang New Town, Tianhe, Guangzhou, 510623, China.
| | - Xiaoping Wu
- Department of Immunology and Microbiology, College of Life Science and Technology, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, No. 601 Huangpu Avenue West, Tianhe, Guangzhou, 510632, China.
| |
Collapse
|
24
|
Hong J, Du K, Zhang W, Jiang Y, Yu H, Pan T, Wu T, Zhao L, Du W, Zheng SS, Jin H, Chen Y, Cao L. PFOS and Its Commercial Alternative, 6:2 Cl-PFESA, Induce Multidrug Resistance in Pancreatic Cancer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22027-22038. [PMID: 39644250 DOI: 10.1021/acs.est.4c08669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), specifically perfluorooctanesulfonate (PFOS) and its alternative, 2-[(6-chloro-1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorohexyl)oxy]-1,1,2,2-tetrafluoroethanesulfonic acid (6:2 Cl-PFESA), are associated with environmental health concerns and potential cancer progression. However, their impact on multidrug resistance (MDR) in pancreatic cancer (PC) chemotherapy remains unclear. Here, we employed drug-sensitivity assays, including IC50 calculations, in vitro and in vivo models with various chemotherapeutics, and paclitaxel (PTX) as a representative agent, combined with transcriptomic/proteomic sequencing and clinical prognostic analysis, to identify MDR-related genes and validate their relevance, with the objective of establishing the correlation between PFOS/6:2 Cl-PFESA exposure and MDR in PC at molecular, cellular, and animal model levels. Our findings demonstrate that PFOS/6:2 Cl-PFESA exposure increases the drug IC50 in three different PC cell lines for various chemotherapeutic agents. Compared with PFOS, 6:2 Cl-PFESA demonstrated a more pro-MDR effect on PC cells in vitro. In vivo experiments further revealed that PFOS/6:2 Cl-PFESA exposures significantly reduced the efficacy of PTX in PC, with inhibition rates dropping from 78.3% to 23.8%/6.1%, respectively (p < 0.05). This effect was driven by the aberrant activation of the PI3K-ABCB1 pathway, with 6:2 Cl-PFESA demonstrating a stronger capacity to promote this signal pathway's expression and function compared with PFOS. These data suggest that exposure to PFAS may elevate the risk of MDR and subsequent disease progression. Although marketed as a safer alternative to PFOS, the notable impact of 6:2 Cl-PFESA on MDR highlights the necessity for a comprehensive assessment of its potential carcinogenic risks.
Collapse
Affiliation(s)
- Jiawei Hong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, PR China
| | - Keyi Du
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, PR China
| | - Weichen Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, PR China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, PR China
| | - Hanxi Yu
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Tingting Pan
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, PR China
| | - Tong Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, PR China
| | - Liang Zhao
- Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Shu-Sen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
- Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute, Zhejiang University of Technology, Quzhou, Zhejiang 324400, PR China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
- Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute, Zhejiang University of Technology, Quzhou, Zhejiang 324400, PR China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, PR China
| |
Collapse
|
25
|
Yin H, Chen T, Hu X, Zhu W, Li Y, Sun W, Li L, Zhang H, Wang Q. Pyroptosis-Inducing Biomaterials Pave the Way for Transformative Antitumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410336. [PMID: 39501932 DOI: 10.1002/advs.202410336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/15/2024] [Indexed: 12/19/2024]
Abstract
Pyroptosis can effectively overcome immunosuppression and reactivate antitumor immunity. However, pyroptosis initiation is challenging. First, the underlying biological mechanisms of pyroptosis are complex, and a variety of gasdermin family proteins can be targeted to induce pyroptosis. Second, other intracellular death pathways may also interfere with pyroptosis. The rationally designed gasdermin protein-targeting biomaterials are capable of inducing pyroptosis and have the capacity to stimulate antitumor immune function in a safe and effective manner. This review provides a comprehensive overview of the design, function, and antitumor efficacy of pyroptosis-inducing materials and the associated challenges, with a particular focus on the design options for pyroptosis-inducing biomaterials based on the activation of different gasdermin proteins. This review offers a valuable foundation for the further development of pyroptosis-inducing biomaterials for clinical applications.
Collapse
Affiliation(s)
- Hao Yin
- Institute for Advanced Research, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
- Department of Radiation and Medical Oncology, Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Tanzhou Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Xiaoqu Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Wenting Zhu
- Department of Oncology, Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Yida Li
- Department of Radiation and Medical Oncology, Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Lei Li
- The First Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, 710061, P. R. China
| | - Hongmei Zhang
- Department of Oncology, Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Qinyang Wang
- Institute for Advanced Research, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
- Department of Radiation and Medical Oncology, Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
- The First Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, 710061, P. R. China
| |
Collapse
|
26
|
Zhu Y, Wang X, Feng L, Zhao R, Yu C, Liu Y, Xie Y, Liu B, Zhou Y, Yang P. Intermetallics triggering pyroptosis and disulfidptosis in cancer cells promote anti-tumor immunity. Nat Commun 2024; 15:8696. [PMID: 39379392 PMCID: PMC11461493 DOI: 10.1038/s41467-024-53135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024] Open
Abstract
Pyroptosis, an immunogenic programmed cell death, could efficiently activate tumor immunogenicity and reprogram immunosuppressive microenvironment for boosting cancer immunotherapy. However, the overexpression of SLC7A11 promotes glutathione biosynthesis for maintaining redox balance and countering pyroptosis. Herein, we develop intermetallics modified with glucose oxidase (GOx) and soybean phospholipid (SP) as pyroptosis promoters (Pd2Sn@GOx-SP), that not only induce pyroptosis by cascade biocatalysis for remodeling tumor microenvironment and facilitating tumor cell immunogenicity, but also trigger disulfidptosis mediated by cystine accumulation to further promote tumor pyroptosis in female mice. Experiments and density functional theory calculations show that Pd2Sn nanorods with an intermediate size exhibit stronger photothermal and enzyme catalytic activity compared with the other three morphologies investigated. The peroxidase-mimic and oxidase-mimic activities of Pd2Sn cause potent reactive oxygen species (ROS) storms for triggering pyroptosis, which could be self-reinforced by photothermal effect, hydrogen peroxide supply accompanied by glycometabolism, and oxygen production from catalase-mimic activity of Pd2Sn. Moreover, the increase of NADP+/NADPH ratio induced by glucose starvation could pose excessive cystine accumulation and inhibit glutathione synthesis, which could cause disulfidptosis and further augment ROS-mediated pyroptosis, respectively. This two-pronged treatment strategy could represent an alternative therapeutic approach to expand anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Yanlin Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China
| | - Xinxin Wang
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China.
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China
| | - Can Yu
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Yuanli Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, PR China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China
| | - Yang Zhou
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, PR China.
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China.
| |
Collapse
|
27
|
Zhang M, Chen Y, Feng S, He Y, Liu Z, Zhang N, Wang Q. Transferrin-Modified Carprofen Platinum(IV) Nanoparticles as Antimetastasis Agents with Tumor Targeting, Inflammation Inhibition, Epithelial-Mesenchymal Transition Suppression, and Immune Activation Properties. J Med Chem 2024; 67:16416-16434. [PMID: 39235464 DOI: 10.1021/acs.jmedchem.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The inflammatory microenvironment is a central driver of tumor metastasis, intimately associated with the promotion of epithelial-mesenchymal transition (EMT) and immune suppression. Here, transferrin-modified carprofen platinum(IV) nanoparticles Tf-NPs@CPF2-Pt(IV) with promising antiproliferative and antimetastatic properties were developed, which activated by inhibiting inflammation, suppressing EMT, and activating immune responses besides causing DNA injury. The nanoparticles released the active ingredient CPF2-Pt(IV) in a sustained manner and offered enhanced pharmacokinetic properties compared to free CPF2-Pt(IV) in vivo. Additionally, they possessed satisfactory tumor targeting effects via the transferrin motif. Serious DNA damage was induced with the upregulation of γ-H2AX and P53, and the mitochondria-mediated apoptotic pathway Bcl-2/Bax/caspase3 was initiated. Inflammation was alleviated by inhibiting COX-2 and MMP9 and decreasing inflammatory cytokines TNF-α and IL-6. Subsequently, the EMT was reversed by inhibiting the Wnt/β-catenin pathway. Furthermore, the antitumor immunity was provoked by blocking the immune checkpoint PD-L1 and increasing CD3+ and CD8+ T lymphocytes in tumors.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Yan Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shuaiqi Feng
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Yanqin He
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
28
|
Burgos JM, Vega E, García ML, Pujol M, Sánchez-López E, Souto EB. Biodegradable nanoplatforms for antigen delivery: part II - nanoparticles, hydrogels, and microneedles for cancer immunotherapy. Expert Opin Drug Deliv 2024; 21:1385-1394. [PMID: 39245925 DOI: 10.1080/17425247.2024.2400291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION In recent years, chimeric antigen receptor T (CAR-T) cell therapy has resulted in a breakthrough in the treatment of patients with refractory or relapsed hematological malignancies. However, the identification of patients suitable for CAR-T cell therapy needs to be improved. AREASCOVERED CAR-T cell therapy has demonstrated excellent efficacy in hematological malignancies; however, views on determining when to apply CAR-T cells in terms of the evaluation of patient characteristics remain controversial. EXPERT OPINION We reviewed the current feasibility and challenges of CAR-T cell therapy in the most common hematological malignancies and classified them according to disease type and treatment priority, to guide clinicians and researchers in applying and investigating CAR-T cells further.
Collapse
Affiliation(s)
- Jordi Madariaga Burgos
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Estefanía Vega
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Montserrat Pujol
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
29
|
Shang K, Montesdeoca N, Zhang H, Efanova E, Liang G, Ochs J, Karges J, Song H, Zhang L. Cobalt(III) prodrug-based nanomedicine for inducing immunogenic cell death and enhancing chemo-immunotherapy. J Control Release 2024; 373:493-506. [PMID: 39033985 DOI: 10.1016/j.jconrel.2024.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Despite impressive advances in immune checkpoint blockade therapy, its efficacy as a standalone treatment remains limited. The influence of chemotherapeutic agents on tumor immunotherapy has progressively come to light in recent years, positioning them as promising contenders in the realm of combination therapy options for tumor immunotherapy. Herein, we present the rational design, synthesis, and biological evaluation of the first example of a Co(III) prodrug (Co2) capable of eliciting a localized cytotoxic effect while simultaneously inducing a systemic immune response via type II immunogenic cell death (ICD). To enhance its pharmacological properties, a glutathione-sensitive polymer was synthesized, and Co2 was encapsulated into polymeric nanoparticles (NP-Co2) to improve efficacy. Furthermore, NP-Co2 activates the GRP78/p-PERK/p-eIF2α/CHOP pathway, thereby inducing ICD in cancer cells. This facilitates the transformation of "cold tumors" into "hot tumors" and augments the effectiveness of the PD-1 monoclonal antibody (αPD-1). In essence, this nanomedicine, utilizing Co(III) prodrugs to induce ICD, provides a promising strategy to enhance chemotherapy and αPD-1 antibody-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Kun Shang
- Department of Nuclear Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Elizaveta Efanova
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Ganghao Liang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Jasmine Ochs
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, China.
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China.
| |
Collapse
|
30
|
Wang X, Yin QH, Wan LL, Sun RL, Wang G, Gu JF, Tang DC. Research progress on the effect of pyroptosis on the occurrence, development, invasion and metastasis of colorectal cancer. World J Gastrointest Oncol 2024; 16:3410-3427. [PMID: 39171180 PMCID: PMC11334039 DOI: 10.4251/wjgo.v16.i8.3410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
Pyroptosis is a type of programmed cell death mediated by gasdermines (GSDMs). The N-terminal domain of GSDMs forms pores in the plasma membrane, causing cell membrane rupture and the release of cell contents, leading to an inflammatory response and mediating pyrodeath. Pyroptosis plays an important role in inflammatory diseases and malignant tumors. With the further study of pyroptosis, an increasing number of studies have shown that the pyroptosis pathway can regulate the tumor microenvironment and antitumor immunity of colorectal cancer and is closely related to the occurrence, development, treatment and prognosis of colorectal cancer. This review aimed to explore the molecular mechanism of pyroptosis and the role of pyroptosis in the occurrence, development, treatment and prognosis of colorectal cancer (CRC) and to provide ideas for the clinical diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Xu Wang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Qi-Hang Yin
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Lin-Lu Wan
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Ruo-Lan Sun
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Gang Wang
- Department of Ana and Intestine Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jun-Fei Gu
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - De-Cai Tang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
31
|
Bai Y, Wang Z, Liu D, Meng X, Wang H, Yu M, Zhang S, Sun T. Enhancing ovarian cancer treatment with maleimide-modified Pt(IV) prodrug nanoparticles. Mater Today Bio 2024; 27:101131. [PMID: 39050986 PMCID: PMC11267080 DOI: 10.1016/j.mtbio.2024.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
The limitations of platinum in ovarian cancer therapy, such as poor solubility and significant side effects, often lead to suboptimal therapeutic outcome and mortality. In this study, we have developed a novel approach utilizing biodegradable polymeric nanoparticles as a drug delivery system (NDDS), loaded with advanced platinum (IV) (Pt(IV)) prodrugs. A key feature of our approach is the enhancement of nanoparticles with maleimide, a modification hypothesized to significantly boost tumor tissue accumulation. When tested in mouse models of orthotopic and peritoneal metastasis ovarian cancer, these maleimide-modified nanoparticles are anticipated to show preferential accumulation in tumor tissues, enhancing therapeutic efficiency and minimizing systemic drug exposure. Our findings demonstrate that the maleimide-modified Pt(IV)-loaded NDDSs significantly reduce tumor burden in comparison to traditional cisplatin therapy, while simultaneously reducing adverse side effects. This leads to markedly improved survival rates in models of peritoneal metastasis ovarian cancer, offering a promising new direction in the treatment of this challenging disease.
Collapse
Affiliation(s)
- Yiting Bai
- Department of Obstetrics and Gynaecology, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Zhenpeng Wang
- Department of Obstetrics and Gynaecology, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Dongzhen Liu
- Department of Obstetrics and Gynaecology, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Haorui Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Meiling Yu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Songling Zhang
- Department of Obstetrics and Gynaecology, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
| |
Collapse
|
32
|
Lu S, Li Y, Yu Y. Glutathione-Scavenging Celastrol-Cu Nanoparticles Induce Self-Amplified Cuproptosis for Augmented Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404971. [PMID: 38935977 DOI: 10.1002/adma.202404971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Cuproptosis is a novel copper-dependent programmed cell death. The efficacy of cuproptosis is highly dependent on intracellular copper accumulation and counteracted by a high level of glutathione (GSH) in tumor cells. Here, this work develops a self-amplified cuproptosis nanoparticles (Cel-Cu NP) using celastrol (Cel), a natural product isolated from medical plant. In Cel-Cu NP, Cel serves as a versatile copper ionophore, exhibiting an ideal coordination capacity toward copper ions without compromising the cuproptosis induction. Notably, Cel can simultaneously scavenge GSH content to amplify cuproptosis. Moreover, this self-amplified cuproptosis further activates immunogenic cell death (ICD) to elicit robust immune response. Combining with immune checkpoint blockade, Cel-Cu NP effectively eradicates metastatic tumors in a mouse lung metastasis model. This study provides an efficient nanomedicine by inducing self-amplified cuproptosis for robust immunotherapy.
Collapse
Affiliation(s)
- Sheng Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yifan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
33
|
Ma ZY, Ding XJ, Zhu ZZ, Chen Q, Wang DB, Qiao X, Xu JY. Pt(iv) derivatives of cisplatin and oxaliplatin bearing an EMT-related TMEM16A/COX-2-selective dual inhibitor against colorectal cancer cells HCT116. RSC Med Chem 2024:d4md00327f. [PMID: 39185449 PMCID: PMC11342162 DOI: 10.1039/d4md00327f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer represents the over-expression of TMEM16A and COX-2, offering a promising therapeutic strategy. Two Pt(iv) conjugates derived from Pt(ii) drug (cisplatin or oxaliplatin) and niflumic acid, complexes 1 and 2, were designed and prepared to exert the positive impact of multiple biological targets of DNA/TMEM16A/COX-2 against colorectal cancer. Complex 2 afforded higher cytotoxicity than 1 and the combination of an intermediate of oxidized oxaliplatin and NFA against cancer cells A549, HeLa, MCF-7, and HCT116. Especially for colorectal cancer cells HCT116, 2 was significantly more toxic (22-fold) and selective to cancer cells against normal HUVEC cells (4-fold) than first-line oxaliplatin. The outstanding anticancer activity of 2 is partly attributed to its dramatic increase in cellular uptake, DNA damage, and apoptosis. Mechanistic studies indicated that 2 inhibited HCT116 cell metastasis by triggering TMEM16A, COX-2, and their downstream signaling pathways, including EGFR, STAT3, E-cadherin and N-cadherin.
Collapse
Affiliation(s)
- Zhong-Ying Ma
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Xiao-Jing Ding
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Zhen-Zhen Zhu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Qian Chen
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Dong-Bo Wang
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University Tianjin 300070 China
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University Tianjin 300070 China
| |
Collapse
|
34
|
Pan X, Han T, Zhao Z, Wang X, Fang X. Emerging Nanotechnology in Preclinical Pancreatic Cancer Immunotherapy: Driving Towards Clinical Applications. Int J Nanomedicine 2024; 19:6619-6641. [PMID: 38975321 PMCID: PMC11227336 DOI: 10.2147/ijn.s466459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/16/2024] [Indexed: 07/09/2024] Open
Abstract
The high malignant degree and poor prognosis of pancreatic cancer (PC) pose severe challenges to the basic research and clinical translation of next-generation therapies. The rise of immunotherapy has improved the treatment of a variety of solid tumors, while the application in PC is highly restricted by the challenge of immunosuppressive tumor microenvironment. The latest progress of nanotechnology as drug delivery platform and immune adjuvant has improved drug delivery in a variety of disease backgrounds and enhanced tumor therapy based on immunotherapy. Based on the immune loop of PC and the status quo of clinical immunotherapy of tumors, this article discussed and critically analyzed the key transformation difficulties of immunotherapy adaptation to the treatment of PC, and then proposed the rational design strategies of new nanocarriers for drug delivery and immune regulation, especially the design of combined immunotherapy. This review also put forward prospective views on future research directions, so as to provide information for the new means of clinical treatment of PC combined with the next generation of nanotechnology and immunotherapy.
Collapse
Affiliation(s)
- Xuan Pan
- Department of Hepato-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| | - Ting Han
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| | - Zixuan Zhao
- The Translational Research Institute for Neurological Disorders of Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
- The Institute of Brain Science, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Xiaoming Wang
- Department of Hepato-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| | - Xiaosan Fang
- Department of Hepato-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| |
Collapse
|
35
|
Yu Y, Wei D, Bing T, Wang Y, Liu C, Xiao H. A Polyplatin with Hands-Holding Near-Infrared-II Fluorophores and Prodrugs at a Precise Ratio for Tracking Drug Fate with Realtime Readout and Treatment Feedback. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402452. [PMID: 38691849 DOI: 10.1002/adma.202402452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Indexed: 05/03/2024]
Abstract
The in vivo fate of chemotherapeutic drugs plays a vital role in understanding the therapeutic outcome, side effects, and the mechanism. However, the lack of imaging abilities of drugs, tedious labeling processes, and premature leakage of imaging agents result in loss of fidelity between the drugs and imaging signals. Herein, an amphiphilic polymer is created by copolymerization of a near-infrared-II (NIR-II) fluorophore tracer (T) and an anticancer Pt(IV) prodrug (D) of cisplatin in a hand-holding manner into one polymer chain for the first time. The obtained PolyplatinDT is capable of delivering the drugs and the fluorophores concomitantly at a precise D/T ratio, thereby resulting in tracking the platinum drugs and even readout of them in real-time via NIR-II imaging. PolyplatinDT can self-assemble into nanoparticles, referred to as NanoplatinDT. Furthermore, a caspase-3 cleavable peptide that serves as an apoptosis reporter is attached to NanoplatinDT, resulting in NanoplatinDTR that are capable of simultaneously tracking platinum drugs and evaluating the therapeutic efficacy. Overall, it is reported here the design of the first theranostic polymer with anticancer drugs, drug tracers, and drug efficacy reporters that can work in concert to provide insight into the drug fate and mechanism of action.
Collapse
Affiliation(s)
- Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dengshuai Wei
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Tiejun Bing
- Immunology and Oncology Center, ICE Bioscience, Beijing, 100176, China
| | - Yongheng Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Chaoyong Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| |
Collapse
|
36
|
Liu X, Shen M, Bing T, Zhang X, Li Y, Cai Q, Yang X, Yu Y. A Bioactive Injectable Hydrogel Regulates Tumor Metastasis and Wound Healing for Melanoma via NIR-Light Triggered Hyperthermia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402208. [PMID: 38704692 PMCID: PMC11234446 DOI: 10.1002/advs.202402208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Surgical resection remains the mainstream treatment for malignant melanoma. However, challenges in wound healing and residual tumor metastasis pose significant hurdles, resulting in high recurrence rates in patients. Herein, a bioactive injectable hydrogel (BG-Mngel) formed by crosslinking sodium alginate (SA) with manganese-doped bioactive glass (BG-Mn) is developed as a versatile platform for anti-tumor immunotherapy and postoperative wound healing for melanoma. The incorporation of Mn2+ within bioactive glass (BG) can activate the cGAS-STING immune pathway to elicit robust immune response for cancer immunotherapy. Furthermore, doping Mn2+ in BG endows system with excellent photothermal properties, hence facilitating STING activation and reversing the tumor immune-suppressive microenvironment. BG exhibits favorable angiogenic capacity and tissue regenerative potential, and Mn2+ promotes cell migration in vitro. When combining BG-Mngel with anti-PD-1 antibody (α-PD-1) for the treatment of malignant melanoma, it shows enhanced anti-tumor immune response and long-term immune memory response. Remarkably, BG-Mngel can upregulate the expression of genes related to blood vessel formation and promote skin tissue regeneration when treating full-thickness wounds. Overall, BG-MnGel serves as an effective adjuvant therapy to regulate tumor metastasis and wound healing for malignant melanoma.
Collapse
Affiliation(s)
- Xueyi Liu
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Laboratory of Biomedical MaterialsCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Meifang Shen
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Laboratory of Biomedical MaterialsCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Tiejun Bing
- Immunology and Oncology CenterICE BioscienceBeijing100176China
| | - Xinyun Zhang
- Immunology and Oncology CenterICE BioscienceBeijing100176China
| | - Yifan Li
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Laboratory of Biomedical MaterialsCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Qing Cai
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Laboratory of Biomedical MaterialsCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Xiaoping Yang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Laboratory of Biomedical MaterialsCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Yingjie Yu
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Laboratory of Biomedical MaterialsCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
37
|
Ullah I, Khan SS, Ahmad W, Liu L, Rady A, Aldahmash B, Yu C, Wang Y. Silver incorporated SeTe nanoparticles with enhanced photothermal and photodynamic properties for synergistic effects on anti-bacterial activity and wound healing. RSC Adv 2024; 14:18871-18878. [PMID: 38873544 PMCID: PMC11167613 DOI: 10.1039/d4ra01343c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Bacteria invade the host's immune system, thereby inducing serious infections. Current treatments for bacterial infections mostly rely on single modalities, which cannot completely inhibit bacteria. This study evaluates the therapeutic potential of SeTe-Ag NPs, designed with excellent photo responsiveness, with a particular focus on their dual-action antibacterial effect and wound healing properties. SeTe-Ag NPs exhibited promising synergistic antibacterial effects due to their superior photothermal and photodynamic properties. The investigation records substantial zones of inhibition of bacteria, demonstrating potent antibacterial effect. Furthermore, upon the irradiation of near-infrared (NIR) light, SeTe-Ag NPs exhibit remarkable antibiofilm and wound-healing capabilities. Overall, this study shows the applications of NIR-active SeTe-Ag NPs, which serve as a versatile platform for biomedical applications.
Collapse
Affiliation(s)
- Irfan Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Shahin Shah Khan
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Waqar Ahmad
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Luo Liu
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Badr Aldahmash
- Department of Zoology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Yushu Wang
- School of Pharmaceutical Sciences, Southern Medical University No. 1023, South Shatai Road Guangzhou 510515 P. R. China
| |
Collapse
|
38
|
Ullah I, Khan SS, Ahmad W, Liu L, Rady A, Aldahmash B, Yu Y, Wang J, Wang Y. NIR light-activated nanocomposites combat biofilm formation and enhance antibacterial efficacy for improved wound healing. Commun Chem 2024; 7:131. [PMID: 38851819 PMCID: PMC11162491 DOI: 10.1038/s42004-024-01215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Nanoparticle-based therapies are emerging as a pivotal frontier in biomedical research, showing their potential in combating infections and facilitating wound recovery. Herein, selenium-tellurium dopped copper oxide nanoparticles (SeTe-CuO NPs) with dual photodynamic and photothermal properties were synthesized, presenting an efficient strategy for combating bacterial infections. In vitro evaluations revealed robust antibacterial activity of SeTe-CuO NPs, achieving up to 99% eradication of bacteria and significant biofilm inhibition upon near-infrared (NIR) irradiation. Moreover, in vivo studies demonstrated accelerated wound closure upon treatment with NIR-activated SeTe-CuO NPs, demonstrating their efficacy in promoting wound healing. Furthermore, SeTe-CuO NPs exhibited rapid bacterial clearance within wounds, offering a promising solution for wound care. Overall, this versatile platform holds great promise for combating multidrug-resistant bacteria and advancing therapeutic interventions in wound management.
Collapse
Affiliation(s)
- Irfan Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing, 100029, China
| | - Shahin Shah Khan
- College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing, 100029, China
| | - Waqar Ahmad
- College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing, 100029, China
| | - Luo Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing, 100029, China
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Badr Aldahmash
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing, 100029, China.
| | - Jian Wang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yushu Wang
- The People's Hospital of Gaozhou, National Drug Clinical Trial Institution, Gaozhou City, 525200, China.
| |
Collapse
|
39
|
Liang G, Cao W, Tang D, Zhang H, Yu Y, Ding J, Karges J, Xiao H. Nanomedomics. ACS NANO 2024; 18:10979-11024. [PMID: 38635910 DOI: 10.1021/acsnano.3c11154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Nanomaterials have attractive physicochemical properties. A variety of nanomaterials such as inorganic, lipid, polymers, and protein nanoparticles have been widely developed for nanomedicine via chemical conjugation or physical encapsulation of bioactive molecules. Superior to traditional drugs, nanomedicines offer high biocompatibility, good water solubility, long blood circulation times, and tumor-targeting properties. Capitalizing on this, several nanoformulations have already been clinically approved and many others are currently being studied in clinical trials. Despite their undoubtful success, the molecular mechanism of action of the vast majority of nanomedicines remains poorly understood. To tackle this limitation, herein, this review critically discusses the strategy of applying multiomics analysis to study the mechanism of action of nanomedicines, named nanomedomics, including advantages, applications, and future directions. A comprehensive understanding of the molecular mechanism could provide valuable insight and therefore foster the development and clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wanqing Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
40
|
Hu F, Huang J, Bing T, Mou W, Li D, Zhang H, Chen Y, Jin Q, Yu Y, Yang Z. Stimulus-Responsive Copper Complex Nanoparticles Induce Cuproptosis for Augmented Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309388. [PMID: 38269649 PMCID: PMC10987162 DOI: 10.1002/advs.202309388] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Indexed: 01/26/2024]
Abstract
Cuproptosis, an emerging form of programmed cell death, has received tremendous attention in cancer therapy. However, the efficacy of cuproptosis remains limited by the poor delivery efficiency of copper ion carriers. Herein, copper complex nanoparticles (denoted as Cu(I) NP) are developed that can efficiently deliver copper complex into cancer cells to induce cuproptosis. Cu(I) NP demonstrate stimulus-responsive release of copper complexes, which results in mitochondrial dysfunction and promotes the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), leading to cuproptosis. Notably, Cu(I) NP not only induce cuproptosis, but also elicit robust immune responses to suppress tumor growth. Overall, this study provides a promising strategy for cuproptosis-based cancer therapy.
Collapse
Affiliation(s)
- Fuzhen Hu
- Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Jia Huang
- Department of Hepatobiliary SurgeryChina−Japan Friendship HospitalBeijing100029China
| | - Tiejun Bing
- Immunology and Oncology CenterICE BioscienceBeijing100176China
| | - Wenlong Mou
- Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Duo Li
- Department of Hepatobiliary SurgeryChina−Japan Friendship HospitalBeijing100029China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and Chemistry Institute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Yang Chen
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryThe First Medical Center of Chinese People's Liberation Army (PLA) General HospitalBeijing100039China
| | - Qionghua Jin
- Department of ChemistryCapital Normal UniversityBeijing100048China
- State Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071China
| | - Yingjie Yu
- State Key Laboratory of Organic‐Inorganic Composites, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029China
| | - Zhiying Yang
- Department of Hepatobiliary SurgeryChina−Japan Friendship HospitalBeijing100029China
| |
Collapse
|
41
|
Sun S, He Y, Xu J, Leng S, Liu Y, Wan H, Yan L, Xu Y. Enhancing cell pyroptosis with biomimetic nanoparticles for melanoma chemo-immunotherapy. J Control Release 2024; 367:470-485. [PMID: 38290565 DOI: 10.1016/j.jconrel.2024.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Despite the fact that immunotherapy has significantly improved the prognosis of melanoma patients, the non-response rate of monoimmunotherapy is considerably high due to insufficient tumor immunogenicity. Therefore, it is necessary to develop alternative methods of combination therapy with enhanced antitumor efficiency and less systemic toxicity. In this study, we reported a cancer cell membrane-coated zeolitic imidazole framework-8 (ZIF-8) encapsulating pyroptosis-inducer oxaliplatin (OXA) and immunomodulator imiquimod (R837) for chemoimmunotherapy. With the assistance of DNA methyltransferase inhibitor decitabine (DCT), upregulated Gasdermin E (GSDME) was cleaved by OXA-activated caspase-3, further inducing tumor cell pyroptosis, then localized antitumor immunity was enhanced by immune adjuvant R837, followed by triggering systemic antitumor immune responses. These results provided a proof-of-concept for the use of cell membrane-coated biomimetic nanoparticles as a promising drug carrier of combination therapy and a potential insight for pyroptosis-based melanoma chemo-immunotherapy.
Collapse
Affiliation(s)
- Shiquan Sun
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, PR China; Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China
| | - Yong He
- R&D Department of 3D printing, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, PR China
| | - Jiaqi Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, PR China
| | - Shaolong Leng
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, PR China
| | - Yu Liu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, PR China
| | - Huanhuan Wan
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, PR China
| | - Leping Yan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, PR China.
| | - Yunsheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, PR China.
| |
Collapse
|