1
|
Jaithum K, Tummatorn J, Theppitak C, Chainok K, Thongsornkleeb C, Ruchirawat S. Silver-Catalyzed and Base-Mediated Double Cyclization for the Streamlined Synthesis of Benzo[4,5]imidazo[2,1-b]naphtho[2,3-d]oxazole from ortho-Alkynylarylketones. Chem Asian J 2025. [PMID: 40079900 DOI: 10.1002/asia.202500235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
We report a novel silver-catalyzed and base-mediated double cyclization strategy for the streamlined synthesis of benzo[4,5]imidazo[2,1-b]naphtho[2,3-d]oxazoles from ortho-alkynylarylketones. The transformation proceeds through an initial ketonization step catalyzed by silver trifluoroacetate (AgTFA), generating a reactive 1,5-diketone intermediate, followed by a sequential double cyclization under basic conditions. This method affords a broad range of benzo[4,5]imidazo[2,1-b]naphtho[2,3-d]oxazoles with good functional group tolerance in moderate-to-good yields. Moreover, this methodology also enhances the synthetic utility of ortho-alkynylarylketones, expanding their applicability in constructing diverse fused heterocycles.
Collapse
Affiliation(s)
- Kanokwan Jaithum
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Chatphorn Theppitak
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Charnsak Thongsornkleeb
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| |
Collapse
|
2
|
More NY, Rist PA, Gupta A, Davies PW. Regiodivergent Gold-Catalyzed Rearrangement-Addition Reactions of Sulfenylated Propargylic Carboxylates with Indoles. Org Lett 2024; 26:7713-7717. [PMID: 39207898 PMCID: PMC11406574 DOI: 10.1021/acs.orglett.4c02853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sulfenylated propargylic carboxylates were introduced to investigate the influence of sulfur substitution in gold-catalyzed alkyne activation pathways. Regiodivergent gold-catalyzed rearrangement and indole capture reactions proceed under mild conditions to give functionalized indole products bearing sulfenylated (Z)-enol carboxylate motifs. Pathways involving both 1,2- and 1,3-carboxylate migrations are achieved selectively, with indole being added in a 1,4 relationship to the sulfenyl group in each case. High levels of selectivity are influenced by the catalyst system, counterion, and carboxylate group.
Collapse
Affiliation(s)
- Nagnath Y More
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Paige A Rist
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Aniket Gupta
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Paul W Davies
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
3
|
Sheta YS, Sarg MT, Abdulrahman FG, Nossier ES, Husseiny EM. Novel imidazolone derivatives as potential dual inhibitors of checkpoint kinases 1 and 2: Design, synthesis, cytotoxicity evaluation, and mechanistic insights. Bioorg Chem 2024; 149:107471. [PMID: 38823311 DOI: 10.1016/j.bioorg.2024.107471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Applying various drug design strategies including ring variation, substituents variation, and ring fusion, two series of 2-(alkylthio)-5-(arylidene/heteroarylidene)imidazolones and imidazo[1,2-a]thieno[2,3-d]pyrimidines were designed and prepared as dual potential Chk1 and Chk2 inhibitors. The newly synthesized hybrids were screened in NCI 60 cell line panel where the most active derivatives 4b, d-f, and 6a were further estimated for their five dose antiproliferative activity against the most sensitive tumor cells including breast MCF-7 and MDA-MB-468 and non-small cell lung cancer EKVX as well as normal WI-38 cell. Noticeably, increasing the carbon chain attached to thiol moiety at C-2 of imidazolone scaffold elevated the cytotoxic activity. Hence, compounds 4e and 4f, containing S-butyl fragment, exhibited the most antiproliferative activity against the tested cells where 4f showed extremely potent selectivity toward them. As well, compound 6a, containing imidazothienopyrimidine core, exerted significant cytotoxic activity and selectivity toward the examined cells. The mechanistic investigation of the most active cytotoxic analogs was achieved through the evaluation of their inhibitory activity against Chk1 and Chk2. Results revealed that 4f displayed potent dual inhibition of both Chk1 and Chk2 with IC50 equal 0.137 and 0.25 μM, respectively. It also promoted its antiproliferative and Chk suppression activity via EKVX cell cycle arrest at S phase through stimulating the apoptotic approach. The apoptosis induction was also emphasized by elevating the expression of Caspase-3 and Bax, that are accompanied by Bcl-2 diminution. The in silico molecular docking and ADMET profiles of the most active analogs have been carried out to evaluate their potential as significant anticancer drug candidates.
Collapse
Affiliation(s)
- Yasmin S Sheta
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Marwa T Sarg
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Fatma G Abdulrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt; The National Committee of Drugs, Academy of Scientific Research and Technology, Cairo 11516, Egypt
| | - Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt.
| |
Collapse
|
4
|
Sekar P, Gupta A, English LE, Rabbitt CE, Male L, Jupp AR, Davies PW. Regiodivergent Synthesis of 4- and 5-Sulfenyl Oxazoles from Alkynyl Thioethers. Chemistry 2024; 30:e202401465. [PMID: 38743746 DOI: 10.1002/chem.202401465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
The regiodivergent synthesis of 4- and 5-sulfenyl oxazoles from 1,4,2-dioxazoles and alkynyl thioethers has been achieved. Gold-catalysed conditions are used to favour the formation of 5-sulfenyl oxazoles via β-selective attack of the nitrenoid relative to the sulfenyl group. In contrast, 4-sulfenyl oxazoles are formed by α-selective reaction under Brønsted acid conditions from the same substrates. The nature of stabilising gold-sulfur interactions have been investigated by natural bond orbital analysis, showing that the S→Au interactions are significantly stronger in the intermediate that favours the 5-sulfenyl oxazoles. A kinetic survey identifies catalyst inhibition processes. This study into the regiodivergent methods includes the development of telescoped annulation-oxidation protocols for regioselective access to oxazole sulfoxides and sulfones.
Collapse
Affiliation(s)
- Prakash Sekar
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Aniket Gupta
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura E English
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Clare E Rabbitt
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew R Jupp
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Paul W Davies
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
5
|
Alhasan R, Martins GM, de Castro PP, Saleem RSZ, Zaiter A, Fries-Raeth I, Kleinclauss A, Perrin-Sarrado C, Chaimbault P, da Silva Júnior EN, Gaucher C, Jacob C. Selenoneine-inspired selenohydantoins with glutathione peroxidase-like activity. Bioorg Med Chem 2023; 94:117479. [PMID: 37769443 DOI: 10.1016/j.bmc.2023.117479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/27/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
Chronic diseases such as cystic fibrosis, inflammatory bowel diseases, rheumatoid arthritis, and cardiovascular illness have been linked to a decrease in selenium levels and an increase in oxidative stress. Selenium is an essential trace element that exhibits antioxidant properties, with selenocysteine enzymes like glutathione peroxidase being particularly effective at reducing peroxides. In this study, a series of synthetic organoselenium compounds were synthesized and evaluated for their potential antioxidant activities. The new selenohydantoin molecules were inspired by selenoneine and synthesized using straightforward methods. Their antioxidant potential was evaluated and proven using classical radical scavenging and metal-reducing methods. The selenohydantoin derivatives exhibited glutathione peroxidase-like activity, reducing hydroperoxides. Theoretical calculations using Density Functional Theory (DFT) revealed the selenone isomer to be the only one occurring in solution, with selenolate as a possible tautomeric form in the presence of a basic species. Cytocompatibility assays indicated that the selenohydantoin derivatives were non-toxic to primary human aortic smooth muscle cells, paving the way for further biological evaluations of their antioxidant activity. The results suggest that selenohydantoin derivatives with trifluoro-methyl (-CF3) and chlorine (-Cl) substituents have significant activities and could be potential candidates for further biological trials. These compounds may contribute to the development of effective therapies for chronic diseases such cardiovascular diseases.
Collapse
Affiliation(s)
- Rama Alhasan
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, 66123 Saarbruecken, Germany
| | - Guilherme M Martins
- Department of Chemistry, Federal University of Sao Carlos, UFSCar, 13565-905 São Carlos, SP, Brazil; Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, UFMG, 31270-901 Belo Horizonte, MG, Brazil
| | - Pedro P de Castro
- Department of Chemistry, Federal University of Sao Carlos, UFSCar, 13565-905 São Carlos, SP, Brazil
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, SBA School of Sciences and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Ali Zaiter
- Université de Lorraine, LCP-A2MC, F-57000 Metz, France
| | | | | | | | | | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, UFMG, 31270-901 Belo Horizonte, MG, Brazil.
| | - Caroline Gaucher
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France; Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France.
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, 66123 Saarbruecken, Germany
| |
Collapse
|
6
|
Badeji AA, Liu Y, Oladipo SD, Osinubi AD. Computational insights into the mechanisms and origins of switchable selectivity in gold(i)-catalyzed annulation of ynamides with isoxazoles via 6π-electrocyclizations of azaheptatrienyl cations. RSC Adv 2023; 13:18025-18037. [PMID: 37323448 PMCID: PMC10265590 DOI: 10.1039/d3ra02839a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Electrocyclizations of acyclic conjugated π-motifs have emerged as a versatile and effective strategy for accessing various ring systems with excellent functional group tolerability and controllable selectivity. Typically, the realization of 6π-electrocyclization of heptatrienyl cations to afford seven-membered motif has proven difficult due to the high-energy state of the cyclizing seven-membered intermediate. Instead, it undergoes the Nazarov cyclization, affording a five-membered pyrrole product. However, the incorporation of a Au(i)-catalyst, a nitrogen atom and tosylamide group in the heptatrienyl cations unexpectedly circumvented the aforementioned high energy state to afford a seven-membered azepine product via 6π-electrocyclization in the annulation of 3-en-1-ynamides with isoxazoles. Therefore, extensive computational studies were carried out to investigate the mechanism of Au(i)-catalyzed [4+3] annulation of 3-en-1-ynamides with dimethylisoxazoles to produce a seven-membered 4H-azepine via the 6π-electrocyclization of azaheptatrienyl cations. Computational results showed that after the formation of the key α-imino gold carbene intermediate, the annulation of 3-en-1-ynamides with dimethylisoxazole occurs via the unusual 6π-electrocyclization to afford a seven-membered 4H-azepine exclusively. However, the annulation of 3-cyclohexen-1-ynamides with dimethylisoxazole occurs via the commonly proposed aza-Nazarov cyclization pathway to majorly generate five-membered pyrrole derivatives. The results from the DFT predictive analysis revealed that the key factors responsible for the different chemo-, and regio-selectivities observed are the cooperating effect of the tosylamide group on C1, the uninterrupted π-conjugation pattern of the α-imino gold(i) carbene and the substitution pattern at the cyclization termini. The Au(i)-catalyst is believed to assist in the stabilization of the azaheptatrienyl cation.
Collapse
Affiliation(s)
| | - Yuan Liu
- School of Chemistry and Chemical Engineering, Nantong University 9 Seyuan Road Nantong 226019 China
| | - Segun D Oladipo
- Department of Chemical Sciences, Olabisi Onabanjo University 2002 Ago-Iwoye Nigeria
| | | |
Collapse
|
7
|
Roychowdhury P, Samanta S, Tan H, Powers DC. N-Amino Pyridinium Salts in Organic Synthesis. Org Chem Front 2023; 10:2563-2580. [PMID: 37840843 PMCID: PMC10569450 DOI: 10.1039/d3qo00190c] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
C-N bond forming reactions hold immense significance to synthetic organic chemistry. In pursuit of efficient methods for the introduction of nitrogen in organic small molecules, myriad synthetic methods have been developed, and methods based on both nucleophilic and electrophilic aminating reagents have received sustained research effort. In response to continued challenges - the need for substrate prefunctionalization, the requirement for vestigial N-activating groups, and the need to incorporate nitrogen in ever more complex molecular settings - the development of novel aminating reagents remains a central challenge in method development. N-aminopyridinums and their derivatives have recently emerged as a class of bifunctional aminating reagents, which combine N-centered nucleophilicity with latent electrophilic or radical reactivity by virtue of the reducible N-N bond, with broad synthetic potential. Here, we summarize the synthesis and reactivity of N-aminopyridinium salts relevant to organic synthesis. The preparation and application of these reagents in photocatalyzed and metal-catalyzed transformations is discussed, showcasing the reactivity in the context of bifunctional platform and its potential for innovation in the field.
Collapse
Affiliation(s)
- Pritam Roychowdhury
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Samya Samanta
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Hao Tan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
8
|
Iftikhar R, Mazhar A, Iqbal MS, Khan FZ, Askary SH, Sibtain H. Ring forming transformations of ynamides via cycloaddition. RSC Adv 2023; 13:10715-10756. [PMID: 37025669 PMCID: PMC10072253 DOI: 10.1039/d3ra00139c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Ynamides are N-alkyne compounds bearing an electron withdrawing group at the nitrogen atom. They offer unique pathways for the construction of versatile building blocks owing to their exceptional balance between reactivity and stability. Recently several studies have been reported that explore and illustrate the synthetic potential of ynamides and ynamide-derived advanced intermediates in cycloadditions with different reaction partners to yield heterocyclic cycloadducts of synthetic and pharmaceutical value. Cycloaddition reactions of ynamides are the facile and preferable routes for the construction of structural motifs having striking importance in synthetic, medicinal chemistry, and advanced materials. In this systematic review, we highlighted the recently reported novel transformations and synthetic applications that involved the cycloaddition reaction of ynamides. The scope along with the limitations of the transformations are discussed in detail.
Collapse
Affiliation(s)
- Ramsha Iftikhar
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Aqsa Mazhar
- Faculty of Health and Medicine, University of New South Wales 2033-Sydney Australia
| | - Muhammad Saqlain Iqbal
- Department of Electrical Information Engineering, Polytechnic University of Bari 70126-Bari Italy
| | - Faiza Zahid Khan
- Institute of Chemistry, RheinischeFriedrich-Wilhelms-Universität Bonn Bonn Germany
| | - Syed Hassan Askary
- Department of Chemistry, University of Management and Technology 54770-Lahore Pakistan
| | - Hifza Sibtain
- Department of Chemistry, University of Management and Technology 54770-Lahore Pakistan
| |
Collapse
|
9
|
Li Y, Song G, Liu Y, Li J. Theoretical Study of Mechanism and Product Selectivity of Metal-Catalyzed Reactions of Alkynyl Thioethers with Isoxazoles/Anthranils. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Wu Y, Hu C, Wang T, Eberle L, Hashmi ASK. Gold‐Catalyzed Reaction of Anthranils with Alkynyl Sulfones for the Regioselective Formation of 3‐Hydroxyquinolines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yufeng Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou Guangdong 510006 People's Republic of China
| | - Chao Hu
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Tao Wang
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lukas Eberle
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Chemistry Department, Faculty of Science King Abdulaziz University (KAU) 21589 Jeddah Saudi Arabia
| |
Collapse
|
11
|
Efimov IV, Kulikova LN, Miftyakhova AR, Matveeva MD, Voskressensky LG. Recent Advances for the Synthesis of N‐Unsubstituted Pyrroles. ChemistrySelect 2021. [DOI: 10.1002/slct.202103486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ilya V. Efimov
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| | - Larisa N. Kulikova
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| | - Almira R. Miftyakhova
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| | - Maria D. Matveeva
- A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences Leninsky pr. 29 119991 Moscow Russia
| | - Leonid G. Voskressensky
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| |
Collapse
|
12
|
Davies PW. Gold-Catalyzed Annulations with Nucleophilic Nitrenoids Enabled by Heteroatom-Substituted Alkynes. CHEM REC 2021; 21:3964-3977. [PMID: 34708496 DOI: 10.1002/tcr.202100205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/07/2022]
Abstract
The combination of a nucleophilic nitrene equivalent, a triple bond and a π-acid catalyst has underpinned numerous efficient transformations for the preparation of azacycles. This personal account details our efforts in developing an annulation strategy. Adding a nucleophilic nitrenoid to an activated alkyne can generate carbenoid character that is then quenched by a cyclisation onto the nitrenoid substituent. The use and development of N-acyl and N-heterocyclic pyridinium-N-aminides as 1,3-N,O and 1,3-N,N-dipole equivalents is discussed in the context of oxazole and heterocycle-fused imidazole formation, respectively. The resulting processes are highly efficient, practically straightforward, and tolerate considerable structural and functional group variation. Our use of heteroatom-substituted alkynes as enabling tools for reaction discovery is discussed. The reactivity accessed from the strong donor-like properties of ynamides is complemented by that obtained from alkynyl thioethers, which are emerging as interesting substrates for π-acid catalysis.
Collapse
Affiliation(s)
- Paul W Davies
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
13
|
Huang C, Geng X, Zhao P, Zhou Y, Yu XX, Wang LS, Wu YD, Wu AX. Direct Synthesis of 4-Aryl-1,2,3-triazoles via I 2-Promoted Cyclization under Metal- and Azide-Free Conditions. J Org Chem 2021; 86:13664-13672. [PMID: 34519212 DOI: 10.1021/acs.joc.1c01702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We herein report an iodine-mediated formal [2 + 2 + 1] cyclization of methyl ketones, p-toluenesulfonyl hydrazines, and 1-aminopyridinium iodide for preparation of 4-aryl-NH-1,2,3-triazoles under metal- and azide-free conditions. Notably, this is achieved using p-toluenesulfonyl hydrazines and 1-aminopyridinium iodide as azide surrogates, providing a novel route toNH-1,2,3-triazoles. Furthermore, this approach provides rapid and practical access to potent inhibitors of indoleamine 2,3-dioxygenase (IDO).
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiao Geng
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Peng Zhao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - You Zhou
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiao-Xiao Yu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Li-Sheng Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
14
|
Suárez‐Rodríguez T, Suárez‐Sobrino ÁL, Ballesteros A. Gold(I)-Catalyzed Intermolecular Formal [4+2] Cycloaddition of O-Aryl Ynol Ethers and Enol Ethers: Synthesis of Chromene Derivatives. Chemistry 2021; 27:13079-13084. [PMID: 34278626 PMCID: PMC8518403 DOI: 10.1002/chem.202102534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/06/2022]
Abstract
Gold(I)-catalyzed formal [4+2] cycloaddition of O-aryl ynol ethers 1 and enol ethers 2 is described. This intermolecular reaction between two electron-rich unsaturated systems takes place, under mild conditions, in the presence of 5 mol% [IPrAu(CH3 CN)]SbF6 as catalyst giving chromene derivatives with good yields. The cycloaddition is completely regio- and stereoselective, as well as versatile for both reactives. Silyl enol ethers can also react in the same way and under the same reaction conditions with quantitative yields. A plausible mechanism through a selective addition of the enol ether to the alkyne gold activated complex followed by an intramolecular aromatic electrophilic substitution is proposed. Several experimental results support the presence of a cationic oxonium intermediate prior to the aromatic substitution. The reaction represents a new entry to the chromene core.
Collapse
Affiliation(s)
- Tatiana Suárez‐Rodríguez
- Departamento de Química Orgánica e InorgánicaInstituto de Química Organometálica “Enrique Moles”Universidad de OviedoJulián ClaveríaOviedo, 833006-OviedoSpain
| | - Ángel L. Suárez‐Sobrino
- Departamento de Química Orgánica e InorgánicaInstituto de Química Organometálica “Enrique Moles”Universidad de OviedoJulián ClaveríaOviedo, 833006-OviedoSpain
| | - Alfredo Ballesteros
- Departamento de Química Orgánica e InorgánicaInstituto de Química Organometálica “Enrique Moles”Universidad de OviedoJulián ClaveríaOviedo, 833006-OviedoSpain
| |
Collapse
|
15
|
Simm PE, Sekar P, Richardson J, Davies PW. Gold(I)-Catalyzed Synthesis of 3-Sulfenyl Pyrroles and Indoles by a Regioselective Annulation of Alkynyl Thioethers. ACS Catal 2021; 11:6357-6362. [PMID: 34306808 PMCID: PMC8291588 DOI: 10.1021/acscatal.1c01457] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Indexed: 01/01/2023]
Abstract
![]()
The combination of
nucleophilic nitrenoids and π-acid catalysis
has emerged as a powerful tool in heterocycle synthesis. Accessing
more varied heterocycle-substitution patterns by maintaining the same
reaction pathways across different alkynes remains a challenge. Here
we show that Au(I) catalysis of isoxazole-based nitrenoids with alkynyl
thioethers provides controlled access to (3 + 2) annulation by a regioselective
addition β to the sulfenyl group. The reaction with isoxazole-containing
nitrenoids delivers sulfenylated pyrroles and indoles as single regioisomers
bearing useful functional groups and structural variety.
Collapse
Affiliation(s)
- Peter E. Simm
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Prakash Sekar
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | | | - Paul W. Davies
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
16
|
Suárez-Rodríguez T, Suárez-Sobrino ÁL, Ballesteros A. Gold(I)-Catalyzed [8+2]-Cycloaddition of 8-Aryl-8-azaheptafulvenes with Allenamides and Ynamides: Regioselective Synthesis of Dihydrocycloheptapyrrole Derivatives. Chemistry 2021; 27:7154-7159. [PMID: 33567146 DOI: 10.1002/chem.202005348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 01/01/2023]
Abstract
Gold(I)-catalyzed higher-order [8+2] cycloadditions of 8-aryl-8-azaheptafulvenes 1 with allenamides 2 and ynamides 3 were studied. 1,8-Dihydrocycloheptapyrroles 4 were achieved by a regioselective [8+2] cycloaddition of azaheptafulvenes 1 and allenamides 2 in the presence of (2,4-ditBuC6 H3 O)3 PAuNTf2 as catalyst. Besides, ynamides 3 and 8-aryl-8-azaheptafulvenes 1, undergo a regioselective [8+2] cycloaddition, to give 2-amido-1,4-dihydrocycloheptapyrroles 7 in the presence of JohnPhosAuNTf2 as catalyst. Both reactions take place with good yields and with a variety of substituents. A plausible mechanism hypothesis suggests a nucleophilic attack of the 8-azaheptafulvene to the gold activated electron rich allene or alkyne moieties of the allenamide and ynamide, respectively.
Collapse
Affiliation(s)
- Tatiana Suárez-Rodríguez
- Departamento de Química Orgánica e Inorgánica, Instituto de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Ángel L Suárez-Sobrino
- Departamento de Química Orgánica e Inorgánica, Instituto de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Alfredo Ballesteros
- Departamento de Química Orgánica e Inorgánica, Instituto de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
17
|
Hu YC, Zhao Y, Wan B, Chen QA. Reactivity of ynamides in catalytic intermolecular annulations. Chem Soc Rev 2021; 50:2582-2625. [PMID: 33367365 DOI: 10.1039/d0cs00283f] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ynamides are unique alkynes with a carbon-carbon triple bond directly attached to the nitrogen atom bearing an electron-withdrawing group. The alkyne is strongly polarized by the electron-donating nitrogen atom, but its high reactivity can be finely tempered by the electron-withdrawing group. Accordingly, ynamides are endowed with both nucleophilic and electrophilic properties and their chemistry has been an active research field. The catalytic intermolecular annulations of ynamides, featuring divergent assembly of structurally important amino-heterocycles in a regioselective manner, have gained much attention over the past decade. This review aims to provide a comprehensive summary of the advances achieved in this area involving transition metal and acid catalysis. Moreover, the intermolecular annulations of ynamide analogs including ynol ethers and thioalkynes are also discussed, which can provide insights into the reactivity difference caused by the heteroatoms.
Collapse
Affiliation(s)
- Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Yingying Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|
18
|
Ma RJ, Xu WK, Sun JT, Chen L, Si CM, Wei BG. Synthesis of dihydro-[1,3]oxazino[4,3-a] isoindole and tetrahydroisoquinoline through Cu(OTf)2-catalyzed reactions of N-acyliminium ions with ynamides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Er(OTf)3-catalyzed approach to 3-alkenylindoles through regioselective addition of ynamides and indoles. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|