1
|
Xiong Y, Zong Z, Xie W, Chen JQ, Wu J. Photocatalytic Regioselective Alkoxycarbonylation/Cyclization of 3-Aza-1,5-dienes: Access to Ester-Containing Pyrrolin-2-ones. Org Lett 2025; 27:3037-3042. [PMID: 40079421 DOI: 10.1021/acs.orglett.5c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
A direct alkoxycarbonyl radical-induced cascade reaction of 3-aza-1,5-dienes with alkyl chlorooxoacetates is reported. With this approach, an extensive range of ester-containing pyrrolin-2-ones are synthesized through photocatalyzed alkoxycarbonylation/cyclization with 3-aza-1,5-dienes under mild conditions. Moreover, dehydrogenative aromatization can proceed with the same photocatalytic system.
Collapse
Affiliation(s)
- Yuping Xiong
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhipeng Zong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jian-Qiang Chen
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Van Ham R, Lehuédé V, La Torre M, Matcha K. A Practical Synthetic Route to Cinnolines: Application to the Design and Synthesis of RSV NNI Inhibitor JNJ-8003 Analogues. Chemistry 2025; 31:e202404479. [PMID: 39831745 DOI: 10.1002/chem.202404479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
The manuscript describes the development of an efficient synthetic route to cinnolines, facilitating faster access to JNJ-8003 related Respiratory Syncytial Virus (RSV) non-nucleoside (NNI) inhibitors. Starting from correctly functionalized aryl halides, a Sonogashira reaction followed by SNAr reaction with hydrazine 1,2-dicabroxylate reagents provided dihydrocinnolines directly via in situ 6-endo-dig cyclization. The dihydrocinnolines were conveniently transformed to corresponding cinnolines in one step. Notably, this three-step route to cinnolines is more practical and safer than traditional methods that involve hazardous diazo intermediates. The methodology demonstrated a broad substrate scope. Strategic selection of a readily available aryl halide enabled the synthesis of diverse cinnolines that served as JNJ-8003 analogues through late-stage functionalization. Furthermore, by capitalizing the inherent reactivity of aryl halides toward SNAr reactions, we explored the synthesis of various heteroaromatic cinnolines. Given the extensive biological properties exhibited by cinnolines, our approach is poised to inspire further investigations in this field.
Collapse
Affiliation(s)
- Rick Van Ham
- Chemical Process Research and Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Valentin Lehuédé
- Chemical Process Research and Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Mathéo La Torre
- Chemical Process Research and Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Kiran Matcha
- Chemical Process Research and Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
3
|
Liu X, Ban YL, Liu Y, Zhuang M, Zhou Y. Palladium-catalyzed C-H bond activation and decarboxylation for the assembly of indolo[1,2- f]phenanthridine. Org Biomol Chem 2024. [PMID: 39445400 DOI: 10.1039/d4ob01383b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A direct and convenient strategy for the assembly of indolo[1,2-f]phenanthridine via a Pd-catalyzed tandem cyclization reaction is presented. The current strategy delivers a range of indolo[1,2-f]phenanthridine derivatives by utilizing readily available 1-(2-iodophenyl)-1H-indole and commercially available o-bromobenzoic acids as the starting materials. The reaction features the formation of two C-C bonds through Pd-catalyzed C-H bond activation and decarboxylation.
Collapse
Affiliation(s)
- Xiaobing Liu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466000, People's Republic of China
| | - Yong-Liang Ban
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466000, People's Republic of China
| | - Yanjie Liu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466000, People's Republic of China
| | - Mengdie Zhuang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466000, People's Republic of China
| | - Yao Zhou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002, People's Republic of China.
| |
Collapse
|
4
|
Ke S, Jia Y, Tong Y, Luo W, Wu S, Jiang X, Li Y. Radical N 2-Retention Cyclizations of Aryl Diazoniums: Access to 7/8/9-Membered Heterocycles. Org Lett 2024; 26:3622-3627. [PMID: 38659130 DOI: 10.1021/acs.orglett.4c01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We report herein a modular approach to synthesizing diverse functionalized 7/8/9-membered poly-N-containing heterocycles via oxidative radical N2-retention cyclizations of allylic aryl diazonium salts using CF3SO2Na as a CF3 radical source. A range of trifluoromethylated benzotriazepines, benzotriazocines, and benzotriazonines were obtained in moderate to good yields. This transition-metal-free protocol demonstrates atom economy, safe conditions, broad functional group tolerance, and availability of readily accessible reagents.
Collapse
Affiliation(s)
- Sen Ke
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Yagang Jia
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Ye Tong
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Wencheng Luo
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Shufeng Wu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Xiangwen Jiang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Yi Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
5
|
Crespo Monteiro M, Vale JR, Siopa F. 2-Azabicyclo[3.2.1]octane scaffold: synthesis and applications. Org Biomol Chem 2024; 22:2902-2915. [PMID: 38526533 DOI: 10.1039/d4ob00199k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
2-Azabicyclo[3.2.1]octanes are nitrogen containing heterocycles with significant potential in the field of drug discovery. This core has been applied as key synthetic intermediate in several total synthesis, while their unique structure can make them a challenging scaffold to acquire. This Minireview summarizes the synthetic approaches to access this bicyclic architecture and highlights its presence in the total synthesis of several target molecules.
Collapse
Affiliation(s)
- Mariana Crespo Monteiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal.
| | - João Rafael Vale
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal.
| | - Filipa Siopa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
6
|
Melcón-Fernandez E, Martín-Encinas E, Palacios F, Galli G, Reguera RM, Martínez-Valladares M, Balaña-Fouce R, Alonso C, Pérez-Pertejo Y. Antileishmanial Effect of 1,5- and 1,8-Substituted Fused Naphthyridines. Molecules 2023; 29:74. [PMID: 38202656 PMCID: PMC10780244 DOI: 10.3390/molecules29010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
In the absence of a vaccine, there is a need to find new drugs for the treatment of neglected tropical diseases, such as leishmaniasis, that can overcome the many drawbacks of those currently used. These disadvantages include cost, the need to maintain a cold chain, the route of administration, the associated adverse effects and the generation of resistance. In this work we have evaluated the antileishmanial effect of 1,5- and 1,8-substituted fused naphthyridines through in vitro and ex vivo assays, using genetically modified axenic and intramacrophagic Leishmania infantum amastigotes. The toxicity of these compounds has been tested in the mammalian host cell using murine splenic macrophages, as well as in murine intestinal organoids (miniguts) in order to assess their potential for oral administration. The 1,8- derivatives showed greater leishmanicidal activity and the presence of a nitrogen atom in the fused ring to the naphthyridine was important to increase the activity of both types of molecules. The aromatization of the pyridine ring also had marked differences in the activity of the compounds.
Collapse
Affiliation(s)
- Estela Melcón-Fernandez
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain (G.G.)
| | - Endika Martín-Encinas
- Departamento de Química Orgánica I, Facultad de Farmacia, Lascaray Research Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia, Lascaray Research Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Gulio Galli
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain (G.G.)
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain (G.G.)
| | - María Martínez-Valladares
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain (G.G.)
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain (G.G.)
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia, Lascaray Research Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain (G.G.)
| |
Collapse
|
7
|
Castrejón Valdez M, De La Cruz Quispe J, Mendoza Común VE, Sumarriva-Bustinza LA, De La Cruz-Rojas LA, More López JM, Espinoza-Quispe CE, Rojas-Felipe E, Caira Mamani CM, Yaulilahua-Huacho R. Effect of rhizobium and gibberellin on the production of hydroponic green forage of red clover (Trifolium pratense L.) variety quiñequeli. BRAZ J BIOL 2023; 83:e274345. [PMID: 38126631 DOI: 10.1590/1519-6984.274345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
The purpose of the present investigation was to determine the effect of rhizobium and gibberellin on the production of hydroponic green forage from red clover (Trifolium pratense L.) variety quiñequeli, four variables were measured: plant height, biomass weight, grass weight and root weight. The treatments were T0: 0%, T1: 10%, T2: 20%, T3: 30% and T4: 40% of Rhizobium before germination and Gibberellin T0: 0g, T1: 2.4g; T2: 3.3g; T3: 4.3 and T4: 5.3g each treatment with 6 repetitions, three applications on days 5, 10, 15 and 20 of growth. Data were analyzed with DCA, ANOVA and DUNCAN's multiple comparisons test; the results obtained were: first measurement with rhizobium without gibberellin there were no statistical differences, second and third measurement with Gibberellin application did not present statistical differences and the fourth measurement presented statistical difference (α=0.05), average height of the plant with a mean of 12.82 cm, T4 was higher, in biomass a statistical difference was obtained with a mean of 3.056 kg, T3 was higher, weight of grass and root did not present statistical differences; concluding that the use of rhizobium and gibberellin could be a usable alternative in the production of hydroponic green fodder, to alleviate the problems of fodder scarcity in dry season, its use being recommended in high Andean livestock.
Collapse
Affiliation(s)
| | | | | | | | | | - J M More López
- Universidad Nacional Santiago Antúnez de Mayolo, Huaraz, Perú
| | | | - E Rojas-Felipe
- Universidad Nacional de Huancavelica, Huancavelica, Perú
| | | | | |
Collapse
|
8
|
Li JS, Liu J, Wang YT, Dai JY, Li ZW, Luo WW, Zhang YF, Liu HW, Liu WD. Diazotization-Enabled Deaminative Late-Stage Functionalization of Primary Sulfonamides. Org Lett 2023; 25:8263-8268. [PMID: 37947421 DOI: 10.1021/acs.orglett.3c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
We, for the first time, disclosed a simple and efficient strategy for the late-stage functionalization of primary sulfonamides by diazotization, leading to sulfonyl chlorides, sulfonates, and complex sulfonamides. This protocol obviates the requirement for the prefunctionalization of sulfonamides. Its applicability is exemplified by the late-stage functionalization of sulfonamide-type drugs.
Collapse
Affiliation(s)
- Jiang-Sheng Li
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jia Liu
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yao-Tian Wang
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jia-Ying Dai
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhi-Wei Li
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Wei-Wei Luo
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yue-Fei Zhang
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Han-Wen Liu
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Wei-Dong Liu
- National Engineering Research Center for Agrochemicals, Hunan Research Institute of Chemical Industry, Changsha 410007, China
| |
Collapse
|
9
|
Patil DV, Ramesh K, Kim HY, Oh K. Visible-Light-Promoted Aryl Cation Formation: Aromatic S N1 Reactions of Areneazo-2-(2-nitro)propanes. Org Lett 2023; 25:7204-7208. [PMID: 37737122 DOI: 10.1021/acs.orglett.3c02783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The visible light excitation of areneazo-2-(2-nitro)propane·HCl salts generated the singlet aryl cation that readily underwent aromatic SN1 reactions with a variety of nucleophiles. The in situ generated singlet aryl cation was stabilized by a counter nitronate anion that prevented other intersystem crossing and single electron transfer processes. With the improved safety features of neutral areneazo-2-(2-nitro)propane derivatives, the current visible-light-promoted aromatic SN1 reactions provide an alternative aryl Csp2-X bond forming strategy.
Collapse
Affiliation(s)
- Dilip V Patil
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Karu Ramesh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
10
|
Banjare SK, Leifert D, Weidlich F, Daniliuc CG, Alasmary FA, Studer A. Access to Polyheterocyclic Compounds through Iron(II)-Mediated Radical Cascade Cyclization Utilizing 2-Ethynylbenzaldehydes and Aryl Isonitriles. Org Lett 2023; 25:6424-6428. [PMID: 37610878 DOI: 10.1021/acs.orglett.3c02448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
An oxidative radical cascade addition cyclization approach for the synthesis of quinoline-based π-extended polyheterocyclic compounds is reported. Eco-friendly iron catalysis and inexpensive tert-butylhydroperoxide (TBHP) as the oxidant have been utilized in the transformation of various readily available ortho-alkynylated aromatic aldehydes as radical precursors with aryl isonitriles as radical acceptors. Indole and thiophene-based carbaldehydes allow the preparation of quinolines that are π-conjugated with an additional heteroarene moiety in a single sequence by applying the introduced method.
Collapse
Affiliation(s)
- Shyam Kumar Banjare
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Frauke Weidlich
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Fatmah A Alasmary
- Chemistry Department College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
- Chemistry Department College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Masdeu C, de Los Santos JM, Palacios F, Alonso C. The Intramolecular Povarov Tool in the Construction of Fused Nitrogen-Containing Heterocycles. Top Curr Chem (Cham) 2023; 381:20. [PMID: 37249641 DOI: 10.1007/s41061-023-00428-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Nitrogen heterocycles are part of the structure of natural products and agents with important biological activity, such as antiviral, antibiotic, and antitumor drugs. For this reason, heterocyclic compounds are one of today's most desirable synthetic targets and the Povarov reaction is a powerful synthetic tool for the construction of highly functionalized heterocyclic systems. This process involves an aromatic amine, a carbonyl compound, and an olefin or acetylene to give rise to the formation of a nitrogen-containing heterocycle. This review illustrates advances in the synthetic aspects of the intramolecular Povarov reaction for the construction of intricate nitrogen-containing polyheterocyclic compounds. This original review presents research done in this field, with references to important works by internationally relevant research groups on this current topic, covering the literature from 1992 to 2022. The intramolecular Povarov reactions are described here according to the key processes involved, using different combinations of aromatic or heteroaromatic amines, and aliphatic, aromatic, or heteroaromatic aldehydes. Some catalytic reactions promoted by transition metals are detailed, as well as the oxidative Povarov reaction and some asymmetric intramolecular Povarov processes.
Collapse
Affiliation(s)
- Carme Masdeu
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Jesús M de Los Santos
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
12
|
Yoshida Y, Ida H, Mino T, Sakamoto M. Formal [3 + 2] Cycloaddition of α-Imino Esters with Azo Compounds: Facile Construction of Pentasubstituted 1,2,4-Triazoline Skeletons. Molecules 2023; 28:molecules28114339. [PMID: 37298816 DOI: 10.3390/molecules28114339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
1,2,4-Triazole and 1,2,4-triazoline are important components of bioactive molecules and catalysts employed in organic synthesis. Therefore, the efficient synthesis of these components has received significant research attention. However, studies on their structural diversity remain lacking. Previously, we developed chiral phase-transfer-catalyzed asymmetric reactions of α-imino carbonyl compounds with α,β-unsaturated carbonyl compounds and haloalkanes. In this study, we demonstrate the formal [3 + 2] cycloaddition reaction of α-imino esters with azo compounds under Brønsted base catalysis, resulting in the corresponding 1,2,4-triazolines in high yields. The results revealed that a wide range of substrates and reactants can be applied, irrespective of their steric and electronic characteristics. The present reaction made the general preparation of 3-aryl pentasubstituted 1,2,4-triazolines possible for the first time. Furthermore, a mechanistic study suggested that the reaction proceeds without isomerization into the aldimine form.
Collapse
Affiliation(s)
- Yasushi Yoshida
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan
| | - Hidetoshi Ida
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan
| | - Takashi Mino
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan
| | - Masami Sakamoto
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan
| |
Collapse
|
13
|
Lin L, Wang P, Dong T, Tsui GC, Liao S. Radical Fluorosulfonyl Heteroarylation of Unactivated Alkenes with Quinoxalin-2(1 H)-ones and Related N-Heterocycles. Org Lett 2023; 25:1088-1093. [PMID: 36775923 DOI: 10.1021/acs.orglett.2c04315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The incorporation of sulfonyl fluoride groups into molecules has been proved effective to enhance their biological activities or introduce new functions. Herein, we report a transition-metal-free and visible-light-mediated radical 1-fluorosulfonyl-2-heteroarylation of alkenes, which could allow access to a series of SO2F-containing quinoxalin-2(1H)-ones, which are a critical structural motif widely present in a number of biologically active molecules. Further application of the method to the modification of other heterocycles and drug molecules as well as ligation chemistry via SuFEx click reactions is also demonstrated.
Collapse
Affiliation(s)
- Lu Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tao Dong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 12333, China
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 12333, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
14
|
Molnár Á. Recent Advances in the Synthesis of Five‐membered Nitrogen Heterocycles Induced by Palladium Ions and Complexes. ChemistrySelect 2023. [DOI: 10.1002/slct.202300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 6720 Szeged Hungary
| |
Collapse
|
15
|
Amin A, Qadir T, Sharma PK, Jeelani I, Abe H. A Review on The Medicinal And Industrial Applications of N-Containing Heterocycles. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2022. [DOI: 10.2174/18741045-v16-e2209010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nitrogen-containing heterocycles constitute an important division of organic chemistry. The structural and functional diversity in nitrogen-containing heterocyclic compounds emanates from the presence and nature of the heteroatom that optimizes the compound for a specific application. Nitrogen heterocycles have been found to mimic various endogenous metabolites and natural products, highlighting their pivotal role in current drug design. Their applications are manifold and are predominantly used as pharmaceuticals, corrosion inhibitors, polymers, agrochemicals, dyes, developers, etc. Additionally, their catalytic behavior has rendered these compounds notable precursors in synthesizing various important organic compounds. The rate at which nitrogen heterocycles are synthesized explains this organic chemistry domain's vitality and usefulness. The present review article focuses on nitrogen-containing heterocycles as a versatile scaffold for current applications of organic chemistry.
Collapse
|
16
|
Si T, Cho H, Kim HY, Oh K. ortho-Naphthoquinone-Catalyzed Aerobic Hydrodeamination of Aryl Amines via in Situ De-diazotization of Aryl Diazonium Species. Org Lett 2022; 24:8531-8535. [DOI: 10.1021/acs.orglett.2c03523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tengda Si
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul06974, Republic of Korea
| | - Hana Cho
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul06974, Republic of Korea
| |
Collapse
|
17
|
Babushkina AA, Mikhaylov VN, Novikov AS, Sorokoumov VN, Gureev MA, Kryukova MA, Shpakov AO, Balova IA. Synthesis, X-ray and DFT Studies of 6-halo-3-(hydroxymethyl)cinnolin-4(1H)-ones. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Li X, Chen Z, Chen W, Xie X, Zhou H, Liao Y, Yu F, Huang J. B 2pin 2-Mediated Cascade Cyclization/Aromatization Reaction: Facial Access to Functionalized Indolizines. Org Lett 2022; 24:7372-7377. [PMID: 36173232 DOI: 10.1021/acs.orglett.2c02905] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Herein, a B2pin2-mediated radical cascade cyclization/aromatization reaction of enaminone with pyridine is described. This strategy provides a practical way for the construction of valuable functionalized indolizines under metal-, external oxidant-, and base-free conditions, which could be compatible with various kinds of functional groups, such as halogen, π-system, heterocycle, ferrocenyl, etc. A preliminary mechanism investigation indicated that the pyridine-boryl radical formed in situ triggered the reaction to occur.
Collapse
Affiliation(s)
- Xiaoning Li
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| | - Zunsheng Chen
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Weiming Chen
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Xin Xie
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Hui Zhou
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Yingmei Liao
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jiuzhong Huang
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| |
Collapse
|
19
|
Yu W, Zhang X, Liu C, Zhang Y, Gu X, Liao J, Zhang Z, Wei W, Li G, Liang T. Intermolecular C-H Aminocyanation of Indoles via Copper-iodine Cocatalyzed Tandem C-N/C-C Bond Formation. J Org Chem 2022; 87:12424-12433. [PMID: 36046980 DOI: 10.1021/acs.joc.2c01703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient copper-iodine cocatalyzed intermolecular C-H aminocyanation of indoles with a broad substrate scope has been developed for the first time. This method enables highly step-economic access to 2-amino-3-cyanoindoles in moderate to good yields and provides a complementary strategy for the regioselective difunctionalization of carbon═carbon double bonds of interest in organic synthesis and related areas. Mechanistic studies suggest that these transformations are initiated by iodine-mediated C2-H amination with azoles, followed by copper-catalyzed C3-H cyanation with ethyl cyanoformate.
Collapse
Affiliation(s)
- Wenhua Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Nanning, Guangxi 530004, P. R. China
| | - Xiaoxiang Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Chenrui Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yingying Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xiaoting Gu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jiahao Liao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| | - Wanxing Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Guanghua Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Nanning, Guangxi 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
20
|
Shirazian TS, Zahedian Tejeneki H, Nikbakht A, Rominger F, Balalaie S. Sequential Base‐Promoted Formal [4+2] Allenoate Based Cycloaddition: An Efficient Strategy for the Synthesis of Functionalized Acridines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Toktam S. Shirazian
- KN Toosi University of Technology Department of Chemistry Tehran IRAN (ISLAMIC REPUBLIC OF)
| | | | - Ali Nikbakht
- KN Toosi University of Technology Department of Chemistry Tehran IRAN (ISLAMIC REPUBLIC OF)
| | - Frank Rominger
- Heidelberg University Organisch-Chemisches Institut Heidelberg GERMANY
| | - Saeed Balalaie
- K N Toosi University of Technology Faculty of General Science Chemistry Department PO Box 15875-4416 15875-4416 Tehran IRAN (ISLAMIC REPUBLIC OF)
| |
Collapse
|
21
|
Rao GA, Gurubrahamam R, Chen K. Base‐Catalysed [4+2]‐Annulation Between 2‐Nitrobenzofurans and N‐Alkoxyacrylamides: Synthesis of [3,2‐b]Benzofuropyridinones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gunda Ananda Rao
- National Taiwan Normal University - Gongguan Campus Department of Chemistry TAIWAN
| | - Ramani Gurubrahamam
- Indian Institute of Technology Jammu Department of Chemistry jagti, nagrota bypass road 181221 Jammu INDIA
| | - Kwunmin Chen
- National Taiwan Normal University - Gongguan Campus Department of Chemistry INDIA
| |
Collapse
|
22
|
Sharique M, Majhi J, Dhungana RK, Kammer LM, Krumb M, Lipp A, Romero E, Molander GA. A practical and sustainable two-component Minisci alkylation via photo-induced EDA-complex activation. Chem Sci 2022; 13:5701-5706. [PMID: 35694363 PMCID: PMC9116295 DOI: 10.1039/d2sc01363k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/09/2022] [Indexed: 12/18/2022] Open
Abstract
An operationally simple, open-air, and efficient light-mediated Minisci C-H alkylation method is described, based on the formation of an electron donor-acceptor (EDA) complex between nitrogen-containing heterocycles and redox-active esters. In contrast to previously reported protocols, this method does not require a photocatalyst, an external single electron transfer agent, or an oxidant additive. Achieved under mildly acidic and open-air conditions, the reaction incorporates primary-, secondary-, and tertiary radicals, including bicyclo[1.1.1]pentyl (BCP) radicals, along with various heterocycles to generate Minisci alkylation products in moderate to good yields. Additionally, the method is exploited to generate a stereo-enriched, hetereoaryl-substituted carbohydrate.
Collapse
Affiliation(s)
- Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Roshan K Dhungana
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Lisa Marie Kammer
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Matthias Krumb
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Alexander Lipp
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Eugénie Romero
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
23
|
Yang G, Xiong Z, Nie H, He M, Feng Q, Li X, Huang H, Wang S, Ji F, Jiang G. Copper-Catalyzed Divergent C–H Functionalization Reaction of Quinoxalin-2(1 H)-ones and Alkynes Controlled by N1-Substituents for the Synthesis of ( Z)-Enaminones and Furo[2,3- b]quinoxalines. Org Lett 2022; 24:1859-1864. [DOI: 10.1021/acs.orglett.2c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guang Yang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Zhicheng Xiong
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Hongsheng Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Meiqin He
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Qiong Feng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Xuan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Huabin Huang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People’s Republic of China
| |
Collapse
|
24
|
Lemos BC, Venturini Filho E, Fiorot RG, Medici F, Greco SJ, Benaglia M. Enantioselective Povarov Reactions: An Update of a Powerful Catalytic Synthetic Methodology. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Bárbara C. Lemos
- Chemistry Department Federal University of Espírito Santo Vitória Espírito Santo CEP.: 29075-910 Brazil
| | - Eclair Venturini Filho
- Chemistry Department Federal University of Espírito Santo Vitória Espírito Santo CEP.: 29075-910 Brazil
| | - Rodolfo G. Fiorot
- Chemistry Institute Federal Fluminense University Outeiro de São João Batista RJ, 24020-141 Niteroi Brazil
| | - Fabrizio Medici
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 Milano Italy
| | - Sandro J. Greco
- Chemistry Department Federal University of Espírito Santo Vitória Espírito Santo CEP.: 29075-910 Brazil
| | - Maurizio Benaglia
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 Milano Italy
| |
Collapse
|
25
|
Patel B, Dahiya A, Das B, SAHOO ASHISHKUMAR. Visible‐Light‐Driven Isocyanide Insertion to o‐Alkenylanilines: A Route to Isoindolinone Synthesis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Bubul Das
- Indian Institute of Technology Guwahati INDIA
| | | |
Collapse
|
26
|
Jiang J, Liu J, Yang Z, Zheng J, Tian X, Zheng L, Liu ZQ. Rhodium(III)-catalyzed oxidative annulation of isoquinolones with allyl alcohols: synthesis of isoindolo[2,1- b]isoquinolin-5(7 H)-ones. Org Biomol Chem 2022; 20:339-344. [PMID: 34908095 DOI: 10.1039/d1ob02305e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient rhodium(III)-catalyzed direct C-H oxidative annulation of isoquinolones with allyl alcohols as C1 synthons has been successfully developed. This protocol enables the straightforward synthesis of structurally diverse isoindolo[2,1-b]isoquinolin-5(7H)-ones with high atom economy, tolerates a broad spectrum of functionalities, and is applicable to one-pot operation from readily available N-methoxybenzamides.
Collapse
Affiliation(s)
- Jinyuan Jiang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Zhenke Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jieying Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Xin Tian
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
27
|
Jiang S, Nan N, He J, Guo J, Qin J, Xie Y, Ouyang X, Song R. Recent Progress in Aryl Radical-Mediated Cyclization of Unsaturated Bonds Based on Aryldiazonium Salts. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202210013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Dey D, Kundu A, Roy M, Pal S, Adhikari D. Aromatization as the driving force for single electron transfer towards C–C cross-coupling reactions. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a strong current interest in C–H functionalization reactions under metal-free conditions. We report herein that the deprotonated form of dihydrophenazine (DPh) as a potent initiator under photochemical conditions...
Collapse
|
29
|
Kujur S, Verma S, Kumar A, Sharma R, Pathak DD. A green polyol approach for the synthesis of Cu 2O NPs adhered on graphene oxide: a robust and efficient catalyst for 1,2,4-triazole and imidazo[1,2- a]pyridine synthesis. NEW J CHEM 2022. [DOI: 10.1039/d2nj00831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu2O NPs immobilized on graphene oxide are used as a heterogeneous catalyst for the synthesis of a series of 1,2,4-triazoles and imidazo[1,2-a]pyridines under solvent-free conditions.
Collapse
Affiliation(s)
- Shelly Kujur
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, 826004, India
| | - Shruti Verma
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, 826004, India
| | - Akash Kumar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, 826004, India
| | - Richa Sharma
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - Devendra Deo Pathak
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, 826004, India
| |
Collapse
|
30
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
31
|
Mondal PK, Tiwari SK, Singh P, Pandey G. Direct Arylation of Distal and Proximal C(sp 3)-H Bonds of t-Amines with Aryl Diazonium Tetrafluoroborates via Photoredox Catalysis. J Org Chem 2021; 86:17184-17196. [PMID: 34786938 DOI: 10.1021/acs.joc.1c02286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A visible light-mediated arylation protocol for t-amines has been reported through the coupling of γ- and α-amino alkyl radicals with different aryl diazonium salts using Ru(bpy)3Cl2·6H2O as a photocatalyst. Structurally different 9-aryl-9,10-dihydroacridine, 1-aryl tetrahydroisoquinoline, hexahydropyrrolo[2,1-a]isoquinoline, and hexahydro-2H-pyrido[2,1-a]isoquinoline frameworks with different substitution patterns have been synthesized in good yield using this methodology.
Collapse
Affiliation(s)
- Pradip Kumar Mondal
- Department of Chemistry, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, India
| | - Sandip Kumar Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, India
| | - Pushpendra Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, India
| | - Ganesh Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, India
| |
Collapse
|
32
|
Recent advances in the chemistry of 1,2,4-triazoles: Synthesis, reactivity and biological activities. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Luo L, Liu H, Zeng W, Hu W, Wang D. BTP‐Rh@g‐C
3
N
4
as an efficient recyclable catalyst for dehydrogenation and borrowing hydrogen reactions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lan Luo
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Hongqiang Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
- China Synchem Technology Co., Ltd. Bengbu China
| | - Wei Zeng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Wenkang Hu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Dawei Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| |
Collapse
|
34
|
Voronin VV, Ledovskaya MS, Rodygin KS, Ananikov VP. Cycloaddition Reactions of
in situ
Generated C
2
D
2
in Dioxane: Efficient Synthetic Approach to D
2
‐Labeled Nitrogen Heterocycles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vladimir V. Voronin
- Institute of Chemistry Saint Petersburg State University Universitetsky prospect 26 Peterhof 198504 Russia
| | - Maria S. Ledovskaya
- Institute of Chemistry Saint Petersburg State University Universitetsky prospect 26 Peterhof 198504 Russia
| | - Konstantin S. Rodygin
- Institute of Chemistry Saint Petersburg State University Universitetsky prospect 26 Peterhof 198504 Russia
| | - Valentine P. Ananikov
- Institute of Chemistry Saint Petersburg State University Universitetsky prospect 26 Peterhof 198504 Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky prospect 47 Moscow 119991 Russia
| |
Collapse
|
35
|
Dasgupta A, Babaahmadi R, Pahar S, Stefkova K, Gierlichs L, Yates BF, Ariafard A, Melen RL. Tris(pentafluorphenyl)boran‐katalysierte Erzeugung von Carbenium‐Ionen und autokatalytische Pyrazol‐Synthese – eine theoretische und experimentelle Studie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ayan Dasgupta
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT Cymru/Wales Großbritannien
| | - Rasool Babaahmadi
- School of Physical Sciences University of Tasmania Private Bag 75 Hobart Tasmania 7001 Australien
| | - Sanjukta Pahar
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT Cymru/Wales Großbritannien
| | - Katarina Stefkova
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT Cymru/Wales Großbritannien
| | - Lukas Gierlichs
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT Cymru/Wales Großbritannien
| | - Brian F. Yates
- School of Physical Sciences University of Tasmania Private Bag 75 Hobart Tasmania 7001 Australien
| | - Alireza Ariafard
- School of Physical Sciences University of Tasmania Private Bag 75 Hobart Tasmania 7001 Australien
| | - Rebecca L. Melen
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT Cymru/Wales Großbritannien
| |
Collapse
|
36
|
Dasgupta A, Babaahmadi R, Pahar S, Stefkova K, Gierlichs L, Yates BF, Ariafard A, Melen RL. Tris(pentafluorophenyl)borane-Catalyzed Carbenium Ion Generation and Autocatalytic Pyrazole Synthesis-A Computational and Experimental Study. Angew Chem Int Ed Engl 2021; 60:24395-24399. [PMID: 34590773 PMCID: PMC8596400 DOI: 10.1002/anie.202109744] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/16/2021] [Indexed: 12/11/2022]
Abstract
In recent years, metal-free organic synthesis using triarylboranes as catalysts has become a prevalent research area. Herein we report a comprehensive computational and experimental study for the highly selective synthesis of N-substituted pyrazoles through the generation of carbenium species from the reaction between aryl esters and vinyl diazoacetates in the presence of catalytic tris(pentafluorophenyl)borane [B(C6 F5 )3 ]. DFT studies were undertaken to illuminate the reaction mechanism revealing that the in situ generation of a carbenium species acts as an autocatalyst to prompt the regiospecific formation of N-substituted pyrazoles in good to excellent yields (up to 81 %).
Collapse
Affiliation(s)
- Ayan Dasgupta
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATCymru/WalesUnited Kingdom
| | - Rasool Babaahmadi
- School of Physical SciencesUniversity of TasmaniaPrivate Bag 75HobartTasmania7001Australia
| | - Sanjukta Pahar
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATCymru/WalesUnited Kingdom
| | - Katarina Stefkova
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATCymru/WalesUnited Kingdom
| | - Lukas Gierlichs
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATCymru/WalesUnited Kingdom
| | - Brian F. Yates
- School of Physical SciencesUniversity of TasmaniaPrivate Bag 75HobartTasmania7001Australia
| | - Alireza Ariafard
- School of Physical SciencesUniversity of TasmaniaPrivate Bag 75HobartTasmania7001Australia
| | - Rebecca L. Melen
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATCymru/WalesUnited Kingdom
| |
Collapse
|
37
|
Kundu A, Dey D, Pal S, Adhikari D. Pyrazole-Mediated C-H Functionalization of Arene and Heteroarenes for Aryl-(Hetero)aryl Cross-Coupling Reactions. J Org Chem 2021; 86:15665-15673. [PMID: 34699216 DOI: 10.1021/acs.joc.1c02234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we introduce a transition-metal-free protocol that involves a commercially available, inexpensive pyrazole molecule to conduct C-C cross-coupling reactions at room temperature via a radical pathway. Using this method, an aryldiazonium salt has been coupled to a wide range of arenes and heteroarenes including benzene, mesitylene, thiophene, furan, benzoxazole to result the corresponding biaryl products. The full reaction mechanism is elucidated along with the crystallographic probation of an active initiator species. A potassium-stabilized deprotonated pyrazole steers single-electron transfer to the substrate and behaves as an initiator for the reaction.
Collapse
Affiliation(s)
- Abhishek Kundu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Dhananjay Dey
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Subhankar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| |
Collapse
|
38
|
Zhu J, Durham AC, Wang Y, Corcoran JC, Zuo XD, Geib SJ, Wang YM. Regiocontrolled Coupling of Alkynes and Dipolar Reagents: Iron-Mediated [3 + 2] Cycloadditions Revisited. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jin Zhu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Austin C. Durham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - James C. Corcoran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xiao-Dong Zuo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Steven J. Geib
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
39
|
Yang L, Zhang C. Additive‐Free Visible‐Light‐Mediated Hydro‐/Deuterodediazoniation of Arenediazonium Tetrafluoroborates in THF/THF‐
d
8. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lian Yang
- School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology Wuhan 430070 P. R. China
| | - Cheng‐Pan Zhang
- School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology Wuhan 430070 P. R. China
| |
Collapse
|
40
|
Ma Z, Mahmudov KT, Aliyeva VA, Gurbanov AV, Guedes da Silva MFC, Pombeiro AJ. Peroxides in metal complex catalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Chen T, Zheng R, Yu J. An efficient approach to 3-thioether-functionalized 2,3-dihydrobenzofurans via a metal-free intramolecular radical cyclization/thiolation cascade reaction. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1927098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tingting Chen
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, People’s Republic of China
| | - Renhua Zheng
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, People’s Republic of China
| | - Jingmiao Yu
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, People’s Republic of China
- Institute for Advanced Studies, Taizhou University, Taizhou, People’s Republic of China
| |
Collapse
|
42
|
Liu J, Jiang J, Yang Z, Zeng Q, Zheng J, Zhang S, Zheng L, Zhang SS, Liu ZQ. Rhodium(III)-catalyzed oxidative alkylation of N-aryl-7-azaindoles with cyclopropanols. Org Biomol Chem 2021; 19:993-997. [PMID: 33443262 DOI: 10.1039/d0ob02323j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient Rh(iii)-catalyzed C-H oxidative alkylation of N-aryl-7-azaindoles with cyclopropanols by merging tandem C-H and C-C cleavage was developed. This transformation features mild reaction conditions, high regioselectivity, and excellent functional group compatibility. The resulting β-aryl ketone derivatives can be readily transformed into 7-azaindole-containing π-extended polycyclic heteroarenes.
Collapse
Affiliation(s)
- Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jinyuan Jiang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Zhenke Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Qiaohai Zeng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jieying Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Siying Zhang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
43
|
Xiao MY, Zheng MM, Peng X, Xue XS, Zhang FG, Ma JA. Catalytic Direct Construction of Cyano-tetrazoles. Org Lett 2020; 22:7762-7767. [PMID: 32966087 DOI: 10.1021/acs.orglett.0c03025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyano-tetrazole is the first reported compound that bears four nitrogen atoms in a single five-membered ring. This unique molecular scaffold has long been ignored after its discovery in 1885, mainly attributed to the scarcity of available synthetic methods. Indeed, the most popular approach to tetrazoles (that is the cycloaddition reaction between nitriles and azides) has inevitably excluded the possibility of introducing valuable cyano groups to decorate the final heterocyclic cores. Here, we describe a completely different disconnection strategy to the long time-pursued cyano-tetrazoles via a simple, direct, and practical cycloaddition transformation between readily accessible aryl diazonium salts and diazoacetonitrile. This method provides both regioisomers of disubstituted tetrazoles from the same set of starting materials in a metal cation controlled fashion.
Collapse
Affiliation(s)
- Ming-Yang Xiao
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P.R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
| | - Meng-Meng Zheng
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Xing Peng
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P.R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
| | - Xiao-Song Xue
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P.R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P.R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|