1
|
Chen M, Wang C, Xie L, Mao T, Xiao L, Wang Z, Han WY, Liu P, Jia J. Photo-induced decarboxylative coupling reaction between aliphatic N-hydroxyphthalimide esters and terminal 2-trifluoromethylalkenes. Org Biomol Chem 2025; 23:2445-2449. [PMID: 39902849 DOI: 10.1039/d4ob01950d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Driven by our recent medicinal chemistry research, we have investigated the coupling reaction between aliphatic N-hydroxyphthalimide esters and terminal 2-trifluoromethylalkenes. This reaction was driven by the photochemical activity of the electron donor-acceptor (EDA) complex. The reaction's efficiency hinges on the olefin's electronic effect, with electron-withdrawing groups yielding much better results. Furthermore, this reaction is also applicable to trifluoromethyl alkyl alkenes, enabling the synthesis of target products in moderate yields. By employing this method, we successfully synthesized a series of bioactive molecules, among which compounds 3k, 3l and 3m demonstrated robust antitumor activity against both A549 and SK-hep-1 cancer cell lines.
Collapse
Affiliation(s)
- Man Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Chaoyu Wang
- Key Laboratory of Clinical Pharmacy of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Lang Xie
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Ting Mao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Long Xiao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Ze Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
- Key Laboratory of Clinical Pharmacy of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Ping Liu
- Key Laboratory of Clinical Pharmacy of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Jia Jia
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education. School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| |
Collapse
|
2
|
Alvarez EM, Li J, Malapit CA. A General Hydrotrifluoromethylation of Unactivated Olefins Enabled by Voltage-Gated Electrosynthesis. Angew Chem Int Ed Engl 2025; 64:e202415218. [PMID: 39363774 PMCID: PMC11753607 DOI: 10.1002/anie.202415218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Here we present the first successful hydrotrifluoromethylation of unactivated olefins under electrochemical conditions. Commercially available trifluoromethyl thianthrenium salt (TT+-CF3BF4 -, Ep/2=-0.85 V vs Fc/Fc+) undergoes electrochemical reduction to generate CF3 radicals which add to olefins with exclusive chemoselectivity. The resulting carbon centered radical undergoes a second cathodic reduction, instead of a classical HAT process, to generate a carbanion that can be terminated by protonation from solvent. The use of MgBr2 (+0.20 V onset oxidation potential) plays a key role as an enabling sacrificial reductant for the reaction to operate in an undivided cell. Guided by cyclic voltammetry (CV) studies, fine-tuning the solvent system, trifluoromethylating reagent's counteranion and careful selection of redox processes, this work led to the development of a voltage-gated electrosynthesis by pairing two redox processes with a narrow potential difference (ΔE≈1.00 V) allowing the reaction to proceed with two important advances: (a) high reactivity and selectivity towards hydrotrifluoromethylation over undesired dibromination, and (b) an unprecedented functional group tolerance, including aniline, phenols, unprotected alcohol, epoxide, trialkyl amine, and several redox sensitive heterocycles.
Collapse
Affiliation(s)
- Eva M. Alvarez
- Department of ChemistryNorthwestern University2145N Sheridan RoadEvanstonIL60208USA
| | - Jinxiao Li
- Department of ChemistryNorthwestern University2145N Sheridan RoadEvanstonIL60208USA
| | - Christian A. Malapit
- Department of ChemistryNorthwestern University2145N Sheridan RoadEvanstonIL60208USA
| |
Collapse
|
3
|
Jang J, Hwang HS, Jeong H, Cho EJ. Electrochemical trifluoromethylation of alkynes: the unique role of DMSO as a masking auxiliary. Chem Sci 2024; 15:19739-19744. [PMID: 39568876 PMCID: PMC11575639 DOI: 10.1039/d4sc06780k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Recent advancements in eco-friendly radical fluoroalkylation have substituted traditional two-electron-based reactions. However, the radical trifluoromethylation of terminal alkynes remains a significant challenge, primarily due to the high reactivity of alkenyl radical intermediates, which predominantly engage in reactions other than the desired elimination. In this work, we have developed an electrochemical trifluoromethylation method for terminal alkynes, facilitating the efficient formation of CF3-alkynes. The success of this method centers on the use of DMSO as a "masking auxiliary", which effectively stabilizes the alkenyl radical intermediate, allowing the reaction to proceed smoothly under mild conditions. This approach is supported by extensive experimental and computational studies, which elucidate the unique mechanism and expand the potential applications of radical trifluoromethylation across chemical synthesis.
Collapse
Affiliation(s)
- Jihoon Jang
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| | - Ho Seong Hwang
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| | - Haeryeong Jeong
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| |
Collapse
|
4
|
Vanluchene A, Horsten T, Bonneure E, Stevens CV. Electrochemical Trifluoromethylation of Enamides under Microflow Conditions. Org Process Res Dev 2024; 28:4018-4023. [PMID: 39569050 PMCID: PMC11575483 DOI: 10.1021/acs.oprd.4c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/08/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024]
Abstract
The development of sustainable trifluoromethylations of enamides is of great interest to the pharmaceutical industry. Herein, we demonstrate a sustainable direct electrochemical trifluoromethylation method in a microflow cell, using Langlois reagent, without the need for a supporting electrolyte, oxidants, or any additive under mild conditions. This method can be applied to various substrates with a yield of up to 84%. Additionally, the batch process yielded significantly less (22%), highlighting the microflow cell's efficiency.
Collapse
Affiliation(s)
- Anna Vanluchene
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tomas Horsten
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Eli Bonneure
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Christian V Stevens
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
5
|
An Y, Tang XB, Sun DW, Meng TT, Zhao B, Han S, Yang ZQ, Zhang W, Tang N, Zeng JJ, Lu J. Stereoselective synthetic approach toward β-trifluoromethyl vinyl ethers and diethers via reaction of ( E)-1,2-dichloro-3,3,3-trifluoroprop-1-ene with phenols. Org Biomol Chem 2024; 22:8344-8354. [PMID: 39318223 DOI: 10.1039/d4ob01254b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
A convenient method for synthesizing β-trifluoromethyl vinyl ethers and diethers through the base-mediated C-O coupling of (E)-1,2-dichloro-3,3,3-trifluoroprop-1-ene and phenols has been developed. Remarkably, the present process shows perfect regioselective and stereoselective yield of the Z/E isomers for β-trifluoromethyl vinyl ethers with high efficiency. Additionally, β-trifluoromethyl vinyl diethers with identical/diverse phenoxy groups were also obtained and the regulation of the product configuration was achieved. These reactions feature transition-metal-free conditions, wide substrate scope, and atom economy.
Collapse
Affiliation(s)
- Yu An
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, 168 Zhangbadong Road, Xi'an City, Shannxi Province, 710065, China.
| | - Xiao-Bo Tang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, 168 Zhangbadong Road, Xi'an City, Shannxi Province, 710065, China.
| | - Dong-Wei Sun
- Electric Power Research Institute of Guangdong Power Grid Co., Ltd, Guangzhou 510080, Guangdong, China
| | - Ting-Ting Meng
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, 168 Zhangbadong Road, Xi'an City, Shannxi Province, 710065, China.
| | - Bo Zhao
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, 168 Zhangbadong Road, Xi'an City, Shannxi Province, 710065, China.
| | - Sheng Han
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, 168 Zhangbadong Road, Xi'an City, Shannxi Province, 710065, China.
| | - Zhi-Qiang Yang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, 168 Zhangbadong Road, Xi'an City, Shannxi Province, 710065, China.
| | - Wei Zhang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, 168 Zhangbadong Road, Xi'an City, Shannxi Province, 710065, China.
| | - Nian Tang
- Electric Power Research Institute of Guangdong Power Grid Co., Ltd, Guangzhou 510080, Guangdong, China
| | - Ji-Jun Zeng
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, 168 Zhangbadong Road, Xi'an City, Shannxi Province, 710065, China.
| | - Jian Lu
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, 168 Zhangbadong Road, Xi'an City, Shannxi Province, 710065, China.
| |
Collapse
|
6
|
Wu CY, Chen XL, Yang DS, Tang YX, Wang LS, Du YD, Wu YD, Wu AX. Difluorocarbene-Enabled Trifluoromethylation and Cyclization for the Synthesis of 3-(Trifluoromethyl)-4 H-pyrans. Org Lett 2024; 26:8589-8593. [PMID: 39329447 DOI: 10.1021/acs.orglett.4c03266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A three-component annulation reaction and trifluoromethylation for the construction of 3-(trifluoromethyl)-4H-pyrans using β-CF3-1,3-enynes, BrCF2CO2Et, and sulfoxonium ylides as readily available substrates has been developed. This metal-free process involves two C-F bond cleavages of β-CF3-1,3-enynes and a CF3 group generated in situ from BrCF2CO2Et. This method is applicable to the late-stage modification of pharmaceutically active molecules.
Collapse
Affiliation(s)
- Chun-Yan Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Xiang-Long Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Dong-Sheng Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yong-Xing Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Li-Sheng Wang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yong-Dong Du
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yan-Dong Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - An-Xin Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Wang Y, Li SJ, Jiang F, Lan Y, Wang X. Making Full Use of TMSCF 3: Deoxygenative Trifluoromethylation/Silylation of Amides. J Am Chem Soc 2024; 146:19286-19294. [PMID: 38956888 DOI: 10.1021/jacs.4c04760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
As one of the most powerful trifluoromethylation reagents, (trifluoromethyl)trimethylsilane (TMSCF3) has been widely used for the synthesis of fluorine-containing molecules. However, to the best of our knowledge, the simultaneous incorporation of both TMS- and CF3- groups of this reagent onto the same carbon of the products has not been realized. Herein, we report an unprecedented SmI2/Sm promoted deoxygenative difunctionalization of amides with TMSCF3, in which both silyl and trifluoromethyl groups are incorporated into the final product, yielding α-silyl-α-trifluoromethyl amines with high efficiency. Notably, the silyl group could be further transformed into other functional groups, providing a new method for the synthesis of α-quaternary α-CF3-amines.
Collapse
Affiliation(s)
- Yuxiao Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shi-Jun Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Feng Jiang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yu Lan
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
8
|
Huang Y, You C, Hong B, Han X, Weng Z. One-Pot Assembly of 2-Trifluoromethyl Benzothiazole and Benzoselenazole via Copper-Mediated Three-Component Cascade Reaction. Chem Asian J 2024; 19:e202400331. [PMID: 38576218 DOI: 10.1002/asia.202400331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
A domino one-pot synthesis of 2-(trifluoromethyl) benzothiazole via copper-mediated three-component cascade reaction starting from the easily accessible starting materials such as o-iodoanilines, methyl trifluoropyruvate, and elemental sulfur is reported. The present strategy displayed a comprehensive substrate scope and good functional group tolerance and enabled access to a variety of substituted 2-(trifluoromethyl) benzothiazoles. A 2-(trifluoromethyl) benzoselenazole has also been synthesized utilizing this reaction methodology.
Collapse
Affiliation(s)
- Yangjie Huang
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China
| | - Chenhui You
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Biqiong Hong
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China
| | - Xiaoyan Han
- Testing and Analysis Center, Soochow University, Suzhou, 215123, China
| | - Zhiqiang Weng
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
9
|
Wu X, Qiu X, Lou W, Zhang S, Zhang C, Ma X, Liu C. Efficient Trifluoromethylation of Halogenated Hydrocarbons Using Novel [(bpy)Cu(O 2CCF 2SO 2F) 2] Reagent. Molecules 2024; 29:2849. [PMID: 38930914 PMCID: PMC11206303 DOI: 10.3390/molecules29122849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
This study introduces a novel trifluoromethylating reagent, [(bpy)Cu(O2CCF2SO2F)2], notable for not only its practical synthesis from cost-effective starting materials and scalability but also its nonhygroscopic nature. The reagent demonstrates high efficiency in facilitating trifluoromethylation reactions with various halogenated hydrocarbons, yielding products in good yields and exhibiting broad functional group compatibility. The development of [(bpy)Cu(O2CCF2SO2F)2] represents an advancement in the field of organic synthesis, potentially serving as a valuable addition to the arsenal of existing trifluoromethylating agents.
Collapse
Affiliation(s)
- Xiong Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xin Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Wenrun Lou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Shengxue Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Chaoyi Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xiaoyu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
- Shanghai-Sanming Engineering Research Center of Green Fluoropharmaceutical Technology, 25 Jingdong Road, Sanming 365004, China
| | - Chao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
- Shanghai-Sanming Engineering Research Center of Green Fluoropharmaceutical Technology, 25 Jingdong Road, Sanming 365004, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
10
|
Li R, Yin S, Xie L, Li X, Jia J, Zhao L, He CY. Catalyst-free decarboxylative cross-coupling of N-hydroxyphthalimide esters with tert-butyl 2-(trifluoromethyl)acrylate and its application. Org Biomol Chem 2024; 22:2279-2283. [PMID: 38407278 DOI: 10.1039/d3ob02103c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Here, we demonstrate a practical method toward the facile synthesis of CF3-containing amino acids through visible light promoted decarboxylative cross-coupling of a redox-active ester with tert-butyl 2-(trifluoromethyl)acrylate. The reaction was driven by the photochemical activity of electron donor-acceptor (EDA) complexes that were formed by the non-covalent interaction between a Hantzsch ester and a redox-active ester. The advantages of this protocol are its synthetic simplicity, rich functional group tolerance, and a cost-effective reaction system.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Susu Yin
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Lang Xie
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xuefei Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Jia Jia
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Liang Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| |
Collapse
|
11
|
Moskalik MY. Monofluoromethylation of N-Heterocyclic Compounds. Int J Mol Sci 2023; 24:17593. [PMID: 38139426 PMCID: PMC10744182 DOI: 10.3390/ijms242417593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The review focuses on recent advances in the methodologies for the formation or introduction of the CH2F moiety in N-heterocyclic substrates over the past 5 years. The monofluoromethyl group is one of the most versatile fluorinated groups used to modify the properties of molecules in synthetic medical chemistry. The review summarizes two strategies for the monofluoromethylation of N-containing heterocycles: direct monofluoromethylation with simple XCH2F sources (for example, ICH2F) and the assembly of N-heterocyclic structures from CH2F-containing substrates. The review describes the monofluoromethylation of pharmaceutically important three-, five- and six-membered N-heterocycles: pyrrolidines, pyrroles, indoles, imidazoles, triazoles, benzothiazoles, carbazoles, indazoles, pyrazoles, oxazoles, piperidines, morpholines, pyridines, quinolines and pyridazines. Assembling of 6-fluoromethylphenanthridine, 5-fluoromethyl-2-oxazolines, C5-monofluorinated isoxazoline N-oxides, and α-fluoromethyl-α-trifluoromethylaziridines is also shown. Fluoriodo-, fluorchloro- and fluorbromomethane, FCH2SO2Cl, monofluoromethyl(aryl)sulfoniummethylides, monofluoromethyl sulfides, (fluoromethyl)triphenylphosphonium iodide and 2-fluoroacetic acid are the main fluoromethylating reagents in recent works. The replacement of atoms and entire functional groups with a fluorine atom(s) leads to a change and often improvement in activity, chemical or biostability, and pharmacokinetic properties. The monofluoromethyl group is a bioisoster of -CH3, -CH2OH, -CH2NH2, -CH2CH3, -CH2NO2 and -CH2SH moieties. Bioisosteric replacement with the CH2F group is both an interesting task for organic synthesis and a pathway to modify drugs, agrochemicals and useful intermediates.
Collapse
Affiliation(s)
- Mikhail Yu Moskalik
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| |
Collapse
|
12
|
Wu HZ, Teng ZS, Ke YX, Zou Y, Gao P, Li Y, Zhou CH, Zang ZL. Electrochemical trifluoroalkylation/annulation for the synthesis of CF 3-functionalized tetrahydroquinolines and dihydroquinolinones. Org Biomol Chem 2023; 21:8579-8583. [PMID: 37853839 DOI: 10.1039/d3ob00987d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Tuning the electronic structure of protecting groups on the nitrogen atom of substrates has emerged as an effective strategy to achieve the tandem trifluoromethylation/C(sp2)-H annulation using Langlois' reagent as the CF3 source for the electrochemical synthesis of functionalized tetrahydroquinolines and dihydroquinolinones.
Collapse
Affiliation(s)
- Hao-Zeng Wu
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zhong-Shan Teng
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yu-Xin Ke
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yu Zou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ping Gao
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yue Li
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
13
|
Sumii Y, Shibata N. Current State of Microflow Trifluoromethylation Reactions. CHEM REC 2023; 23:e202300117. [PMID: 37309300 DOI: 10.1002/tcr.202300117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Indexed: 06/14/2023]
Abstract
The trifluoromethyl group is a powerful structural motif in drugs and polymers; thus, developing trifluoromethylation reactions is an important area of research in organic chemistry. Over the past few decades, significant progress has been made in developing new methods for the trifluoromethylation of organic molecules, ranging from nucleophilic and electrophilic approaches to transition-metal catalysis, photocatalysis, and electrolytic reactions. While these reactions were initially developed in batch systems, more recent microflow versions are highly attractive for industrial applications owing to their scalability, safety, and time efficiency. In this review, we discuss the current state of microflow trifluoromethylation. Approaches for microflow trifluoromethylation based on different trifluoromethylation reagents are described, including continuous flow, flow photochemical, microfluidic electrochemical reactions, and large-scale microflow reactions.
Collapse
Affiliation(s)
- Yuji Sumii
- Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, 466-8555, Japan
| | - Norio Shibata
- Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, 466-8555, Japan
| |
Collapse
|
14
|
Kuninobu Y. Regioselective C-H Trifluoromethylation and Its Related Reactions of (Hetero)aromatic Compounds. CHEM REC 2023; 23:e202300003. [PMID: 36899485 DOI: 10.1002/tcr.202300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Indexed: 03/12/2023]
Abstract
Fluorinated functional groups, including trifluoromethyl group, play important roles in the development of drugs, agrochemicals, and organic functional materials. Therefore, the development of highly effective and practical reactions to introduce fluorinated functional groups into (hetero)aromatic compounds is highly desirable. We have achieved several regioselective C-H trifluoromethylation and related reactions by electrophilic and nucleophilic activation of six-membered heteroaromatic compounds and steric protection of aromatic compounds. These reactions proceed in good to excellent yields, even on a gram scale, with high functional group tolerance, and are applicable to the regioselective trifluoromethylation of drug molecules. In this personal account, the background of the introduction reactions of fluorinated functional groups, our reaction designs to achieve regioselective C-H trifluoromethylation and the related reactions of (hetero)aromatic compounds are explained.
Collapse
Affiliation(s)
- Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
15
|
Chen K, Liu Q, Wan J, Zhu C, Feng C. Ni-Catalyzed Reductive Dibenzylation of Trifluoromethylalkenes for CF 3-Containing All-Carbon Quaternary Center Construction. Org Lett 2023; 25:5995-6000. [PMID: 37553069 DOI: 10.1021/acs.orglett.3c02102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
A Ni-catalyzed reductive dicarbofunctionalization of α-CF3 styrenes with benzyl bromides has been accomplished. This transformation obviates the commonly facile β-F elimination effectively and enables the creation of CF3-substituted all-carbon quaternary centers of pharmaceutical interests. Preliminary mechanistic studies suggest a pathway consisting of benzyl radical addition and subsequent nickel-mediated benzylation of the resulting α-CF3-embedded tertiary C radical.
Collapse
Affiliation(s)
- Kai Chen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qian Liu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jinyan Wan
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chuan Zhu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
16
|
Mkrtchyan S, Shkoor M, Sarfaraz S, Ayub K, Iaroshenko VO. Mechanochemical arylative detrifluoromethylation of trifluoromethylarenes. Org Biomol Chem 2023; 21:6549-6555. [PMID: 37523214 DOI: 10.1039/d3ob00787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The stoichiometric defluorinative functionalization of ArCF3 is a conceptually appealing research target. It enables the challenging late-stage functionalization of CF3-containing aromatic molecules and contributes to the remedy of environmental risks resulting from the accumulation of relatively inert ArCF3-containing molecules. Similarly, Ar-CN bond features limit their utilization in cross-coupling reactions. Thus, the employment of benzonitriles in decyanative Suzuki-Miyaura type coupling remains in high demand in the field of C-C bond formation. Herein, we report mechanochemically induced and ytterbium oxide (Yb2O3)-mediated defluorinative cyanation of trifluoromethylarenes. In addition, we describe a facile mechanochemically facilitated and nickel-catalyzed decyanative arylation of benzonitriles to access biphenyls. Combining both processes in a one-pot multicomponent protocol to achieve a concise direct arylative detrifluoromethylation of ArCF3 is described herein. This work is the first hitherto realization of C-C coupling with CF3 as a formal leaving group.
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401, Banska Bystrica, Slovakia.
| | - Mohanad Shkoor
- Department of Chemistry and Earth Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sehrish Sarfaraz
- Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad, KPK, 22060, Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad, KPK, 22060, Pakistan
| | - Viktor O Iaroshenko
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401, Banska Bystrica, Slovakia.
| |
Collapse
|
17
|
Fujioka S, Hirano K, Hoshiya N, Yamauchi A, Kishikawa Y, Uchiyama M. Perfluoroalkoxylation reaction via dual concurrent catalysis. Chem Commun (Camb) 2023. [PMID: 37318512 DOI: 10.1039/d3cc02485g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A catalytic amount of CsI enables dual concurrent activation of poorly reactive perfluoroalkoxide and alkyl halides, especially alkyl chlorides, leading to the formation of diverse perfluoroalkoxylated organic compounds. Installation of perfluoroalkoxy groups by this methodology is cost-effective, circumventing the need for over-stoichiometric cesium or silver salts. This methodology also provides high functional group compatibility and tolerance of sterically hindered substrates.
Collapse
Affiliation(s)
- Shota Fujioka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Keiichi Hirano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Naoyuki Hoshiya
- Technology Innovation Center, DAIKIN Industries, Ltd., 1-1 Nishi-Hitotsuya, Settsu, Osaka 566-8585, Japan
| | - Akiyoshi Yamauchi
- Technology Innovation Center, DAIKIN Industries, Ltd., 1-1 Nishi-Hitotsuya, Settsu, Osaka 566-8585, Japan
| | - Yosuke Kishikawa
- Technology Innovation Center, DAIKIN Industries, Ltd., 1-1 Nishi-Hitotsuya, Settsu, Osaka 566-8585, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 566-8585, Japan
| |
Collapse
|
18
|
Li HP, He XH, Peng C, Li JL, Han B. A straightforward access to trifluoromethylated natural products through late-stage functionalization. Nat Prod Rep 2023; 40:988-1021. [PMID: 36205211 DOI: 10.1039/d2np00056c] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Covering: 2011 to 2021Trifluoromethyl (CF3)-modified natural products have attracted increasing interest due to their magical effect in binding affinity and/or drug metabolism and pharmacokinetic properties. However, the chemo and regioselective construction of natural products (NPs) bearing a CF3 group still remains a long-standing challenge due to the complex chemical scaffolds and diverse reactive sites of NPs. In recent years, the development of late-stage functionalization strategies, including metal catalysis, organocatalysis, light-driven reactions, and electrochemical synthesis, has paved the way for direct trifluoromethylation process. In this review, we summarize the applications of these strategies in the late-stage trifluoromethylation of natural products in the past ten years with particular emphasis on the reaction model of each method. We also discuss the challenges, limitations, and future prospects of this approach.
Collapse
Affiliation(s)
- He-Ping Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
19
|
Zhao YR, Zhou Y, Hu M. Synthesis of trifluoromethylated allenes via visible light-promoted bis(trifluoromethylation) of 1,3-enynes. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
20
|
Popov AV, Kobelevskaya VA, Borodin NI, Zinchenko SV. α,β-Unsaturated CF3-ketones via secondary amine salts-catalyzed aldol condensation of 1,1,1-trufluoroacetone with aromatic and heteroaromatic aldehydes. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
21
|
Cen N, Wang H, Zhou Y, Gong R, Sui D, Chen W. Catalyst-free electrochemical trifluoromethylation of coumarins using CF 3SO 2NHNHBoc as the CF 3 source. Org Biomol Chem 2023; 21:1883-1887. [PMID: 36786673 DOI: 10.1039/d2ob01925f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An efficient electrochemical trifluoromethylation of coumarins using CF3SO2NHNHBoc as the source of the trifluoromethyl group was developed. Under catalyst-free and external oxidant-free electrolysis conditions, a range of 3-trifluoromethyl coumarins were obtained in moderate to good yields. The method could be easily scaled up with moderate efficiency.
Collapse
Affiliation(s)
- Nannan Cen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Han Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - YiCheng Zhou
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Ruoqu Gong
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Dandan Sui
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Wenbo Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China. .,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
22
|
Electrochemical synthesis of 5-trifluoroethyl dihydrobenzimidazo[2,1-a] isoquinolines from pendent unactivated alkenes via radical relay. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
23
|
Karl TA, Seidl M, König B. Energy Harvesting: Synthetic Use of Recovered Energy in Electrochemical Late‐Stage Functionalization. ChemElectroChem 2023. [DOI: 10.1002/celc.202201097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tobias A. Karl
- Faculty of Chemistry and Pharmacy University of Regensburg 93040 Regensburg Germany
| | - Max Seidl
- Faculty of Chemistry and Pharmacy University of Regensburg 93040 Regensburg Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy University of Regensburg 93040 Regensburg Germany
| |
Collapse
|
24
|
Dong L, Wang X, Nie Y, Yu S, Li H, Zhao Q, Fan Z, Wang Y, Tan X, Yu Z. Regioselective Perfluoroalkylation of 4‐Quinolones Using Sodium Perfluoroalkyl Sulfinates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Li Dong
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Xiaoqing Wang
- College of Science Hebei Agriculture University Baoding Hebei 071000 China
| | - Yudi Nie
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Shuo Yu
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Haotong Li
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Qian Zhao
- College of Modern Science and Technology Hebei Agriculture University Baoding Hebei 071000 China
| | - Zixuan Fan
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Yuqian Wang
- College of Modern Science and Technology Hebei Agriculture University Baoding Hebei 071000 China
| | - Xiaoting Tan
- College of Modern Science and Technology Hebei Agriculture University Baoding Hebei 071000 China
| | - Zhengsen Yu
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| |
Collapse
|
25
|
Valle M, Ximenis M, Lopez de Pariza X, Chan JMW, Sardon H. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angew Chem Int Ed Engl 2022; 61:e202203043. [PMID: 35700152 PMCID: PMC9545893 DOI: 10.1002/anie.202203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Organocatalysis has evolved into an effective complement to metal- or enzyme-based catalysis in polymerization, polymer functionalization, and depolymerization. The ease of removal and greater sustainability of organocatalysts relative to transition-metal-based ones has spurred development in specialty applications, e.g., medical devices, drug delivery, optoelectronics. Despite this, the use of organocatalysis and other organomediated reactions in polymer chemistry is still rapidly developing, and we envisage their rapidly growing application in nascent areas such as controlled radical polymerization, additive manufacturing, and chemical recycling in the coming years. In this Review, we describe ten trending areas where we anticipate paradigm shifts resulting from novel organocatalysts and other transition-metal-free conditions. We highlight opportunities and challenges and detail how new discoveries could lead to previously inaccessible functional materials and a potentially circular plastics economy.
Collapse
Affiliation(s)
- María Valle
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| | - Marta Ximenis
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
- University of the Balearic Islands UIBDepartment of ChemistryCra. Valldemossa, Km 7.507122Palma de MallorcaSpain
| | - Xabier Lopez de Pariza
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| | - Julian M. W. Chan
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for ScienceTechnology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Singapore
| | - Haritz Sardon
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| |
Collapse
|
26
|
Solomon NSD, Bhadbhade M, Tian R, Keaveney ST. Nickel and palladium catalyzed C‐H trifluoromethylation using trifluoromethyliodide: investigations into new reactivity. ChemCatChem 2022. [DOI: 10.1002/cctc.202200918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nicholas S. D. Solomon
- Macquarie University Faculty of Science: Macquarie University Faculty of Science and Engineering School of Molecular Sciences AUSTRALIA
| | - Mohan Bhadbhade
- University of New South Wales - Kensington Campus: University of New South Wales Solid State & Elemental Analysis Unit, Mark Wainwright Analytical Centre AUSTRALIA
| | - Ruoming Tian
- University of New South Wales - Kensington Campus: University of New South Wales Solid State & Elemental Analysis Unit, Mark Wainwright Analytical Centre AUSTRALIA
| | - Sinead Teresa Keaveney
- University of Wollongong School of Chemistry and Molecular Bioscience Northfields Avenue 2522 Wollongong AUSTRALIA
| |
Collapse
|
27
|
Baguia H, Evano G. Direct Perfluoroalkylation of C−H Bonds in (Hetero)arenes. Chemistry 2022; 28:e202200975. [DOI: 10.1002/chem.202200975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Hajar Baguia
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
28
|
Chen D, Jiang J, Wan J. Advances in the Transition Metal‐Free C‐H Trifluoromethylation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Demao Chen
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education. College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| | - Jianwen Jiang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education. College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| | - Jie‐Ping Wan
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education. College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
29
|
Sardon H, Valle M, Lopez de Pariza X, Ximenis M, Chan JM. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haritz Sardon
- University of Basque Country POLYMAT Paseo Manuel Lardizabal n 3 20018 San Sebastian SPAIN
| | - María Valle
- University of the Basque Country: Universidad del Pais Vasco POLYMAT SPAIN
| | | | - Marta Ximenis
- University of the Basque Country: Universidad del Pais Vasco POLYMAT SPAIN
| | - Julian M.W. Chan
- Agency for Science Technology and Research Institue of Chemical and Engineering Science SINGAPORE
| |
Collapse
|
30
|
Ma C, Li S, Lv X, Ren J, Feng L. A Direct Method for Synthesis of Fluorinated Quinazolinones and Quinoxalines Using Fluorinated Acids without Metals or Additives. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1824-6352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe trifluoromethyl group only exists in synthetic compounds. Owing to the unique bioactivities of this group, the trifluoromethylation of alkanes, arenes, unsaturated compounds like olefins, aldehydes, and ketones, and heterocycles has been studied constantly in recent decades. Herein, a direct method using trifluoroacetic acid as a CF3 source for the synthesis of 2-(trifluoromethyl)quinazolin-4-ones and 4-(trifluoromethyl)pyrrolo/indolo[1,2-a]quinoxalines without any catalysts or additives is reported; a wide range of fluorinated compounds were obtained in 52%–94% yield.
Collapse
|
31
|
Azimi SB, Asnaashariisfahani M, Azizi B, Mohammadi E, Ghaffar Ebadi A, Vessally E. Hydro-trifluoromethyl(thiol)ation of alkenes: a review*. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2072687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Seyedeh Bahareh Azimi
- Assessment and Environment Risks Department, Research Center of Envirnment and Sustainable Development (RCESD), Tehran, Iran
| | | | - Bayan Azizi
- Medical Laboratory Sciences Department, College of Health Sciences, University of Human Development, Sulaymaniyah, Iraq
| | | | - Abdol Ghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University, Jouybar, Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
32
|
Mo K, Zhou X, Wu J, Zhao Y. Electrochemical Dearomatization of Indoles: Access to Diversified Fluorine-Containing Spirocyclic Indolines. Org Lett 2022; 24:2788-2792. [DOI: 10.1021/acs.orglett.2c00530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kangdong Mo
- Institute of Drug Discovery Technology, Ningbo University, 315211 Ningbo, Zhejiang, China
| | - Xiaocong Zhou
- Institute of Drug Discovery Technology, Ningbo University, 315211 Ningbo, Zhejiang, China
| | - Ju Wu
- Institute of Drug Discovery Technology, Ningbo University, 315211 Ningbo, Zhejiang, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, 315211 Ningbo, Zhejiang, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, 315211 Ningbo, Zhejiang, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, 315211 Ningbo, Zhejiang, China
| |
Collapse
|
33
|
Liu W, Hao L, Zhang J, Zhu T. Progress in the Electrochemical Reactions of Sulfonyl Compounds. CHEMSUSCHEM 2022; 15:e202102557. [PMID: 35174969 DOI: 10.1002/cssc.202102557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Electrosynthesis has recently attracted more and more attention due to its great potential to replace chemical oxidants or reductants in molecule-electrode electron transfer. Sulfonyl compounds such as sulfonyl hydrazides, sulfinic acids (and their salts), sulfonyl halides have been discovered as practical precursors of several radicals. As electrochemical redox reactions can provide green and efficient pathways for the activation of sulfonyl compounds, studies for electrosynthesis have rapidly increased. Several types of radicals can be generated from anodic oxidation or cathodic reduction of sulfonyl compounds and can initiate fluoroalkylation, benzenesulfonylation, cyclization or rearrangement. In this Review, we summarize the electrosynthesis developments involving sulfonyl compounds mainly in the last decade.
Collapse
Affiliation(s)
- Wangsheng Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lin Hao
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tingshun Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
34
|
Guo P, Tao M, Xu WW, Wang AJ, Li W, Yao Q, Tong J, He CY. Synthesis of Secondary Trifluoromethylated Alkyl Bromides Using 2-Bromo-3,3,3-trifluoropropene as a Radical Acceptor. Org Lett 2022; 24:2143-2148. [PMID: 35274952 DOI: 10.1021/acs.orglett.2c00425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein, the first example using commercially available 2-bromo-3,3,3-trifluoropropene (BTP) as a radical acceptor has been reported. Taking advantage of this strategy, a wide range of secondary trifluoromethylated alkyl bromides were synthesized in good to excellent yields with broad functional group tolerance by using redox-active esters as a radical precursor. The practicality of this protocol was further demonstrated by diverse derivations and direct modification of biologically active molecules.
Collapse
Affiliation(s)
- Peng Guo
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P. R. China
| | - Maoling Tao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P. R. China
| | - Wen-Wen Xu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P. R. China
| | - An-Jun Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P. R. China
| | - Weipiao Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P. R. China
| | - Qiuli Yao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P. R. China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000,P. R. China
| | - Jie Tong
- School of Medicine, Yale University, New Haven, Connecticut 06510, United States
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P. R. China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000,P. R. China
| |
Collapse
|
35
|
Du J, Gao D, Zhang D, Lin X, Liu C, Zhu N, Yang Z, He W, Fang Z, Guo K. Electrochemical Oxidative
ortho
‐Selective Trifluoromethylation of
N
‐Arylamides. ChemElectroChem 2022. [DOI: 10.1002/celc.202101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jinze Du
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Di Gao
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Dong Zhang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Xinxin Lin
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Zhao Yang
- College of Engineering China Pharmaceutical University 24 Tongjiaxiang Nanjing 210003 P. R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| |
Collapse
|
36
|
Liu L, Zhang W, Xu C, He J, Xu Z, Yang Z, Ling F, Zhong W. Electrosynthesis of CF
3
‐Substituted Polycyclic Quinazolinones via Cascade Trifluoromethylation/Cyclization of Unactivated Alkene. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lei Liu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Wangqin Zhang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chao Xu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jiaying He
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zhenhui Xu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zehui Yang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Fei Ling
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Weihui Zhong
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
37
|
Simur TT, Ye T, Yu YJ, Zhang FL, Wang YF. C–F bond functionalizations of trifluoromethyl groups via radical intermediates. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
39
|
Hu Y, Wang X, Ren N, Li N, Li J, Chen J, Zhang H, Deng H, Cao W, Lin J. A Convenient Synthesis of Fluoroalkylated Benzimidazole‐ or Indole‐fused Benzoxazines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yijie Hu
- Shanghai University Department of chemistry CHINA
| | - Xiaoli Wang
- Shanghai University Department of chemistry CHINA
| | - Nan Ren
- Shanghai University Department of chemistry CHINA
| | - Na Li
- Shanghai University Qianweichang College CHINA
| | - Jianyang Li
- Shanghai University Qianweichang College CHINA
| | - Jie Chen
- Shanghai University Department of chemistry CHINA
| | - Hui Zhang
- Shanghai University Laboratory for Microstructures and Instrumental Analysis and Research Center CHINA
| | - Hongmei Deng
- Shanghai University Laboratory for Microstructures and instrumental Analysis and Research center CHINA
| | - Weiguo Cao
- Shanghai University Department of chemistry CHINA
| | - Jinhong Lin
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry 345 Lingling Road 200032 Shanghai CHINA
| |
Collapse
|
40
|
Birepinte M, Champagne PA, Paquin J. Photoinitiated
anti
‐Hydropentafluorosulfanylation of Terminal Alkynes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mélodie Birepinte
- CCVC, PROTEO Département de chimie Université Laval 1045 avenue de la Médecine Québec G1V 0A6 Canada
| | - Pier Alexandre Champagne
- Department of Chemistry and Environmental Science New Jersey Institute of Technology Newark NJ 07102 USA
| | - Jean‐François Paquin
- CCVC, PROTEO Département de chimie Université Laval 1045 avenue de la Médecine Québec G1V 0A6 Canada
| |
Collapse
|
41
|
Li X, Meng W, Xu X, Huang Y. Visible Light Induced Arylfluoroalkylation of Activated Alkenes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Gu Q, Cheng Z, Zeng X. Electrochemical Oxidative Trifluoromethylation of α-Oxoketene Ketene Dithioacetals with CF 3SO 2Na. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Chen N, Lei J, Wang Z, Liu Y, Sun K, Tang S. Construction of Fluoro-containing Heterocycles Mediated by Free Radicals. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Yan ZH, Li WC, Wu YH, Yan QB, Wei ZL, Liao WW. Electrochemical cyclization of N-cyanamide alkenes with CF 3SO 2Na to access C, N-(bis)trifluoromethylated cyclic amidines and related compounds. Org Chem Front 2022. [DOI: 10.1039/d2qo01323a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical trifluoromethylative cyclization of N-cyanamide alkenes and alkynes is presented, which afforded (bis)-C,N-trifluoromethylated cyclic amidines, azines and amides with selective multiple bond formations in a controllable manner.
Collapse
Affiliation(s)
- Zhi-Hua Yan
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wen-Cheng Li
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu-Heng Wu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qi-Bo Yan
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhong-Lin Wei
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
45
|
Liu X, Cai TC, Guo D, Nong Z, Yang Y, Li Q, Jiang H, Liu X, Gui QW. Electrosynthesis of S-thiocarbamates with disulfides as a sulfur source. Chem Commun (Camb) 2021; 58:657-660. [PMID: 34914819 DOI: 10.1039/d1cc05399j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An electrochemical oxidative synthesis of S-thiocarbamates by a carbamothioation reaction via a three-component coupling reaction (disulfide, water and isocyanide) is developed, which avoids the use of external oxidants and generates only hydrogen gas as the by-product. With NH4I as the mediator and electrolyte, the desired S-thiocarbamates were obtained in good yields in an undivided cell at room temperature.
Collapse
Affiliation(s)
- Xiaoying Liu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Tian-Cheng Cai
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Dingyi Guo
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Zhibin Nong
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Yujie Yang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Qiang Li
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, People's Republic of China. .,College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Hongmei Jiang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, People's Republic of China. .,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Xingru Liu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Qing-Wen Gui
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, People's Republic of China. .,College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
| |
Collapse
|
46
|
Talavera-Alemán A, Dagousset G, Thomassigny C. Synthesis of α-trifluoromethyl piperidine derivatives from tetrahydropyridines via nucleophilic trifluoromethylation of pyridinium cations. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Wei T, Wang K, Yu Z, Hou J, Xie Y. Electrochemically mediated trifluoromethylation of 2H-indazole derivatives using CF3SO2Na. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Wang L, Zhang H, Zhu C, Feng C. Expedient Trifluoromethylacylation of Styrenes Enabled by Photoredox Catalysis. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lu Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Heng Zhang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Chuan Zhu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| |
Collapse
|
49
|
Wang X, Sun X, Li N, Chen J, Zhang H, Deng H, Lin JH, Cao W. The synthesis of perfluoroalkylated indolizines via tandem cyclization/aromatization. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Birepinte M, Champagne PA, Paquin JF. Photoinitiated anti-Hydropentafluorosulfanylation of Terminal Alkynes. Angew Chem Int Ed Engl 2021; 61:e202112575. [PMID: 34716642 DOI: 10.1002/anie.202112575] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/19/2021] [Indexed: 11/10/2022]
Abstract
A photoinitiated anti-hydropentafluorosulfanylation of terminal alkynes using SF5 Cl and (TMS)3 SiH as the hydrogen atom donor is reported. This transformation generates selectively (Z)-(1-alken-1-yl)pentafluoro-λ6 -sulfanes (Z:E : >85:15), thus allowing the preparation of this previously unknown geometrical isomer. DFT calculations highlight that the selectivity is due to the intrinsic preference of SF5 -substituted vinylic radicals to adopt a cis geometry, and to increased steric contacts during the transition structures leading to the minor (E)-products.
Collapse
Affiliation(s)
- Mélodie Birepinte
- CCVC, PROTEO, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, G1V 0A6, Canada
| | - Pier Alexandre Champagne
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jean-François Paquin
- CCVC, PROTEO, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, G1V 0A6, Canada
| |
Collapse
|