1
|
Shams A, Bousis S, Diamanti E, Elgaher WAM, Zeimetz L, Haupenthal J, Slotboom DJ, Hirsch AKH. Expression and characterization of pantothenate energy-coupling factor transporters as an anti-infective drug target. Protein Sci 2024; 33:e5195. [PMID: 39473025 PMCID: PMC11521937 DOI: 10.1002/pro.5195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024]
Abstract
This study investigates the potential of energy-coupling factor (ECF) transporters as promising anti-infective targets to combat antimicrobial resistance (AMR). ECF transporters, a subclass of ATP-binding cassette (ABC) transporters, facilitate the uptake of B-vitamins across bacterial membranes by utilizing ATP as an energy source. Vitamins are essential cofactors for bacterial metabolism and growth, and they can either be synthesized de novo or absorbed from the environment. These transporters are considered promising drug targets, underscoring the need for further research to harness their medicinal potential and develop selective inhibitors that block vitamin uptake in bacteria. Herein, we focused on the ECF transporter for pantothenate (vitamin B5) from Streptococcus pneumoniae and the ECF transporter for folate (vitamin B9) from Lactobacillus delbrueckii as a reference protein. We also included the energizing module for pantothenate along with both full transporter complexes. Initially, we transformed and purified the transporters, followed by an assessment of their thermal stability under various buffer composition, pH, and salt concentrations. Additionally, we monitored the melting temperature over six days to confirm their stability for further assays. We then measured the binding affinities of six ECF inhibitors using surface plasmon resonance (SPR) and evaluated their inhibitory effects through in vitro assays, including bacterial growth assay, whole-cell uptake, and transport-activity assays. After determining cytotoxicity in two human cell lines, we established an in vivo infection model using Galleria mellonella larvae to further validate our findings.
Collapse
Affiliation(s)
- Atanaz Shams
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Department of Drug Design and OptimizationSaarbrückenGermany
- Saarland UniversityDepartment of PharmacySaarbrückenGermany
| | - Spyridon Bousis
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Department of Drug Design and OptimizationSaarbrückenGermany
- Saarland UniversityDepartment of PharmacySaarbrückenGermany
- Stratingh Institute for Chemistry and Technology, Faculty of Science and EngineeringUniversity of GroningenGroningenThe Netherlands
| | - Eleonora Diamanti
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Department of Drug Design and OptimizationSaarbrückenGermany
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum—Università di BolognaBolognaItaly
| | - Walid A. M. Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Department of Drug Design and OptimizationSaarbrückenGermany
| | - Lucie Zeimetz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Department of Drug Design and OptimizationSaarbrückenGermany
- Saarland UniversityDepartment of PharmacySaarbrückenGermany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Department of Drug Design and OptimizationSaarbrückenGermany
| | - Dirk J. Slotboom
- Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Department of Drug Design and OptimizationSaarbrückenGermany
- Saarland UniversityDepartment of PharmacySaarbrückenGermany
| |
Collapse
|
2
|
Munteanu C, Mârza SM, Papuc I. The immunomodulatory effects of vitamins in cancer. Front Immunol 2024; 15:1464329. [PMID: 39434876 PMCID: PMC11491384 DOI: 10.3389/fimmu.2024.1464329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Nutrition may affect animal health due to the strong link between them. Also, diets improve the healing process in various disease states. Cancer is a disease, where the harmful consequences of tumors severely impair the body. The information regarding the evolution of this disease is extrapolated from human to animal because there are few specific studies regarding nutritional needs in animals with cancer. Thus, this paper aims to review the literature regarding the immunomodulatory effects of vitamins in mammal cancer. An adequate understanding of the metabolism and requirements of nutrients for mammals is essential to ensuring their optimal growth, development, and health, regardless of their food sources. According to these: 1) Some species are highly dependent on vitamin D from food, so special attention must be paid to this aspect. Calcitriol/VDR signaling can activate pro-apoptotic proteins and suppress anti-apoptotic ones. 2) Nitric oxide (NO) production is modulated by vitamin E through inhibiting transcription nuclear factor kappa B (NF-κB) activation. 3) Thiamine supplementation could be responsible for the stimulation of tumor cell proliferation, survival, and resistance to chemotherapy. 4) Also, it was found that the treatment with NO-Cbl in dogs is a viable anti-cancer therapy that capitalizes on the tumor-specific properties of the vitamin B12 receptor. Therefore, diets should contain the appropriate class of compounds in adequate proportions. Also, the limitations of this paper are that some vitamins are intensively studied and at the same time regarding others, there is a lack of information, especially in animals. Therefore, some subsections are longer and more heavily debated than others.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, ;Romania
| | - Sorin Marian Mârza
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, ;Romania
| | - Ionel Papuc
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, ;Romania
| |
Collapse
|
3
|
Haupenthal J, Rafehi M, Kany AM, Lespine A, Stefan K, Hirsch AKH, Stefan SM. Target repurposing unravels avermectins and derivatives as novel antibiotics inhibiting energy-coupling factor transporters (ECFTs). Arch Pharm (Weinheim) 2024; 357:e2400267. [PMID: 38896404 DOI: 10.1002/ardp.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
Energy-coupling factor transporters (ECFTs) are membrane-bound ATP-binding cassette (ABC) transporters in prokaryotes that are found in pathogens against which novel antibiotics are urgently needed. To date, just 54 inhibitors of three molecular-structural classes with mostly weak inhibitory activity are known. Target repurposing is a strategy that transfers knowledge gained from a well-studied protein family to under-studied targets of phylogenetic relation. Forty-eight human ABC transporters are known that may harbor structural motifs similar to ECFTs to which particularly multitarget compounds may bind. We assessed 31 multitarget compounds which together target the entire druggable human ABC transporter proteome against ECFTs, of which nine showed inhibitory activity (hit rate 29.0%) and four demonstrated moderate to strong inhibition of an ECFT (IC50 values between 4.28 and 50.2 µM) as well as antibacterial activity against ECFT-expressing Streptococcus pneumoniae. Here, ivermectin was the most potent candidate (MIC95: 22.8 µM), and analysis of five ivermectin derivatives revealed moxidectin as one of the most potent ECFT-targeting antibacterial agents (IC50: 2.23 µM; MIC95: 2.91 µM). Distinct molecular-structural features of avermectins and derivatives as well as the differential biological response of the hit compounds in general provided first indications with respect to the structure-activity relationships and mode of action, respectively.
Collapse
Affiliation(s)
- Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Muhammad Rafehi
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
- Department of Medical Education Augsburg, Augsburg University Medicine, Augsburg, Germany
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Anne Lespine
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Katja Stefan
- Lübeck Institute of Experimental Dermatology, Medicinal Chemistry and Systems Polypharmacology, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Sven Marcel Stefan
- Lübeck Institute of Experimental Dermatology, Medicinal Chemistry and Systems Polypharmacology, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
4
|
Rudzite M, O’Toole GA. An energy coupling factor transporter of Streptococcus sanguinis impacts antibiotic susceptibility as well as metal and membrane homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603315. [PMID: 39026867 PMCID: PMC11257530 DOI: 10.1101/2024.07.12.603315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Streptococcus sanguinis is a prevalent member of human microbiome capable of acting as a causative agent of oral and respiratory infections. S. sanguinis competitive success within the infection niche is dependent on acquisition of metal ions and vitamins. Among the systems that bacteria use for micronutrient uptake is the energy coupling factor (ECF) transporter system EcfAAT. Here we describe physiological changes arising from EcfAAT transporter disruption. We found that EcfAAT contributes to S. sanguinis antibiotic sensitivity as well as metal and membrane homeostasis. Specifically, our work found that disruption of EcfAAT results in increased polymyxin susceptibility. We performed assessment of cell-associated metal content and found depletion of iron, magnesium, and manganese. Furthermore, membrane composition analysis revealed significant enrichment in unsaturated fatty acid species resulting in increased membrane fluidity. Our results demonstrate how disruption of a single EcfAAT transporter can have broad consequences on bacterial cell homeostasis. ECF transporters are of interest within the context of infection biology in bacterial species other than streptococci, hence work described here will further the understanding of how micronutrient uptake systems contribute to bacterial pathogenesis.
Collapse
Affiliation(s)
- Marta Rudzite
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - G. A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
5
|
Exapicheidou IA, Shams A, Ibrahim H, Tsarenko A, Backenköhler M, Hamed MM, Diamanti E, Volkamer A, Slotboom DJ, Hirsch AKH. Hit optimization by dynamic combinatorial chemistry on Streptococcus pneumoniae energy-coupling factor transporter ECF-PanT. Chem Commun (Camb) 2024; 60:870-873. [PMID: 38164786 DOI: 10.1039/d3cc04738e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Herein, we present the first application of target-directed dynamic combinatorial chemistry (tdDCC) to the whole complex of the highly dynamic transmembrane, energy-coupling factor (ECF) transporter ECF-PanT in Streptococcus pneumoniae. In addition, we successfully employed the tdDCC technique as a hit-identification and -optimization strategy that led to the identification of optimized ECF inhibitors with improved activity. We characterized the best compounds regarding cytotoxicity and performed computational modeling studies on the crystal structure of ECF-PanT to rationalize their binding mode. Notably, docking studies showed that the acylhydrazone linker is able to maintain the crucial interactions.
Collapse
Affiliation(s)
- Ioulia Antonia Exapicheidou
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), 66123, Saarbrücken, Germany.
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Atanaz Shams
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), 66123, Saarbrücken, Germany.
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Hamza Ibrahim
- Data Driven Drug Design Group, Center for Bioinformatics, Saarland Informatics Campus E2.1, Saarland University, Saarbrücken 66123, Germany
| | - Aleksei Tsarenko
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Michael Backenköhler
- Data Driven Drug Design Group, Center for Bioinformatics, Saarland Informatics Campus E2.1, Saarland University, Saarbrücken 66123, Germany
| | - Mostafa M Hamed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), 66123, Saarbrücken, Germany.
| | - Eleonora Diamanti
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), 66123, Saarbrücken, Germany.
| | - Andrea Volkamer
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), 66123, Saarbrücken, Germany.
- Data Driven Drug Design Group, Center for Bioinformatics, Saarland Informatics Campus E2.1, Saarland University, Saarbrücken 66123, Germany
| | - Dirk J Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), 66123, Saarbrücken, Germany.
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
| |
Collapse
|
6
|
Diamanti E, Souza PCT, Setyawati I, Bousis S, Monjas L, Swier LJYM, Shams A, Tsarenko A, Stanek WK, Jäger M, Marrink SJ, Slotboom DJ, Hirsch AKH. Identification of inhibitors targeting the energy-coupling factor (ECF) transporters. Commun Biol 2023; 6:1182. [PMID: 37985798 PMCID: PMC10662466 DOI: 10.1038/s42003-023-05555-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
The energy-coupling factor (ECF) transporters are a family of transmembrane proteins involved in the uptake of vitamins in a wide range of bacteria. Inhibition of the activity of these proteins could reduce the viability of pathogens that depend on vitamin uptake. The central role of vitamin transport in the metabolism of bacteria and absence from humans make the ECF transporters an attractive target for inhibition with selective chemical probes. Here, we report on the identification of a promising class of inhibitors of the ECF transporters. We used coarse-grained molecular dynamics simulations on Lactobacillus delbrueckii ECF-FolT2 and ECF-PanT to profile the binding mode and mechanism of inhibition of this novel chemotype. The results corroborate the postulated mechanism of transport and pave the way for further drug-discovery efforts.
Collapse
Affiliation(s)
- Eleonora Diamanti
- Helmholtz Institute for Pharmaceutical Research (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, D-66123, Saarbrücken, Germany
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS and University of Lyon, Lyon, France
- Laboratoire de Biologie et Modélisation de la Cellule (UMR 5239, Inserm, U1293) and Centre Blaise Pascal, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1 and CNRS, 46 Allée d'Italie, 69007, Lyon, France
| | - Inda Setyawati
- Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 4, 9747AG, Groningen, The Netherlands
- Department of Biochemistry, Bogor Agricultural University, Dramaga, 16680, Bogor, Indonesia
| | - Spyridon Bousis
- Helmholtz Institute for Pharmaceutical Research (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, D-66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747, AG Groningen, the Netherlands
| | - Leticia Monjas
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Lotteke J Y M Swier
- Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Atanaz Shams
- Helmholtz Institute for Pharmaceutical Research (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, D-66123, Saarbrücken, Germany
| | - Aleksei Tsarenko
- Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Weronika K Stanek
- Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Manuel Jäger
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747, AG Groningen, the Netherlands
| | - Siewert J Marrink
- Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Dirk J Slotboom
- Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, D-66123, Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany.
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747, AG Groningen, the Netherlands.
| |
Collapse
|
7
|
Haroon F, Farwa U, Arif M, Raza MA, Sandhu ZA, El Oirdi M, Farhan M, Alhasawi MAI. Novel Para-Aminobenzoic Acid Analogs and Their Potential Therapeutic Applications. Biomedicines 2023; 11:2686. [PMID: 37893060 PMCID: PMC10604881 DOI: 10.3390/biomedicines11102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
A "building block" is a key component that plays a substantial and critical function in the pharmaceutical research and development industry. Given its structural versatility and ability to undergo substitutions at both the amino and carboxyl groups, para-aminobenzoic acid (PABA) is a commonly used building block in pharmaceuticals. Therefore, it is great for the development of a wide range of novel molecules with potential medical applications. Anticancer, anti-Alzheimer's, antibacterial, antiviral, antioxidant, and anti-inflammatory properties have been observed in PABA compounds, suggesting their potential as therapeutic agents in future clinical trials. PABA-based therapeutic chemicals as molecular targets and their usage in biological processes are the primary focus of this review study. PABA's unique features make it a strong candidate for inclusion in a massive chemical database of molecules having drug-like effects. Based on the current literature, further investigation is needed to evaluate the safety and efficacy of PABA derivatives in clinical investigations and better understand the specific mechanism of action revealed by these compounds.
Collapse
Affiliation(s)
- Faisal Haroon
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.O.); (M.F.)
| | - Umme Farwa
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Maimoona Arif
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Muhammad Asam Raza
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Zeshan Ali Sandhu
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Mohamed El Oirdi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.O.); (M.F.)
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.O.); (M.F.)
| | | |
Collapse
|
8
|
O’Boyle NM, Helesbeux JJ, Meegan MJ, Sasse A, O’Shaughnessy E, Qaisar A, Clancy A, McCarthy F, Marchand P. 30th Annual GP 2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2023; 16:432. [PMID: 36986531 PMCID: PMC10056312 DOI: 10.3390/ph16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023] Open
Abstract
The Group for the Promotion of Pharmaceutical Chemistry in Academia (GP2A) held their 30th annual conference in August 2022 in Trinity College Dublin, Ireland. There were 9 keynote presentations, 10 early career researcher presentations and 41 poster presentations.
Collapse
Affiliation(s)
- Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | | | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Elizabeth O’Shaughnessy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Alina Qaisar
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Aoife Clancy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Florence McCarthy
- School of Chemistry and ABCRF, University College Cork, T12 K8AF Cork, Ireland
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
| |
Collapse
|
9
|
Walesch S, Birkelbach J, Jézéquel G, Haeckl FPJ, Hegemann JD, Hesterkamp T, Hirsch AKH, Hammann P, Müller R. Fighting antibiotic resistance-strategies and (pre)clinical developments to find new antibacterials. EMBO Rep 2022; 24:e56033. [PMID: 36533629 PMCID: PMC9827564 DOI: 10.15252/embr.202256033] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Antibacterial resistance is one of the greatest threats to human health. The development of new therapeutics against bacterial pathogens has slowed drastically since the approvals of the first antibiotics in the early and mid-20th century. Most of the currently investigated drug leads are modifications of approved antibacterials, many of which are derived from natural products. In this review, we highlight the challenges, advancements and current standing of the clinical and preclinical antibacterial research pipeline. Additionally, we present novel strategies for rejuvenating the discovery process and advocate for renewed and enthusiastic investment in the antibacterial discovery pipeline.
Collapse
Affiliation(s)
- Sebastian Walesch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Joy Birkelbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Thomas Hesterkamp
- Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| | - Peter Hammann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| |
Collapse
|
10
|
Kiefer AF, Bousis S, Hamed MM, Diamanti E, Haupenthal J, Hirsch AKH. Structure-Guided Optimization of Small-Molecule Folate Uptake Inhibitors Targeting the Energy-Coupling Factor Transporters. J Med Chem 2022; 65:8869-8880. [PMID: 35709475 PMCID: PMC9289886 DOI: 10.1021/acs.jmedchem.1c02114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Here, we report on
a potent class of substituted ureidothiophenes
targeting energy-coupling factor (ECF) transporters, an unexplored
target that is not addressed by any antibiotic in the market. Since
the ECF module is crucial for the vitamin transport mechanism, the
prevention of substrate uptake should ultimately lead to cell death.
By utilizing a combination of virtual and functional whole-cell screening
of our in-house library, the membrane-bound protein mediated uptake
of folate could be effectively inhibited. Structure-based optimization
of our hit yielded low-micromolar inhibitors, whereby the most active
compounds showed in addition potent antimicrobial activities against
a panel of clinically relevant Gram-positive pathogens without significant
cytotoxic effects.
Collapse
Affiliation(s)
- Alexander F Kiefer
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Spyridon Bousis
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Mostafa M Hamed
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Eleonora Diamanti
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany.,Helmholtz International Lab for Anti-Infectives, Campus E8.1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.,Helmholtz International Lab for Anti-Infectives, Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
11
|
Estrada AA, Gottschalk M, Gebhart CJ, Marthaler DG. Comparative analysis of Streptococcus suis genomes identifies novel candidate virulence-associated genes in North American isolates. Vet Res 2022; 53:23. [PMID: 35303917 PMCID: PMC8932342 DOI: 10.1186/s13567-022-01039-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/17/2022] [Indexed: 11/10/2022] Open
Abstract
Streptococcus suis is a significant economic and welfare concern in the swine industry. Pan-genome analysis provides an in-silico approach for the discovery of genes involved in pathogenesis in bacterial pathogens. In this study, we performed pan-genome analysis of 208 S. suis isolates classified into the pathogenic, possibly opportunistic, and commensal pathotypes to identify novel candidate virulence-associated genes (VAGs) of S. suis. Using chi-square tests and LASSO regression models, three accessory pan-genes corresponding to S. suis strain P1/7 markers SSU_RS09525, SSU_RS09155, and SSU_RS03100 (>95% identity) were identified as having a significant association with the pathogenic pathotype. The proposed novel SSU_RS09525 + /SSU_RS09155 + /SSU_RS03100 + genotype identified 96% of the pathogenic pathotype strains, suggesting a novel genotyping scheme for predicting the pathogenicity of S. suis isolates in North America. In addition, mobile genetic elements carrying antimicrobial resistance genes (ARGs) and VAGs were identified but did not appear to play a major role in the spread of ARGs and VAGs.
Collapse
Affiliation(s)
- April A Estrada
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Connie J Gebhart
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | | |
Collapse
|
12
|
Bousis S, Winkler S, Haupenthal J, Fulco F, Diamanti E, Hirsch AKH. An Efficient Way to Screen Inhibitors of Energy-Coupling Factor (ECF) Transporters in a Bacterial Uptake Assay. Int J Mol Sci 2022; 23:2637. [PMID: 35269783 PMCID: PMC8910649 DOI: 10.3390/ijms23052637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
Herein, we report a novel whole-cell screening assay using Lactobacillus casei as a model microorganism to identify inhibitors of energy-coupling factor (ECF) transporters. This promising and underexplored target may have important pharmacological potential through modulation of vitamin homeostasis in bacteria and, importantly, it is absent in humans. The assay represents an alternative, cost-effective and fast solution to demonstrate the direct involvement of these membrane transporters in a native biological environment rather than using a low-throughput in vitro assay employing reconstituted proteins in a membrane bilayer system. Based on this new whole-cell screening approach, we demonstrated the optimization of a weak hit compound (2) into a small molecule (3) with improved in vitro and whole-cell activities. This study opens the possibility to quickly identify novel inhibitors of ECF transporters and optimize them based on structure-activity relationships.
Collapse
Affiliation(s)
- Spyridon Bousis
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research (HIPS), Campus Building E 8.1, D-66123 Saarbrücken, Germany; (S.B.); (S.W.); (J.H.); (F.F.); (E.D.)
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Steffen Winkler
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research (HIPS), Campus Building E 8.1, D-66123 Saarbrücken, Germany; (S.B.); (S.W.); (J.H.); (F.F.); (E.D.)
| | - Jörg Haupenthal
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research (HIPS), Campus Building E 8.1, D-66123 Saarbrücken, Germany; (S.B.); (S.W.); (J.H.); (F.F.); (E.D.)
| | - Francesco Fulco
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research (HIPS), Campus Building E 8.1, D-66123 Saarbrücken, Germany; (S.B.); (S.W.); (J.H.); (F.F.); (E.D.)
| | - Eleonora Diamanti
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research (HIPS), Campus Building E 8.1, D-66123 Saarbrücken, Germany; (S.B.); (S.W.); (J.H.); (F.F.); (E.D.)
| | - Anna K. H. Hirsch
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research (HIPS), Campus Building E 8.1, D-66123 Saarbrücken, Germany; (S.B.); (S.W.); (J.H.); (F.F.); (E.D.)
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
13
|
Riboswitch RS thiT as a molecular tool in Lactococcus lactis. Appl Environ Microbiol 2021; 88:e0176421. [PMID: 34936833 PMCID: PMC8862789 DOI: 10.1128/aem.01764-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Previous RNA sequencing has allowed the identification of 129 long 5′ untranslated regions (UTRs) in the Lactococcus lactis MG1363 transcriptome. These sequences potentially harbor cis-acting riboswitches. One of the identified extended 5′ UTRs is a putative thiamine pyrophosphate (TPP) riboswitch. It is located immediately upstream of the thiamine transporter gene thiT (llmg_0334). To confirm this assumption, the 5′-UTR sequence was placed upstream of the gene encoding the superfolder green fluorescent protein (sfGFP), sfgfp, allowing the examination of the expression of sfGFP in the presence or absence of thiamine in the medium. The results show that this sequence indeed represents a thiamine-responsive TPP riboswitch. This RNA-based genetic control device was used to successfully restore the mutant phenotype of an L. lactis strain lacking the major autolysin gene, acmA. The L. lactisthiT TPP riboswitch (RSthiT) is a useful molecular genetic tool enabling the gradual downregulation of the expression of genes under its control by adjusting the thiamine concentration. IMPORTANCE The capacity of microbes with biotechnological importance to adapt to and survive under quickly changing industrial conditions depends on their ability to adequately control gene expression. Riboswitches are important RNA-based elements involved in rapid and precise gene regulation. Here, we present the identification of a natural thiamine-responsive riboswitch of Lactococcus lactis, a bacterium used worldwide in the production of dairy products. We used it to restore a genetic defect in an L. lactis mutant and show that it is a valuable addition to the ever-expanding L. lactis genetic toolbox.
Collapse
|
14
|
Drost M, Diamanti E, Fuhrmann K, Goes A, Shams A, Haupenthal J, Koch M, Hirsch AKH, Fuhrmann G. Bacteriomimetic Liposomes Improve Antibiotic Activity of a Novel Energy-Coupling Factor Transporter Inhibitor. Pharmaceutics 2021; 14:4. [PMID: 35056900 PMCID: PMC8779172 DOI: 10.3390/pharmaceutics14010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 11/21/2022] Open
Abstract
Liposomes have been studied for decades as nanoparticulate drug delivery systems for cytostatics, and more recently, for antibiotics. Such nanoantibiotics show improved antibacterial efficacy compared to the free drug and can be effective despite bacterial recalcitrance. In this work, we present a loading method of bacteriomimetic liposomes for a novel, hydrophobic compound (HIPS5031) inhibiting energy-coupling factor transporters (ECF transporters), an underexplored antimicrobial target. The liposomes were composed of DOPG (18:1 (Δ9-cis) phosphatidylglycerol) and CL (cardiolipin), resembling the cell membrane of Gram-positive Staphylococcus aureus and Streptococcus pneumoniae, and enriched with cholesterol (Chol). The size and polydispersity of the DOPG/CL/± Chol liposomes remained stable over 8 weeks when stored at 4 °C. Loading of the ECF transporter inhibitor was achieved by thin film hydration and led to a high encapsulation efficiency of 33.19% ± 9.5% into the DOPG/CL/Chol liposomes compared to the phosphatidylcholine liposomes (DMPC/DPPC). Bacterial growth inhibition assays on the model organism Bacillus subtilis revealed liposomal HIPS5031 as superior to the free drug, showing a 3.5-fold reduction in CFU/mL at a concentration of 9.64 µM. Liposomal HIPS5031 was also shown to reduce B. subtilis biofilm. Our findings present an explorative basis for bacteriomimetic liposomes as a strategy against drug-resistant pathogens by surpassing the drug-formulation barriers of innovative, yet unfavorably hydrophobic, antibiotics.
Collapse
Affiliation(s)
- Menka Drost
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.D.); (E.D.); (K.F.); (A.G.); (A.S.); (J.H.); (A.K.H.H.)
- Department of Biology, Pharmaceutical Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Staudtstr. 5, 91058 Erlangen, Germany
| | - Eleonora Diamanti
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.D.); (E.D.); (K.F.); (A.G.); (A.S.); (J.H.); (A.K.H.H.)
- Helmholtz International Lab for Anti-Infectives, Campus E8.1, 66123 Saarbrücken, Germany
| | - Kathrin Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.D.); (E.D.); (K.F.); (A.G.); (A.S.); (J.H.); (A.K.H.H.)
| | - Adriely Goes
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.D.); (E.D.); (K.F.); (A.G.); (A.S.); (J.H.); (A.K.H.H.)
| | - Atanaz Shams
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.D.); (E.D.); (K.F.); (A.G.); (A.S.); (J.H.); (A.K.H.H.)
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.D.); (E.D.); (K.F.); (A.G.); (A.S.); (J.H.); (A.K.H.H.)
| | - Marcus Koch
- INM-Leibniz-Institut für Neue Materialien, Campus D2.2, 66123 Saarbrücken, Germany;
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.D.); (E.D.); (K.F.); (A.G.); (A.S.); (J.H.); (A.K.H.H.)
- Helmholtz International Lab for Anti-Infectives, Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus C1.7, 66123 Saarbrücken, Germany
| | - Gregor Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.D.); (E.D.); (K.F.); (A.G.); (A.S.); (J.H.); (A.K.H.H.)
- Department of Biology, Pharmaceutical Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
15
|
Metal utilization in genome-reduced bacteria: Do human mycoplasmas rely on iron? Comput Struct Biotechnol J 2021; 19:5752-5761. [PMID: 34765092 PMCID: PMC8566771 DOI: 10.1016/j.csbj.2021.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/04/2022] Open
Abstract
Mycoplasmas are parasitic bacteria with streamlined genomes and complex nutritional requirements. Although iron is vital for almost all organisms, its utilization by mycoplasmas is controversial. Despite its minimalist nature, mycoplasmas can survive and persist within the host, where iron availability is rigorously restricted through nutritional immunity. In this review, we describe the putative iron-enzymes, transporters, and metalloregulators of four relevant human mycoplasmas. This work brings in light critical differences in the mycoplasma-iron interplay. Mycoplasma penetrans, the species with the largest genome (1.36 Mb), shows a more classic repertoire of iron-related proteins, including different enzymes using iron-sulfur clusters as well as iron storage and transport systems. In contrast, the iron requirement is less apparent in the three species with markedly reduced genomes, Mycoplasma genitalium (0.58 Mb), Mycoplasma hominis (0.67 Mb) and Mycoplasma pneumoniae (0.82 Mb), as they exhibit only a few proteins possibly involved in iron homeostasis. The multiple facets of iron metabolism in mycoplasmas illustrate the remarkable evolutive potential of these minimal organisms when facing nutritional immunity and question the dependence of several human-infecting species for iron. Collectively, our data contribute to better understand the unique biology and infective strategies of these successful pathogens.
Collapse
Key Words
- ABC, ATP-binding cassette
- ECF transporter
- ECF, energy-coupling factor
- Fur, ferric uptake regulator
- Hrl, histidine-rich lipoprotein
- Iron homeostasis
- Metal acquisition
- Metalloenzyme
- Mge, Mycoplasma genitalium
- Mho, Mycoplasma hominis
- Mollicutes
- Mpe, Mycoplasma penetrans
- Mpn, Mycoplasma pneumonia
- Mycoplasmas
- PDB, protein data bank
- RNR, ribonucleotide reductase
- XRF, X-ray fluorescence
- ZIP, zinc-iron permease
Collapse
|
16
|
Insights into the bilayer-mediated toppling mechanism of a folate-specific ECF transporter by cryo-EM. Proc Natl Acad Sci U S A 2021; 118:2105014118. [PMID: 34408021 DOI: 10.1073/pnas.2105014118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Energy-coupling factor (ECF)-type transporters are small, asymmetric membrane protein complexes (∼115 kDa) that consist of a membrane-embedded, substrate-binding protein (S component) and a tripartite ATP-hydrolyzing module (ECF module). They import micronutrients into bacterial cells and have been proposed to use a highly unusual transport mechanism, in which the substrate is dragged across the membrane by a toppling motion of the S component. However, it remains unclear how the lipid bilayer could accommodate such a movement. Here, we used cryogenic electron microscopy at 200 kV to determine structures of a folate-specific ECF transporter in lipid nanodiscs and detergent micelles at 2.7- and 3.4-Å resolution, respectively. The structures reveal an irregularly shaped bilayer environment around the membrane-embedded complex and suggest that toppling of the S component is facilitated by protein-induced membrane deformations. In this way, structural remodeling of the lipid bilayer environment is exploited to guide the transport process.
Collapse
|
17
|
Zeng Y, Charkowski AO. The Role of ATP-Binding Cassette Transporters in Bacterial Phytopathogenesis. PHYTOPATHOLOGY 2021; 111:600-610. [PMID: 33225831 DOI: 10.1094/phyto-06-20-0212-rvw] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bacteria use selective membrane transporting strategies to support cell survival in different environments. Of the membrane transport systems, ATP-binding cassette (ABC) transporters, which utilize the energy of ATP hydrolysis to deliver substrate across the cytoplasmic membrane, are the largest and most diverse superfamily. These transporters import nutrients, export molecules, and are required for diverse cell functions, including cell division and morphology, gene regulation, surface motility, chemotaxis, and interspecies competition. Phytobacterial pathogens encode numerous ABC transporter homologs compared with related nonphytopathogens, with up to 160 transporters per genome, suggesting that plant pathogens must be able to import or respond to a greater number of molecules compared with saprophytes or animal pathogens. Despite their importance, ABC transporters have been little examined in plant pathogens. To understand bacterial phytopathogenesis and evolution, we need to understand the roles that ABC transporters play in plant-microbe interactions. In this review, we outline a multitude of roles that bacterial ABC transporters play, using both plant and animal pathogens as examples, to emphasize the importance of exploring these transporters in phytobacteriology.
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| | - Amy O Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
18
|
Sirithanakorn C, Cronan JE. Biotin, a universal and essential cofactor: Synthesis, ligation and regulation. FEMS Microbiol Rev 2021; 45:6081095. [PMID: 33428728 DOI: 10.1093/femsre/fuab003] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Biotin is a covalently attached enzyme cofactor required for intermediary metabolism in all three domains of life. Several important human pathogens (e.g. Mycobacterium tuberculosis) require biotin synthesis for pathogenesis. Humans lack a biotin synthetic pathway hence bacterial biotin synthesis is a prime target for new therapeutic agents. The biotin synthetic pathway is readily divided into early and late segments. Although pimelate, a seven carbon α,ω-dicarboxylic acid that contributes seven of the ten biotin carbons atoms, was long known to be a biotin precursor, its biosynthetic pathway was a mystery until the E. coli pathway was discovered in 2010. Since then, diverse bacteria encode evolutionarily distinct enzymes that replace enzymes in the E. coli pathway. Two new bacterial pimelate synthesis pathways have been elucidated. In contrast to the early pathway the late pathway, assembly of the fused rings of the cofactor, was long thought settled. However, a new enzyme that bypasses a canonical enzyme was recently discovered as well as homologs of another canonical enzyme that functions in synthesis of another protein-bound coenzyme, lipoic acid. Most bacteria tightly regulate transcription of the biotin synthetic genes in a biotin-responsive manner. The bifunctional biotin ligases which catalyze attachment of biotin to its cognate enzymes and repress biotin gene transcription are best understood regulatory system.
Collapse
Affiliation(s)
- Chaiyos Sirithanakorn
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA.,Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Turner ME, Huynh K, Carroll RK, Ahn SJ, Rice KC. Characterization of the Streptococcus mutans SMU.1703c-SMU.1702c Operon Reveals Its Role in Riboflavin Import and Response to Acid Stress. J Bacteriol 2020; 203:e00293-20. [PMID: 33077636 PMCID: PMC7950412 DOI: 10.1128/jb.00293-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/15/2020] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans utilizes numerous metabolite transporters to obtain essential nutrients in the "feast or famine" environment of the human mouth. S. mutans and most other streptococci are considered auxotrophic for several essential vitamins including riboflavin (vitamin B2), which is used to generate key cofactors and to perform numerous cellular redox reactions. Despite the well-known contributions of this vitamin to central metabolism, little is known about how S. mutans obtains and metabolizes B2 The uncharacterized protein SMU.1703c displays high sequence homology to the riboflavin transporter RibU. Deletion of SMU.1703c hindered S. mutans growth in complex and defined medium in the absence of saturating levels of exogenous riboflavin, whereas deletion of cotranscribed SMU.1702c alone had no apparent effect on growth. Expression of SMU.1703c in a Bacillus subtilis riboflavin auxotroph functionally complemented growth in nonsaturating riboflavin conditions. S. mutans was also able to grow on flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN) in an SMU.1703c-dependent manner. Deletion of SMU.1703c and/or SMU.1702c impacted S. mutans acid stress tolerance, as all mutants showed improved growth at pH 5.5 compared to that of the wild type when medium was supplemented with saturating riboflavin. Cooccurrence of SMU.1703c and SMU.1702c, a hypothetical PAP2 family acid phosphatase gene, appears unique to the streptococci and may suggest a connection of SMU.1702c to the acquisition or metabolism of flavins within this genus. Identification of SMU.1703c as a RibU-like riboflavin transporter furthers our understanding of how S. mutans acquires essential micronutrients within the oral cavity and how this pathogen successfully competes within nutrient-starved oral biofilms.IMPORTANCE Dental caries form when acid produced by oral bacteria erodes tooth enamel. This process is driven by the fermentative metabolism of cariogenic bacteria, most notably Streptococcus mutans Nutrient acquisition is key in the competitive oral cavity, and many organisms have evolved various strategies to procure carbon sources or necessary biomolecules. B vitamins, such as riboflavin, which many oral streptococci must scavenge from the oral environment, are necessary for survival within the competitive oral cavity. However, the primary mechanism and proteins involved in this process remain uncharacterized. This study is important because it identifies a key step in S. mutans riboflavin acquisition and cofactor generation, which may enable the development of novel anticaries treatment strategies via selective targeting of metabolite transporters.
Collapse
Affiliation(s)
- Matthew E Turner
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Khanh Huynh
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Ronan K Carroll
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Kelly C Rice
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
20
|
Burcham LR, Hill RA, Caulkins RC, Emerson JP, Nanduri B, Rosch JW, Fitzkee NC, Thornton JA. Streptococcus pneumoniae metal homeostasis alters cellular metabolism. Metallomics 2020; 12:1416-1427. [PMID: 32676626 PMCID: PMC7530088 DOI: 10.1039/d0mt00118j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Streptococcus pneumoniae colonizes the human nasopharyngeal mucosa and is a leading cause of community-acquired pneumonia, acute otitis media, and bacterial meningitis. Metal ion homeostasis is vital to the survival of this pathogen across diverse biological sites and contributes significantly to colonization and invasive disease. Microarray and qRT-PCR analysis revealed an upregulation of an uncharacterized operon (SP1433-1438) in pneumococci subjected to metal-chelation by N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN). Supplementation of zinc, cobalt, and nickel following TPEN treatment significantly abrogated induction. BLASTP comparisons and protein topology analysis predicted this locus to encode components of ATP binding cassette (ABC) transporters involved in multidrug resistance (SP1434-1435) and energy-coupling factor (ECF) transporters (SP1436-1438). Inductively coupled plasma mass spectrometry (ICP-MS) analysis identified differences in intracellular metal content in a Δ1434-8 mutant strain compared to parental T4R. Further, analysis of the secreted metabolome of WT and Δ1434-8 strains identified significant changes in pneumococcal glycolytic and amino acid metabolic pathways, indicating a shift towards mixed acid fermentation. Additionally, proteomic analysis revealed differentially expressed proteins in the Δ1434-8 mutant strain, with nearly 20% regulated by the global catabolite repressor, CcpA. Based on these findings, we propose that the transporters encoded by SP1433-1438 are involved in regulating the central metabolism of S. pneumoniae and contributing to bacterial survival during metal stress.
Collapse
Affiliation(s)
- Lindsey R Burcham
- Department of Biological Sciences, Mississippi State University, Mississippi State MS 39762, USA.
| | - Rebecca A Hill
- Department of Chemistry, Mississippi State University, Mississippi State MS 39762, USA
| | - Rachel C Caulkins
- Department of Biological Sciences, Mississippi State University, Mississippi State MS 39762, USA.
| | - Joseph P Emerson
- Department of Chemistry, Mississippi State University, Mississippi State MS 39762, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State MS 39762, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State MS 39762, USA
| | - Justin A Thornton
- Department of Biological Sciences, Mississippi State University, Mississippi State MS 39762, USA.
| |
Collapse
|
21
|
Hillman ET, Kozik AJ, Hooker CA, Burnett JL, Heo Y, Kiesel VA, Nevins CJ, Oshiro JM, Robins MM, Thakkar RD, Wu ST, Lindemann SR. Comparative genomics of the genus Roseburia reveals divergent biosynthetic pathways that may influence colonic competition among species. Microb Genom 2020; 6:mgen000399. [PMID: 32589566 PMCID: PMC7478625 DOI: 10.1099/mgen.0.000399] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Roseburia species are important denizens of the human gut microbiome that ferment complex polysaccharides to butyrate as a terminal fermentation product, which influences human physiology and serves as an energy source for colonocytes. Previous comparative genomics analyses of the genus Roseburia have examined polysaccharide degradation genes. Here, we characterize the core and pangenomes of the genus Roseburia with respect to central carbon and energy metabolism, as well as biosynthesis of amino acids and B vitamins using orthology-based methods, uncovering significant differences among species in their biosynthetic capacities. Variation in gene content among Roseburia species and strains was most significant for cofactor biosynthesis. Unlike all other species of Roseburia that we analysed, Roseburia inulinivorans strains lacked biosynthetic genes for riboflavin or pantothenate but possessed folate biosynthesis genes. Differences in gene content for B vitamin synthesis were matched with differences in putative salvage and synthesis strategies among species. For example, we observed extended biotin salvage capabilities in R. intestinalis strains, which further suggest that B vitamin acquisition strategies may impact fitness in the gut ecosystem. As differences in the functional potential to synthesize components of biomass (e.g. amino acids, vitamins) can drive interspecies interactions, variation in auxotrophies of the Roseburia spp. genomes may influence in vivo gut ecology. This study serves to advance our understanding of the potential metabolic interactions that influence the ecology of Roseburia spp. and, ultimately, may provide a basis for rational strategies to manipulate the abundances of these species.
Collapse
Affiliation(s)
- Ethan T. Hillman
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
| | - Ariangela J. Kozik
- Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Present address: Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Casey A. Hooker
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - John L. Burnett
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yoojung Heo
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Violet A. Kiesel
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Clayton J. Nevins
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
- Present address: Department of Soil and Water Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Jordan M.K.I. Oshiro
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Melissa M. Robins
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Riya D. Thakkar
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA
| | - Sophie Tongyu Wu
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Stephen R. Lindemann
- Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
22
|
Martínez-Torró C, Torres-Puig S, Monge M, Sánchez-Alba L, González-Martín M, Marcos-Silva M, Perálvarez-Marín A, Canals F, Querol E, Piñol J, Pich OQ. Transcriptional response to metal starvation in the emerging pathogen Mycoplasma genitalium is mediated by Fur-dependent and -independent regulatory pathways. Emerg Microbes Infect 2019; 9:5-19. [PMID: 31859607 PMCID: PMC6968530 DOI: 10.1080/22221751.2019.1700762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transition metals participate in numerous enzymatic reactions and they are essential for survival in all living organisms. For this reason, bacterial pathogens have evolved dedicated machineries to effectively compete with their hosts and scavenge metals at the site of infection. In this study, we investigated the mechanisms controlling metal acquisition in the emerging human pathogen Mycoplasma genitalium. We observed a robust transcriptional response to metal starvation, and many genes coding for predicted lipoproteins and ABC-transporters were significantly up-regulated. Transcriptional analysis of a mutant strain lacking a metalloregulator of the Fur family revealed the activation of a full operon encoding a putative metal transporter system and a gene coding for a Histidine-rich lipoprotein (Hrl). We recognized a conserved sequence with dyad symmetry within the promoter region of the Fur-regulated genes. Mutagenesis of the predicted Fur operator within the hrl promoter abrogated Fur- and metal-dependent expression of a reporter gene. Metal starvation still impelled a strong transcriptional response in the fur mutant, demonstrating the existence of Fur-independent regulatory pathways controlling metal homeostasis. Finally, analysis of metal accumulation in the wild-type strain and the fur mutant by ICP-MS revealed an important role of Fur in nickel acquisition.
Collapse
Affiliation(s)
- Carlos Martínez-Torró
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Torres-Puig
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Monge
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Lucía Sánchez-Alba
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel González-Martín
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marina Marcos-Silva
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Canals
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oscar Q Pich
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|