1
|
Hirad AH, Alarfaj AA, Ravindran B, Narasimhamoorthi SP. Betanin inspired zinc oxide nanoparticles: The potential antioxidant and anticancer activity against human lung cancer cell line (A549). Biochem Biophys Res Commun 2025; 742:151019. [PMID: 39642708 DOI: 10.1016/j.bbrc.2024.151019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND INFORMATION Lung cancer is the most frequently reported disease on a global scale. The bioactive substances are less successful in specifically destroying cancer cells. To prevent early inactivation and ensure targeted delivery of bioactive chemicals to cancer cells. Betanin is known as nitrogenous water-soluble molecule which possess anti-inflammatory, hepatoprotective, antioxidant, and anticancer properties. AIM OF THE STUDY This work evaluates the anti-cancer and anti-oxidant properties of Betanin coated zinc oxide nanoparticles on the A549 lung cancer cell line. MATERIALS AND METHODS In the current work, Betanin coated Zinc oxide nanoparticles (Betanin coated ZnO NPs) were made utilizing Betanin, a phytochemical. SEM, FTIR, DLS, and UV-Vis were used to evaluate their properties. Trypan blue and MTT were used to confirm cell survival and cytotoxicity of ZnO nanoparticles at various dosages. The morphological evaluation of A549 cells was investigated by phase contrast microscopy and apoptosis by propidium iodide staining. The membrane integrity of mitochondria was investigated by rhodamine 123 staining and observed under fluorescence microscope. The anti-oxidant ability of ZnO nanoparticles was analyzed by level of catalase, glutathione, nitric oxide, lipid peroxidation, and superoxide dismutase using UV spectrophotometric analysis. Studies on gene expression (Bcl2, P53and BAX) were conducted to assess the molecular mechanism of apoptosis mediated by synthesized nanoparticle and level of matrix metalloproteinase -2 (MMP-2) by gelatin zymography. RESULTS At the peak of 383 nm in the UV band, zinc oxide NP synthesis was confirmed. The FT-IR data demonstrated that zinc oxide nanoparticles were effectively coated with Betanin and by dynamic light scattering analysis confirmed particle size to be 100.8 nm. The presence of cubic, spherical, and platelet-shaped zinc oxide nanoparticles has been observed by SEM analysis. The nanoparticles of zinc oxide (ZnO) were synthesized chemically and exhibited decreasing cell viability and increasing cytotoxicity and apoptosis in dose dependent manner. The levels of LPO activity increased significantly and NO, antioxidant enzymes (GSH, SOD, and CAT) activity decreased significantly (P <0.0001). Our results demonstrated that A549 cells treated with Betanin loaded ZnO nanoparticles to prevent oxidation by scavenging free radicals and increased levels of gene expression related to apoptotic proteins BAX, p53 and decreased level of expression in Bcl2. Further, level of matrix metalloproteinase -2 (MMP-2) decreased with increase in concentration of nanoparticle. CONCLUSION As per the research described above, lung cancer cells were effectively targeted by the anticancer and antioxidant abilities of ZnO nanoparticles inspired by Betanin (A549).
Collapse
Affiliation(s)
- Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box.2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box.2455, Riyadh, 11451, Saudi Arabia
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| | - Shilpa Perumal Narasimhamoorthi
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
| |
Collapse
|
2
|
Fang J, Tan J, Lin L, Cao Y, Xu R, Lin C, He G, Xu X, Xiao X, Jiang Q, Saw PE. Bioactive Nanotherapeutic Ultrasound Contrast Agent for Concurrent Breast Cancer Ultrasound Imaging and Treatment. Adv Healthc Mater 2024; 13:e2401436. [PMID: 38923231 DOI: 10.1002/adhm.202401436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Contrast-enhanced ultrasound (CEUS) plays a crucial role in cancer diagnosis. The use of ultrasound contrast agents (UCAs) is inevitable in CEUS. However, current applications of UCAs primarily focus on enhancing imaging quality of ultrasound contrast rather than serving as integrated platforms for both diagnosis and treatment in clinical settings. In this study, a novel UCA, termed NPs-DPPA(C3F8), is innovatively prepared using a combination of nanoprecipitation and ultrasound vibration methods. The DPPA lipid possesses inherent antiangiogenic and antitumor activities, and when combined with C3F8, it functions as a theranostic agent. Notably, the preparation of NPs-DPPA(C3F8) is straightforward, requiring only one hour from raw materials to the final product due to the use of a single material, DPPA. NPs-DPPA(C3F8) exhibits inherent antiangiogenic and biotherapeutic activities, effectively inhibiting triple-negative breast cancer (TNBC) angiogenesis and reducing VEGFA expression both in vitro and in vivo. Clinically, NPs-DPPA(C3F8) enables simultaneous real-time imaging, tumor assessment, and antitumor activity. Additionally, through ultrasound cavitation, NPs-DPPA(C3F8) can overcome the dense vascular walls to increase accumulation at the tumor site and facilitate internalization by tumor cells. The successful preparation of NPs-DPPA(C3F8) offers a novel approach for integrating clinical diagnosis and treatment of TNBC.
Collapse
Affiliation(s)
- Junyue Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Cellular and Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Jiabao Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Li Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Rui Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Chunhao Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Gui He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Cellular and Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Xiaoyun Xiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Qiongchao Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Department of General Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| |
Collapse
|
3
|
Mishra P, Faruqui T, Khanam S, Khubaib M, Ahmad I, Saeed M, Khan S. Sustainable synthesis of bakuchiol-mediated gold nanoparticles for drug delivery against bacterial strains and tumor microenvironments, and its in silico target proteins identification. Front Mol Biosci 2024; 11:1469107. [PMID: 39385982 PMCID: PMC11462060 DOI: 10.3389/fmolb.2024.1469107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction The sustained synthesis of gold nanoparticles (GNPs) has gained significant attention in biomedical applications. In this study, we explored the antibacterial and anticancer potential of bakuchiol-mediated gold nanoparticles (Bak-GNPs). Bakuchiol, a natural compound found in Psoralea corylifolia seeds, serves as both a reducing and stabilizing agent for green synthesis of GNPs. Our objectives include network analysis, molecular docking, synthesis of GNPs, characterization, and antipathogenic and anticancer efficacy of Bak-GNPs against lung and liver cancers. Methods Protein-protein interaction networks were analyzed to identify effective protein targets for bakuchiol in lung and liver cancers. A molecular docking study was performed to validate the efficacy of the target protein against lung and liver cancer. Furthermore, Bak-GNPs were synthesized using bakuchiol and characterized by various techniques such as UV-visible spectroscopy, dynamic light scattering (DLS), zeta potential transmission electron microscopy (TEM), and Fourier-transform infrared (FTIR) spectroscopy, and their potential against pathogens and lung and liver cancers. Results GNAI3 emerged as the most promising target, with a binding energy of -7.5 kcal/mol compared to PTGER3's -6.9 kcal/mol, different characterization techniques revealed the successful synthesis of Bak-GNPs. Bak-GNPs exhibited potent antibacterial activity against both Gram-positive and Gram-negative bacteria, as confirmed by minimum inhibitory concentration (MIC) values. Bak-GNPs demonstrated significant anticancer effects on A549 (lung cancer) and HepG2 (liver cancer) cells, with IC50 values of 11.19 μg/mL and 6.6 μg/mL, respectively. Induction of apoptosis and inhibition of cell proliferation were observed in both the cell lines. The increased production of reactive oxygen species (ROS) contributes to its anticancer effects. Discussion This study highlights promising biomedical applications of bakuchiol-mediated GNPs. This green synthesis approach using bakuchiol provides a sustainable method for producing nanoparticles with enhanced biological activities. Further exploration of the pharmacological properties and mechanisms of Bak-GNPs is required to optimize their therapeutic efficacy for clinical use.
Collapse
Affiliation(s)
- Pooja Mishra
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Tabrez Faruqui
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Sheeba Khanam
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohd Khubaib
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Salman Khan
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Kaur A, Sharma Y, Singh G, Kumar A, Kaushik N, Khan AA, Bala K. Novel biogenic silver nanoconjugates of Abrus precatorius seed extracts and their antiproliferative and antiangiogenic efficacies. Sci Rep 2023; 13:13514. [PMID: 37598190 PMCID: PMC10439965 DOI: 10.1038/s41598-023-40079-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/04/2023] [Indexed: 08/21/2023] Open
Abstract
Biogenic silver nanoconjugates (AgNCs), derived from medicinal plants, have been widely explored in the field of biomedicines. AgNCs for the first-time were synthesized using ethyl acetate seed extracts of Abrus precatorius and their antiproliferative and antiangiogenic efficacies were evaluated against cervical and oral carcinoma. Ultraviolet-Visible spectrophotometry, dynamic light Scattering (DLS), and scanning electron microscopy (SEM) were used for characterization of AgNCs. Antiproliferative activity was investigated using MTT, DNA fragmentation and in-vitro antioxidant enzyme activity assays. In-vivo chick chorioallantoic membrane (CAM) model was used to evaluate antiangiogenic activity. A total of 11 compounds were identified in both the extracts in GCMS analysis. The synthesized AgNCs were spherical shaped with an average size of 97.4 nm for AgAPE (Sox) and 64.3 nm for AgAPE (Mac). AgNCs possessed effective inhibition against Hep2C and KB cells. In Hep2C cells, AgAPE (Mac) revealed the highest SOD, catalase, GST activity and lower MDA content, whereas AgAPE (Sox) showed the highest GSH content. On the other hand, in KB cells, AgAPE (Sox) exhibited the higher SOD, GST activity, GSH content, and least MDA content, while AgAPE (Mac) displayed the highest levels of catalase activity. Docking analysis revealed maximum binding affinity of safrole and linoleic acid with selected targets. AgAPE (Sox), AgAPE (Mac) treatment profoundly reduced the thickness, branching, and sprouting of blood vessels in the chick embryos. This study indicates that A. precatorius-derived AgNCs have enhanced efficacies against cervical and oral carcinoma as well as against angiogenesis, potentially limiting tumour growth.
Collapse
Affiliation(s)
- Amritpal Kaur
- Therapeutics and Molecular Diagnostic Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Yash Sharma
- Therapeutics and Molecular Diagnostic Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Gagandeep Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, Hauz Khas, India
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, CCRAS, Ministry of Ayush, Govt. of India, Jhansi, India
| | - Anoop Kumar
- National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Nutan Kaushik
- Amity Food and Agriculture Foundation, Amity University, Noida, Uttar Pradesh, India
| | - Asim Ali Khan
- Central Council for Research in Unani Medicine (CCRUM), Ministry of Ayush, Janakpuri, New Delhi, India
| | - Kumud Bala
- Therapeutics and Molecular Diagnostic Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
5
|
Zolqadri R, Heidari Damani M, Malekjani N, Saeed Kharazmi M, Mahdi Jafari S. Rice bran protein-based delivery systems as green carriers for bioactive compounds. Food Chem 2023; 420:136121. [PMID: 37086611 DOI: 10.1016/j.foodchem.2023.136121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/24/2023]
Abstract
Natural protein-based delivery systems have received special interest over the last few years. Different carriers are already developed in the food industry to protect, encapsulate and deliver bioactive compounds. Rice bran protein (RBP) is currently used as a carrier in encapsulating bioactives due to its excellent functional properties, great natural value, low price, good biodegradability, and biocompatibility. Recently, RBP-based carriers including emulsions, microparticles, nanoparticles, nanoemulsions, liposomes, and core-shell structures have been studied extensively in the literature. This study reviews the important characteristics of RBP in developing bioactive delivery systems. The recent progress in various modification approaches for improving RBP properties as carriers along with different types of RBP-based bioactive delivery systems is discussed. In the final part, the bioavailability and release profiles of bioactives from RBP-based carriers and the recent developments are described.
Collapse
Affiliation(s)
- Roshanak Zolqadri
- Department of Food Science and Technology, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Maryam Heidari Damani
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
6
|
Mycosynthesis of Metal-Containing Nanoparticles-Fungal Metal Resistance and Mechanisms of Synthesis. Int J Mol Sci 2022; 23:ijms232214084. [PMID: 36430561 PMCID: PMC9696665 DOI: 10.3390/ijms232214084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
In the 21st century, nanomaterials play an increasingly important role in our lives with applications in many sectors, including agriculture, biomedicine, and biosensors. Over the last two decades, extensive research has been conducted to find ways to synthesise nanoparticles (NPs) via mediation with fungi or fungal extracts. Mycosynthesis can potentially be an energy-efficient, highly adjustable, environmentally benign alternative to conventional physico-chemical procedures. This review investigates the role of metal toxicity in fungi on cell growth and biochemical levels, and how their strategies of resistance, i.e., metal chelation, biomineral formation, biosorption, bioaccumulation, compartmentalisation, and efflux of metals from cells, contribute to the synthesis of metal-containing NPs used in different applications, e.g., biomedical, antimicrobial, catalytic, biosensing, and precision agriculture. The role of different synthesis conditions, including that of fungal biomolecules serving as nucleation centres or templates for NP synthesis, reducing agents, or capping agents in the synthesis process, is also discussed. The authors believe that future studies need to focus on the mechanism of NP synthesis, as well as on the influence of such conditions as pH, temperature, biomass, the concentration of the precursors, and volume of the fungal extracts on the efficiency of the mycosynthesis of NPs.
Collapse
|
7
|
Abstract
The identification of secondary metabolites present in both terrestrial and marine species continues to be a fundamental and privileged path for the emergence of new and fundamental natural products available on the market with very different applications [...]
Collapse
|
8
|
Transforming Tea Catechins into Potent Anticancer Compound: Analysis of Three Boronated-PEG Delivery System. MICROMACHINES 2021; 13:mi13010045. [PMID: 35056210 PMCID: PMC8780676 DOI: 10.3390/mi13010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
Chemotherapy has led to many undesirable side effects, as these are toxic drugs that are unable to differentiate between cancer and normal cells. Polyphenols (tea catechins) are an ideal option as alternative chemotherapeutics owing to their inherent anticancer properties, antioxidant properties and being naturally occurring compounds, are deemed safe for consumption. However, without proper administration, the bioavailability of these compounds is low and inefficient. Therefore, proper delivery of these phenolic compounds is vital for cancer therapy. Herein, we analyzed three potential solutions to creating nanoparticle drugs using naturally occurring phenolic compounds (piceatannol (PIC), epigallocatechin gallate hydrophilic (EGCG) and l-epicatechin (EPI)). By using a simple pi-pi stacking mechanism, we utilized boronated PEG (PEG-Br) as an anchor to efficiently load EPI, PIC and EGCG, respectively, to produce three effective phenolic compound-based nanoparticles, which could be delivered safely in systemic circulation, yet detach from its cargo intracellularly to exert its anticancer effect for effective cancer therapy.
Collapse
|
9
|
Ion D, Niculescu AG, Păduraru DN, Andronic O, Mușat F, Grumezescu AM, Bolocan A. An Up-to-Date Review of Natural Nanoparticles for Cancer Management. Pharmaceutics 2021; 14:18. [PMID: 35056915 PMCID: PMC8779479 DOI: 10.3390/pharmaceutics14010018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer represents one of the leading causes of morbidity and mortality worldwide, imposing an urgent need to develop more efficient treatment alternatives. In this respect, much attention has been drawn from conventional cancer treatments to more modern approaches, such as the use of nanotechnology. Extensive research has been done for designing innovative nanoparticles able to specifically target tumor cells and ensure the controlled release of anticancer agents. To avoid the potential toxicity of synthetic materials, natural nanoparticles started to attract increasing scientific interest. In this context, this paper aims to review the most important natural nanoparticles used as active ingredients (e.g., polyphenols, polysaccharides, proteins, and sterol-like compounds) or as carriers (e.g., proteins, polysaccharides, viral nanoparticles, and exosomes) of various anticancer moieties, focusing on their recent applications in treating diverse malignancies.
Collapse
Affiliation(s)
- Daniel Ion
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Dan Nicolae Păduraru
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Octavian Andronic
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Florentina Mușat
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Alexandra Bolocan
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
10
|
Arya P, Kumar P. Diosgenin a steroidal compound: An emerging way to cancer management. J Food Biochem 2021; 45:e14005. [PMID: 34799857 DOI: 10.1111/jfbc.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
To endure respective research for cancer via common food ingredients has become more prominent with preferably minuscule toxicity. Spices are emerging as a new source of bioactive compounds which have the potential to cure cancer. Fenugreek is rich in diosgenin that has curative and preventive potency toward various cancers. Cancer is invading various cellular mechanisms by altering cellular receptors. Cancer falsifies healthy cells by altered cell receptors like p38, p53, mTOR, Akt, and PARP. Distinct stages of cancer development are triggered by various cellular mechanisms. Diosgenin helps in suppressing cancer mechanisms and induces programmed cell death. Diosgenin brought changes in treatment line of lung, breast, prostate, liver, and colon cancer. Apoptosis changes cytoplasmic different caspase pathways and triggers selected sequence for cancer cell line death. Cell death comprised of series of events carried out by metalloprotease caspase. The complex relationship among cancer, caspase, cell death, and cellular receptors is reviewed in this article in respect of diosgenin. The utilization of diosgenin in creating a bar for cancer, its triggering sites, and various ways to cause apoptosis of abnormal cells. This article focused on diosgenin, its role in the prevention of different cancer and cellular apoptosis throughout different pathways involved in complex interaction of bioactive compound-cellular mechanism cancer. PRACTICAL APPLICATIONS: The concept of curing diseases from daily routine food is quite old. Fenugreek is an excellent source of various bioactive compounds especially diosgenin. Diosgenin is steroidal sapogenin that cures various health issues including cancers. Cancer is one of the most life-threating disease which can affect any cell, tissue, and organ in living system. Diosgenin is proved to be beneficial in terms curing cancer of various types but majorly include lung, liver, colon breast, and prostate. Cancer cure with diosgenin is providing a new base to the pharmaceutical and medical researchers to commence new and more specific journey of diosgenin. Diosgenin could alter cellular pathways that modify cell mechanism in way toward treating cancer. Cell mechanism mainly affected by the interaction of cell signals and cell different receptors that cause triggered cell death. This review article focused over various cancer and diosgenin effect in controlling different cellular pathways which include cellular signaling and cell death mechanism.
Collapse
Affiliation(s)
- Prajya Arya
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Pradyuman Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| |
Collapse
|
11
|
Sun X, Li L, Zhang H, Dong M, Wang J, Jia P, Bu T, Wang X, Wang L. Near-Infrared Light-Regulated Drug-Food Homologous Bioactive Molecules and Photothermal Collaborative Precise Antibacterial Therapy Nanoplatform with Controlled Release Property. Adv Healthc Mater 2021; 10:e2100546. [PMID: 34081401 DOI: 10.1002/adhm.202100546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/30/2021] [Indexed: 12/28/2022]
Abstract
Herein, a collaborative precise antibacterial wound healing therapy nanoplatform integrating drug-food homologous bioactive molecule (cinnamaldehyde, CA) with photothermal therapy (PTT) is presented. Copper-gallic acids-cinnamaldehyde-polydopamine nanorods (Cu-GA-CA-PDA NRs) with near-infrared light (NIR)-controlled CA release property are fabricated, which also integrate CA and photothermal synergistic sterilization, as well as antioxidant, anti-inflammatory, and anti-infection capacities. The characteristics of NIR-mediated CA release and photothermal response of Cu-GA-CA-PDA NRs support their excellent sterilization performance in vitro/in vivo. In addition, under the guidance of NIR, Cu-GA-CA-PDA NRs can hinder the formation of inflammatory cells, reduce oxidative stress damage, accelerate the regeneration of skin tissues in S. aureus-infected wound sites, and achieve the goal of promoting wound healing. Therefore, NIR-mediated Cu-GA-CA-PDA NRs with multifunctional biological activities provide a highly competitive strategy for curing bacteria-infected wounds.
Collapse
Affiliation(s)
- Xinyu Sun
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 P. R. China
| | - Lihua Li
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 P. R. China
| | - Hui Zhang
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 P. R. China
| | - Mengna Dong
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 P. R. China
| | - Jiao Wang
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 P. R. China
| | - Pei Jia
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 P. R. China
| | - Tong Bu
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 P. R. China
| | - Xin Wang
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 P. R. China
| | - Li Wang
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 P. R. China
| |
Collapse
|
12
|
Er Saw P. BIOI Virtual Academic Series PART 2: Frontiers and Multidisciplinarity in Nanomedicine. BIO INTEGRATION 2020. [DOI: 10.15212/bioi-2020-0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
13
|
Cheng C, Sui B, Wang M, Hu X, Shi S, Xu P. Carrier-Free Nanoassembly of Curcumin-Erlotinib Conjugate for Cancer Targeted Therapy. Adv Healthc Mater 2020; 9:e2001128. [PMID: 32893507 PMCID: PMC7593849 DOI: 10.1002/adhm.202001128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Indexed: 12/30/2022]
Abstract
Anticancer drug-loaded nanoparticles have been explored extensively to decrease side effects while improving their therapeutic efficacy. However, due to the low drug loading content, premature drug release, nonstandardized carrier structure, and difficulty in predicting the fate of the carrier, only a few nanomedicines have been approved for clincial use. Herein, a carrier-free nanoparticle based on the self-assembly of the curcumin-erlotinib conjugate (EPC) is developed. The EPC nanoassembly exhibits more potent cell killing, better antimigration, and anti-invasion effects for BxPC-3 pancreatic cancer cells than the combination of free curcumin and erlotinib. Furthermore, benefiting from both passive and active tumor targeting effect, EPC nanoassembly can effectively accumulate in the tumor tissue in a xenograft pancreatic tumor mouse model. Consequently, EPC effectively reduces the growth of pancreatic tumors and extends the median survival time of the tumor-bearing mice from 22 to 68 days. In addition, no systemic toxicity is detected in the mice receiving EPC treatment. Attributed to the uniformity of the curcumin-erlotinib conjugate and easiness of scaling up, it is expected that the EPC can be translated into a powerful tool in fighting against pancreatic cancer and other epidermal growth factor receptor positive cancers.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, United States
| | - Binglin Sui
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, United States
| | - Mingming Wang
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, United States
| | - Xiangxiang Hu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, United States
| | - Shanshan Shi
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, United States
| | - Peisheng Xu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, United States
| |
Collapse
|
14
|
Rambaran TF. Nanopolyphenols: a review of their encapsulation and anti-diabetic effects. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3110-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AbstractPolyphenols are believed to possess numerous health benefits and can be grouped as phenolic acids, flavonoids or non-flavonoids. Research involving the synthesis of nanopolyphenols has attracted interest in the areas of functional food, nutraceutical and pharmaceutical development. This is in an effort to overcome current challenges which limit the application of polyphenols such as their rapid elimination, low water-solubility, instability at low pH, and their particle size. In the synthesis of nanopolyphenols, the type of nanocarrier used, the nanoencapsulation technique employed and the type of polymers that constitute the drug delivery system are crucial. For this review, all mentioned factors which can influence the therapeutic efficacy of nanopolyphenols were assessed. Their efficacy as anti-diabetic agents was also evaluated in 33 publications. Among these were phenolic acid (1), flavonoids (13), non-flavonoids (17) and polyphenol-rich extracts (2). The most researched polyphenols were quercetin and curcumin. Nanoparticles were the main nanocarrier and the size of the nanopolyphenols ranged from 15 to 333 nm with encapsulation efficiency and drug loading capacities of 56–97.7% and 4.2–53.2%, respectively. The quantity of nanomaterial administered orally ranged from 1 to 300 mg/kg/day with study durations of 1–70 days. Most studies compared the effect of the nanopolyphenol to its free-form and, in all but three cases, significantly greater effects of the former were reported. Assessment of the polyphenol to understand its properties and the subsequent synthesis of its nanoencapsulated form using suitable nanocarriers, polymers and encapsulation techniques can result in effective therapeutic agents for the treatment of diabetes.
Collapse
|
15
|
Chung CH, Jung W, Keum H, Kim TW, Jon S. Nanoparticles Derived from the Natural Antioxidant Rosmarinic Acid Ameliorate Acute Inflammatory Bowel Disease. ACS NANO 2020; 14:6887-6896. [PMID: 32449857 DOI: 10.1021/acsnano.0c01018] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rosmarinic acid (RA), one of the most important polyphenol-based antioxidants, has received growing interest because of its bioactive properties, including anti-inflammatory, anticancer, and antibacterial activities. Despite the high therapeutic potential of RA, its intrinsic properties of poor water solubility and low bioavailability have limited its translation into the clinic. Here, we report on the synthesis and preparation of PEGylated RA-derived nanoparticles (RANPs) and their use as a therapeutic nanomedicine for treatment of inflammatory bowel disease (IBD) in a dextran sulfate sodium (DSS)-induced acute colitis mouse model. PEGylated RA, synthesized via a one-step process from RA and a PEG-containing amine, self-assembled in buffer to form nanoparticles (RANPs) with a diameter of 63.5 ± 4.0 nm. The resulting RANPs showed high colloidal stability in physiological medium up to 2 weeks. RANPs were capable of efficiently scavenging H2O2, thereby protecting cells from H2O2-induced damage. Furthermore, the corticosteroid drug, dexamethasone (DEX), could be loaded into RANPs and released in response to a reactive oxygen species stimulus. Intravenously administered RANPs exhibited significantly improved pharmacokinetic parameters compared with those of the parent RA and were preferentially localized to the inflamed colon. Intravenous administration of RANPs in DSS-induced colitis mice substantially mitigated colonic inflammation in a dose-dependent manner compared with the parent RA, as evidenced by significantly reduced disease activity index scores, body weight loss, and colonic inflammatory damage. In addition, RANPs suppressed expression and production of typical pro-inflammatory cytokines in the inflamed colon. Furthermore, DEX-loaded RANPs showed enhanced therapeutic efficacy in the colitis model compared with bare RANPs at the equivalent dose, indicating synergy with a conventional medication. These findings suggest that RANPs deserve further consideration as a potential therapeutic nanomedicine for the treatment of various inflammatory diseases, including IBD.
Collapse
|
16
|
Chen Z, Vong CT, Gao C, Chen S, Wu X, Wang S, Wang Y. Bilirubin Nanomedicines for the Treatment of Reactive Oxygen Species (ROS)-Mediated Diseases. Mol Pharm 2020; 17:2260-2274. [PMID: 32433886 DOI: 10.1021/acs.molpharmaceut.0c00337] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) are chemically reactive species that are produced in cellular aerobic metabolism. They mainly include superoxide anion, hydrogen peroxide, hydroxyl radicals, singlet oxygen, ozone, and nitric oxide and are implicated in many physiological and pathological processes. Bilirubin, a cardinal pigment in the bile, has been increasingly investigated to treat cancer, diabetes, ischemia-reperfusion injury, asthma, and inflammatory bowel diseases (IBD). Indeed, bilirubin has been shown to eliminate ROS production, so it is now considered as a promising therapeutic agent for ROS-mediated diseases and can be used for the development of antioxidative nanomedicines. This review summarizes the current knowledge of the physiological mechanisms of ROS production and its role in pathological changes and focuses on discussing the antioxidative effects of bilirubin and its application in the experimental studies of nanomedicines. Previous studies have shown that bilirubin was mainly used as a responsive molecule in the microenvironment of ROS overproduction in neoplastic tissues for the development of anticancer nanodrugs; however, it could also exert powerful ROS scavenging activity in chronic inflammation and ischemia-reperfusion injury. Therefore, bilirubin, as an inartificial ROS scavenger, is expected to be used for the development of nanomedicines against more diseases due to the universality of ROS involvement in human pathological conditions.
Collapse
Affiliation(s)
- Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999087, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999087, China
| | - Caifang Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999087, China
| | - Shiyun Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999087, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999087, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999087, China
| |
Collapse
|
17
|
Pharmaceutical perspective on the translational hurdles of phytoconstituents and strategies to overcome. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|