1
|
Zhao W, Chen Z, Fu W, Ye C, Fu H, Xu T, Wu B, Chen L, Shan SJ. Induction of apoptosis and hypoxic stress in malignant melanoma cells via graphene-mediated far-infrared radiation. BMC Cancer 2025; 25:620. [PMID: 40197161 PMCID: PMC11974076 DOI: 10.1186/s12885-025-14031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Malignant melanoma (MM) is a highly aggressive skin tumor with a rising incidence and poor prognosis. Although current clinical treatments, including surgery, targeted therapy, immunotherapy, and radiotherapy, have shown some efficacy, therapeutic options remain limited for elderly patients and those with metastatic disease, highlighting the urgent need for novel therapeutic strategies. In recent years, the unique far-infrared radiation (FIR) properties of graphene have demonstrated potential applications in cancer treatment. However, the mechanisms underlying FIR's effects in MM therapy remain poorly understood. METHODS This study systematically evaluated the inhibitory effects of FIR on MM through in vitro cell experiments, animal models, and molecular mechanism analysis. First, the B16F10 melanoma cell line was used as the experimental model. The effects of FIR on cell proliferation, apoptosis, and the cell cycle were assessed using CCK-8 assays and flow cytometry, while RNA sequencing was conducted to analyze the associated signaling pathways. Second, specific caspase inhibitors were employed to further validate the mechanisms of FIR-induced apoptosis. Finally, a syngeneic tumor transplantation model in C57BL/6J mice was established to comfirm the anti-tumor efficacy of FIR in vivo, thereby comprehensively elucidating its anti-cancer mechanisms. RESULTS The results demonstrated that FIR significantly inhibits MM. In vitro experiments revealed that FIR treatment markedly suppressed B16F10 cell proliferation, induced apoptosis, caused G0/G1 phase cell cycle arrest, and downregulated the expression of hypoxia-related proteins such as HIF-1α. In animal studies, FIR significantly inhibited tumor growth. RNA sequencing revealed that FIR exerts its anti-cancer effects through multiple signaling pathways. Notably, the use of caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK, which specifically inhibit caspase-3 and caspase-9, respectively, can rescue cells from apoptosis induced by FIR treatment. CONCLUSION This study systematically elucidated that FIR exerts anti-tumor effects through multiple mechanisms, including inducing MM cell apoptosis, exacerbating hypoxic stress, and causing cell cycle arrest. The findings provide new insights and approaches for MM treatment and establish a theoretical foundation for the clinical application of FIR in cancer therapy.
Collapse
Affiliation(s)
- Wumei Zhao
- Department of Dermatology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361101, China
| | - Ziwen Chen
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361101, China
| | - Wenxing Fu
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361101, China
| | - Chenyan Ye
- Department of Dermatology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361101, China
| | - Haijing Fu
- Department of Dermatology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361101, China
| | - Tianyi Xu
- Department of Dermatology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361101, China
| | - Binghui Wu
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361101, China.
| | - Lina Chen
- Department of cardiology, Shaoxing Central Hospital, Shaoxing, 312030, China.
| | - Shi-Jun Shan
- Department of Dermatology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361101, China.
- Jinhua Fifth Hospital, College of Mathematical Medicine, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
2
|
Zhao Y, Chen Y, Yu F, Dai C, Zhang C, Liu M, Zheng N, Liu Z. Effects of graphene far-infrared and social network interventions on depression, anxiety and dementia in older adults. BMC Geriatr 2024; 24:755. [PMID: 39266984 PMCID: PMC11391651 DOI: 10.1186/s12877-024-05344-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Five-guaranteed elderly individuals are a special group of the elderly Chinese population faced with unique challenges; these individuals lack any financial resources (including support by relatives), and are solely reliant on the government to provide food, clothing, medical care, and housing as well as burials. In this article, we aim to investigate mood problems (depression, anxiety) and cognitive functioning in Five-guaranteed elderly individuals, and to validate the effectiveness of two promising interventions, graphene far-infrared intervention (GFII; an exploratory and noninvasive technique) and social network intervention (SNI), for elderly people to lay the foundation for future social service work. METHODS To address the emotional and cognitive difficulties experienced by this special group, we designed this study, which is the first to apply GFII in this population. We also administered SNI given the social isolation of these individuals, in addition to a corresponding control group. 108 elderly individuals in 3 elder care facilities were screened to evaluate eligibility to participate in the current study, including 44 from Facility A (allocated to the GFII group), 43 from Facility B (allocated to the SNI group), and 21 from Facility C (allocated to the control group). GFII lasts for four weeks, with professionally trained carers putting on and removing intervention caps for half an hour each day. SNI lasts for three weeks, three times a week, and consists of a total of nine themed activities. The length of an activity is 90 min. We also did pre- and post-test comparisons of depression, anxiety and cognition in each group of older adults. RESULTS The results showed that GFII led to immediate improvements in anxiety and cognitive impairment in the five-guaranteed elderly individuals, and the improvement in cognitive function was sustained over time. Moreover, SNI group showed significant improvements in cognitive function after the intervention period. CONCLUSIONS The GFII is a promising intervention that can be applied to intervene in cognitive and mood disorders in older adults. The GFII has short-term interventions for anxiety in older adults, but long-term effects for cognitive impairment. SNI also had an interventional effect on cognition.
Collapse
Affiliation(s)
- Yuqing Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yaru Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Feifei Yu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chenyi Dai
- Department of Psychology, University of California, Davis, CA, USA
| | - Chengyuan Zhang
- Feidong County Hospital of Traditional Chinese Medicine, Anhui, China
| | - Minxue Liu
- School of Educational Science, Anhui Normal University, Anhui, China
| | - Nanfeng Zheng
- College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China
| | - Zhengkui Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Li S, Miao XY, Zhang JS, Wei DD, Dong HJ, Xue R, Li JC, Zhang Y, Feng XX, Li J, Zhang YZ. Far-infrared therapy promotes exercise capacity and glucose metabolism in mice by modulating microbiota homeostasis and activating AMPK. Sci Rep 2024; 14:16314. [PMID: 39009692 PMCID: PMC11251280 DOI: 10.1038/s41598-024-67220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
The benefits of physical exercise on human health make it desirable to identify new approaches that would mimic or potentiate the effects of exercise to treat metabolic diseases. However, whether far-infrared (FIR) hyperthermia therapy could be used as exercise mimetic to realize wide-ranging metabolic regulation, and its underling mechanisms remain unclear. Here, a specific far-infrared (FIR) rays generated from graphene-based hyperthermia devices might promote exercise capacity and metabolisms. The material characterization showed that the graphene synthesized by chemical vapour deposition (CVD) was different from carbon fiber, with single-layer structure and high electrothermal transform efficiency. The emission spectra generated by graphene-FIR device would maximize matching those adsorbed by tissues. Graphene-FIR enhanced both core and epidermal temperatures, leading to increased blood flow in the femoral muscle and the abdominal region. The combination of microbiomic and metabolomic analysis revealed that graphene-FIR modulates the metabolism of the gut-muscle axis. This modulation was characterized by an increased abundance of short-chain fatty acids (SCFA)-producing bacteria and AMP, while lactic acid levels decreased. Furthermore, the principal routes involved in glucose metabolism, such as glycolysis and gluconeogenesis, were found to be altered. Graphene-FIR managed to stimulate AMPK activity by activating GPR43, thus enhancing muscle glucose uptake. Furthermore, a microbiota disorder model also demonstrated that the graphene-FIR effectively restore the exercise endurance with enhanced p-AMPK and GLUT4. Our results provided convincing evidence that graphene-based FIR therapy promoted exercise capacity and glucose metabolism via AMPK in gut-muscle axis. These novel findings regarding the therapeutic effects of graphene-FIR suggested its potential utility as a mimetic agent in clinical management of metabolic disorders.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiao-Yao Miao
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jin-Shui Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Dong-Dong Wei
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hua-Jin Dong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Rui Xue
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing-Cao Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiao-Xing Feng
- Grahope New Materials Technologies Inc., Shenzhen, 518063, China
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - You-Zhi Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
4
|
Lu G, Guo H, Zhang Y, Zhang M, Zhang T, Hu G, Zhang Q. Graphene Far-Infrared Irradiation Can Effectively Relieve the Blood Pressure Level of Rat Untr-HT in Primary Hypertension. Int J Mol Sci 2024; 25:6675. [PMID: 38928382 PMCID: PMC11204347 DOI: 10.3390/ijms25126675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Graphene, when electrified, generates far-infrared radiation within the wavelength range of 4 μm to 14 μm. This range closely aligns with the far-infrared band (3 μm to 15 μm), which produces unique physiological effects. Contraction and relaxation of vascular smooth muscle play a significant role in primary hypertension, involving the nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate pathway and the renin-angiotensin-aldosterone system. This study utilized spontaneously hypertensive rats (SHRs) as an untr-HT to investigate the impact of far-infrared radiation at specific wavelengths generated by electrified graphene on vascular smooth muscle and blood pressure. After 7 weeks, the blood pressure of the untr-HT group rats decreased significantly with a notable reduction in the number of vascular wall cells and the thickness of the vascular wall, as well as a decreased ratio of vessel wall thickness to lumen diameter. Additionally, blood flow perfusion significantly increased, and the expression of F-actin in vascular smooth muscle myosin decreased significantly. Serum levels of angiotensin II (Ang-II) and endothelin 1 (ET-1) were significantly reduced, while nitric oxide synthase (eNOS) expression increased significantly. At the protein level, eNOS expression decreased significantly, while α-SMA expression increased significantly in aortic tissue. At the gene level, expressions of eNOS and α-SMA in aortic tissue significantly increased. Furthermore, the content of nitric oxide (NO) in the SHR's aortic tissue increased significantly. These findings confirm that graphene far-infrared radiation enhances microcirculation, regulates cytokines affecting vascular smooth muscle contraction, and modifies vascular morphology and smooth muscle phenotype, offering relief for primary hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qian Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (G.L.); (H.G.); (Y.Z.); (M.Z.); (T.Z.); (G.H.)
| |
Collapse
|
5
|
Liu X, Hu Z, Huang Y, Hu L, Lu J, Chen M, Xue H, Ma S, Wan J, Hu J. Advances in novel biomaterials combined with traditional Chinese medicine rehabilitation technology in treatment of peripheral nerve injury. Front Neurol 2024; 15:1421772. [PMID: 38938781 PMCID: PMC11208681 DOI: 10.3389/fneur.2024.1421772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Peripheral nerve injuries (PNI) represent one of the primary neuropathies leading to lifelong disability. Nerve regeneration and targeted muscle atrophy stand as the two most crucial factors influencing functional rehabilitation post peripheral nerve injury. Over time, traditional Chinese medicine (TCM) rehabilitation approaches such as acupuncture, Tuina, and microneedles serve as pivot means to activate the regeneration of injured nerve Schwann cells. By promoting axon regeneration, these approaches can accomplish nerve repair, reconstruction, and functional rehabilitation. Although TCM rehabilitation approaches have clinically demonstrated effectiveness in promoting the repair and regeneration of PNI, the related molecular mechanisms remain unclear. This significantly hampers the application and promotion of TCM rehabilitation in PNI recovery. Therefore, deeply delving into the cellular and molecular mechanisms of TCM rehabilitation technologies to foster nerve regeneration stands as the most pressing issue. On the other hand, in recent years, novel biomaterials represented by hydrogels, microfluidic platforms, and new chitosan scaffolds have showed their unique roles in treating various degrees of nerve injury. These methods exhibit immense potential in conducting high-throughput cell and organoid culture in vitro and synthesizing diverse tissue engineering scaffolds and drug carriers. We believe that the combination of TCM rehabilitation technology and novel biomaterials can more effectively address precise treatment issues such as identification of treatment target and dosage control. Therefore, this paper not only summarizes the molecular mechanisms of TCM rehabilitation technology and novel biomaterials in treating peripheral nerve injury individually, but also explores the research direction of precise treatment by integrating the two at both macro and micro levels. Such integration may facilitate the exploration of cellular and molecular mechanisms related to neurodegeneration and regeneration, providing a scientific and theoretical foundation for the precise functional rehabilitation of PNI in the future.
Collapse
Affiliation(s)
- Xinhao Liu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zekai Hu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Yixiao Huang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lelun Hu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinnuo Lu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengning Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Han Xue
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shujie Ma
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Jie Wan
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Hu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| |
Collapse
|
6
|
Lu X, Xu L, Song Y, Yu X, Li Q, Liu F, Li X, Xi J, Wang S, Wang L, Wang Z. A Graphene Composite Film Based Wearable Far-Infrared Therapy Apparatus (GRAFT) for Effective Prevention of Postoperative Peritoneal Adhesion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309330. [PMID: 38526158 PMCID: PMC11165485 DOI: 10.1002/advs.202309330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/10/2024] [Indexed: 03/26/2024]
Abstract
Postoperative peritoneal adhesion (PPA) is the most frequent complication after abdominal surgery. Current anti-adhesion strategies largely rely on the use of physical separating barriers creating an interface blocking peritoneal adhesion, which cannot reduce inflammation and suffers from limited anti-adhesion efficacy with unwanted side effects. Here, by exploiting the alternative activated macrophages to alleviate inflammation in adhesion development, a flexible graphene-composite-film (F-GCF) generating far-infrared (FIR) irradiation that effectively modulates the macrophage phenotype toward the anti-inflammatory M2 type, resulting in reduced PPA formation, is designed. The anti-adhesion effect of the FIR generated by F-GCF is determined in the rat abdominal wall abrasion-cecum defect models, which exhibit reduced incidence and area of PPA by 67.0% and 92.1% after FIR treatment without skin damage, significantly superior to the clinically used chitosan hydrogel. Notably, within peritoneal macrophages, FIR reduces inflammation reaction and promotes tissue plasminogen activator (t-PA) level via the polarization of peritoneal macrophages through upregulating Nr4a2 expression. To facilitate clinical use, a wirelessly controlled, wearable, F-GCF-based FIR therapy apparatus (GRAFT) is further developed and its remarkable anti-adhesion ability in the porcine PPA model is revealed. Collectively, the physical, biochemical, and in vivo preclinical data provide compelling evidence demonstrating the clinical-translational value of FIR in PPA prevention.
Collapse
Affiliation(s)
- Xiaohuan Lu
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Luming Xu
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yu Song
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiangnan Yu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Qilin Li
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Feng Liu
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiaoqiong Li
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jiangbo Xi
- School of Chemistry and Environmental EngineeringWuhan Institute of TechnologyWuhan430205China
| | - Shuai Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationDepartment of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Lin Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
7
|
Katiyar AK, Hoang AT, Xu D, Hong J, Kim BJ, Ji S, Ahn JH. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chem Rev 2024; 124:318-419. [PMID: 38055207 DOI: 10.1021/acs.chemrev.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Flexible electronics have recently gained considerable attention due to their potential to provide new and innovative solutions to a wide range of challenges in various electronic fields. These electronics require specific material properties and performance because they need to be integrated into a variety of surfaces or folded and rolled for newly formatted electronics. Two-dimensional (2D) materials have emerged as promising candidates for flexible electronics due to their unique mechanical, electrical, and optical properties, as well as their compatibility with other materials, enabling the creation of various flexible electronic devices. This article provides a comprehensive review of the progress made in developing flexible electronic devices using 2D materials. In addition, it highlights the key aspects of materials, scalable material production, and device fabrication processes for flexible applications, along with important examples of demonstrations that achieved breakthroughs in various flexible and wearable electronic applications. Finally, we discuss the opportunities, current challenges, potential solutions, and future investigative directions about this field.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Duo Xu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
He P, Low RJY, Burns SF, Lipik V, Tok AIY. Enhanced far infrared emissivity, UV protection and near-infrared shielding of polypropylene composites via incorporation of natural mineral for functional fabric development. Sci Rep 2023; 13:22329. [PMID: 38102206 PMCID: PMC10724279 DOI: 10.1038/s41598-023-49897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023] Open
Abstract
Far infrared radiation in the range of 4-20 µm has been showed to have biological and health benefits to the human body. Therefore, incorporating far-infrared emissivity additives into polymers and/or fabrics hold promise for the development of functional textiles. In this study, we incorporated nine types of natural minerals into polypropylene (PP) film and examined their properties to identify potential candidates for functional textiles and apparels. The addition of 2% mineral powders into PP film increased the far-infrared emissivity (5-14 µm) by 7.65%-14.48%. The improvement in far-infrared emissivity within the range of 5-14 µm, which overlaps with the peak range of human skin radiation at 8-14 µm, results in increased absorption efficiency, and have the potential to enhance thermal and biological effects. Moreover, the incorporation of mineral powders in PP films exhibited favorable ultraviolet (UV) protection and near-infrared (NIR) shielding properties. Two films, specifically those containing red ochre and hematite, demonstrated excellent UV protection with a UPF rating of 50+ and blocked 99.92% and 98.73% of UV radiation, respectively. Additionally, they showed 95.2% and 93.2% NIR shielding properties, compared to 54.1% NIR shielding properties of PP blank films. The UV protection and NIR shielding properties offered additional advantages for the utilization of polymer composite with additives in the development of sportswear and other outdoor garments. The incorporation of minerals could absorb near-IR radiation and re-emit them at longer wavelength in the mid-IR region. Furthermore, the incorporation of minerals significantly improved the heat retention of PP films under same heat radiation treatment. Notably, films with red ochre and hematite exhibited a dramatic temperature increase, reaching 2.5 and 3.2 times the temperature increase of PP films under same heat radiation treatment, respectively (46.8 °C and 59.9 °C higher than the temperature increase of 20.9 °C in the PP film). Films with additives also demonstrated lower thermal effusivity than PP blank films, indicating superior heat insulation properties. Therefore, polypropylene films with mineral additives, particularly those containing red ochre and hematite, showed remarkable heat capacity, UV-protection, NIR-shielding properties and enhanced far infrared emissivity, making them promising candidates for the development of functional textiles.
Collapse
Affiliation(s)
- Pengfei He
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rayland Jun Yan Low
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Stephen Francis Burns
- Physical Education and Sports Science, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
| | - Vitali Lipik
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Alfred Iing Yoong Tok
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
9
|
Chen Z, Yue Z, Yang K, Shen C, Cheng Z, Zhou X, Li S. Four Ounces Can Move a Thousand Pounds: The Enormous Value of Nanomaterials in Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2300882. [PMID: 37539730 DOI: 10.1002/adhm.202300882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/17/2023] [Indexed: 08/05/2023]
Abstract
The application of nanomaterials in healthcare has emerged as a promising strategy due to their unique structural diversity, surface properties, and compositional diversity. In particular, nanomaterials have found a significant role in improving drug delivery and inhibiting the growth and metastasis of tumor cells. Moreover, recent studies have highlighted their potential in modulating the tumor microenvironment (TME) and enhancing the activity of immune cells to improve tumor therapy efficacy. Various types of nanomaterials are currently utilized as drug carriers, immunosuppressants, immune activators, immunoassay reagents, and more for tumor immunotherapy. Necessarily, nanomaterials used for tumor immunotherapy can be grouped into two categories: organic and inorganic nanomaterials. Though both have shown the ability to achieve the purpose of tumor immunotherapy, their composition and structural properties result in differences in their mechanisms and modes of action. Organic nanomaterials can be further divided into organic polymers, cell membranes, nanoemulsion-modified, and hydrogel forms. At the same time, inorganic nanomaterials can be broadly classified as nonmetallic and metallic nanomaterials. The current work aims to explore the mechanisms of action of these different types of nanomaterials and their prospects for promoting tumor immunotherapy.
Collapse
Affiliation(s)
- Ziyin Chen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Ziqi Yue
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Kaiqi Yang
- Clinical Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Congrong Shen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Zhe Cheng
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Xiaofeng Zhou
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 110042, Shenyang, P. R. China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, 110042, China
| |
Collapse
|
10
|
Zhou Z, Mei X, Hu K, Ma M, Zhang Y. Nanohybrid Double Network Hydrogels Based on a Platinum Nanozyme Composite for Antimicrobial and Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17612-17626. [PMID: 37010097 DOI: 10.1021/acsami.3c00459] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Along with hypoxia, severe bacterial infection, and abnormal pH, continuous inflammatory response hinders diabetic wounds from healing. It leads to the accumulation of large amounts of reactive oxygen species (ROS) and therefore prevents the transition of diabetic wounds from the inflammatory phase to the proliferative phase. In this work, a nanohybrid double network hydrogel with injectable, self-healing, and tissue adhesion properties based on a platinum nanozyme composite (PFOB@PLGA@Pt) was constructed to manage diabetic wound healing. PFOB@PLGA@Pt exhibited oxygen supply capacity and enzyme catalytic performance accompanied by pH self-regulation in the entire phases of wound healing. In the first stage, the oxygen carried by perfluorooctyl bromide (PFOB) can ameliorate the hypoxia and boost the glucose oxidase-like catalyzed reaction of Pt NPs, leading to a lowered pH environment with gluconic acid. As a result, the NADH oxidase-like, peroxidase-like, and oxidase-like multiple enzyme activities were activated successively, leading to synergistic antibacterial effects through the production of ROS. After the bacterial infection had cleared, the catalase-like and superoxide dismutase-like activities of Pt NPs reshaped the redox microenvironment by scavenging the excess ROS, which transitioned the wound from the inflammatory phase to the proliferative phase. The microenvironmentally adaptive hydrogel treatment can cover all phases of wound healing, showing the significant promoting effect in the repair of diabetic infected wounds.
Collapse
Affiliation(s)
- Ziying Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Xiuming Mei
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- Key Laboratory of Biotoxin Analysis & Assessment for State Market Regulation, Nanjing Institute of Product Quality Inspection & Testing, Nanjing 210019, P. R. China
| | - Ke Hu
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210009, Jiangsu, P. R. China
| | - Ming Ma
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
11
|
Liu W, Jiang X, Yu Z, Pang K, Wang J, Peng Y. Effects of a Graphene Heating Device on Fatigue Recovery of Biceps Brachii. Bioengineering (Basel) 2023; 10:bioengineering10030381. [PMID: 36978772 PMCID: PMC10044709 DOI: 10.3390/bioengineering10030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Far-infrared (FIR) is considered to be an ideal method to promote fatigue recovery due to its high permeability and strong radiation. In this paper, we report a flexible and wearable graphene heating device to help fatigue recovery of human exercise by using its high FIR divergence property. This study compares two different fatigue recovery methods, graphene far-infrared heating device hot application and natural recovery, over a 20 min recovery time among the male colleges' exhaustion exercise. Experimental results show that the achieved graphene device holds excellent electro-thermal radiation conversion efficiency of 70% and normal total emissivity of 89%. Moreover, the graphene FIR therapy in our work is more energy-efficient, easy to use, and wearable than traditional fatigue recovery methods. Such an anti-fatigue strategy offers new opportunities for enlarging potential applications of graphene film in body science, athletic training recovery, and wearable devices.
Collapse
Affiliation(s)
- Wenming Liu
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Jiang
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China
| | - Zhiran Yu
- The MOF Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kai Pang
- The MOF Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Wang
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China
| | - Yuxin Peng
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Xie X, Li J, Xing Z, Lu B, Liang S, Zhou J. Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl Sci Rev 2023; 10:nwac281. [PMID: 36875786 PMCID: PMC9976762 DOI: 10.1093/nsr/nwac281] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Aqueous zinc batteries (ZBs) attract increasing attention for potential applications in modern wearable and implantable devices due to their safety and stability. However, challenges associated with biosafety designs and the intrinsic electrochemistry of ZBs emerge when moving to practice, especially for biomedical devices. Here, we propose a green and programmable electro-cross-linking strategy to in situ prepare a multi-layer hierarchical Zn-alginate polymer electrolyte (Zn-Alg) via the superionic binds between the carboxylate groups and Zn2+. Consequently, the Zn-Alg electrolyte provides high reversibility of 99.65% Coulombic efficiency (CE), >500 h of long-time stability and high biocompatibility (no damage to gastric and duodenal mucosa) in the body. A wire-shaped Zn/Zn-Alg/α-MnO2 full battery affords 95% capacity retention after 100 cycles at 1 A g-1 and good flexibility. The new strategy has three prominent advantages over the conventional methods: (i) the cross-linking process for the synthesis of electrolytes avoids the introduction of any chemical reagents or initiators; (ii) a highly reversible Zn battery is easily provided from a micrometer to large scales through automatic programmable functions; and (iii) high biocompatibility is capable of implanted and bio-integrated devices to ensure body safety.
Collapse
Affiliation(s)
- Xuesong Xie
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Jingjing Li
- Department of Plastic Surgery, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Zhengyue Xing
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Shuquan Liang
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
13
|
Zhang Y, Peng L, Hu K, Gu N. Stress Relaxation-Induced Colon Tumor Multicellular Spheroid Culture Based on Biomimetic Hydrogel for Nanoenzyme Ferroptosis Sensitization Evaluation. Adv Healthc Mater 2023; 12:e2202009. [PMID: 36300602 DOI: 10.1002/adhm.202202009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/09/2022] [Indexed: 01/26/2023]
Abstract
Ferroptosis has recently become a research hotspot, and the induction of tumor cell ferroptosis has emerged as a powerful method for tumor therapy. However, the efficiency of tumor cell ferroptosis induction remains unmet for clinical use, which may be attributed to the large discrepancies between in vitro and in vivo models. To address this issue, in this study, a hydrogel platform with stress relaxation is utilized to develop a multicellular spheroid model of the DLD1 colon cancer cell line through cancer cell self-organization. The spheroids are highly similar to real tumor tissue, and ferroptosis resistance at the transcriptional, protein, and cellular levels. Collaboration of the ferroptosis induction reagent erastin and the nanoenzyme MnZnFe2 O4 @PEG-COOH to overcome the ferroptosis resistance of the spheroids is also demonstrated. Taken together, this study demonstrates the effectiveness of the model developed using this hydrogel platform for further mechanistic studies, and for the assessment of novel cancer treatment strategies based on ferroptosis.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Liyi Peng
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 211103, China
| | - Ke Hu
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 211103, China
| | - Ning Gu
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 211103, China.,Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
14
|
Shi C, Fu W, Zhang X, Zhang Q, Zeng F, Nijiati S, Du C, Liu X, Wang M, Yao Y, Huang H, Zheng N, Chen X, Wu B, Zhou Z. Boosting the Immunoactivity of T Cells by Resonant Thermal Radiation from Electric Graphene Films for Improved Cancer Immunotherapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Wenxing Fu
- Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices Pen‐Tung Sah Institute of Micro‐Nano Science and Technology State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province College of Chemistry and Chemical
| | - Xinyi Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Qianyu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Fantian Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Sureya Nijiati
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Chao Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Xiaomin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Mingkun Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Youliang Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Hongling Huang
- State Key Laboratory for Cellular Stress Biology School of Life Sciences Faculty of Medicine and Life Sciences Xiamen University Fujian 361102 China
| | - Nanfeng Zheng
- Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices Pen‐Tung Sah Institute of Micro‐Nano Science and Technology State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province College of Chemistry and Chemical
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology Chemical and Biomolecular Engineering and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering Clinical Imaging Research Centre Centre for Translational Medicine Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
| | - Binghui Wu
- Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices Pen‐Tung Sah Institute of Micro‐Nano Science and Technology State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province College of Chemistry and Chemical
| | - Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| |
Collapse
|
15
|
Wu B, Liu Y, Yu H. High‐
performance electric heating yarns based on graphene‐coated cotton fibers. J Appl Polym Sci 2022. [DOI: 10.1002/app.53014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bo Wu
- CNRS‐International‐NTU‐THALES Research Alliance, Collage of Electrical and Electronic Engineering Nanyang Technological University Singapore
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Collage of Materials Science and Engineering Donghua University Shanghai People's Republic of China
| | - Yu Liu
- Shanghai Institute of Quality Inspection Technical Research Institute of Fiber Inspection Shanghai People's Republic of China
| | - Hong Yu
- Shanghai Institute of Quality Inspection Technical Research Institute of Fiber Inspection Shanghai People's Republic of China
| |
Collapse
|
16
|
Zhang Y, Guo ZB, Nie YM, Feng GP, Deng MJ, Hu YM, Zhang HJ, Zhao YY, Feng YW, Yu TT, Hu K. Self-Organization Formation of Multicellular Spheroids Mediated by Mechanically Tunable Hydrogel Platform: Toward Revealing the Synergy of Chemo- and Noninvasive Photothermal Therapy against Colon Microtumor. Macromol Biosci 2022; 22:e2100498. [PMID: 35014172 DOI: 10.1002/mabi.202100498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/06/2022]
Abstract
Three-dimensional (3D) tumor cell culture offers a more tissue-recapitulating model in cancer treatment evaluation. However, conventional models based on cell-substrate adhesion deprivation are still of insufficient real tumor mimic. In this work, a novel method is proposed for inducing multicellular spheroids (MCSs) formation based on hydrogel with tunable microenvironmental properties. Colon tumor cells DLD1 cultured on hydrogel substrate with proper physical stimulation form MCSs via self-organization. Chemotherapy based on clinical drug and far-infrared photothermal therapy is evaluated with DLD1 MCSs obtained by this method. The synergism of chemotherapy and noninvasive photothermal therapy based on graphene device is further verified in MCSs model and it is believed this method holds potential in in vitro anti-tumor strategies evaluation for precision medicine.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhao-Bin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Yu-Min Nie
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Guan-Ping Feng
- Department of Precision Instruments, Tsinghua University, Beijing, 100084, China.,Shenzhen Grahope Graphene Research Institute, Shenzhen, 518063, China
| | - Man-Jiao Deng
- Shenzhen Grahope Graphene Research Institute, Shenzhen, 518063, China
| | - Yi-Min Hu
- Shenzhen Grahope Graphene Research Institute, Shenzhen, 518063, China
| | - Hui-Jie Zhang
- Key Laboratory of Clinical and Medical Engineering, Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yin-Yi Zhao
- Key Laboratory of Clinical and Medical Engineering, Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi-Wei Feng
- Key Laboratory of Clinical and Medical Engineering, Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ting-Ting Yu
- Department of Medical Genetics, School of Basic Medical Science & Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ke Hu
- Key Laboratory of Clinical and Medical Engineering, Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Han X, Tang S, Wang L, Xu X, Yan R, Yan S, Guo Z, Hu K, Yu T, Li M, Li Y, Zhang F, Gu N. Multicellular Spheroids Formation on Hydrogel Enhances Osteogenic/Odontogenic Differentiation of Dental Pulp Stem Cells Under Magnetic Nanoparticles Induction. Int J Nanomedicine 2021; 16:5101-5115. [PMID: 34349510 PMCID: PMC8327189 DOI: 10.2147/ijn.s318991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Promotion odontogenic differentiation of dental pulp stem cells (DPSCs) is essential for dentin regeneration. Physical cellular microenvironment is of critical importance for stem cells differentiation and influences the function of other biological/chemical factors to differentiation. Methods Based on adjusting the mechanical/interfacial properties of hydrogels, multicellular spheroids (MCSs) of DPSCs generated through self-organization. The spheroids were characterized by immunofluorescent staining and flow cytometry. Quantitative real-time polymerase chain reaction, alkaline phosphatase (ALP) activity assay, ALP staining and Alizarin Red S staining were performed to evaluate the osteogenic/odontogenic differentiation of DPSCs with or without magnetic iron oxide nanoparticles (IONPs) induction. Results MCSs of DPSCs exhibited a significant upregulation of E-cadherin and N-cadherin and enriched CD146 positive subpopulation, along with a stronger osteogenic/odontogenic differentiation ability. Moreover, DPSCs spheroids showed more substantial osteogenic differentiation tendency than the classical two-dimensional cultured DPSCs under the stimulation of magnetic IONPs. Conclusion Three-dimensional spheroids culture of DPSCs based on composite viscoelastic materials combined with mechanical/magnetic stimulation may provide a theoretical basis for the subsequent development of dentin or bone regeneration technology.
Collapse
Affiliation(s)
- Xiao Han
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Shijia Tang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xueqin Xu
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ruhan Yan
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Sen Yan
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Ke Hu
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Tingting Yu
- Department of Medical Genetics, School of Basic Medical Science & Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Mengping Li
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yuqin Li
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ning Gu
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
18
|
Du J, Yu H, Liu B, Hong M, Liao Q, Zhang Z, Zhang Y. Strain Engineering in 2D Material-Based Flexible Optoelectronics. SMALL METHODS 2021; 5:e2000919. [PMID: 34927808 DOI: 10.1002/smtd.202000919] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Indexed: 06/14/2023]
Abstract
Flexible optoelectronics, as promising components hold shape-adaptive features and dynamic strain response under strain engineering for various intelligent applications. 2D materials with atomically thin layers are ideal for flexible optoelectronics because of their high flexibility and strain sensitivity. However, how the strain affects the performance of 2D materials-based flexible optoelectronics is confused due to their hypersensitive features to external strain changes. It is necessary to establish an evaluation system to comprehend the influence of the external strain on the intrinsic properties of 2D materials and the photoresponse performance of their flexible optoelectronics. Here, a focused review of strain engineering in 2D materials-based flexible optoelectronics is provided. The first attention is on the mechanical properties and the strain-engineered electronic properties of 2D semiconductors. An evaluation system with relatively comprehensive parameters in functionality and service capability is summarized to develop 2D materials-based flexible optoelectronics in practical application. Based on the parameters, some strategies to improve the functionality and service capability are proposed. Finally, combining with strain engineering in future intelligence devices, the challenges and future perspective developing 2D materials-based flexible optoelectronics are expounded.
Collapse
Affiliation(s)
- Junli Du
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Huihui Yu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Baishan Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mengyu Hong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Qingliang Liao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zheng Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Municipal Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Municipal Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
19
|
Wen H, Tamarov K, Happonen E, Lehto V, Xu W. Inorganic Nanomaterials for Photothermal‐Based Cancer Theranostics. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Huang Wen
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Konstantin Tamarov
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Emilia Happonen
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Vesa‐Pekka Lehto
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Wujun Xu
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| |
Collapse
|