1
|
Zhang N, Gao M, Hu X, Wang P, Cheng Y, Wei H, Fu G, Ge J, Li H, Zhang W, Zhou B. Biomimetic peroxisome targets myocardial injury and promotes heart repair and regeneration. Biomaterials 2025; 319:123214. [PMID: 40037208 DOI: 10.1016/j.biomaterials.2025.123214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/19/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Heart ischemic injury predominately causes mitochondrial dysfunction, leading to the accumulation of ROS and lactate. The ROS-associated DNA damage response (DDR) contributes to myocardial cell cycle arrest and the inhibition of proliferation, while lactate accumulation is often accompanied by a high risk of acute death. In this study, to restore myocardial metabolism and regenerate the heart, we established a biomimetic peroxisome by loading the Mn3O4 nanozyme into mesenchymal stem cell-derived extracellular vesicles (MSC-EV (Mn@EV)). This setup mimics the peroxidases of peroxisome to catalyze ROS, and inhibit DDR. Next, the Mn@EV was immobilized with lactate oxidase (LOX) after encompassed platelet membrane to obtain biomimetic peroxisome (Mn@LPEV). This mimics the substrate-oxidizing function to detoxify lactate and prevent death. Supported by its biomimetic and lactate-response delivery system, our biomimetic peroxisome effectively targeted deep tissues in the hearts of I/R mice, achieving a 4-fold increase in targeting compared with control vesicles. It maintained myocardial redox homeostasis by scavenging ROS and lactate, inhibiting DDR pathway, promoting myocardial regeneration, reducing acute mortality and fibrosis remodeling, accelerating immunomodulation and angiogenesis, and significantly protecting heart function.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China.
| | - Menghan Gao
- Department of Endocrinology, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolong Hu
- Department of Thoracic Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Yuan Cheng
- Xishan Institute of Applied Biotechnology, Nanjing University, Wuxi, China; Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China.
| | - Binquan Zhou
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
Zhou M, Zhang M, Feng J, Zhu F, Li T, Mei Q, Wei G, Wei H. Nanocatalytic Therapy for Pneumonia by a Hetero-Element-Doped Carbon Nanozyme. Adv Healthc Mater 2025:e2500725. [PMID: 40411848 DOI: 10.1002/adhm.202500725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/12/2025] [Indexed: 05/26/2025]
Abstract
Pneumonia continues to be complicated by its progression to acute lung injury (ALI). The onset of ALI is linked to an overproduction of reactive oxygen species (ROS) and a severe inflammatory response. Therefore, the rapid mitigation of ROS and inflammation is crucial in addressing ALI. Concurrently, prompt bacterial elimination is necessary for bacteria-induced ALI. Here, a Co-based carbon nanozyme (CN) with enhanced enzyme-like activities is developed by co-doping with a small amount of Mn (CoMn CN). Compared to cobalt CN without Mn co-doping (Co CN), the active sites of Co and its coordination with N in CoMn CN are slightly altered, resulting in enhanced oxidase (OXD)-, peroxidase (POD)-, superoxide dismutase (SOD)-, and catalase (CAT)-like activities. Given the enhanced enzyme-like activities, its applications for lipopolysaccharide (LPS)- and methicillin-resistant Staphylococcus aureus (MRSA)-induced ALI treatments are explored. CoMn CN demonstrates superior efficacy in both LPS- and MRSA-induced ALI models, effectively combining rapid scavenging of ROS and inflammation with subsequently bacterial elimination. Consequently, a novel type of Co-based CN by Mn co-doping is developed to augment enzyme-like activities, offering significant protective effects against ALI. This study not only broadens the application of Co-based CNs but also shows a promising strategy for ALI therapy.
Collapse
Affiliation(s)
- Min Zhou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Minxuan Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jiayuan Feng
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Fuying Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
- Medical School of Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Tong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Qi Mei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Gen Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Centre at Nanjing University, Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
3
|
Yuan H, Wang G, Zou F, Lu P, Afshan N, Jiao J, Jiao J. Mesenchymal Stem Cells Armed with DNA Nanorobots as a Modality for Combination Therapy of Inflammatory Bowel Disease. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14822-14831. [PMID: 40017400 DOI: 10.1021/acsami.4c08923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Therapeutic strategies that can target multilevel immunoregulatory pathways in inflammatory bowel disease (IBD) and efficiently target the site of inflammation are expected to greatly enhance the therapeutic efficacy. Here, we have developed a DNA nanorobot-armed bidirectional resistant mesenchymal stem cell (MSC) for IBD treatment, which blocks lymphocyte infiltration at the site of inflammation by bidirectional inhibition of integrin-ligand inter-recognition via resistant aptamer-hands. And this strategy can induce MSC homing for immunomodulation and tissue repair. Herein, in this nanorobot, tetrahedral DNA (TDN) serves as a communication bridge, Integrin α4 and VCAM 1 aptamers are equipped to two vertices of TDN, and the other two cholesterol vertices of TDN are used for immobilization on MSC. In murine colitis models, tail vein-injected resistant MSC preferentially and rapidly accumulated in the inflamed colon and have been more effective in reducing colonic inflammation than pure MSC or aptamers bidirectional inhibitors. The therapeutic strategy proposed in this work has minimal systemic side effects and holds therapeutic promise for a subgroup of IBD patients who do not respond to single anti-inflammatory therapies.
Collapse
Affiliation(s)
- Hongxiu Yuan
- Shandong Cancer Hospital and Institute, School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Gang Wang
- Shandong Cancer Hospital and Institute, School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Fangbo Zou
- Shandong Cancer Hospital and Institute, School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Peifen Lu
- Shandong Cancer Hospital and Institute, School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Noshin Afshan
- Shandong Cancer Hospital and Institute, School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Jiao
- Shandong Cancer Hospital and Institute, School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| |
Collapse
|
4
|
Zhang B, Yang L, Wu Z, Wang X, Zhao X, Zhang W, Li D, Fu H, Lin J, Xu F, Ai X, Shu G. Effect of oral Mn-based nanozymes Mn 3O 4 NPs on morphological, antioxidation, mucosa, and fecal microbial community in mice colons. Food Chem Toxicol 2025; 197:115313. [PMID: 39923832 DOI: 10.1016/j.fct.2025.115313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/09/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Mn3O4 NPs, manganese-based nanoparticles with multienzyme-like antioxidative activity, have been widely used in anti-inflammatory, anti-tumor, and other related studies, especially those related to Inflammatory Bowel Disease (IBD). However, before formalizing these studies, it is important to assess their oral safety (especially intestinal) to understand its potential adverse effects on biological systems and intestinal health. In this study, we synthesized Mn3O4 NP which has been reported to have proven multienzyme-like antioxidative activity based on previous studies. The fixed-dose method was used to evaluate the oral acute toxicity of Mn3O4 NPs in mice, followed by 14 days of observation. Then, relative parameters were explored for mice undergoing continuous gavage of 125 mg/kg and 250 mg/kg BW Mn3O4 NPs for 20 days. The continuous oral administration of low-dose Mn3O4 NPs for 20 days resulted in an increased expression of mRNA of antioxidant genes in mice colon. These changes led to an improvement in the antioxidant capacity of the colon. In contrast, the administration of a high dose of Mn3O4 NPs resulted in colonic oxidative damage, and mucosal damage in mice colons, as well as an increase in the ratio of Firmicutes to Bacteroidota of the fecal microbial communities.
Collapse
Affiliation(s)
- Baoyue Zhang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lei Yang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhengkun Wu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Zhang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Danqin Li
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hualin Fu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Juchun Lin
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Funeng Xu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoyang Ai
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
5
|
Chi X, Chen T, Luo F, Zhao R, Li Y, Hu S, Li Y, Jiang W, Chen L, Wu D, Du Y, Hu J. Targeted no-releasing L-arginine-induced hesperetin self-assembled nanoparticles for ulcerative colitis intervention. Acta Biomater 2024:S1742-7061(24)00628-7. [PMID: 39461688 DOI: 10.1016/j.actbio.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Overproduction of reactive oxygen species (ROS) plays a crucial role in initiating and advancing ulcerative colitis (UC), and the persistent cycle between ROS and inflammation accelerates disease development. Therefore, developing strategies that can effectively scavenge ROS and provide targeted intervention are crucial for the management of UC. In this study, we synthesized natural carrier-free nanoparticles (HST-Arg NPs) using the Mannich reaction and π-π stacking for the intervention of UC. HST-Arg NPs are an oral formulation that exhibit good antioxidant capabilities and gastrointestinal stability. Benefiting from the negatively charged characteristics, HST-Arg NPs can specifically accumulate in positively charged inflamed regions of the colon. Furthermore, in the oxidative microenvironment of colonic inflammation, HST-Arg NPs respond to ROS by releasing nitric oxide (NO). In mice model of UC induced by dextran sulfate sodium (DSS), HST-Arg NPs significantly mitigated colonic injury by modulating oxidative stress, lowering pro-inflammatory cytokines, and repairing intestinal barrier integrity. In summary, this convenient and targeted oral nanoparticle can effectively scavenge ROS at the site of inflammation and achieve gas intervention, offering robust theoretical support for the development of subsequent oral formulations in related inflammatory interventions. STATEMENT OF SIGNIFICANCE: Nanotechnology has been extensively explored in the biomedical field, but the application of natural carrier-free nanotechnology in this area remains relatively rare. In this study, we developed a natural nanoparticle system based on hesperetin (HST), L-arginine (L-Arg), and vanillin (VA) to scavenge ROS and alleviate inflammation. In the context of ulcerative colitis (UC), the synthesized nanoparticles exhibited excellent intervention effects, effectively protecting the colon from damage. Consequently, these nanoparticles provide a promising and precise nutritional intervention strategy by addressing both oxidative stress and inflammatory pathways simultaneously, demonstrating significant potential for application.
Collapse
Affiliation(s)
- Xuesong Chi
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fengxian Luo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Runan Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yangjing Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shumeng Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yanfei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wen Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - LiHang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yinan Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Han Q, Wang C, Liu J, Wang C, Zhang H, Ni Q, Sun J, Wang Y, Sun B. Application of Nanozymes and its Progress in the Treatment of Ischemic Stroke. Transl Stroke Res 2024; 15:880-892. [PMID: 37555909 DOI: 10.1007/s12975-023-01182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Nanozymes are a new kind of material which has been applied since the beginning of this century, and its birth has promoted the development of chemistry, materials science, and biology. Nanozymes can be used as a substitute for natural enzyme and has a wide range of applications; therefore, it has attracted extensive attention from all sectors of the community, and the number of studies has constantly increasing. In this paper, we introduced the outstanding achievements in the field of nanozymes in recent years from the main function, the construction of nanozyme-based biosensors, and the treatment of ischemic stroke, and we also illustrated the internal mechanism and the catalytic principle. In the end, the obstacles and challenges in the future development of nanozymes were proposed.
Collapse
Affiliation(s)
- Qing Han
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Chengcheng Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Jian Liu
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Cai Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Hongming Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian Central Hospital, Taian, 271000, Shandong, China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Ying Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| | - Baoliang Sun
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| |
Collapse
|
7
|
Chen T, Chi X, Li Y, Li Y, Zhao R, Chen L, Wu D, Hu JN. Orally Deliverable Microalgal-Based Carrier with Selenium Nanozymes for Alleviation of Inflammatory Bowel Disease. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50212-50228. [PMID: 39266250 DOI: 10.1021/acsami.4c08020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Excessive reactive oxygen species (ROS) is a hallmark of both the onset and progression of inflammatory bowel disease (IBD), where a continuous cycle of ROS and inflammation drives the progression of diseases. The design of oral antioxidant nanoenzymes for scavenging ROS has emerged as a promising strategy to intervene in IBD. However, the practical application of these nanoenzymes is limited due to their single catalytical property and significantly impacted by substantial leakage in the upper gastrointestinal tract. This study introduces a novel oral delivery system, SP@CS-SeNPs, combining natural microalgae Spirulina platensis (SP), which possesses superoxide dismutase (SOD)-like activity, with chitosan-functionalized selenium nanoparticles (CS-SeNPs) that exhibit catalase-like activity. The SP@CS-SeNPs system leverages the dual catalytic capabilities of these components to initiate a cascade reaction that first converts superoxide anion radicals (O2•-) into hydrogen peroxide (H2O2), and then catalyzes the decomposition of H2O2 into water and oxygen. This system not only utilizes the resistance of the microalgae carrier to gastric acid and its efficient capture by intestinal villi, thereby enhancing intestinal distribution and retention but also demonstrates significant anti-inflammatory effects and effective repair of the damaged intestinal barrier in a colitis mice model. These results demonstrate that this oral delivery system successfully combines the features of microalgae and nanozymes, exhibits excellent biocompatibility, and offers a novel approach for antioxidant nanozyme intervention in IBD.
Collapse
Affiliation(s)
- Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xuesong Chi
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yangjing Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Runan Zhao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lihang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
8
|
Hu C, Yuan X, Zhao R, Hong B, Chen C, Zhu Q, Zheng Y, Hu J, Yuan Y, Wu Z, Zhang J, Tang C. Scale-Up Preparation of Manganese-Iron Prussian Blue Nanozymes as Potent Oral Nanomedicines for Acute Ulcerative Colitis. Adv Healthc Mater 2024; 13:e2400083. [PMID: 38447228 DOI: 10.1002/adhm.202400083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Prussian blue (PB) nanozymes are demonstrated as effective therapeutics for ulcerative colitis (UC), yet an unmet practical challenge remains in the scalable production of these nanozymes and uncertainty over their efficacy. With a novel approach, a series of porous manganese-iron PB (MnPB) colloids, which are shown to be efficient scavengers for reactive oxygen species (ROS) including hydroxyl radical, superoxide anion, and hydrogen peroxide, are prepared. In vitro cellular experiments confirm the capability of the nanozyme to protect cells from ROS attack. In vivo, the administration of MnPB nanozyme through gavage at a dosage of 10 mg kg-1 per day for three doses in total potently ameliorates the pathological symptoms of acute UC in a murine model, resulting in mitigated inflammatory responses and improved viability rate. Significantly, the nanozyme produced at a large scale can be achieved at an unprecedented yield weighting ≈11 g per batch of reaction, demonstrating comparable anti-ROS activities and treatment efficacy to its small-scale counterpart. This work represents the first demonstration of the scale-up preparation of PB analog nanozymes for UC without compromising treatment efficacy, laying the foundation for further testing of these nanozymes on larger animals and promising clinical translation.
Collapse
Affiliation(s)
- Chengyun Hu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xue Yuan
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ronghua Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Biao Hong
- College & Hospital of Stomatology, Anhui Provincial Key Laboratory of Oral Diseases Research, Anhui Medical University, Hefei, 230032, China
| | - Chuang Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Qingjun Zhu
- Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yanmin Zheng
- Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yue Yuan
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zhengyan Wu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jia Zhang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chaoliang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
9
|
Fu Z, Fan K, He X, Wang Q, Yuan J, Lim KS, Tang JN, Xie F, Cui X. Single-Atom-Based Nanoenzyme in Tissue Repair. ACS NANO 2024; 18:12639-12671. [PMID: 38718193 DOI: 10.1021/acsnano.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Since the discovery of ferromagnetic nanoparticles Fe3O4 that exhibit enzyme-like activity in 2007, the research on nanoenzymes has made significant progress. With the in-depth study of various nanoenzymes and the rapid development of related nanotechnology, nanoenzymes have emerged as a promising alternative to natural enzymes. Within nanozymes, there is a category of metal-based single-atom nanozymes that has been rapidly developed due to low cast, convenient preparation, long storage, less immunogenicity, and especially higher efficiency. More importantly, single-atom nanozymes possess the capacity to scavenge reactive oxygen species through various mechanisms, which is beneficial in the tissue repair process. Herein, this paper systemically highlights the types of metal single-atom nanozymes, their catalytic mechanisms, and their recent applications in tissue repair. The existing challenges are identified and the prospects of future research on nanozymes composed of metallic nanomaterials are proposed. We hope this review will illuminate the potential of single-atom nanozymes in tissue repair, encouraging their sequential clinical translation.
Collapse
Affiliation(s)
- Ziliang Fu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Kexin Fan
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xingjian He
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Yuan
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518001, China
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Jun-Nan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fangxi Xie
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, Guangdong 519082, China
| | - Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
10
|
Liu M, Wu H, Li Q, Liu H, Chen C, Yin F, Wang H, Zha Z, Wang F. Mn 3O 4 nanozymes prevent acetaminophen-induced acute liver injury by attenuating oxidative stress and countering inflammation. J Colloid Interface Sci 2024; 654:83-95. [PMID: 37837854 DOI: 10.1016/j.jcis.2023.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Acetaminophen (APAP) overdose is steadily becoming the chief reason for drug-induced acute liver failure, yet limited treatment is currently clinically available. Considering that the mechanism of APAP-induced hepatotoxicity is inseparable from oxidative stress and inflammation, a biocompatible Mn3O4 nanozyme mimicking superoxide dismutase (SOD) and catalase (CAT) activities and possessing reactive oxygen species (ROS)-scavenging capacity and antiapoptotic properties, is reported herein as a promising nanodrug to treat APAP-induced liver injury (AILI). Possessing bioactive enzyme-like functions, Mn3O4 nanoparticles (NPs) can not only reduce the oxidative stress on the liver by decreasing ROS accumulation but also downregulate the infiltration of inflammatory macrophages that secrete proinflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6). Notably, the bifunctional Mn3O4 NPs mediate nuclear factor-erythroid 2 p45-related factor 2 signaling pathway activation and nuclear factor kappa B signaling pathway inhibition to effectively prevent the already fragile APAP-overdosed murine hepatocytes from being attacked again, thus mitigating hepatocyte apoptosis and alleviating APAP-induced liver damage. Thus, the Mn3O4 nanozyme (Mn3O4 NPs) evaluated in this study has potential preventive and therapeutic effects on AILI.
Collapse
Affiliation(s)
- Menghua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Haitao Wu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qianhui Li
- China Guangdong Provincial Key Laboratory of Digestive Cancer Research and The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Hang Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chongqing Chen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Fan Yin
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Fei Wang
- China Guangdong Provincial Key Laboratory of Digestive Cancer Research and The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
11
|
Chen X, Zhang L, Zeng H, Meng W, Liu G, Zhang W, Zhao P, Zhang Q, Chen M, Chen J. Manganese-Based Immunomodulatory Nanocomposite with Catalase-Like Activity and Microwave-Enhanced ROS Elimination Ability for Efficient Rheumatoid Arthritis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304610. [PMID: 37632302 DOI: 10.1002/smll.202304610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease commonly associated with the accumulation of hyperactive immune cells (HICs), particularly macrophages of pro-inflammatory (M1) phenotype, accompanied by the elevated level of reactive oxygen species (ROS), decreased pH and O2 content in joint synovium. In this work, an immunomodulatory nanosystem (IMN) is developed for RA therapy by modulating and restoring the function of HICs in inflamed tissues. Manganese tetraoxide nanoparticles (Mn3 O4 ) nanoparticles anchored on UiO-66-NH2 are designed, and then the hybrid is coated with Mn-EGCG film, further wrapped with HA to obtain the final nanocomposite of UiO-66-NH2 @Mn3 O4 /Mn-EGCG@HA (termed as UMnEH). When UMnEH diffuses to the inflammatory site of RA synovium, the stimulation of microwave (MW) irradiation and low pH trigger the slow dissociation of Mn-EGCG film. Then the endogenously overexpressed hydrogen peroxide (H2 O2 ) disintegrates the exposed Mn3 O4 NPs to promote ROS scavenging and O2 generation. Assisted by MW irradiation, the elevated O2 content in the RA microenvironment down-regulates the expression of hypoxia-inducible factor-1α (HIF-1α). Coupled with the clearance of ROS, it promotes the re-polarization of M1 phenotype macrophages into anti-inflammatory (M2) phenotype macrophages. Therefore, the multifunctional UMnEH nanoplatform, as the IMN, exhibits a promising potential to modulate and restore the function of HICs and has an exciting prospect in the treatment of RA.
Collapse
Affiliation(s)
- Xiaotong Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lianying Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Haifeng Zeng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wei Meng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guijiang Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wenhua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Pei Zhao
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Office of Clinical Trial of Drug, Guangzhou, Guangdong, 510663, China
| | - Qun Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Office of Clinical Trial of Drug, Guangzhou, Guangdong, 510663, China
| | - Ming Chen
- The People's Hospital of Gaozhou, Maoming, Guangdong, 525200, China
| | - Jinxiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
12
|
Min K, Sahu A, Jeon SH, Tae G. Emerging drug delivery systems with traditional routes - A roadmap to chronic inflammatory diseases. Adv Drug Deliv Rev 2023; 203:115119. [PMID: 37898338 DOI: 10.1016/j.addr.2023.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Inflammation is prevalent and inevitable in daily life but can generally be accommodated by the immune systems. However, incapable self-healing and persistent inflammation can progress to chronic inflammation, leading to prevalent or fatal chronic diseases. This review comprehensively covers the topic of emerging drug delivery systems (DDSs) for the treatment of chronic inflammatory diseases (CIDs). First, we introduce the basic biology of the chronic inflammatory process and provide an overview of the main CIDs of the major organs. Next, up-to-date information on various DDSs and the associated strategies for ensuring targeted delivery and stimuli-responsiveness applied to CIDs are discussed extensively. The implementation of traditional routes of drug administration to maximize their therapeutic effects against CIDs is then summarized. Finally, perspectives on future DDSs against CIDs are presented.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Abhishek Sahu
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
13
|
Wang H, Wang L, Chen Y, Huang J, Xing Y, Wang L, Zhang J, Yang H. Catalytically proficient ceria nanodots supported on redox-active mesoporous hosts for treatment of inflammatory bowel disease via efficient ROS scavenging. J Mater Chem B 2023; 11:10369-10382. [PMID: 37873599 DOI: 10.1039/d3tb01602a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Ceria nanozyme-based ROS scavengers have shown great potential in the treatment of inflammatory bowel disease (IBD) through microenvironment regulation. However, the currently developed nanotherapeutics suffer from difficulties in concomitantly achieving small sizes and stable interparticle dispersion which is pivotal to sufficient oxygen vacancies facilitating electron transfer and oxygen storage in the dynamic cycling of Ce3+/Ce4+ redox pairs. Herein, a hybrid nanosystem consisting of ceria nanodots supported on redox-active mesoporous hosts was developed to address the challenge of ROS scavenging, in particular the efficient downregulation of the readily renewable, highly concentrated H2O2 species. Specifically, Ce4+ ions oxidized from Ce3+ in weakly basic solution were captured and reduced in time by the abundant catechols on the mesoporous polydopamine nanoparticles. This led to strong restriction of ceria growth (∼2.8 nm) in the ion precipitation process and efficient maintenance of the Ce3+/Ce4+ ratio at a high value of 1.59 which is 4.8 fold higher than that of homogeneously nucleated ceria nanoparticles. Through this design, the nanohybrid showed an attractive catalytic performance in scavenging multiple ROS species, particularly the fast and recyclable conversion of H2O2. Thereby, significant suppression of the inflammatory cytokine/chemokine secretion was achieved by inhibiting the activation of NF-κB signaling pathways (5.1 fold higher as compared to those of pristine ceria nanoparticles), upregulating the Nrf2 signaling pathway, and reducing the proportion of M1 macrophages at IBD sites. Therapeutic efficiency was also demonstrated by the effective repair of the intestinal mucosal barrier by recovering the tight junction integrity in vivo. This study sheds light on the employment of redox-active hosts to support ceria catalysts for advancing anti-inflammation applications by boosting ROS scavenging performance.
Collapse
Affiliation(s)
- Hailing Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Liucan Wang
- Department of General Surgery, Chongqing People's Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401121, China.
| | - Yuhua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Jixi Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Lu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Hua Yang
- Department of General Surgery, Chongqing People's Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401121, China.
| |
Collapse
|
14
|
Fu W, Xu L, Chen Z, Kan L, Ma Y, Qian H, Wang W. Recent advances on emerging nanomaterials for diagnosis and treatment of inflammatory bowel disease. J Control Release 2023; 363:149-179. [PMID: 37741461 DOI: 10.1016/j.jconrel.2023.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic idiopathic inflammatory disorder that affects the entire gastrointestinal tract and is associated with an increased risk of colorectal cancer. Mainstream clinical testing methods are time-consuming, painful for patients, and insufficiently sensitive to detect early symptoms. Currently, there is no definitive cure for IBD, and frequent doses of medications with potentially severe side effects may affect patient response. In recent years, nanomaterials have demonstrated considerable potential for IBD management due to their diverse structures, composition, and physical and chemical properties. In this review, we provide an overview of the advances in nanomaterial-based diagnosis and treatment of IBD in recent five years. Multi-functional bio-nano platforms, including contrast agents, near-infrared (NIR) fluorescent probes, and bioactive substance detection agents have been developed for IBD diagnosis. Based on a series of pathogenic characteristics of IBD, the therapeutic strategies of antioxidant, anti-inflammatory, and intestinal microbiome regulation of IBD based on nanomaterials are systematically introduced. Finally, the future challenges and prospects in this field are presented to facilitate the development of diagnosis and treatment of IBD.
Collapse
Affiliation(s)
- Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Zetong Chen
- School of Stomatology, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Lingling Kan
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| |
Collapse
|
15
|
Cao S, Long Y, Xiao S, Deng Y, Ma L, Adeli M, Qiu L, Cheng C, Zhao C. Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states. Chem Soc Rev 2023; 52:6838-6881. [PMID: 37705437 DOI: 10.1039/d3cs00087g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Benefiting from low costs, structural diversities, tunable catalytic activities, feasible modifications, and high stability compared to the natural enzymes, reactive oxygen nanobiocatalysts (RONBCs) have become dominant materials in catalyzing and mediating reactive oxygen species (ROS) for diverse biomedical and biological applications. Decoding the catalytic mechanism and structure-reactivity relationship of RONBCs is critical to guide their future developments. Here, this timely review comprehensively summarizes the recent breakthroughs and future trends in creating and decoding RONBCs. First, the fundamental classification, activity, detection method, and reaction mechanism for biocatalytic ROS generation and elimination have been systematically disclosed. Then, the merits, modulation strategies, structure evolutions, and state-of-art characterisation techniques for designing RONBCs have been briefly outlined. Thereafter, we thoroughly discuss different RONBCs based on the reported major material species, including metal compounds, carbon nanostructures, and organic networks. In particular, we offer particular insights into the coordination microenvironments, bond interactions, reaction pathways, and performance comparisons to disclose the structure-reactivity relationships and mechanisms. In the end, the future challenge and perspectives for RONBCs are also carefully summarised. We envision that this review will provide a comprehensive understanding and guidance for designing ROS-catalytic materials and stimulate the wide utilisation of RONBCs in diverse biomedical and biological applications.
Collapse
Affiliation(s)
- Sujiao Cao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanping Long
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Sutong Xiao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Yuting Deng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Mohsen Adeli
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Li Qiu
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Sahu A, Min K, Jeon SH, Kwon K, Tae G. Self-assembled hemin-conjugated heparin with dual-enzymatic cascade reaction activities for acute kidney injury. Carbohydr Polym 2023; 316:121088. [PMID: 37321716 DOI: 10.1016/j.carbpol.2023.121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Nanozymes have prominent catalytic activities with high stability as a substitute for unstable and expensive natural enzymes. However, most nanozymes are metal/inorganic nanomaterials, facing difficulty in clinical translation due to their unproven biosafety and limited biodegradability issues. Hemin, an organometallic porphyrin, was newly found to possess superoxide dismutase (SOD) mimetic activity along with previously known catalase (CAT) mimetic activity. However, hemin has poor bioavailability due to its low water solubility. Therefore, a highly biocompatible and biodegradable organic-based nanozyme system with SOD/CAT mimetic cascade reaction activity was developed by conjugating hemin to heparin (HepH) or chitosan (CS-H). Between them, Hep-H formed a smaller (<50 nm) and more stable self-assembled nanostructure and even possessed much higher and more stable SOD and CAT activities as well as the cascade reaction activity compared to CS-H and free hemin. Hep-H also showed a better cell protection effect against reactive oxygen species (ROS) compared to CS-H and hemin in vitro. Furthermore, Hep-H was selectively delivered to the injured kidney upon intravenous administration at the analysis time point (24 h) and exhibited excellent therapeutic effects on an acute kidney injury model by efficiently removing ROS, reducing inflammation, and minimizing structural and functional damage to the kidney.
Collapse
Affiliation(s)
- Abhishek Sahu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kiyoon Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
17
|
Zhang S, Cai J, Yao Y, Huang L, Zheng L, Zhao J. Mitochondrial-targeting Mn 3O 4/UIO-TPP nanozyme scavenge ROS to restore mitochondrial function for osteoarthritis therapy. Regen Biomater 2023; 10:rbad078. [PMID: 38020234 PMCID: PMC10640395 DOI: 10.1093/rb/rbad078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 08/20/2023] [Indexed: 12/01/2023] Open
Abstract
Excessive reactive oxygen species (ROS)-induced mitochondrial damage has impact on osteoarthritis (OA). Nanozyme mimics as natural enzyme alternatives to scavenge excessive ROS has offered a promising strategy for OA therapy. Herein, we reported a novel mitochondrial-targeting Mn3O4/UIO-TPP nanozyme using metal-organic frameworks with loaded Mn3O4 as the enzyme-like active core combining mitochondria-targeting triphenylphosphine (TPP) groups to serve as ROS scavengers for therapy of OA. With sequential catalysis of superoxide dismutase-like, catalase (CAT)-like, and hydroxyl radical (·OH) scavenging potentials, the nanozyme can target mitochondria by crossing subcellular barriers to effectively eliminate ROS to restore mitochondrial function and inhibit inflammation and chondrocyte apoptosis. It also has favorable biocompatibility and biosafety. Based on anterior cruciate ligament transection-induced OA joint models, this mitochondrial-targeting nanozyme effectively mitigated the inflammatory response with the Pelletier score reduction of 49.9% after 8-week therapy. This study offers a prospective approach to the design of nanomedicines for ROS-related diseases.
Collapse
Affiliation(s)
- Shengqing Zhang
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jinhong Cai
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yi Yao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Lanli Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Zheng
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jinmin Zhao
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
18
|
Li D, Zhao B, Zhuang P, Mei X. Development of nanozymes for promising alleviation of COVID-19-associated arthritis. Biomater Sci 2023; 11:5781-5796. [PMID: 37475700 DOI: 10.1039/d3bm00095h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has been identified as a culprit in the development of a variety of disorders, including arthritis. Although the emergence of arthritis following SARS-CoV-2 infection may not be immediately discernible, its underlying pathogenesis is likely to involve a complex interplay of infections, oxidative stress, immune responses, abnormal production of inflammatory factors, cellular destruction, etc. Fortunately, recent advancements in nanozymes with enzyme-like activities have shown potent antiviral effects and the ability to inhibit oxidative stress and cytokines and provide immunotherapeutic effects while also safeguarding diverse cell populations. These adaptable nanozymes have already exhibited efficacy in treating common types of arthritis, and their distinctive synergistic therapeutic effects offer great potential in the fight against arthritis associated with COVID-19. In this comprehensive review, we explore the potential of nanozymes in alleviating arthritis following SARS-CoV-2 infection by neutralizing the underlying factors associated with the disease. We also provide a detailed analysis of the common therapeutic pathways employed by these nanozymes and offer insights into how they can be further optimized to effectively address COVID-19-associated arthritis.
Collapse
Affiliation(s)
- Dan Li
- Department of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Baofeng Zhao
- Liaoning Provincial Key Laboratory of Medical Testing, Jinzhou Medical University, Jinzhou, 121001, China.
| | - Pengfei Zhuang
- Department of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Xifan Mei
- Liaoning Provincial Key Laboratory of Medical Testing, Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
19
|
Zhang H, Xu M, Luo H, Wu S, Gao X, Wu Q, Xu H, Liu Y. Interfacial assembly of chitin/Mn 3O 4 composite hydrogels as photothermal antibacterial platform for infected wound healing. Int J Biol Macromol 2023; 243:124362. [PMID: 37100323 DOI: 10.1016/j.ijbiomac.2023.124362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
To combat bacteria and even biofilm infections, developing alternative antibacterial wound dressings independent of antibiotics is imperative. Herein, this study developed a series of bioactive chitin/Mn3O4 composite hydrogels under mild conditions for infected wound healing application. The in situ synthesized Mn3O4 NPs homogeneously distribute throughout chitin networks and strongly interact with chitin matrix, and as well as endow the chitin/Mn3O4 hydrogels with NIR-assisted outstanding photothermal antibacterial and antibiofilm activities. Meantime, the chitin/Mn3O4 hydrogels exhibit favorable biocompatibility and antioxidant property. Furthermore, the chitin/Mn3O4 hydrogels with the assist of NIR show an excellent skin wound healing performance in a mouse full-thickness S. aureus biofilms-infected wound model, by accelerating the phase transition from inflammation to remodeling. This study broadens the scope for the fabrication of chitin hydrogels with antibacterial property, and offers an excellent alternative for the bacterial-associated wound infection therapy.
Collapse
Affiliation(s)
- Hongli Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, Medical College, Wuhan, China
| | - Mengqing Xu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, Medical College, Wuhan, China
| | - Haihua Luo
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, Medical College, Wuhan, China
| | - Shuangquan Wu
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaofang Gao
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, Medical College, Wuhan, China
| | - Qiong Wu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, Medical College, Wuhan, China.
| | - Huan Xu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, Medical College, Wuhan, China.
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, Medical College, Wuhan, China; School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
20
|
Mondal S, Das M, Ghosh R, Singh M, Adhikari A, Darbar S, Kumar Das A, Bhattacharya SS, Pal D, Bhattacharyya D, Ahmed ASA, Mallick AK, Al-Rooqi MM, Moussa Z, Ahmed SA, Pal SK. Chitosan functionalized Mn 3O 4 nanoparticles counteracts ulcerative colitis in mice through modulation of cellular redox state. Commun Biol 2023; 6:647. [PMID: 37328528 PMCID: PMC10275949 DOI: 10.1038/s42003-023-05023-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 06/07/2023] [Indexed: 06/18/2023] Open
Abstract
Recent findings suggest a key role for reactive oxygen species (ROS) in the pathogenesis and progression of ulcerative colitis (UC). Several studies have also highlighted the efficacy of citrate functionalized Mn3O4 nanoparticles as redox medicine against a number of ROS-mediated disorders. Here we show that synthesized nanoparticles consisting of chitosan functionalized tri-manganese tetroxide (Mn3O4) can restore redox balance in a mouse model of UC induced by dextran sulfate sodium (DSS). Our in-vitro characterization of the developed nanoparticle confirms critical electronic transitions in the nanoparticle to be important for the redox buffering activity in the animal model. A careful administration of the developed nanoparticle not only reduces inflammatory markers in the animals, but also reduces the mortality rate from the induced disease. This study provides a proof of concept for the use of nanomaterial with synergistic anti-inflammatory and redox buffering capacity to prevent and treat ulcerative colitis.
Collapse
Affiliation(s)
- Susmita Mondal
- Department of Chemical, Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| | - Monojit Das
- Department of Zoology, Uluberia College, University of Calcutta, Uluberia, Howrah, 711315, India
- Department of Zoology, Vidyasagar University, Rangamati, Midnapore, 721102, India
| | - Ria Ghosh
- Department of Chemical, Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| | - Manali Singh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, Punjab, 147004, India
| | - Aniruddha Adhikari
- Department of Chemical, Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| | - Soumendra Darbar
- Research & Development Division, Dey's Medical Stores (Mfg.) Ltd, 62, Bondel Road, Ballygunge, Kolkata, 700019, India
| | - Anjan Kumar Das
- Department of Pathology, Cooch Behar Government Medical College & Hospital, Vivekananda Rd, Khagrabari, Cooch Behar, West Bengal, 736101, India
| | | | - Debasish Pal
- Department of Zoology, Uluberia College, University of Calcutta, Uluberia, Howrah, 711315, India
| | - Debasish Bhattacharyya
- Department of Gynecology & Obstetrics, Nil Ratan Sircar Medical College & Hospital, 138, AJC Bose Road, Sealdah, Raja Bazar, Kolkata, 700014, India
| | - Ahmed S A Ahmed
- Faculty of Medicine, Assiut University, 71516, Assiut, Egypt
| | - Asim Kumar Mallick
- Department of Pediatric Medicine, Nil Ratan Sirkar Medical College and Hospital, 38, Acharya Jagadish Chandra Bose Rd, Sealdah, Raja Bazar, Kolkata, West Bengal, 700014, India
| | - Munirah M Al-Rooqi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 21955, Makkah, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Assiut University, 71516, Assiut, Egypt.
| | - Samir Kumar Pal
- Department of Chemical, Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata, 700106, India.
- Department of Zoology, Uluberia College, University of Calcutta, Uluberia, Howrah, 711315, India.
| |
Collapse
|
21
|
Huang Q, Yang Y, Zhu Y, Chen Q, Zhao T, Xiao Z, Wang M, Song X, Jiang Y, Yang Y, Zhang J, Xiao Y, Nan Y, Wu W, Ai K. Oral Metal-Free Melanin Nanozymes for Natural and Durable Targeted Treatment of Inflammatory Bowel Disease (IBD). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207350. [PMID: 36760016 DOI: 10.1002/smll.202207350] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Indexed: 05/11/2023]
Abstract
Oral antioxidant nanozymes bring great promise for inflammatory bowel disease (IBD) treatment. To efficiently eliminate reactive oxygen species (ROS), various metal-based nanozymes have been developed for the treatment of IBD but their practical applications are seriously impaired by unstable ROS-eliminating properties and potential metal ion leakage in the digestive tract. Here, the authors for the first time propose metal-free melanin nanozymes (MeNPs) with excellent gastrointestinal stability and biocompatibility as a favorable therapy strategy for IBD. Moreover, MeNPs have extremely excellent natural and long-lasting characteristics of targeting IBD lesions. In view of the dominant role of ROS in IBD, the authors further reveal that oral administration of MeNPs can greatly alleviate the six major pathological features of IBD: oxidative stress, endoplasmic reticulum stress, apoptosis, inflammation, gut barrier disruption, and gut dysbiosis. Overall, this strategy highlights the great clinical application prospects of metal-free MeNPs via harnessing ROS scavenging at IBD lesions, offering a paradigm for antioxidant nanozyme in IBD or other inflammatory diseases.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Zhu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Mingyuan Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiangping Song
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yunrong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jinping Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Xiao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Wei Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
22
|
Wang Q, Li C, Wang X, Pu J, Zhang S, Liang L, Chen L, Liu R, Zuo W, Zhang H, Tao Y, Gao X, Wei H. eg Occupancy as a Predictive Descriptor for Spinel Oxide Nanozymes. NANO LETTERS 2022; 22:10003-10009. [PMID: 36480450 DOI: 10.1021/acs.nanolett.2c03598] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Functional nanomaterials offer an attractive strategy to mimic the catalysis of natural enzymes, which are collectively called nanozymes. Although the development of nanozymes shows a trend of diversification of materials with enzyme-like activity, most nanozymes have been discovered via trial-and-error methods, largely due to the lack of predictive descriptors. To fill this gap, this work identified eg occupancy as an effective descriptor for spinel oxides with peroxidase-like activity and successfully predicted that the eg value of spinel oxide nanozymes with the highest activity is close to 0.6. The LiCo2O4 with the highest activity, which is finally predicted, has achieved more than an order of magnitude improvement in activity. Density functional theory provides a rationale for the reaction path. This work contributes to the rational design of high performance nanozymes by using activity descriptors and provides a methodology to identify other descriptors for nanozymes.
Collapse
Affiliation(s)
- Quan Wang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu210023, China
| | - Chunyu Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi330022, China
| | - Xiaoyu Wang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu210023, China
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, Jiangsu210037, China
| | - Jun Pu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui241002, China
| | - Shuo Zhang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu210023, China
| | - Like Liang
- Jiangsu Provincial Key Laboratory for Nanotechnology, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, Jiangsu210023, China
| | - Lina Chen
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu210023, China
| | - Ronghua Liu
- Jiangsu Provincial Key Laboratory for Nanotechnology, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, Jiangsu210023, China
| | - Wenbin Zuo
- School of Physics and Technology, Wuhan University, Wuhan, Hubei430072, China
| | - Huigang Zhang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu210023, China
| | - Yanhong Tao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi330022, China
| | - Xingfa Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi330022, China
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu210023, China
| |
Collapse
|
23
|
Lu Y, Cao C, Pan X, Liu Y, Cui D. Structure design mechanisms and inflammatory disease applications of nanozymes. NANOSCALE 2022; 15:14-40. [PMID: 36472125 DOI: 10.1039/d2nr05276h] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanozymes are artificial enzymes with high catalytic activity, low cost, and good biocompatibility, and have received ever-increasing attention in recent years. Various inorganic and organic nanoparticles have been found to exhibit enzyme-like activities and are used as nanozymes for diverse biomedical applications ranging from tumor imaging and therapeutics to detection. However, their further clinical applications are hindered by the potential toxicity and long-term retention of nanomaterials in vivo. Clarifying the catalytic mechanism of nanozymes and identifying the key factors responsible for their behavior can guide the design of nanozyme structure, enlighten the ways to improve their enzyme-like activities, and minimize the dosage of nanozymes, leading to reduced toxicity to the human body for a real biomedical application prospect. In particular, inflammation occurring in numerous diseases is closely related to reactive oxygen species, and the active oxygen scavenging ability of nanozymes potentially exerts excellent therapeutic effects on inflammatory diseases. In this review, we systematically summarize the structure-activity relationship of nanozymes, including regulation strategies for size and morphology, surface structure, and composition. Based on the structure-activity mechanisms, a series of chemically designed nanozymes developed to target various inflammatory diseases are briefly summarized.
Collapse
Affiliation(s)
- Yi Lu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Cheng Cao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
- National Engineering Center for Nanotechnology, Shanghai 200240, People's Republic of China.
| |
Collapse
|
24
|
Meng L, Feng J, Gao J, Zhang Y, Mo W, Zhao X, Wei H, Guo H. Reactive Oxygen Species- and Cell-Free DNA-Scavenging Mn 3O 4 Nanozymes for Acute Kidney Injury Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50649-50663. [PMID: 36334088 DOI: 10.1021/acsami.2c16305] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reactive oxygen species (ROS) scavenging therapy toward acute kidney injury (AKI) is promising, but no effective ROS scavenging drug has been developed yet. Moreover, cell-free DNA (cfDNA) is also involved in AKI, but the corresponding therapies have not been well developed. To tackle these challenges, Mn3O4 nanoflowers (Nfs) possessing both ROS and cfDNA scavenging activities were developed for better AKI protection as follows. First, Mn3O4 Nfs could protect HK2 cells through cascade ROS scavenging (dismutating ·O2- into H2O2 by superoxide dismutase-like activity and then decomposing H2O2 by catalase-like activity). Second, Mn3O4 Nfs could efficiently adsorb cfDNA and then decrease the inflammation caused by cfDNA. Combined, remarkable therapeutic efficacy was achieved in both cisplatin-induced and ischemia-reperfusion AKI murine models. Furthermore, Mn3O4 Nfs could be used for the T1-MRI real-time imaging of AKI. This study not only offered a promising treatment for AKI but also showed the translational potential of nanozymes.
Collapse
Affiliation(s)
- Longxiyu Meng
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jiayuan Feng
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jie Gao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yihong Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Wenjing Mo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Xiaozhi Zhao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023 China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
25
|
Liang S, Tian X, Wang C. Nanozymes in the Treatment of Diseases Caused by Excessive Reactive Oxygen Specie. J Inflamm Res 2022; 15:6307-6328. [PMID: 36411826 PMCID: PMC9675353 DOI: 10.2147/jir.s383239] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/11/2022] [Indexed: 10/29/2023] Open
Abstract
Excessive reactive oxygen species (ROS) may generate deleterious effects on biomolecules, such as DNA damage, protein oxidation and lipid peroxidation, causing cell and tissue damage and eventually leading to the pathogenesis of diseases, such as neurodegenerative diseases, ischemia/reperfusion ((I/R)) injury, and inflammatory diseases. Therefore, the modulation of ROS can be an efficient means to relieve the aforementioned diseases. Several studies have verified that antioxidants such as Mitoquinone (a mitochondrial-targeted coenzyme Q10 derivative) can scavenge ROS and attenuate related diseases. Nanozymes, defined as nanomaterials with intrinsic enzyme-like properties that also possess antioxidant properties, are hence expected to be promising alternatives for the treatment of ROS-related diseases. This review introduces the types of nanozymes with inherent antioxidant activities, elaborates on various strategies (eg, controlling the size or shape of nanozymes, regulating the composition of nanozymes and environmental factors) for modulating their catalytic activities, and summarizes their performances in treating ROS-induced diseases.
Collapse
Affiliation(s)
- Shufeng Liang
- Department of Molecular Biology, Shanxi Province Cancer Hospital/Shanxi Hospital, Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
- Institute of Environmental Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, People’s Republic of China
| | - Chunyan Wang
- Department of Transfusion, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
26
|
Tang M, Zhang Z, Sun T, Li B, Wu Z. Manganese-Based Nanozymes: Preparation, Catalytic Mechanisms, and Biomedical Applications. Adv Healthc Mater 2022; 11:e2201733. [PMID: 36050895 DOI: 10.1002/adhm.202201733] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Indexed: 01/28/2023]
Abstract
Manganese (Mn) has attracted widespread attention due to its low-cost, nontoxicity, and valence-rich transition. Various Mn-based nanomaterials have sprung up and are employed in diverse fields, particularly Mn-based nanozymes, which combine the physicochemical properties of Mn-based nanomaterials with the catalytic activity of natural enzymes, and are attracting a surge of research, especially in the field of biomedical research. In this review, the typical preparation strategies, catalytic mechanisms, advances and perspectives of Mn-based nanozymes for biomedical applications are systematically summarized. The application of Mn-based nanozymes in tumor therapy and sensing detection, together with an overview of their mechanism of action is highlighted. Finally, the prospective directions of Mn-based nanozymes from five perspectives: innovation, activity enhancement, selectivity, biocompatibility, and application broadening are discussed.
Collapse
Affiliation(s)
- Minglu Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Zhaocong Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Bin Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Zhiguang Wu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
27
|
Garrido MD, El Haskouri J, Marcos MD, Pérez-Pla F, Ros-Lis JV, Amorós P. One-Pot Synthesis of MnO x-SiO 2 Porous Composites as Nanozymes with ROS-Scavenging Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3503. [PMID: 36234632 PMCID: PMC9565283 DOI: 10.3390/nano12193503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The development of nanomaterials that mimic the activity of enzymes is a topic of interest, for the decomposition of reactive oxygen species (ROS). We report the preparation of a novel nanocomposite of MnOx needles covered with SiO2 porous material. The material was prepared in one pot with a two-step procedure. The material was characterized by EDX, SEM, TEM, XRD, nitrogen adsorption-desorption isotherms, and XPS. The synthesis protocol took advantage of the atrane method, favoring the nucleation and initial growth of manganese oxide needles that remained embedded and homogeneously dispersed in a mesoporous silica matrix. The final composite had a high concentration of Mn (Si/Mn molar ratio of ca. 1). The nanozyme presented bimodal porosity: intraparticle and interparticle association with the surfactant micelles and the gaps between silica particles and MnOx needles, respectively. The porosity favored the migration of the reagent to the surface of the catalytic MnOx. The nanozyme showed very efficient SOD and catalase activities, thus improving other materials previously described. The kinetics were studied in detail, and the reaction mechanisms were proposed. It was shown that silica does not play an innocent role in the case of catalase activity, increasing the reaction rate.
Collapse
Affiliation(s)
- M. Dolores Garrido
- Institut de Ciència dels Materials (ICMUV), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Jamal El Haskouri
- Institut de Ciència dels Materials (ICMUV), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - María D. Marcos
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de Valencia, Universitat de València, Departamento de Química, Universitat Politècnica de Valencia, 46022 Valencia, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Francisco Pérez-Pla
- Institut de Ciència dels Materials (ICMUV), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - José Vicente Ros-Lis
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de Valencia, Universitat de València, Departamento de Química Inorgánica, Universitat de València, Doctor Moliner 56, 46100 Valencia, Spain
| | - Pedro Amorós
- Institut de Ciència dels Materials (ICMUV), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| |
Collapse
|
28
|
Yang J, Zhang R, Zhao H, Qi H, Li J, Li J, Zhou X, Wang A, Fan K, Yan X, Zhang T. Bioinspired copper single-atom nanozyme as a superoxide dismutase-like antioxidant for sepsis treatment. EXPLORATION (BEIJING, CHINA) 2022; 2:20210267. [PMID: 37325607 PMCID: PMC10191017 DOI: 10.1002/exp.20210267] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Sepsis is a systemic inflammatory response syndrome with high morbidity and mortality mediated by infection-caused oxidative stress. Early antioxidant intervention by removing excessively produced reactive oxygen and nitrogen species (RONS) is beneficial to the prevention and treatment of sepsis. However, traditional antioxidants have failed to improve patient outcomes due to insufficient activity and sustainability. Herein, by mimicking the electronic and structural characteristics of natural Cu-only superoxide dismutase (SOD5), a single-atom nanozyme (SAzyme) featuring coordinately unsaturated and atomically dispersed Cu-N4 site was synthesized for effective sepsis treatment. The de novo-designed Cu-SAzyme exhibits a superior SOD-like activity to efficiently eliminate O2 •-, which is the source of multiple RONS, thus blocking the free radical chain reaction and subsequent inflammatory response in the early stage of sepsis. Moreover, the Cu-SAzyme effectively harnessed systemic inflammation and multi-organ injuries in sepsis animal models. These findings indicate that the developed Cu-SAzyme possesses great potential as therapeutic nanomedicines for the treatment of sepsis.
Collapse
Affiliation(s)
- Ji Yang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
- CAS Key Laboratory of Science and Technology on Applied CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Hanqing Zhao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Haifeng Qi
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- CAS Key Laboratory of Science and Technology on Applied CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Jingyun Li
- Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Jian‐Feng Li
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
| | - Xinyao Zhou
- School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Aiqin Wang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- CAS Key Laboratory of Science and Technology on Applied CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
- Nanozyme Medical Center, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
- Nanozyme Medical Center, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Tao Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- CAS Key Laboratory of Science and Technology on Applied CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| |
Collapse
|
29
|
Zhang X, Chen X, Zhao Y. Nanozymes: Versatile Platforms for Cancer Diagnosis and Therapy. NANO-MICRO LETTERS 2022; 14:95. [PMID: 35384520 PMCID: PMC8986955 DOI: 10.1007/s40820-022-00828-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/17/2022] [Indexed: 05/08/2023]
Abstract
Natural enzymes usually suffer from high production cost, ease of denaturation and inactivation, and low yield, making them difficult to be broadly applicable. As an emerging type of artificial enzyme, nanozymes that combine the characteristics of nanomaterials and enzymes are promising alternatives. On the one hand, nanozymes have high enzyme-like catalytic activities to regulate biochemical reactions. On the other hand, nanozymes also inherit the properties of nanomaterials, which can ameliorate the shortcomings of natural enzymes and serve as versatile platforms for diverse applications. In this review, various nanozymes that mimic the catalytic activity of different enzymes are introduced. The achievements of nanozymes in different cancer diagnosis and treatment technologies are summarized by highlighting the advantages of nanozymes in these applications. Finally, future research directions in this rapidly developing field are outlooked.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiaokai Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
30
|
Cheng C, Cheng Y, Zhao S, Wang Q, Li S, Chen X, Yang X, Wei H. Multifunctional Nanozyme Hydrogel with Mucosal Healing Activity for Single-Dose Ulcerative Colitis Therapy. Bioconjug Chem 2022; 33:248-259. [PMID: 34936326 DOI: 10.1021/acs.bioconjchem.1c00583] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanozymes are nanomaterials with enzyme-like activities, which have been developed for inflammatory disease therapy by reactive oxygen species (ROS) scavenging. The application of nanozymes in ulcerative colitis (UC) treatment not only inherits the merits of small molecular antioxidants (e.g., 5-aminosalicylic acid) to scavenge ROS but also achieves catalytic recycle instead of stoichiometric consumption. However, current therapies usually ignore the repair of mucosa, the first line of defense, whose damage increases the risk of infections. Herein, a multifunctional nanozyme hydrogel is designed and verified both as an ROS scavenger and a mucosal healing enhancer for UC therapy. The chitosan-coated CeO2 nanozyme (CCNZ) not only possesses excellent ROS-scavenging ability but also exhibits satisfactory antibacterial capacity. After gelation with alginate, the optimized CCNZ1:Alg1.5 nanozyme hydrogel exhibits multiple functions, including inflamed site targeting, supporting cell growth, ROS scavenging, and antibacterial activity, which alleviates UC better than a clinical medication 5-aminosalicylic acid by even a single-dose treatment. This study reveals that a nanozyme providing mucosal healing is promising for UC therapy with excellent potential for clinical application and enriches the nanozyme research of treatment for diseases.
Collapse
Affiliation(s)
- Chaoqun Cheng
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuan Cheng
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sheng Zhao
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiwen Chen
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaohan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
31
|
Zhao H, Du Y, Liu L, Du Y, Cui K, Yu P, Li L, Zhu Y, Jiang W, Li Z, Tang H, Ma W. Oral Nanozyme-Engineered Probiotics for the Treatment of Ulcerative Colitis. J Mater Chem B 2022; 10:4002-4011. [PMID: 35503001 DOI: 10.1039/d2tb00300g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Probiotic-based therapy for ulcerative colitis (UC) is a novel and promising approach that has gained much popularity in recent years. However, probiotics may be easily captured and destroyed by...
Collapse
Affiliation(s)
- Huan Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yurong Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lei Liu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yabing Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Kang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Pu Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Li Li
- The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo 454003, China
| | - Yanjie Zhu
- Department of Pathology, Central Hospital of Kaifeng City, KaiFeng, Henan, 475000, China
| | - Wei Jiang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhen Li
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China.
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China.
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|