1
|
Sharma A, Maurya S, Kumar S, Tripathi T, Kar RK, Padhi AK. An integrated multiscale computational framework deciphers SARS-CoV-2 resistance to sotrovimab. Biophys J 2025:S0006-3495(25)00310-8. [PMID: 40394898 DOI: 10.1016/j.bpj.2025.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/30/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025] Open
Abstract
The emergence of resistance mutations in the SARS-CoV-2 spike (S) protein presents a challenge for monoclonal antibody treatments like sotrovimab. Understanding the structural, dynamic, and molecular features of these mutations is essential for therapeutic advancements. However, the intricate landscape of potential mutations and critical residues conferring resistance to mAbs like sotrovimab remains elusive. This study introduces an integrated framework that combines interface protein design, machine learning, hybrid quantum mechanics/molecular mechanics methodologies, all-atom and coarse-grained molecular dynamics simulations, and correlation analysis. Beginning with the interface-based design and analysis, this framework elucidates the interaction between sotrovimab and the S-protein, identifying pivotal residues and plausible resistance mutations. Machine learning algorithms then facilitate the identification of potential resistance mutations using structural-sequence-binding affinity-energetics features. The hybrid quantum mechanics/molecular mechanics approach subsequently evaluates the role of mutational residues as quantum regions, assessing their impact on stabilizing the macromolecular complex. To gain a deeper understanding of the dynamic behavior of these mutations, multiscale simulations comprising all-atom and coarse-grained molecular dynamics simulations were performed, revealing their structural, biophysical and energetic impacts. These simulations complemented the static predictions, capturing the conformational dynamics and stability of the mutants in presence of glycan in the S-protein. The accuracy of the predictions is validated by correlating identified resistance mutations with clinical-sequencing data and empirical evidence from sotrovimab-treated patients. Notably, two residues, E340 at the S-protein-sotrovimab interface and Y508 distal from it, and their designs, align with clinically observed resistance mutations. Furthermore, machine learning approaches predict novel S-protein sequences with enhanced/reduced affinity for sotrovimab, validated structurally using AlphaFold. This integrated framework showcases its effectiveness in identifying potential resistance mutations, corroborated with clinical insights and offering a multidimensional strategy for decoding resistance mutations in SARS-CoV-2. Its translational relevance extends to understanding resistance mechanisms and designing novel antibody therapeutics in other systems.
Collapse
Affiliation(s)
- Akshit Sharma
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Shweata Maurya
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Shivank Kumar
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India.
| | - Rajiv K Kar
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| | - Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
2
|
Jiang Y, Ha-Duong T. Temperature-Dependent Coarse-Grained Model for Simulations of Intrinsically Disordered Protein LCST and UCST Liquid-Liquid Phase Separations. J Chem Theory Comput 2025; 21:4939-4952. [PMID: 40278867 DOI: 10.1021/acs.jctc.5c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Many intrinsically disordered proteins (IDPs) can undergo a liquid-liquid phase separation (LLPS) in water, depending on solution conditions (temperature, pH, and ionic strength). There are two types of LLPS that are controlled by temperature: those occurring above a lower critical solution temperature (LCST) and those occurring below an upper critical solution temperature (UCST). IDP coarse-grained (CG) models are particularly appropriate for investigating the physical and chemical factors that govern their LLPS and supramolecular organization. However, the development of CG models allowing simulations of both LCST and UCST behavior of temperature-sensitive IDPs is still in its infancy. In this context, we present here a novel temperature-dependent (TD) CG model for IDP simulations based on the MARTINI 3 force field. The model was developed by modifying the Lennard-Jones potentials between apolar or charged solute beads and water with a TD rescaling factor. It was parametrized to fit the TD potentials of mean force (PMF) between two apolar or two charged molecules computed using all-atom (AA) simulations. We show that the TD CG model is able to reproduce the experimentally known LLPS of both LCST and UCST low-complexity sequences and to estimate phase transition temperatures comparable to experimental measurements.
Collapse
Affiliation(s)
- Yingmin Jiang
- CNRS, BioCIS, Université Paris-Saclay, Orsay 91400, France
| | - Tâp Ha-Duong
- CNRS, BioCIS, Université Paris-Saclay, Orsay 91400, France
| |
Collapse
|
3
|
Souza PCT, Borges-Araújo L, Brasnett C, Moreira RA, Grünewald F, Park P, Wang L, Razmazma H, Borges-Araújo AC, Cofas-Vargas LF, Monticelli L, Mera-Adasme R, Melo MN, Wu S, Marrink SJ, Poma AB, Thallmair S. GōMartini 3: From large conformational changes in proteins to environmental bias corrections. Nat Commun 2025; 16:4051. [PMID: 40307210 PMCID: PMC12043922 DOI: 10.1038/s41467-025-58719-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Coarse-grained modeling has become an important tool to supplement experimental measurements, allowing access to spatio-temporal scales beyond all-atom based approaches. The GōMartini model combines structure- and physics-based coarse-grained approaches, balancing computational efficiency and accurate representation of protein dynamics with the capabilities of studying proteins in different biological environments. This paper introduces an enhanced GōMartini model, which combines a virtual-site implementation of Gō models with Martini 3. The implementation has been extensively tested by the community since the release of the reparametrized version of Martini. This work demonstrates the capabilities of the model in diverse case studies, ranging from protein-membrane binding to protein-ligand interactions and AFM force profile calculations. The model is also versatile, as it can address recent inaccuracies reported in the Martini protein model. Lastly, the paper discusses the advantages, limitations, and future perspectives of the Martini 3 protein model and its combination with Gō models.
Collapse
Affiliation(s)
- Paulo C T Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France.
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France.
| | - Luís Borges-Araújo
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, France
| | - Christopher Brasnett
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands
| | - Rodrigo A Moreira
- NEIKER, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, Derio, Spain
| | - Fabian Grünewald
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, Heidelberg, Germany
| | - Peter Park
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Liguo Wang
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands
| | - Hafez Razmazma
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086 and Université Claude Bernard Lyon 1, 7 Passage du Vercors, Lyon, France
- Institut des Biomolecules Max Mousseron, UMR5247, CNRS, Université De Montpellier, ENSCM, 1919 Route de Mende, Montpellier, Cedex, France
| | - Ana C Borges-Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Luis Fernando Cofas-Vargas
- Biosystems and Soft Matter Division, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106, Warsaw, Poland
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086 and Université Claude Bernard Lyon 1, 7 Passage du Vercors, Lyon, France
| | - Raúl Mera-Adasme
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Sangwook Wu
- PharmCADD, Busan, Republic of Korea
- Department of Physics, Pukyong National University, Busan, Republic of Korea
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands.
| | - Adolfo B Poma
- Biosystems and Soft Matter Division, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106, Warsaw, Poland.
| | - Sebastian Thallmair
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Liu Y, Brown CM, Erramilli S, Su YC, Guu SY, Tseng PS, Wang YJ, Duong NH, Tokarz P, Kloss B, Han CR, Chen HY, Rodrigues J, Khoo KH, Archer M, Kossiakoff AA, Lowary TL, Stansfeld PJ, Nygaard R, Mancia F. Structural insights into terminal arabinosylation of mycobacterial cell wall arabinan. Nat Commun 2025; 16:3973. [PMID: 40301320 PMCID: PMC12041299 DOI: 10.1038/s41467-025-58196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/14/2025] [Indexed: 05/01/2025] Open
Abstract
The global challenge of tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is compounded by the emergence of drug-resistant strains. A critical factor in Mtb's pathogenicity is its intricate cell envelope, which acts as a formidable barrier against immune defences and pharmacological interventions. Central to this envelope are arabinogalactan (AG) and lipoarabinomannan (LAM), two complex polysaccharides containing arabinan domains essential for maintaining cell wall structure and function. The arabinofuranosyltransferase AftB plays a pivotal role in the biosynthesis of these arabinan domains by catalyzing the addition of β-(1 → 2)-linked terminal arabinofuranose residues. Here, we present the cryo-EM structures of Mycobacterium chubuense AftB in both its apo form and bound to a donor substrate analog, resolved at 2.9 Å and 3.4 Å resolution, respectively. These structures reveal that AftB has a GT-C fold, with a transmembrane (TM) domain comprised of eleven TM helices and a periplasmic cap domain. AftB has a distinctive irregular, tube-shaped cavity that connects two proposed substrate binding sites. Through an integrated approach combining structural analysis, biochemical assays, and molecular dynamics simulations, we delineate the molecular basis of AftB's reaction mechanism and propose a model for its catalytic function.
Collapse
Affiliation(s)
- Yaqi Liu
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Chelsea M Brown
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, UK
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Satchal Erramilli
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
| | - Yi-Chia Su
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | - Shih-Yun Guu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | - Po-Sen Tseng
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Yu-Jen Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | - Nam Ha Duong
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, ROC
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Piotr Tokarz
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
| | - Brian Kloss
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Cheng-Ruei Han
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | - Hung-Yu Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | - José Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Oeiras, Portugal
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan, ROC
| | - Margarida Archer
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Oeiras, Portugal
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
| | - Todd L Lowary
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC.
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan, ROC.
| | - Phillip J Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, UK.
| | - Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Liu Y, Brown CM, Borges N, Nobre RN, Erramilli S, Belcher Dufrisne M, Kloss B, Giacometti S, Esteves AM, Timóteo CG, Tokarz P, Cater RJ, Lowary TL, Morita YS, Kossiakoff AA, Santos H, Stansfeld PJ, Nygaard R, Mancia F. Mechanistic studies of mycobacterial glycolipid biosynthesis by the mannosyltransferase PimE. Nat Commun 2025; 16:3974. [PMID: 40301322 PMCID: PMC12041525 DOI: 10.1038/s41467-025-57843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/05/2025] [Indexed: 05/01/2025] Open
Abstract
Tuberculosis (TB), a leading cause of death among infectious diseases globally, is caused by Mycobacterium tuberculosis (Mtb). The pathogenicity of Mtb is largely attributed to its complex cell envelope, which includes a class of glycolipids called phosphatidyl-myo-inositol mannosides (PIMs). These glycolipids maintain the integrity of the cell envelope, regulate permeability, and mediate host-pathogen interactions. PIMs comprise a phosphatidyl-myo-inositol core decorated with one to six mannose residues and up to four acyl chains. The mannosyltransferase PimE catalyzes the transfer of the fifth PIM mannose residue from a polyprenyl phosphate-mannose (PPM) donor. This step contributes to the proper assembly and function of the mycobacterial cell envelope; however, the structural basis for substrate recognition and the catalytic mechanism of PimE remain poorly understood. Here, we present the cryo-electron microscopy (cryo-EM) structures of PimE from Mycobacterium abscessus in its apo and product-bound form. The structures reveal a distinctive binding cavity that accommodates both donor and acceptor substrates/products. Key residues involved in substrate coordination and catalysis were identified and validated via in vitro assays and in vivo complementation, while molecular dynamics simulations delineated access pathways and binding dynamics. Our integrated approach provides comprehensive insights into PimE function and informs potential strategies for anti-TB therapeutics.
Collapse
Affiliation(s)
- Yaqi Liu
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Chelsea M Brown
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh, The Netherlands
| | - Nuno Borges
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
- Marine and Environmental Sciences Centre, Escola Superior de Tecnologia, Instituto Politécnico de Setúbal, Setúbal, Portugal
| | - Rodrigo N Nobre
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Satchal Erramilli
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
| | - Meagan Belcher Dufrisne
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Brian Kloss
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Sabrina Giacometti
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- School of Medicine, New York University, New York, NY, USA
| | - Ana M Esteves
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina G Timóteo
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Piotr Tokarz
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
| | - Rosemary J Cater
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Todd L Lowary
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK.
| | - Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
6
|
Mehdipour N, Kiani S, Eslami H. Hydrophobic Ion Pairing of Polymyxin B with Oleic Acid: A Dissipative Particle Dynamics Simulation Study. Pharmaceutics 2025; 17:574. [PMID: 40430866 PMCID: PMC12114717 DOI: 10.3390/pharmaceutics17050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Hydrophobic ion pairing is a technique for reducing the hydrophilicity of charged molecules (drugs) by pairing them with oppositely charged hydrophobic counterions. This method is used to control the solubility of charged molecules in a solvent and is of particular importance in drug delivery. Methods: Dissipative particle dynamics simulations were performed to provide a microscopic understanding of hydrophobic ion pairing in polymyxin B (PMB) and oleate (OA) ions. Solvents and ions were explicitly included in the simulations. Results: We investigated the effects of relative concentrations of PMB and OA (the charge ratio), solvent philicity, and the concentrations of PMB and OA at a fixed composition on the structural stability and the hydrophobicity of the ion paired cluster, as well as the kinetics of assembly. The maximum hydrophobicity belongs to PMB:OA charge ratio 1:1. The clustering efficiency in mixed ethanol-water solutions decreases with the increasing ethanol content of water. The dynamics of PMB/OA exchange between hydrophobic cluster and the surrounding solution reveal two distinct relaxation processes, whose relaxation times differ by two orders of magnitude. Conclusions: The hydrophobicity of the cluster is controlled by the charge ratio. The core of the ion paired cluster acts as the primary barrier and its surface layer acts as the secondary barrier against alcohol permeation into it. The exchange of surface PMB/OA ions with the surrounding is a much faster dynamic process than the establishment of equilibrium between the PMB/OA ions in the cluster and the solution. The time scale for the slower process provides useful information on the rate of drug release from the hydrophobic ion paired complex.
Collapse
Affiliation(s)
- Nargess Mehdipour
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran; (S.K.); (H.E.)
| | | | | |
Collapse
|
7
|
Grünewald F, Seute L, Alessandri R, König M, Kroon PC. CGsmiles: A Versatile Line Notation for Molecular Representations across Multiple Resolutions. J Chem Inf Model 2025; 65:3405-3419. [PMID: 40126413 PMCID: PMC12005186 DOI: 10.1021/acs.jcim.5c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Coarse-grained (CG) models simplify molecular representations by grouping multiple atoms into effective particles, enabling faster simulations and reducing the chemical compound space compared to atomistic methods. Additionally, models with chemical specificity, such as Martini, may extrapolate to cases where experimental data is scarce, making CG methods highly promising for high-throughput (HT) screenings and chemical space exploration. Yet no rigorous data formats exist for the crucial aspect of describing how the atoms are grouped (i.e., the mapping). As CG models advance toward true HT capabilities, the lack of mappings and indexing capabilities for the growing number of CG molecules poses a significant barrier. To address this, we introduce CGsmiles, a versatile line notation inspired by the popular Simplified Molecular Input Line Entry System (SMILES) and BigSMILES. CGsmiles encodes the molecular graph and particle (atom) properties independent of their resolution and incorporates a framework that allows seamless conversion between coarse- and fine-grained resolutions. By specifying fragments that describe how each particle is represented at the next finer resolution (e.g., CG particles to atoms), CGsmiles can represent multiple resolutions and their hierarchical relationships in a single string. In this paper, we present the CGSmiles syntax and analyze a benchmark set of 407 molecules from the Martini force field. We highlight key features missing in existing notations that are essential for accurately describing CG models. To demonstrate the utility of CGsmiles beyond simulations, we construct two simple machine-learning models for predicting partition coefficients, both trained on CGsmiles-indexed data and leveraging information from both CG and atomistic resolutions. Finally, we briefly discuss the applicability of CGsmiles to polymers, which particularly benefit from the multiresolution nature of the notation.
Collapse
Affiliation(s)
- Fabian Grünewald
- Heidelberg
Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Interdisciplinary
Center for Scientific Computing, Heidelberg
University, 69120 Heidelberg, Germany
| | - Leif Seute
- Heidelberg
Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Riccardo Alessandri
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001 Leuven, Belgium
| | - Melanie König
- Heidelberg
University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Peter C. Kroon
- Hanze
University of Applied Sciences Groningen, Zernikeplein 7, 9747
AS Groningen, The
Netherlands
| |
Collapse
|
8
|
Shi L, Wang F, Mandal T, Larson RG. Can Coarse-Grained Molecular Dynamics Simulations Predict Pharmaceutical Crystal Growth? J Chem Theory Comput 2025; 21:3321-3334. [PMID: 40095948 DOI: 10.1021/acs.jctc.5c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
To investigate the ability of coarse-grained molecular dynamics simulations to predict the relative growth rates of crystal facets of pharmaceutical molecules, we apply two coarse-graining strategies to two drug molecules, phenytoin and carbamazepine. In the first method, we map an atomistic model to a MARTINI-level coarse-grained (CG) force field that uses 2 or 3 heavy atoms per bead. This is followed by applying Particle Swarm Optimization (PSO), a global optimum searching algorithm, to the CG Lennard-Jones intermolecular potentials to fit the radial distribution functions of both the crystalline and melt structures. In the second, a coarser-grained method, we map 5 or more heavy atoms into one bead with the help of the Iterative Boltzmann Inversion (IBI) method to derive a tabulated longer-range force field (FF). Simulations using the FF's derived from both strategies were able to stabilize the crystal in the correct structure and to predict crystal growth from the melt with modest computational resources. We evaluate the advantages and limitations of both methods and compare the relative growth rates of various facets of both drug crystals with those predicted by the Bravais-Friedel-Donnay-Harker (BFDH) and attachment energy (AE) theories. While all methods, except for the simulations conducted with the coarser-grained IBI-generated model, produced similarly good results for phenytoin, the finer-grained PSO-generated FF using MARTINI mapping rules outperformed the other methods in its prediction of the facet growth rates and resulting crystalline morphology for carbamazepine.
Collapse
Affiliation(s)
- Linghao Shi
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Futianyi Wang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Taraknath Mandal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ronald G Larson
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Sun B, Gao W, Yu X, Zhang C, Du H, Luo Y, Zhu J, Yang P, Zhang M. Charge regulated pH/NIR dual responsive nanoplatforms centered on cuproptosis for enhanced cancer theranostics. Biomaterials 2025; 315:122907. [PMID: 39476451 DOI: 10.1016/j.biomaterials.2024.122907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/23/2024] [Accepted: 10/20/2024] [Indexed: 12/09/2024]
Abstract
Multifunctional nanoplatforms capable of simultaneously executing multimodal therapy and imaging functions are of great potentials for cancer theranostics. We present an elegantly designed, easy-to-fabricate poly(acrylic acid)/mesoporous calcium phosphate/mesoporous copper phosphate nanosphere (PAA/mCaP/mCuP NS) with outstanding pH/NIR-sensitive multimodal-synergic anti-tumor effects. Optimal porous PAA NS scaffolds were prepared at room temperature by balancing the intra-PAA polymer and polymer-solvents Lennard-Jones potentials in a water:isopropyl alcohol (IPA) mix-solvent. Subsequent sponging of Ca2+ and Cu2+, and adsorption of PO43- to the PAA template were achieved through exquisite electrostatic interactions among ions and the ionizable PAA side-chain in an aqueous environment. This forms the basis for the tumor microenvironment pH-triggered release of Cu2+ to induce cuproptosis, as well as the photothermal effect originating from CuP, while Ca2+ can enhance the nanoplatform's biocompatibility and can damage mitochondria when overloaded. Lastly, PAA/mCaP/mCuP NSs still exhibit high drug loading efficiency for doxorubicin (DOX), enabling chemotherapy. Satisfactory anti-tumor effects of these modalities, along with their synergistic effects, were verified both in vitro and in vivo, with the NSs demonstrating good biodegradation in the latter. The fabricated NS itself holds great promise as an anti-tumor nanomedicine, and the thorough mechanical insights into NS formation may inspire the design of next-generation multifunctional nanoplatforms.
Collapse
Affiliation(s)
- Bin Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wei Gao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xinyuan Yu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chunpeng Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Haoyang Du
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yakun Luo
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Jiuxin Zhu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China.
| | - Manjie Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China.
| |
Collapse
|
10
|
Zou R, Wang Y, Zhang X, Zhou Y, Liu Y, Ding M. Benchmark of Coacervate Formation and Mechanism Exploration Using the Martini Force Field. J Chem Theory Comput 2025; 21:2723-2735. [PMID: 39999285 DOI: 10.1021/acs.jctc.4c01571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Peptide-based coacervates are crucial for drug delivery due to their biocompatibility, versatility, high drug loading capacity, and cell penetration rates; however, their stability mechanism and phase behavior are not fully understood. Additionally, although Martini is one of the most famous force fields capable of describing coacervate formation with molecular details, a comprehensive benchmark of its accuracy has not been conducted. This research utilized the Martini 3.0 force field and machine learning algorithms to explore representative peptide-based coacervates, including those composed of polyaspartate (PAsp)/polyarginine (PArg), rmfp-1, sticker-and-spacer small molecules, and HBpep molecules. We identified key coacervate formation driving forces such as Coulomb, cation-π, and π-π interactions and established three criteria for determining coacervate formation in simulations. The results also indicate that while Martini 3.0 accurately captures coacervate formation trends, it tends to underestimate Coulomb interactions and overestimate π-π interactions. What is more, our study on drug encapsulation of HBpep and its derivative coacervates suggested that most loaded drugs were distributed on surfaces of HBpep clusters, awaiting experimental validation. This study employs simulation to enhance understanding of peptide-based coacervate phase behavior and stability mechanisms while also benchmarking Martini 3.0, thereby providing fundamental insights for future experimental and simulation investigations.
Collapse
Affiliation(s)
- Rongrong Zou
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China
| | - Yiwei Wang
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China
| | - Xiu Zhang
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China
| | - Yeqiang Zhou
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China
| | - Mingming Ding
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Lütge S, Krebs M, Risselada HJ. Toward the Evolutionary Optimisation of Small Molecules Within Coarse-Grained Simulations: Training Molecules to Hide Behind Lipid Head Groups. J Phys Chem B 2025; 129:2482-2492. [PMID: 39984164 DOI: 10.1021/acs.jpcb.4c08200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Exploring the vast chemical space of small molecules poses a significant challenge. We develop a new strategy to efficiently explore this space using coarse-grained toy-like molecules utilizing the Martini3 force field and graph representations. This yields initial proof-of-concept results for the approach enabling the identification of optimal molecules with specific properties targeting lipid bilayers. By leveraging genetic algorithms and coarse-grained molecular dynamics simulations, we demonstrate the potential of our method in designing simple, linear molecules. Our findings show a good convergence toward molecules with weak amphiphilic properties, resembling known (general anesthetic) molecules. While this study demonstrates the feasibility of our method, further refinement is needed to fully realize its potential and explore more complex molecular topologies. Nevertheless, these encouraging results suggest a new path for future research in small molecule discovery and design without relying on extensive data sets.
Collapse
Affiliation(s)
- Sebastian Lütge
- Department of Physics, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Maximilian Krebs
- Department of Physics, Technische Universität Dortmund, 44227 Dortmund, Germany
| | | |
Collapse
|
12
|
Lutsyk V, Plazinski W. Extending the Martini 3 Coarse-Grained Force Field to Hyaluronic Acid. J Phys Chem B 2025; 129:2408-2425. [PMID: 39988846 PMCID: PMC11891902 DOI: 10.1021/acs.jpcb.4c08043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Hyaluronan, also known as hyaluronic acid, is a large glycosaminoglycan composed of repeating disaccharide units. It plays a crucial role in providing structural support, hydration, and facilitating cellular processes in connective tissue, skin, and the extracellular matrix in biological systems. We present a coarse-grained (CG) model of hyaluronic acid (HA) and its constituent residues, N-acetyl-d-glucosamine (GlcNAc) and glucuronic acid (GlcA), designed to be compatible with the Martini 3 force field. The model was validated against atomistic molecular dynamics simulations following standard procedures to ensure the accuracy of bonded interactions and, in the case of GlcNAc, the free energies of transfer between octanol and water. For the final HA model, we investigated its properties by simulating the self-assembly of HA chains at varying ion concentrations in solution and comparing the persistence length of single-chain HA with experimental data. We also studied the interactions of HA with lipid bilayers and various HA-binding proteins, demonstrating the ability of the model to accurately reproduce interactions with other biomolecules characteristic of natural biological systems. This extension of the carbohydrate-dedicated branch of the CG Martini 3 force field enables large-scale molecular dynamics simulations of HA-containing systems and contributes to a better understanding of the roles and functions of hyaluronan in natural biomolecular systems.
Collapse
Affiliation(s)
- Valery Lutsyk
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Wojciech Plazinski
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
- Department
of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| |
Collapse
|
13
|
Lou T, Zhuang X, Chang J, Gao Y, Yuan C, Bai X. Development of a Multifunctional Antimicrobial Peptide for Marine Antifouling by Theoretical Calculations and Experimental Approaches. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12899-12910. [PMID: 39953978 DOI: 10.1021/acsami.4c21224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Marine biofouling poses significant challenges to the economy, safety, and reliability of marine infrastructure. While antimicrobial peptides (AMPs) have emerged as green and efficient antifouling agents, their single functionality and the complexity of preparing antifouling surfaces remain key challenges. This study introduces a multifunctional AMP with combined adhesion and antimicrobial properties, derived from 3,4-dihydroxy-l-phenylalanine (DOPA) and IP12 (sequence IRLRWRWKWPWP). The directional recombination of AMP was guided by theoretical calculations. Density functional theory (DFT) simulations identify that the hydroxyl groups of DOPA were the main activating groups that react with aluminum alloy. Coarse-grained molecular dynamics (CG MD) and all-atom molecular dynamics (AA MD) simulations revealed that amino acid residues near the N-terminal of the IP12 could induce cell membrane bending and rupture. The AMP surfaces were fabricated to validate the accurate calibration of the simulations and performance of multifunctional AMP. Atomic force microscopy, Fourier transform infrared, and X-ray photoelectron spectroscopy results confirm the successful construction of AMP surfaces through adhesion function. Antifouling evaluations demonstrated the antifouling properties of AMP surfaces against Escherichia coli (Gram-negative) and Bacillus sp. (Gram-positive), achieving antifouling rates of 85.8 and 82.4%, respectively. This study provides valuable insights into the design of multifunctional AMPs.
Collapse
Affiliation(s)
- Tong Lou
- School of Marine Engineering, Jimei University, Xiamen 361021, China
- Fujian Institute of Innovation for Marine Equipment Detection and Remanufacturing Industrial Technology, Xiamen 361021, China
| | - Xueqiang Zhuang
- School of Marine Engineering, Jimei University, Xiamen 361021, China
- Fujian Institute of Innovation for Marine Equipment Detection and Remanufacturing Industrial Technology, Xiamen 361021, China
| | - Jiangfan Chang
- School of Marine Engineering, Jimei University, Xiamen 361021, China
- Fujian Institute of Innovation for Marine Equipment Detection and Remanufacturing Industrial Technology, Xiamen 361021, China
| | - Yali Gao
- School of Marine Engineering, Jimei University, Xiamen 361021, China
- Fujian Institute of Innovation for Marine Equipment Detection and Remanufacturing Industrial Technology, Xiamen 361021, China
| | - Chengqing Yuan
- State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China
- Reliability Engineering Institute, National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Wuhan 430063, China
| | - Xiuqin Bai
- State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China
- Reliability Engineering Institute, National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Wuhan 430063, China
| |
Collapse
|
14
|
Davoudi S, Vainikka PA, Marrink SJ, Ghysels A. Validation of a Coarse-Grained Martini 3 Model for Molecular Oxygen. J Chem Theory Comput 2025; 21:428-439. [PMID: 39807536 PMCID: PMC11736683 DOI: 10.1021/acs.jctc.4c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Molecular oxygen (O2) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins. To reach larger length scales with models, such as curved membranes in mitochondria or caveolae, coarse-grained (CG) simulations could be used at much lower computational cost than AA simulations. Yet a CG model for O2 is lacking. In this work, a CG model for O2 is therefore carefully selected from the Martini 3 force field based on criteria including size, zero charge, nonpolarity, solubility in nonpolar organic solvents, and partitioning in a phospholipid membrane. This chosen CG model for O2 (TC3 bead) is then further evaluated through the calculation of its diffusion constant in water and hexadecane, its permeability rate across pure phospholipid- and cholesterol-containing membranes, and its binding to the T4 lysozyme L99A protein. Our CG model shows semiquantitative agreement between CG diffusivity and permeation rates with the corresponding AA values and available experimental data. Additionally, it captures the binding to hydrophobic cavities of the protein, aligning well with the AA simulation of the same system. Thus, the results show that our O2 model approximates the behavior observed in the AA simulations. The CG O2 model is compatible with the widely used multifunctional Martini 3 force field for biological simulations, which will allow for the simulation of large biomolecular systems involved in O2's transport in the body.
Collapse
Affiliation(s)
- Samaneh Davoudi
- IBiTech
- BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance
98, 9000 Gent, Belgium
| | - Petteri A. Vainikka
- Centre
for Analysis and Synthesis, Lund University, Naturvetarvägen 22/Sölvegatan
39 A, 223 62 Lund, Sweden
| | - Siewert J. Marrink
- Molecular
Dynamics Group, Groningen University, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - An Ghysels
- IBiTech
− BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance
98, 9000 Gent, Belgium
| |
Collapse
|
15
|
Gil Herrero C, Thallmair S. G-Protein-Coupled Receptor Surface Creates a Favorable Pathway for Membrane Permeation of Drug Molecules. J Phys Chem Lett 2024; 15:12643-12651. [PMID: 39688267 DOI: 10.1021/acs.jpclett.4c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
G-protein-coupled receptors (GPCRs) play a crucial role in modulating physiological responses and serve as the main drug target. Specifically, salmeterol and salbutamol, which are used for the treatment of pulmonary diseases, exert their effects by activating the GPCR β2-adrenergic receptor (β2AR). In our study, we employed coarse-grained molecular dynamics simulations with the Martini 3 force field to investigate the dynamics of drug molecules in membranes in the presence and absence of β2AR. Our simulations reveal that, in more than 50% of the flip-flop events, the drug molecules use the β2AR surface to permeate the membrane. The pathway along the GPCR surface is significantly more energetically favorable for the drug molecules, which was revealed by umbrella sampling simulations along spontaneous flip-flop pathways. Furthermore, we assessed the behavior of drugs with intracellular targets, such as kinase inhibitors, whose therapeutic efficacy could benefit from this observation. In summary, our results show that β2AR surface interactions can significantly enhance the membrane permeation of drugs, emphasizing their potential for consideration in future drug development strategies.
Collapse
Affiliation(s)
- Cristina Gil Herrero
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany
- Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Sebastian Thallmair
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
16
|
Zhao M, Lopes LJS, Sahni H, Yadav A, Do HN, Reddy T, López CA, Neale C, Gnanakaran S. Insertion and Anchoring of the HIV-1 Fusion Peptide into a Complex Membrane Mimicking the Human T-Cell. J Phys Chem B 2024; 128:12710-12727. [PMID: 39670799 DOI: 10.1021/acs.jpcb.4c05018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
A fundamental understanding of how the HIV-1 envelope (Env) protein facilitates fusion is still lacking. The HIV-1 fusion peptide, consisting of 15 to 22 residues, is the N-terminus of the gp41 subunit of the Env protein. Further, this peptide, a promising vaccine candidate, initiates viral entry into target cells by inserting and anchoring into human immune cells. The influence of membrane lipid reorganization and the conformational changes of the fusion peptide during the membrane insertion and anchoring processes, which can significantly affect HIV-1 cell entry, remains largely unexplored due to the limitations of experimental measurements. In this work, we investigate the insertion of the fusion peptide into an immune cell membrane mimic through multiscale molecular dynamics simulations. We mimic the native T-cell by constructing a nine-lipid asymmetric membrane, along with geometrical restraints accounting for insertion in the context of gp41. To account for the slow time scale of lipid mixing while enabling conformational changes, we implement a protocol to go back and forth between atomistic and coarse-grained simulations. Our study provides a molecular understanding of the interactions between the HIV-1 fusion peptide and the T-cell membrane, highlighting the importance of the conformational flexibility of fusion peptides and local lipid reorganization in stabilizing the anchoring of gp41 into the targeted host membrane during the early events of HIV-1 cell entry. Importantly, we identify a motif within the fusion peptide critical for fusion that can be further manipulated in future immunological studies.
Collapse
Affiliation(s)
- Mingfei Zhao
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Laura J S Lopes
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Harshita Sahni
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Computer Science, University of New Mexico, Albuquerque, New Mexico 87106,United States
| | - Anju Yadav
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968,United States
| | - Hung N Do
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tyler Reddy
- CCS-7 Applied Computer Science Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Cesar A López
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Chris Neale
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - S Gnanakaran
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
17
|
Angelescu DG, Ionita G. Evaluation of All-Atom and Martini 3 Coarse-Grained Force Fields from the Structural Investigation of Nitroxide Spin Probes and Their Confinement in Beta-Cyclodextrin. J Phys Chem B 2024; 128:11784-11799. [PMID: 39477244 DOI: 10.1021/acs.jpcb.4c04970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Nitroxide radicals have found wide applications as spin labels or probes, and their guest-host interactions with cyclodextrins exhibit enhanced applications in electron spin resonance (ESR) spectroscopy and imaging due to improved biostability toward reducing agents. Although the computational prediction of the guest-host binding has become increasingly common for small ligands, molecular simulations regarding the conformational preferences of hosted spin probes have not been conducted. Here we present molecular dynamics simulations at an atomistic level for a set of four TEMPO (2,2,6,6-tetramethylpiperidine 1-oxyl) spin probes and thereafter develop coarse-grained models compatible with the recent version of the Martini force field (v 3.0) to tackle their encapsulation in the cavity of β-cyclodextrin (βCD) for which experimental ESR data are available. The results indicate that the atomistic descriptions perform well in relation to the structural parameters derived from X-ray diffraction as well as hydrogen bonding and hydrogen patterns and predict that the guest-host complexation is hydrophobically driven by the presence of a methyl group pair of the spin probe at the cavity center of βCD. The spin probe mobility at the binding site reveals the nitroxide group orientation toward the secondary rim of the cyclodextrin and the alternating presence of the two methyl group pairs inside the cavity, features in agreement with the experimental behavior of the ESR parameters. The coarse-grained parameterizations of TEMPO probes and βCD rely on optimizing the bonded and nonbonded parameters with references to the atomistic simulation results, and they are capable of recovering the orientation and location of the spin probe inside the cyclodextrin cavity predicted by the atomistic guest-host complexes. The results suggest the cyclodextrin host-guest system as a powerful validation suite to evaluate new coarse-grained parameterizations of small ligands and future extensions to functionalized cyclodextrins in inclusion complexes.
Collapse
Affiliation(s)
- Daniel G Angelescu
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Gabriela Ionita
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| |
Collapse
|
18
|
Yu Z, Jackson NE. Chemically Transferable Electronic Coarse Graining for Polythiophenes. J Chem Theory Comput 2024; 20:9116-9127. [PMID: 39370933 DOI: 10.1021/acs.jctc.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Recent advances in machine-learning-based electronic coarse graining (ECG) methods have demonstrated the potential to enable electronic predictions in soft materials at mesoscopic length scales. However, previous ECG models have yet to confront the issue of chemical transferability. In this study, we develop chemically transferable ECG models for polythiophenes using graph neural networks. Our models are trained on a data set that samples over the conformational space of random polythiophene sequences generated with 15 different monomer chemistries and three different degrees of polymerization. We systematically explore the impact of coarse-grained representation on ECG accuracy, highlighting the significance of preserving the C-β coordinates in thiophene. We also find that integrating unique polymer sequences into training enhances the model performance more efficiently than augmenting conformational sampling for sequences already in the training data set. Moreover, our ECG models, developed initially for one property and one level of quantum chemical theory, can be efficiently transferred to related properties and higher levels of theory with minimal additional data. The chemically transferable ECG model introduced in this work will serve as a foundation model for new classes of chemically transferable ECG predictions across chemical space.
Collapse
Affiliation(s)
- Zheng Yu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nicholas E Jackson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Bartocci A, Grazzi A, Awad N, Corringer PJ, Souza PCT, Cecchini M. A millisecond coarse-grained simulation approach to decipher allosteric cannabinoid binding at the glycine receptor α1. Nat Commun 2024; 15:9040. [PMID: 39426952 PMCID: PMC11490541 DOI: 10.1038/s41467-024-53098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
Glycine receptors (GlyR) are regulated by small-molecule binding at several allosteric sites. Cannabinoids like tetrahydrocannabinol (THC) and N-arachidonyl-ethanol-amide (AEA) potentiate the GlyR response but their mechanism of action is not fully established. By combining millisecond coarse-grained (CG) MD simulations powered by Martini 3 with backmapping to all-atom representations, we have characterized the cannabinoid-binding site(s) at the zebrafish GlyR-α1 active state with atomic resolution. Based on hundreds of thousand ligand-binding events, we find that cannabinoids bind to the transmembrane domain of the receptor at both intrasubunit and intersubunit sites. For THC, the intrasubunit binding mode predicted in simulation is in excellent agreement with recent cryo-EM structures, while intersubunit binding recapitulates in full previous mutagenesis experiments. Intriguingly, AEA is predicted to bind at the same intersubunit site despite the strikingly different chemistry. Statistical analyses of the ligand-receptor interactions highlight potentially relevant residues for GlyR potentiation, offering experimentally testable predictions. The predictions for AEA have been validated by electrophysiology recordings of rationally designed mutants. The results highlight the existence of multiple cannabinoid-binding sites for the allosteric regulation of GlyR and put forward an effective strategy for the identification and structural characterization of allosteric binding sites.
Collapse
Affiliation(s)
- Alessio Bartocci
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex, 67083, France
- Department of Physics, University of Trento, Via Sommarive 14, I-38123, Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123, Trento, Italy
| | - Andrea Grazzi
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex, 67083, France
- Department of Chemistry, University of Milan, Via C. Golgi 19, Milan, 20133, Italy
| | - Nour Awad
- Institut Pasteur, Université de Paris, CNRS UMR3571, Channel-Receptors Unit, Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Université de Paris, CNRS UMR3571, Channel-Receptors Unit, Paris, France
| | - Paulo C T Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex, 67083, France.
| |
Collapse
|
20
|
Noriega M, Corey RA, Haanappel E, Demange P, Czaplicki G, Atkinson RA, Chavent M. Coarse-Graining the Recognition of a Glycolipid by the C-Type Lectin Mincle Receptor. J Phys Chem B 2024; 128:9935-9946. [PMID: 39368102 DOI: 10.1021/acs.jpcb.4c03242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Macrophage inducible Ca2+-dependent lectin (Mincle) receptor recognizes Mycobacterium tuberculosis glycolipids to trigger an immune response. This host membrane receptor is thus a key player in the modulation of the immune response to infection by M. tuberculosis and has emerged as a promising target for the development of new vaccines against tuberculosis. The recent development of the Martini 3 force field for coarse-grained (CG) molecular modeling allows the study of interactions of soluble proteins with small ligands which was not typically modeled well with the previous Martini 2 model. Here, we present a refined approach detailing a protocol for modeling interactions between a glycolipid and its receptor at a CG level using the Martini 3 force field. Using this approach, we studied Mincle and identified critical parameters governing ligand recognition, such as loop flexibility and the regulation of hydrophobic groove formation by calcium ions. In addition, we assessed ligand affinity using free energy perturbation calculations. Our results offer mechanistic insight into the interactions between Mincle and glycolipids, providing a basis for the rational design of molecules targeting this type of membrane receptors.
Collapse
Affiliation(s)
- Maxime Noriega
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
| | - Robin A Corey
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, U.K
| | - Evert Haanappel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| | - Pascal Demange
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
| | - Georges Czaplicki
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
| | - R Andrew Atkinson
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
| | - Matthieu Chavent
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| |
Collapse
|
21
|
Coker JF, Moro S, Gertsen AS, Shi X, Pearce D, van der Schelling MP, Xu Y, Zhang W, Andreasen JW, Snyder CR, Richter LJ, Bird MJ, McCulloch I, Costantini G, Frost JM, Nelson J. Perpendicular crossing chains enable high mobility in a noncrystalline conjugated polymer. Proc Natl Acad Sci U S A 2024; 121:e2403879121. [PMID: 39226361 PMCID: PMC11406284 DOI: 10.1073/pnas.2403879121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
The nature of interchain π-system contacts, and their relationship to hole transport, are elucidated for the high-mobility, noncrystalline conjugated polymer C16-IDTBT by the application of scanning tunneling microscopy, molecular dynamics, and quantum chemical calculations. The microstructure is shown to favor an unusual packing motif in which paired chains cross-over one another at near-perpendicular angles. By linking to mesoscale microstructural features, revealed by coarse-grained molecular dynamics and previous studies, and performing simulations of charge transport, it is demonstrated that the high mobility of C16-IDTBT can be explained by the promotion of a highly interconnected transport network, stemming from the adoption of perpendicular contacts at the nanoscale, in combination with fast intrachain transport.
Collapse
Affiliation(s)
- Jack F Coker
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stefania Moro
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Anders S Gertsen
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Xingyuan Shi
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Drew Pearce
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Martin P van der Schelling
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - Yucheng Xu
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Weimin Zhang
- King Abdullah University of Science and Technology Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Kingdom of Saudi Arabia
| | - Jens W Andreasen
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Chad R Snyder
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Lee J Richter
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Matthew J Bird
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Giovanni Costantini
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jarvist M Frost
- Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Jenny Nelson
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
22
|
Ishizuka R. Martini 3D-OZ: A Theoretical Investigation of Solvation Shell Structures and Solvation Free Energies of Martini Coarse-Grained Proteins. J Phys Chem B 2024; 128:8522-8529. [PMID: 39180742 DOI: 10.1021/acs.jpcb.4c03897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
We investigate the properties of aqueous solutions using integral equation theories and molecular dynamics (MD) simulations within the framework of the MARTINI coarse-grained force field. The integral equation theory used in the present work is based on the Ornstein-Zernike equation coupled with the hypernetted chain (HNC) and Kovalenko-Hirata (KH) closures. Overall, the solvation shell structures and solvation thermodynamics in the HNC approximation are shown to be in better agreement with those from the MD simulation than the KH results. Especially, through the analysis of spatial distribution functions of water around a protein, we have demonstrated that the HNC approximation can provide the highly anisotropic structure of the solvation shell of the protein. On the other hand, the KH approximation works well for simple particle solutes, but the results for highly hydrated proteins deviate quite significantly from the MD results. We further explore in detail the reason underlying the deviation caused by the KH approximation. Lastly, a potential application of the integral equation theory with the MARTINI model is outlined.
Collapse
Affiliation(s)
- Ryosuke Ishizuka
- Zkanics F.P.S., Side-6 Senriyama-West, Suita, Osaka 565-0851, Japan
| |
Collapse
|
23
|
Kolmangadi MA, Wani YM, Schönhals A, Nikoubashman A. Coarse-Grained Simulations of Columnar Ionic Liquid Crystals: Comparison with Experiments. J Phys Chem B 2024; 128:8215-8222. [PMID: 39163525 DOI: 10.1021/acs.jpcb.4c03041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
We simulate a homologous series of guanidinium-based columnar ionic liquid crystals (ILCs) using coarse-grained molecular dynamics (MD) simulations with the Martini force field. We systematically vary the length of alkyl side chains, ILC-n (n = 8, 12, 16), and compare our results with previous experimental findings. Experimentally, ILC-8 exhibits a narrow mesophase window and weak columnar order, while ILC-12 and ILC-16 display a broad mesophase window and high columnar order. The MD simulations show that ILC-8 forms a percolated structure, whereas the longer chain analogues self-assemble into columns, with columnar assembly becoming more prominent as the side chain length increases, in qualitative agreement with the experiments. Furthermore, the intercolumnar distance increases monotonically with increasing side chain length and decreases with increasing temperature. Finally, we find that the diffusion coefficient and ionic conductivity decrease substantially with increasing chain length, consistent with experimental observations. We attribute this decrease in mobility to the formation of hexagonally ordered columns, which restrict transport more than percolated networks.
Collapse
Affiliation(s)
- Mohamed A Kolmangadi
- Bundesantalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Yashraj M Wani
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Andreas Schönhals
- Bundesantalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
24
|
Zhao M, Lopes LJS, Sahni H, Yadav A, Do HN, Reddy T, López CA, Neale C, Gnanakaran S. Insertion and Anchoring of HIV-1 Fusion Peptide into Complex Membrane Mimicking Human T-cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606381. [PMID: 39131401 PMCID: PMC11312619 DOI: 10.1101/2024.08.02.606381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A fundamental understanding of how HIV-1 envelope (Env) protein facilitates fusion is still lacking. The HIV-1 fusion peptide, consisting of 15 to 22 residues, is the N-terminus of the gp41 subunit of the Env protein. Further, this peptide, a promising vaccine candidate, initiates viral entry into target cells by inserting and anchoring into human immune cells. The influence of membrane lipid reorganization and the conformational changes of the fusion peptide during the membrane insertion and anchoring processes, which can significantly affect HIV-1 cell entry, remains largely unexplored due to the limitations of experimental measurements. In this work, we investigate the insertion of the fusion peptide into an immune cell membrane mimic through multiscale molecular dynamics simulations. We mimic the native T-cell by constructing a 9-lipid asymmetric membrane, along with geometrical restraints accounting for insertion in the context of gp41. To account for the slow timescale of lipid mixing while enabling conformational changes, we implement a protocol to go back and forth between atomistic and coarse-grained simulations. Our study provides a molecular understanding of the interactions between the HIV-1 fusion peptide and the T-cell membrane, highlighting the importance of conformational flexibility of fusion peptides and local lipid reorganization in stabilizing the anchoring of gp41 into the targeted host membrane during the early events of HIV-1 cell entry. Importantly, we identify a motif within the fusion peptide critical for fusion that can be further manipulated in future immunological studies.
Collapse
Affiliation(s)
- Mingfei Zhao
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| | | | - Harshita Sahni
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
- Department of Computer Science, University of New Mexico, Albuquerque NM, USA
| | - Anju Yadav
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso TX, USA
| | - Hung N Do
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| | - Tyler Reddy
- CCS-7 Applied Computer Science Group, Los Alamos National Laboratory, Los Alamos NM USA
| | - Cesar A López
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| | - Chris Neale
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| | - S Gnanakaran
- T-6 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos NM USA
| |
Collapse
|
25
|
Chiariello MG, Zarmiento-Garcia R, Marrink SJ. Martini 3 Coarse-Grained Model for the Cofactors Involved in Photosynthesis. Int J Mol Sci 2024; 25:7947. [PMID: 39063190 PMCID: PMC11277265 DOI: 10.3390/ijms25147947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
As a critical step in advancing the simulation of photosynthetic complexes, we present the Martini 3 coarse-grained (CG) models of key cofactors associated with light harvesting (LHCII) proteins and the photosystem II (PSII) core complex. Our work focuses on the parametrization of beta-carotene, plastoquinone/quinol, violaxanthin, lutein, neoxanthin, chlorophyll A, chlorophyll B, and heme. We derived the CG parameters to match the all-atom reference simulations, while structural and thermodynamic properties of the cofactors were compared to experimental values when available. To further assess the reliability of the parameterization, we tested the behavior of these cofactors within their physiological environments, specifically in a lipid bilayer and bound to photosynthetic complexes. The results demonstrate that our CG models maintain the essential features required for realistic simulations. This work lays the groundwork for detailed simulations of the PSII-LHCII super-complex, providing a robust parameter set for future studies.
Collapse
Affiliation(s)
| | | | - Siewert-Jan Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; (M.G.C.); (R.Z.-G.)
| |
Collapse
|
26
|
Pereira GP, Alessandri R, Domínguez M, Araya-Osorio R, Grünewald L, Borges-Araújo L, Wu S, Marrink SJ, Souza PCT, Mera-Adasme R. Bartender: Martini 3 Bonded Terms via Quantum Mechanics-Based Molecular Dynamics. J Chem Theory Comput 2024; 20:5763-5773. [PMID: 38924075 DOI: 10.1021/acs.jctc.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Coarse-grained (CG) molecular dynamics (MD) simulations have grown in applicability over the years. The recently released version of the Martini CG force field (Martini 3) has been successfully applied to simulate many processes, including protein-ligand binding. However, the current ligand parametrization scheme is manual and requires an a priori reference all-atom (AA) simulation for benchmarking. For systems with suboptimal AA parameters, which are often unknown, this translates into a CG model that does not reproduce the true dynamical behavior of the underlying molecule. Here, we present Bartender, a quantum mechanics (QM)/MD-based parametrization tool written in Go. Bartender harnesses the power of QM simulations and produces reasonable bonded terms for Martini 3 CG models of small molecules in an efficient and user-friendly manner. For small, ring-like molecules, Bartender generates models whose properties are indistinguishable from the human-made models. For more complex, drug-like ligands, it is able to fit functional forms beyond simple harmonic dihedrals and thus better captures their dynamical behavior. Bartender has the power to both increase the efficiency and the accuracy of Martini 3-based high-throughput applications by producing numerically stable and physically realistic CG models.
Collapse
Affiliation(s)
- Gilberto P Pereira
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69364, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69364, France
| | - Riccardo Alessandri
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Moisés Domínguez
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estacion Central, Santiago 9170022, Chile
| | - Rocío Araya-Osorio
- Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapacá, Av. Gral. Velasquez 1775, Arica 1000000, Chile
| | - Linus Grünewald
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Luís Borges-Araújo
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69364, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69364, France
| | - Sangwook Wu
- PharmCADD, Busan 48792, Republic of Korea
- Department of Physics, Pukyong National University, Busan 48513, Republic of Korea
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Paulo C T Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69364, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69364, France
| | - Raul Mera-Adasme
- Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapacá, Av. Gral. Velasquez 1775, Arica 1000000, Chile
| |
Collapse
|
27
|
Borges-Araújo L, Pereira GP, Valério M, Souza PCT. Assessing the Martini 3 protein model: A review of its path and potential. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141014. [PMID: 38670324 DOI: 10.1016/j.bbapap.2024.141014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Coarse-grained (CG) protein models have become indispensable tools for studying many biological protein details, from conformational dynamics to the organization of protein macro-complexes, and even the interaction of proteins with other molecules. The Martini force field is one of the most widely used CG models for bio-molecular simulations, partly because of the enormous success of its protein model. With the recent release of a new and improved version of the Martini force field - Martini 3 - a new iteration of its protein model was also made available. The Martini 3 protein force field is an evolution of its Martini 2 counterpart, aimed at improving many of the shortcomings that had been previously identified. In this mini-review, we first provide a general overview of the model and then focus on the successful advances made in the short time since its release, many of which would not have been possible before. Furthermore, we discuss reported limitations, potential directions for model improvement and comment on what the likely future development and application avenues are.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France; Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
| | - Gilberto P Pereira
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France; Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
| | - Mariana Valério
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France; Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
| | - Paulo C T Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France; Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France.
| |
Collapse
|
28
|
Dettmann LF, Kühn O, Ahmed AA. Martini-Based Coarse-Grained Soil Organic Matter Model Derived from Atomistic Simulations. J Chem Theory Comput 2024; 20:5291-5305. [PMID: 38831535 DOI: 10.1021/acs.jctc.4c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The significance of soil organic matter (SOM) in environmental contexts, particularly its role in pollutant adsorption, has prompted an increased utilization of molecular simulations to understand microscopic interactions. This study introduces a coarse-grained SOM model, parametrized within the framework of the versatile Martini 3 force field. Utilizing models generated by the Vienna Soil Organic Matter Modeler 2, which constructs humic substance systems from a fragment database, we employed Swarm-CG to parametrize the fragments and subsequently assembled them into macromolecules. Direct Boltzmann inversion (DBI) facilitated the determination of bonded parameters between fragments. The parametrization yielded favorable agreement in the radius of gyration and solvent-accessible surface area. Transfer free energies exhibited a strong correlation with hexadecane-water and chloroform-water values, albeit deviations were noted for octanol-water values. Comparing densities of modeled Leonardite humic acid systems at coarse-grained and atomistic levels revealed promising agreement, particularly at higher water concentrations. The DBI approach effectively reproduced average values of bonded interactions between fragments. Radial distribution functions between carboxylate groups and calcium ions showed partial agreement, however, reproducing certain peaks was challenging due to fixed bead sizes. Detailed analysis of atomistic systems revealed different configurations between the groups, explaining discrepancies. The present contribution provides a comprehensive insight into the properties, strengths, and weaknesses of the coarse-grained SOM model, serving as a foundation for future investigations encompassing pollutant interactions and varied SOM compositions.
Collapse
Affiliation(s)
- Lorenz F Dettmann
- Institute of Physics, University of Rostock, Albert-Einstein-Street 23-24, Rostock D-18059, Germany
| | - Oliver Kühn
- Institute of Physics, University of Rostock, Albert-Einstein-Street 23-24, Rostock D-18059, Germany
- Department of Life, Light and Matter (LLM), University of Rostock, Albert-Einstein-Street 25, Rostock D-18059, Germany
| | - Ashour A Ahmed
- Department of Life, Light and Matter (LLM), University of Rostock, Albert-Einstein-Street 25, Rostock D-18059, Germany
| |
Collapse
|
29
|
Haque Pial T, Li Y, Olvera de la Cruz M. Microscopically segregated ligand distribution in co-assembled peptide-amphiphile nanofibers. SOFT MATTER 2024; 20:4640-4647. [PMID: 38819791 DOI: 10.1039/d4sm00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Peptide amphiphiles (PAs) self-assemble into cylindrical nanofibers with applications in protein purification, tissue engineering, and regenerative medicine. For these applications, functionalized PAs are often co-assembled with oppositely charged filler PAs. Finding the conditions at which these fibers are homogeneously mixed or segregated is crucial for the required application. We co-assemble negative C12VVEE fillers and positive C12VVKK-OEG4-Z33 ligands, which are important for antibody purifications. Our results show that the ligands tend to cluster and locally segregate in the fiber surfaces. The Z33s are overall neutral and form large aggregates in bulk solution due to short range attractions. However, full segregation of the C12VVKK-OEG4-Z33 is not observed in the cylindrical surface due to the electrostatic penalty of forming large domains of similarly charged molecules. This is commensurate with previous theoretical predictions, showing that the competition between short-range attractive interactions and long-range electrostatic repulsions leads to pattern formation in cylindrical surfaces. This work offers valuable insight into the design of functionalized nanofibers for various biomedical and chemical applications.
Collapse
Affiliation(s)
- Turash Haque Pial
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA.
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Yang Li
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA.
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
30
|
Angelescu DG. Molecular modeling of the carbohydrate corona formation on a polyvinyl chloride nanoparticle and its impact on the adhesion to lipid bilayers. J Chem Phys 2024; 160:144901. [PMID: 38591687 DOI: 10.1063/5.0198254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
The pervasive presence of nanoplastics (NPs) in the environment has gained increasing attention due to their accumulation in living organisms. These emerging contaminants inevitably interact with extracellular polymeric substances along respiratory or gastrointestinal tracts, and diverse organic coating on the surface of NPs, known as bio- or eco-corona, is formed. Although its impact on altering the NP properties and potential cell internalization has been extensively examined, studies on its role in NP partitioning in the cell membrane are elusive yet. In this work, molecular dynamics is used to investigate the formation of chitosan (CT) corona centered on a polyvinyl chloride (PVC) nanoparticle and the uptake of the resulting complex onto lipid membranes. Coarse-grained models compatible with the newly developed Martini 3.0 force field are implemented for the two polymers employing the atomistic properties as targets in the parameterization. The reliability of the coarse-grained polymer models is demonstrated by reproducing the structural properties of the PVC melt and of solvated CT strands, as well as by determining the conformation adopted by the latter at the NP surface. Results show that the spontaneous binding of CT chains of high and intermediate protonation degrees led to the formation of soft and hard corona that modulates the interaction of PVC core with model membranes. The structural changes of the corona adsorbed at the lipid-water interface enable a subsequent transfer of the NP to the center of the saturated lipid membranes and a complete or partial transition to a snorkel conformation depending on the hydrophilic/hydrophobic balance in the CT-PVC complex. Overall, the computational investigation of the coarse-grained model system provides implications for understanding how the eco-corona development influences the uptake and implicit toxicology of NPs.
Collapse
Affiliation(s)
- Daniel G Angelescu
- Romanian Academy, "Ilie Murgulescu" Institute of Physical Chemistry, Splaiul Independentei 202, 060021 Bucharest, Romania
| |
Collapse
|
31
|
Plazinski W, Lutsyk V, Plazinska A. Exploring Free Energies of Specific Protein Conformations Using the Martini Force Field. J Chem Theory Comput 2024; 20:2273-2283. [PMID: 38427574 PMCID: PMC10938637 DOI: 10.1021/acs.jctc.3c01155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Coarse-grained (CG) level molecular dynamics simulations are routinely used to study various biomolecular processes. The Martini force field is currently the most widely adopted parameter set for such simulations. The functional form of this and several other CG force fields enforces secondary protein structure support by employing a variety of harmonic potentials or restraints that favor the protein's native conformation. We propose a straightforward method to calculate the energetic consequences of transitions between predefined conformational states in systems in which multiple factors can affect protein conformational equilibria. This method is designed for use within the Martini force field and involves imposing conformational transitions by linking a Martini-inherent elastic network to the coupling parameter λ. We demonstrate the applicability of our method using the example of five biomolecular systems that undergo experimentally characterized conformational transitions between well-defined structures (Staphylococcal nuclease, C-terminal segment of surfactant protein B, LAH4 peptide, and β2-adrenergic receptor) as well as between folded and unfolded states (GCN4 leucine zipper protein). The results show that the relative free energy changes associated with protein conformational transitions, which are affected by various factors, such as pH, mutations, solvent, and lipid membrane composition, are correctly reproduced. The proposed method may be a valuable tool for understanding how different conditions and modifications affect conformational equilibria in proteins.
Collapse
Affiliation(s)
- Wojciech Plazinski
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow 30-239, Poland
- Department
of Biopharmacy, Medical University of Lublin, Chodzki 4a, Lublin 20-093, Poland
| | - Valery Lutsyk
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow 30-239, Poland
| | - Anita Plazinska
- Department
of Biopharmacy, Medical University of Lublin, Chodzki 4a, Lublin 20-093, Poland
| |
Collapse
|
32
|
Yang Y, Chen S, Zhang M, Shi Y, Luo J, Huang Y, Gu Z, Hu W, Zhang Y, He X, Yu C. Mesoporous nanoperforators as membranolytic agents via nano- and molecular-scale multi-patterning. Nat Commun 2024; 15:1891. [PMID: 38424084 PMCID: PMC10904871 DOI: 10.1038/s41467-024-46189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Plasma membrane lysis is an effective anticancer strategy, which mostly relying on soluble molecular membranolytic agents. However, nanomaterial-based membranolytic agents has been largely unexplored. Herein, we introduce a mesoporous membranolytic nanoperforators (MLNPs) via a nano- and molecular-scale multi-patterning strategy, featuring a spiky surface topography (nanoscale patterning) and molecular-level periodicity in the spikes with a benzene-bridged organosilica composition (molecular-scale patterning), which cooperatively endow an intrinsic membranolytic activity. Computational modelling reveals a nanospike-mediated multivalent perforation behaviour, i.e., multiple spikes induce nonlinearly enlarged membrane pores compared to a single spike, and that benzene groups aligned parallelly to a phospholipid molecule show considerably higher binding energy than other alignments, underpinning the importance of molecular ordering in phospholipid extraction for membranolysis. Finally, the antitumour activity of MLNPs is demonstrated in female Balb/c mouse models. This work demonstrates assembly of organosilica based bioactive nanostructures, enabling new understandings on nano-/molecular patterns co-governed nano-bio interaction.
Collapse
Affiliation(s)
- Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai, 200433, China.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- South Australian immunoGENomics Cancer Institute, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Shiwei Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Min Zhang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Yiru Shi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jiangqi Luo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yiming Huang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Zhengying Gu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Wenli Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Ye Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200062, China.
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
33
|
Kharche S, Yadav M, Hande V, Prakash S, Sengupta D. Improved Protein Dynamics and Hydration in the Martini3 Coarse-Grain Model. J Chem Inf Model 2024; 64:837-850. [PMID: 38291973 DOI: 10.1021/acs.jcim.3c00802] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The Martini coarse-grain force-field has emerged as an important framework to probe cellular processes at experimentally relevant time- and length-scales. However, the recently developed version, the Martini3 force-field with the implemented Go̅ model (Martini3Go̅), as well as previous variants of the Martini model have not been benchmarked and rigorously tested for globular proteins. In this study, we consider three globular proteins, ubiquitin, lysozyme, and cofilin, and compare protein dynamics and hydration with observables from experiments and all-atom simulations. We show that the Martini3Go̅ model is able to accurately model the structural and dynamic features of small globular proteins. Overall, the structural integrity of the proteins is maintained, as validated by contact maps, radii of gyration (Rg), and SAXS profiles. The chemical shifts predicted from the ensemble sampled in the simulations are consistent with the experimental data. Further, a good match is observed in the protein-water interaction energetics, and the hydration levels of the residues are similar to atomistic simulations. However, the protein-water interaction dynamics is not accurately represented and appears to depend on the protein structural complexity, residue specificity, and water dynamics. Our work is a step toward testing and assessing the Martini3Go̅ model and provides insights into future efforts to refine Martini models with improved solvation effects and better correspondence to the underlying all-atom systems.
Collapse
Affiliation(s)
- Shalmali Kharche
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Manjul Yadav
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Vrushali Hande
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Shikha Prakash
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
34
|
Hosseini AN, van der Spoel D. Martini on the Rocks: Can a Coarse-Grained Force Field Model Crystals? J Phys Chem Lett 2024; 15:1079-1088. [PMID: 38261634 PMCID: PMC10839907 DOI: 10.1021/acs.jpclett.4c00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Computational chemistry is an important tool in numerous scientific disciplines, including drug discovery and structural biology. Coarse-grained models offer simple representations of molecular systems that enable simulations of large-scale systems. Because there has been an increase in the adoption of such models for simulations of biomolecular systems, critical evaluation is warranted. Here, the stability of the amyloid peptide and organic crystals is evaluated using the Martini 3 coarse-grained force field. The crystals change shape drastically during the simulations. Radial distribution functions show that the distance between backbone beads in β-sheets increases by ∼1 Å, breaking the crystals. The melting points of organic compounds are much too low in the Martini force field. This suggests that Martini 3 lacks the specific interactions needed to accurately simulate peptides or organic crystals without imposing artificial restraints. The problems may be exacerbated by the use of the 12-6 potential, suggesting that a softer potential could improve this model for crystal simulations.
Collapse
Affiliation(s)
- A. Najla Hosseini
- Department of Cell and Molecular
Biology, Uppsala University, Box 596, SE-75124 Uppsala, Sweden
| | - David van der Spoel
- Department of Cell and Molecular
Biology, Uppsala University, Box 596, SE-75124 Uppsala, Sweden
| |
Collapse
|
35
|
Sasselli IR, Coluzza I. Assessment of the MARTINI 3 Performance for Short Peptide Self-Assembly. J Chem Theory Comput 2024; 20:224-238. [PMID: 38113378 PMCID: PMC10782451 DOI: 10.1021/acs.jctc.3c01015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
The coarse-grained MARTINI force field, initially developed for membranes, has proven to be an exceptional tool for investigating supramolecular peptide assemblies. Over the years, the force field underwent refinements to enhance accuracy, enabling, for example, the reproduction of protein-ligand interactions and constant pH behavior. However, these protein-focused improvements seem to have compromised its ability to model short peptide self-assembly. In this study, we assess the performance of MARTINI 3 in reproducing peptide self-assembly using the well-established diphenylalanine (FF) as our test case. Unlike its success in version 2.1, FF does not even exhibit aggregation in version 3. By systematically exploring parameters for the aromatic side chains and charged backbone beads, we established a parameter set that effectively reproduces tube formation. Remarkably, these parameter adjustments also replicate the self-assembly of other di- and tripeptides and coassemblies. Furthermore, our analysis uncovers pivotal insights for enhancing the performance of MARTINI in modeling short peptide self-assembly. Specifically, we identify issues stemming from overestimated hydrophilicity arising from charged termini and disruptions in π-stacking interactions due to insufficient planarity in aromatic groups and a discrepancy in intermolecular distances between this and backbone-backbone interactions. This investigation demonstrates that strategic modifications can harness the advancements offered by MARTINI 3 for the realm of short peptide self-assembly.
Collapse
Affiliation(s)
- Ivan R. Sasselli
- Centro
de Física de Materiales (CFM), CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research
and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Ivan Coluzza
- Ikerbasque,
Basque Foundation for Science, Plaza de Euskadi 5, 48009 Bilbao, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
36
|
Liu N, Gao P, Lu HY, Fang L, Nicolas J, Ha-Duong T, Shen JS. Polyfluoroalkyl Chain-Based Assemblies for Biomimetic Catalysis. Chemistry 2024; 30:e202302669. [PMID: 37823686 DOI: 10.1002/chem.202302669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/13/2023]
Abstract
Amphiphobic fluoroalkyl chains are exploited for creating robust and diverse self-assembled biomimetic catalysts. Long terminal perfluoroalkyl chains (Cn F2n+1 with n=6, 8, and 10) linked with a short perhydroalkyl chains (Cm H2m with m=2 and 3) were used to synthesize several 1,4,7-triazacyclononane (TACN) derivatives, Cn F2n+1 -Cm H2m -TACN. In the presence of an equimolar amount of Zn2+ ions that coordinate the TACN moiety and drive the self-assembly into micelle-like aggregates, the critical aggregation concentration of polyfluorinated Cn F2n+1 -Cm H2m -TACN⋅Zn2+ was lowered by ∼1 order of magnitude compared to the traditional perhyroalkyl counterpart with identical carbon number of alkyl chain. When 2'-hydroxypropyl-4-nitrophenyl phosphate was used as the model phosphate substrate, polyfluorinated Cn F2n+1 -Cm H2m -TACN⋅Zn2+ assemblies showed higher affinity and catalytic activity, compared to its perhyroalkyl chain-based counterpart. Coarse-grained molecular dynamic simulations have been introduced to explore the supramolecular assembly of polyfluoroalkyl chains in the presence of Zn2+ ions and to better understand their enhanced catalytic activity.
Collapse
Affiliation(s)
- Ning Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ping Gao
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS, Orsay, 91400, France
- BioCIS, Université Paris-Saclay, CNRS, Orsay, 91400, France
| | - Hai-Yan Lu
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Lei Fang
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Julien Nicolas
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS, Orsay, 91400, France
| | - Tâp Ha-Duong
- BioCIS, Université Paris-Saclay, CNRS, Orsay, 91400, France
| | - Jiang-Shan Shen
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
37
|
Brown T, Chavent M, Im W. Molecular Modeling and Simulation of the Mycobacterial Cell Envelope: From Individual Components to Cell Envelope Assemblies. J Phys Chem B 2023; 127:10941-10949. [PMID: 38091517 PMCID: PMC10758119 DOI: 10.1021/acs.jpcb.3c06136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023]
Abstract
Unlike typical Gram-positive bacteria, the cell envelope of mycobacteria is unique and composed of a mycobacterial outer membrane, also known as the mycomembrane, a peptidoglycan layer, and a mycobacterial inner membrane, which is analogous to that of Gram-negative bacteria. Despite its importance, however, our understanding of this complex cell envelope is rudimentary at best. Thus, molecular modeling and simulation of such an envelope can benefit the scientific community by proposing new hypotheses about the biophysical properties of its different layers. In this Perspective, we present recent advances in molecular modeling and simulation of the mycobacterial cell envelope from individual components to cell envelope assemblies. We also show how modeling other types of cell envelopes, such as that of Escherichia coli, may help modeling part of the mycobacterial envelopes. We hope that the studies presented here are just the beginning of the road and more and more new modeling and simulation studies help us to understand crucial questions related to mycobacteria such as antibiotic resistance or bacterial survival in the host.
Collapse
Affiliation(s)
- Turner Brown
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Matthieu Chavent
- Institut
de Pharmacologie et Biologie Structurale, CNRS, Université
de Toulouse, 205 Route de Narbonne, 31400 Toulouse, France
| | - Wonpil Im
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Departments
of Biological Sciences and Chemistry, Lehigh
University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
38
|
Koukos PI, Dehghani-Ghahnaviyeh S, Velez-Vega C, Manchester J, Tieleman DP, Duca JS, Souza PCT, Cournia Z. Martini 3 Force Field Parameters for Protein Lipidation Post-Translational Modifications. J Chem Theory Comput 2023; 19:8901-8918. [PMID: 38019969 DOI: 10.1021/acs.jctc.3c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Protein lipidations are vital co/post-translational modifications that tether lipid tails to specific protein amino acids, allowing them to anchor to biological membranes, switch their subcellular localization, and modulate association with other proteins. Such lipidations are thus crucial for multiple biological processes including signal transduction, protein trafficking, and membrane localization and are implicated in various diseases as well. Examples of lipid-anchored proteins include the Ras family of proteins that undergo farnesylation; actin and gelsolin that are myristoylated; phospholipase D that is palmitoylated; glycosylphosphatidylinositol-anchored proteins; and others. Here, we develop parameters for cysteine-targeting farnesylation, geranylgeranylation, and palmitoylation, as well as glycine-targeting myristoylation for the latest version of the Martini 3 coarse-grained force field. The parameters are developed using the CHARMM36m all-atom force field parameters as reference. The behavior of the coarse-grained models is consistent with that of the all-atom force field for all lipidations and reproduces key dynamical and structural features of lipid-anchored peptides, such as the solvent-accessible surface area, bilayer penetration depth, and representative conformations of the anchors. The parameters are also validated in simulations of the lipid-anchored peripheral membrane proteins Rheb and Arf1, after comparison with independent all-atom simulations. The parameters, along with mapping schemes for the popular martinize2 tool, are available for download at 10.5281/zenodo.7849262 and also as supporting information.
Collapse
Affiliation(s)
- Panagiotis I Koukos
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Sepehr Dehghani-Ghahnaviyeh
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Camilo Velez-Vega
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - John Manchester
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - D Peter Tieleman
- Department of Biological Sciences, University of Calgary, Calgary T2N 1N4 Alberta, Canada
- Centre for Molecular Simulation, University of Calgary, Calgary T2N 1N4 Alberta, Canada
| | - José S Duca
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry, (MMSB, UMR 5086), CNRS & University of Lyon, 69367 Lyon, France
- Laboratory of Biology and Modeling of the Cell, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5239 and Inserm U1293, 46 Allée d'Italie, 69364 Lyon, France
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| |
Collapse
|
39
|
Zhou H, Shiel E, Bell T, Lin S, Lenhert S. Kinetic Mechanism of Surfactant-Based Molecular Recognition: Selective Permeability across an Oil-Water Interface Regulated by Supramolecular Aggregates. J Phys Chem B 2023; 127:10201-10214. [PMID: 37972386 DOI: 10.1021/acs.jpcb.3c05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Lipids are known to play a vital role in the molecular organization of all cellular life. Molecular recognition is another fundamental biological process that is generally attributed to biological polymers, such as proteins and nucleic acids. However, there is evidence that aggregates of lipids and lipid-like molecules are also capable of selectively binding to or regulating the partitioning of other molecules. We previously demonstrated that a model two-phase octanol/water system can selectively partition Red 40 and Blue 1 dyes added to an aqueous phase, with the selectivity depending on the surfactant (e.g., cetyltrimethylammonium bromide) dissolved in the organic phase. Here, we elucidate the mechanism of molecular recognition in this system by using quantitative partitioning experiments and molecular dynamics (MD) simulations. Our results indicate that the selectivity for the red dye is thermodynamically favored at all surfactant concentrations, while selectivity for the blue dye is kinetically favored at high surfactant concentrations. The kinetic selectivity for the blue dye correlates with the presence of molecular aggregation at the oil-water interface. Coarse-grained MD simulations elucidate nanoscale supramolecular structures that can preferentially bind one small molecule rather than another at an interface, providing a selectively permeable barrier in the absence of proteins. The results suggest a new supramolecular mechanism for molecular recognition with potential applications in drug delivery, drug discovery, and biosensing.
Collapse
Affiliation(s)
- Huanhuan Zhou
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, Tallahassee, Florida 32306, United States
| | - Emily Shiel
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Tracey Bell
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, Tallahassee, Florida 32306, United States
| | - Shangchao Lin
- Institute of Engineering Thermophysics, School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Steven Lenhert
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
40
|
Stroh KS, Souza PCT, Monticelli L, Risselada HJ. CGCompiler: Automated Coarse-Grained Molecule Parametrization via Noise-Resistant Mixed-Variable Optimization. J Chem Theory Comput 2023; 19:8384-8400. [PMID: 37971301 PMCID: PMC10688431 DOI: 10.1021/acs.jctc.3c00637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
Coarse-grained force fields (CG FFs) such as the Martini model entail a predefined, fixed set of Lennard-Jones parameters (building blocks) to model virtually all possible nonbonded interactions between chemically relevant molecules. Owing to its universality and transferability, the building-block coarse-grained approach has gained tremendous popularity over the past decade. The parametrization of molecules can be highly complex and often involves the selection and fine-tuning of a large number of parameters (e.g., bead types and bond lengths) to optimally match multiple relevant targets simultaneously. The parametrization of a molecule within the building-block CG approach is a mixed-variable optimization problem: the nonbonded interactions are discrete variables, whereas the bonded interactions are continuous variables. Here, we pioneer the utility of mixed-variable particle swarm optimization in automatically parametrizing molecules within the Martini 3 coarse-grained force field by matching both structural (e.g., RDFs) as well as thermodynamic data (phase-transition temperatures). For the sake of demonstration, we parametrize the linker of the lipid sphingomyelin. The important advantage of our approach is that both bonded and nonbonded interactions are simultaneously optimized while conserving the search efficiency of vector guided particle swarm optimization (PSO) methods over other metaheuristic search methods such as genetic algorithms. In addition, we explore noise-mitigation strategies in matching the phase-transition temperatures of lipid membranes, where nucleation and concomitant hysteresis introduce a dominant noise term within the objective function. We propose that noise-resistant mixed-variable PSO methods can both improve and automate parametrization of molecules within building-block CG FFs, such as Martini.
Collapse
Affiliation(s)
- Kai Steffen Stroh
- Department
of Physics, Technische Universität
Dortmund, 44227 Dortmund, Germany
- Institute
for Theoretical Physics, Georg-August University
Göttingen, 37077 Göttingen, Germany
| | - Paulo C. T. Souza
- Molecular
Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS and University of Lyon, 69367 Lyon, France
| | - Luca Monticelli
- Molecular
Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS and University of Lyon, 69367 Lyon, France
| | - Herre Jelger Risselada
- Department
of Physics, Technische Universität
Dortmund, 44227 Dortmund, Germany
- Institute
for Theoretical Physics, Georg-August University
Göttingen, 37077 Göttingen, Germany
- Leiden
Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
41
|
Diamanti E, Souza PCT, Setyawati I, Bousis S, Monjas L, Swier LJYM, Shams A, Tsarenko A, Stanek WK, Jäger M, Marrink SJ, Slotboom DJ, Hirsch AKH. Identification of inhibitors targeting the energy-coupling factor (ECF) transporters. Commun Biol 2023; 6:1182. [PMID: 37985798 PMCID: PMC10662466 DOI: 10.1038/s42003-023-05555-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
The energy-coupling factor (ECF) transporters are a family of transmembrane proteins involved in the uptake of vitamins in a wide range of bacteria. Inhibition of the activity of these proteins could reduce the viability of pathogens that depend on vitamin uptake. The central role of vitamin transport in the metabolism of bacteria and absence from humans make the ECF transporters an attractive target for inhibition with selective chemical probes. Here, we report on the identification of a promising class of inhibitors of the ECF transporters. We used coarse-grained molecular dynamics simulations on Lactobacillus delbrueckii ECF-FolT2 and ECF-PanT to profile the binding mode and mechanism of inhibition of this novel chemotype. The results corroborate the postulated mechanism of transport and pave the way for further drug-discovery efforts.
Collapse
Affiliation(s)
- Eleonora Diamanti
- Helmholtz Institute for Pharmaceutical Research (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, D-66123, Saarbrücken, Germany
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS and University of Lyon, Lyon, France
- Laboratoire de Biologie et Modélisation de la Cellule (UMR 5239, Inserm, U1293) and Centre Blaise Pascal, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1 and CNRS, 46 Allée d'Italie, 69007, Lyon, France
| | - Inda Setyawati
- Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 4, 9747AG, Groningen, The Netherlands
- Department of Biochemistry, Bogor Agricultural University, Dramaga, 16680, Bogor, Indonesia
| | - Spyridon Bousis
- Helmholtz Institute for Pharmaceutical Research (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, D-66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747, AG Groningen, the Netherlands
| | - Leticia Monjas
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Lotteke J Y M Swier
- Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Atanaz Shams
- Helmholtz Institute for Pharmaceutical Research (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, D-66123, Saarbrücken, Germany
| | - Aleksei Tsarenko
- Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Weronika K Stanek
- Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Manuel Jäger
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747, AG Groningen, the Netherlands
| | - Siewert J Marrink
- Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Dirk J Slotboom
- Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, D-66123, Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany.
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747, AG Groningen, the Netherlands.
| |
Collapse
|
42
|
Tarzia A, Wolpert EH, Jelfs KE, Pavan GM. Systematic exploration of accessible topologies of cage molecules via minimalistic models. Chem Sci 2023; 14:12506-12517. [PMID: 38020374 PMCID: PMC10646940 DOI: 10.1039/d3sc03991a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Cages are macrocyclic structures with an intrinsic internal cavity that support applications in separations, sensing and catalysis. These materials can be synthesised via self-assembly of organic or metal-organic building blocks. Their bottom-up synthesis and the diversity in building block chemistry allows for fine-tuning of their shape and properties towards a target property. However, it is not straightforward to predict the outcome of self-assembly, and, thus, the structures that are practically accessible during synthesis. Indeed, such a prediction becomes more difficult as problems related to the flexibility of the building blocks or increased combinatorics lead to a higher level of complexity and increased computational costs. Molecular models, and their coarse-graining into simplified representations, may be very useful to this end. Here, we develop a minimalistic toy model of cage-like molecules to explore the stable space of different cage topologies based on a few fundamental geometric building block parameters. Our results capture, despite the simplifications of the model, known geometrical design rules in synthetic cage molecules and uncover the role of building block coordination number and flexibility on the stability of cage topologies. This leads to a large-scale and systematic exploration of design principles, generating data that we expect could be analysed through expandable approaches towards the rational design of self-assembled porous architectures.
Collapse
Affiliation(s)
- Andrew Tarzia
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino Italy
| | - Emma H Wolpert
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus Wood Lane London W12 0BZ UK
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus Wood Lane London W12 0BZ UK
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino Italy
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano Campus Est, Via la Santa 1 6962 Lugano-Viganello Switzerland
| |
Collapse
|
43
|
Xu J, Karra V, Large DE, Auguste DT, Hung FR. Understanding the Mechanical Properties of Ultradeformable Liposomes Using Molecular Dynamics Simulations. J Phys Chem B 2023; 127:9496-9512. [PMID: 37879075 PMCID: PMC10641833 DOI: 10.1021/acs.jpcb.3c04386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Improving drug delivery efficiency to solid tumor sites is a central challenge in anticancer therapeutic research. Our previous experimental study (Guo et al., Nat. Commun. 2018, 9, 130) showed that soft, elastic liposomes had increased uptake and accumulation in cancer cells and tumors in vitro and in vivo respectively, relative to rigid particles. As a first step toward understanding how liposomes' molecular structure and composition modulates their elasticity, we performed all-atom and coarse-grained classical molecular dynamics (MD) simulations of lipid bilayers formed by mixing a long-tailed unsaturated phospholipid with a short-tailed saturated lipid with the same headgroup. The former types of phospholipids considered were 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine (termed here DPMPC). The shorter saturated lipids examined were 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC), 1,2-didecanoyl-sn-glycero-3-phosphocholine (DDPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Several lipid concentrations and surface tensions were considered. Our results show that DOPC or DPMPC systems having 25-35 mol % of the shortest lipids DHPC or DDPC are the least rigid, having area compressibility moduli KA that are ∼10% smaller than the values observed in pure DOPC or DPMPC bilayers. These results agree with experimental measurements of the stretching modulus and lysis tension in liposomes with the same compositions. These mixed systems also have lower areas per lipid and form more uneven x-y interfaces with water, the tails of both primary and secondary lipids are more disordered, and the terminal methyl groups in the tails of the long lipid DOPC or DPMPC wriggle more in the vertical direction, compared to pure DOPC or DPMPC bilayers or their mixtures with the longer saturated lipid DLPC or DMPC. These observations confirm our hypothesis that adding increasing concentrations of the short unsaturated lipid DHPC or DDPC to DOPC or DPMPC bilayers alters lipid packing and thus makes the resulting liposomes more elastic and less rigid. No formation of lipid nanodomains was noted in our simulations, and no clear trends were observed in the lateral diffusivities of the lipids as the concentration, type of secondary lipid, and surface tension were varied.
Collapse
Affiliation(s)
- Jiaming Xu
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Vyshnavi Karra
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Danielle E. Large
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Debra T. Auguste
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Francisco R. Hung
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
44
|
Borges-Araújo L, Borges-Araújo AC, Ozturk TN, Ramirez-Echemendia DP, Fábián B, Carpenter TS, Thallmair S, Barnoud J, Ingólfsson HI, Hummer G, Tieleman DP, Marrink SJ, Souza PCT, Melo MN. Martini 3 Coarse-Grained Force Field for Cholesterol. J Chem Theory Comput 2023; 19:7387-7404. [PMID: 37796943 DOI: 10.1021/acs.jctc.3c00547] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Cholesterol plays a crucial role in biomembranes by regulating various properties, such as fluidity, rigidity, permeability, and organization of lipid bilayers. The latest version of the Martini model, Martini 3, offers significant improvements in interaction balance, molecular packing, and inclusion of new bead types and sizes. However, the release of the new model resulted in the need to reparameterize many core molecules, including cholesterol. Here, we describe the development and validation of a Martini 3 cholesterol model, addressing issues related to its bonded setup, shape, volume, and hydrophobicity. The proposed model mitigates some limitations of its Martini 2 predecessor while maintaining or improving the overall behavior.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS & University of Lyon, 7 Passage du Vercors, Lyon F-69367, France
| | - Ana C Borges-Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Tugba Nur Ozturk
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Daniel P Ramirez-Echemendia
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | - Balázs Fábián
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Timothy S Carpenter
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Sebastian Thallmair
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany
| | - Jonathan Barnoud
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
- CiTIUS Intelligent Technologies Research Centre, University of Santiago de Compostela, Rúa de Jenaro de la Fuente, 15705 Santiago de Compostela, Spain
| | - Helgi I Ingólfsson
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS & University of Lyon, 7 Passage du Vercors, Lyon F-69367, France
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
45
|
Nygaard R, Graham CLB, Belcher Dufrisne M, Colburn JD, Pepe J, Hydorn MA, Corradi S, Brown CM, Ashraf KU, Vickery ON, Briggs NS, Deering JJ, Kloss B, Botta B, Clarke OB, Columbus L, Dworkin J, Stansfeld PJ, Roper DI, Mancia F. Structural basis of peptidoglycan synthesis by E. coli RodA-PBP2 complex. Nat Commun 2023; 14:5151. [PMID: 37620344 PMCID: PMC10449877 DOI: 10.1038/s41467-023-40483-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Peptidoglycan (PG) is an essential structural component of the bacterial cell wall that is synthetized during cell division and elongation. PG forms an extracellular polymer crucial for cellular viability, the synthesis of which is the target of many antibiotics. PG assembly requires a glycosyltransferase (GT) to generate a glycan polymer using a Lipid II substrate, which is then crosslinked to the existing PG via a transpeptidase (TP) reaction. A Shape, Elongation, Division and Sporulation (SEDS) GT enzyme and a Class B Penicillin Binding Protein (PBP) form the core of the multi-protein complex required for PG assembly. Here we used single particle cryo-electron microscopy to determine the structure of a cell elongation-specific E. coli RodA-PBP2 complex. We combine this information with biochemical, genetic, spectroscopic, and computational analyses to identify the Lipid II binding sites and propose a mechanism for Lipid II polymerization. Our data suggest a hypothesis for the movement of the glycan strand from the Lipid II polymerization site of RodA towards the TP site of PBP2, functionally linking these two central enzymatic activities required for cell wall peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Chris L B Graham
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Meagan Belcher Dufrisne
- Department of Chemistry and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jonathan D Colburn
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Joseph Pepe
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Molly A Hydorn
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Silvia Corradi
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Chelsea M Brown
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Khuram U Ashraf
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Owen N Vickery
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Nicholas S Briggs
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - John J Deering
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY, 10027, USA
| | - Bruno Botta
- Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Linda Columbus
- Department of Chemistry and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22904, USA.
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Phillip J Stansfeld
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - David I Roper
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
46
|
Niranjan V, Rao P, Uttarkar A, Kumar J. Protocol for the development of coarse-grained structures for macromolecular simulation using GROMACS. PLoS One 2023; 18:e0288264. [PMID: 37535543 PMCID: PMC10399882 DOI: 10.1371/journal.pone.0288264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/22/2023] [Indexed: 08/05/2023] Open
Abstract
Coarse-grained simulations have emerged as a valuable tool in the study of large and complex biomolecular systems. These simulations, which use simplified models to represent complex biomolecules, reduce the computational cost of simulations and enable the study of larger systems for longer periods of time than traditional atomistic simulations. GROMACS is a widely used software package for performing coarse-grained simulations of biomolecules, and several force fields have been developed specifically for this purpose. In this protocol paper, we explore the advantages of using coarse-grained simulations in the study of biomolecular systems, focusing specifically on simulations performed using GROMACS. We discuss the force fields required for these simulations and the types of research questions that can be addressed using coarse-grained simulations. We also highlight the potential benefits of coarse-grained simulations for the development of new force fields and simulation methodologies. We then discuss the expected results from coarse-grained simulations using GROMACS and the various techniques that can be used to analyze these results. We explore the use of trajectory analysis tools, as well as thermodynamic and structural analysis techniques, to gain insight into the behavior of biomolecular systems.
Collapse
Affiliation(s)
- Vidya Niranjan
- Department of Biotechnology, R V College of Engineering, Bengaluru, Karnataka, India
| | - Purushotham Rao
- Department of Biotechnology, R V College of Engineering, Bengaluru, Karnataka, India
| | - Akshay Uttarkar
- Department of Biotechnology, R V College of Engineering, Bengaluru, Karnataka, India
| | - Jitendra Kumar
- Managing Director, Biotechnology Industry Research Assistance Council (BIRAC), New Delhi, India
| |
Collapse
|
47
|
Yu H, Qin L, Zhou J. Effect of Oil Polarity on the Protein Adsorption at Oil-Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10701-10710. [PMID: 37470337 DOI: 10.1021/acs.langmuir.3c01541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Protein adsorption at oil-water interfaces has received much attention in applications of food emulsion and biocatalysis. The protein activity is influenced by the protein orientation and conformation. The oil polarity is expected to influence the orientation and conformation of adsorbed proteins by modulating intermolecular interactions. Hence, it is possible to tune the protein emulsion stability and activity by varying the oil polarity. Martini v3.0-based coarse-grained molecular dynamics (CGMD) simulations were employed to investigate the effect of oil polarity on the orientation and conformation of hydrophobin (HFBI) and Candida antarctica lipase B (CALB) adsorbed at triolein-water, hexadecane-water, and octanol-water interfaces for the first time. The protein adsorption orientation was predicted through the hydrophobic dipole, indicating that protein adsorption exists in preferred orientations at hydrophobic oil interfaces. The conformation of the adsorbed HFBI is well conserved, whereas relatively larger conformational changes occur during the CALB adsorption as the oil hydrophobicity increases. Comparisons on the adsorption interaction energy of proteins with oils confirm the relationship between the oil polarity and the interaction strength of proteins with oils. In addition, CGMD simulations allow longer time scale simulations of the behaviors of protein adsorption at oil-water interfaces.
Collapse
Affiliation(s)
- Hai Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lanlan Qin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
48
|
MacCallum JL, Hu S, Lenz S, Souza PCT, Corradi V, Tieleman DP. An implementation of the Martini coarse-grained force field in OpenMM. Biophys J 2023; 122:2864-2870. [PMID: 37050876 PMCID: PMC10398343 DOI: 10.1016/j.bpj.2023.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/05/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
We describe a complete implementation of Martini 2 and Martini 3 in the OpenMM molecular dynamics software package. Martini is a widely used coarse-grained force field with applications in biomolecular simulation, materials, and broader areas of chemistry. It is implemented as a force field but makes extensive use of facilities unique to the GROMACS software, including virtual sites and bonded terms that are not commonly used in standard atomistic force fields. OpenMM is a flexible molecular dynamics package widely used for methods development and is competitive in speed on GPUs with other commonly used packages. OpenMM has facilities to easily implement new force field terms, external forces and fields, and other nonstandard features, which we use to implement all force field terms used in Martini 2 and Martini 3. This allows Martini simulations, starting with GROMACS topology files that are processed by custom scripts, with all the added flexibility of OpenMM. We provide a GitHub repository with test cases, compare accuracy and performance between GROMACS and OpenMM, and discuss the limitations of our implementation in terms of direct comparison with GROMACS. We describe a use case that implements the Modeling Employing Limited Data method to apply experimental constraints in a Martini simulation to efficiently determine the structure of a protein complex. We also discuss issues and a potential solution with the Martini 2 topology for cholesterol.
Collapse
Affiliation(s)
- Justin L MacCallum
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada; Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada.
| | - Shangnong Hu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada; Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - Stefan Lenz
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada; Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry (MMSB - UMR 5086), CNRS & University of Lyon, Lyon, France
| | - Valentina Corradi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada; Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - D Peter Tieleman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada; Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
49
|
Trinh TKH, Cabezas AJ, Joshi S, Catalano C, Siddique AB, Qiu W, Deshmukh S, des Georges A, Guo Y. pH-tunable membrane-active polymers, NCMNP2a- x, and their potential membrane protein applications. Chem Sci 2023; 14:7310-7326. [PMID: 37416719 PMCID: PMC10321531 DOI: 10.1039/d3sc01890c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Accurate 3D structures of membrane proteins are essential for comprehending their mechanisms of action and designing specific ligands to modulate their activities. However, these structures are still uncommon due to the involvement of detergents in the sample preparation. Recently, membrane-active polymers have emerged as an alternative to detergents, but their incompatibility with low pH and divalent cations has hindered their efficacy. Herein, we describe the design, synthesis, characterization, and application of a new class of pH-tunable membrane-active polymers, NCMNP2a-x. The results demonstrated that NCMNP2a-x could be used for high-resolution single-particle cryo-EM structural analysis of AcrB in various pH conditions and can effectively solubilize BcTSPO with the function preserved. Molecular dynamic simulation is consistent with experimental data that shed great insights into the working mechanism of this class of polymers. These results demonstrated that NCMNP2a-x might have broad applications in membrane protein research.
Collapse
Affiliation(s)
- Thi Kim Hoang Trinh
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Andres Jorge Cabezas
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York New York New York 10017 USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York New York New York 10017 USA
| | - Soumil Joshi
- Department of Chemical Engineering, Virginia Tech Blacksburg VA2 4060 USA
| | - Claudio Catalano
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Abu Bakkar Siddique
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Weihua Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Sanket Deshmukh
- Department of Chemical Engineering, Virginia Tech Blacksburg VA2 4060 USA
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York New York New York 10017 USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York New York New York 10017 USA
- Department of Chemistry & Biochemistry, City College of New York New York New York 10017 USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
50
|
Empereur-mot C, Pedersen KB, Capelli R, Crippa M, Caruso C, Perrone M, Souza PCT, Marrink SJ, Pavan GM. Automatic Optimization of Lipid Models in the Martini Force Field Using SwarmCG. J Chem Inf Model 2023; 63:3827-3838. [PMID: 37279107 PMCID: PMC10302490 DOI: 10.1021/acs.jcim.3c00530] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 06/08/2023]
Abstract
After two decades of continued development of the Martini coarse-grained force field (CG FF), further refinment of the already rather accurate Martini lipid models has become a demanding task that could benefit from integrative data-driven methods. Automatic approaches are increasingly used in the development of accurate molecular models, but they typically make use of specifically designed interaction potentials that transfer poorly to molecular systems or conditions different than those used for model calibration. As a proof of concept, here, we employ SwarmCG, an automatic multiobjective optimization approach facilitating the development of lipid force fields, to refine specifically the bonded interaction parameters in building blocks of lipid models within the framework of the general Martini CG FF. As targets of the optimization procedure, we employ both experimental observables (top-down references: area per lipid and bilayer thickness) and all-atom molecular dynamics simulations (bottom-up reference), which respectively inform on the supra-molecular structure of the lipid bilayer systems and on their submolecular dynamics. In our training sets, we simulate at different temperatures in the liquid and gel phases up to 11 homogeneous lamellar bilayers composed of phosphatidylcholine lipids spanning various tail lengths and degrees of (un)saturation. We explore different CG representations of the molecules and evaluate improvements a posteriori using additional simulation temperatures and a portion of the phase diagram of a DOPC/DPPC mixture. Successfully optimizing up to ∼80 model parameters within still limited computational budgets, we show that this protocol allows the obtainment of improved transferable Martini lipid models. In particular, the results of this study demonstrate how a fine-tuning of the representation and parameters of the models may improve their accuracy and how automatic approaches, such as SwarmCG, may be very useful to this end.
Collapse
Affiliation(s)
- Charly Empereur-mot
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, Polo Universitario
Lugano, Campus Est, Via
la Santa 1, 6962 Lugano-Viganello, Switzerland
| | - Kasper B. Pedersen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Riccardo Capelli
- Department
of Biosciences, Università degli
Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Martina Crippa
- Politecnico
di Torino, Department of Applied
Science and Technology, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Cristina Caruso
- Politecnico
di Torino, Department of Applied
Science and Technology, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Mattia Perrone
- Politecnico
di Torino, Department of Applied
Science and Technology, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Paulo C. T. Souza
- Molecular
Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS & University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Siewert J. Marrink
- Molecular
Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Giovanni M. Pavan
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, Polo Universitario
Lugano, Campus Est, Via
la Santa 1, 6962 Lugano-Viganello, Switzerland
- Politecnico
di Torino, Department of Applied
Science and Technology, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|