1
|
Nandan R, Nam HN, Phung QM, Nara H, Henzie J, Yamauchi Y. Mesoporous Single-Crystal High-Entropy Alloy. J Am Chem Soc 2025. [PMID: 40421787 DOI: 10.1021/jacs.5c01260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Mesoporous high-entropy alloys (HEAs) represent a promising advancement in mesoporous metals, showing great potential for various applications. Their unique multi-metallic uniformity, strong structural features, and high surface-active-site exposure contribute to their practical catalytic ability. The catalytic efficiency of metal nanostructures depends on both their elemental compositions and crystallinity, with single-crystalline structures generally outperforming polycrystalline ones. However, synthesizing single-crystalline HEA nanostructures with defined mesoporosity remains challenging due to the complex fabrication process. This study introduces a block copolymer micelle-assisted soft-chemical strategy to create single-crystalline mesoporous HEAs (SCPHEAs). These structures feature uniformly sized mesopores that permeate the entire structure, maximizing the exposure of HEA active sites, enhancing material utilization, and facilitating efficient mass and charge transport. The optimized SCPHEAs exhibit excellent electrocatalytic performance in methanol oxidation reactions, surpassing polycrystalline mesoporous HEAs, commercial Pt-C, and various recently reported precious metal-based HEAs and conventional alloy electrocatalysts. This superior performance is attributed to a synergistic effect that results from surface charge redistribution among different atomic entities, which enhances the adsorption of methanol and water molecules and mitigates intermediate CO poisoning. Our synthesis method enables the design of a wide range of mesoporous HEAs with controllable morphology and crystallinity tailored for various catalytic applications and beyond.
Collapse
Affiliation(s)
- Ravi Nandan
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ho Ngoc Nam
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Quan Manh Phung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hiroki Nara
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Joel Henzie
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yusuke Yamauchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-8603, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
2
|
Zhu L, Kang Y, Eguchi M, Zhao Y, Jiang D, Wei X, Xu X, Nakagawa K, Asahi T, Yokoshima T, Yamauchi Y. Precise positioning of Au islands within mesoporous Pd-Pt nanoparticles for plasmon-enhanced methanol oxidation. Chem Sci 2025; 16:8309-8318. [PMID: 40213375 PMCID: PMC11979621 DOI: 10.1039/d4sc07345b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/24/2025] [Indexed: 05/16/2025] Open
Abstract
Trimetallic systems have garnered considerable attention in (electro)catalysis due to the synergistic effects resulting from the combination of three different metals. However, achieving precise control over the positioning of various metals and understanding the relationship between structure and performance remains challenging. This study introduces an approach for synthesizing Pd@Pt@Au mesoporous nanoparticles (MNPs) with distinct core-shell Pd@Pt structures, featuring well-dispersed isolated Au islands on the outer shell, improving the plasmonic effect. The electrocatalytic performance of Pd@Pt@Au MNPs in the methanol oxidation reaction (MOR) is assessed under light-induced and light-independent conditions. The results indicate significantly enhanced activity compared to commercial Pt black, with catalytic activity during MOR increasing approximately 7.5-fold under light irradiation. The external placement of Au on the shell of Pd@Pt@Au MNPs provides superior plasmonic enhancement, thereby contributing to improved catalytic performance under light irradiation. This investigation sheds light on the controlled synthesis of trimetallic MNPs and their catalytic applications, underscoring the importance of precise Au positioning for optimizing performance.
Collapse
Affiliation(s)
- Liyang Zhu
- Department of Nanoscience and Nanoengineering, Department of Applied Chemistry, and Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University Tokyo 169-8555 Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Aichi 464-8603 Japan
| | - Yunqing Kang
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Aichi 464-8603 Japan
| | - Miharu Eguchi
- Department of Nanoscience and Nanoengineering, Department of Applied Chemistry, and Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University Tokyo 169-8555 Japan
| | - Yingji Zhao
- Department of Nanoscience and Nanoengineering, Department of Applied Chemistry, and Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University Tokyo 169-8555 Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Aichi 464-8603 Japan
| | - Dong Jiang
- Department of Nanoscience and Nanoengineering, Department of Applied Chemistry, and Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University Tokyo 169-8555 Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Aichi 464-8603 Japan
| | - Xiaoqian Wei
- Department of Nanoscience and Nanoengineering, Department of Applied Chemistry, and Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University Tokyo 169-8555 Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Aichi 464-8603 Japan
| | - Xingtao Xu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Aichi 464-8603 Japan
- Marine Science and Technology College, Zhejiang Ocean University Zhoushan 316022 China
| | - Kenta Nakagawa
- Department of Nanoscience and Nanoengineering, Department of Applied Chemistry, and Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University Tokyo 169-8555 Japan
| | - Toru Asahi
- Department of Nanoscience and Nanoengineering, Department of Applied Chemistry, and Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University Tokyo 169-8555 Japan
| | - Tokihiko Yokoshima
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Aichi 464-8603 Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Aichi 464-8603 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
3
|
Ni C, Guo S, Butler C, Veinot JGC. Microwave-assisted synthesis of mesoporous high-entropy alloy and core-shell nanoparticles. NANOSCALE 2025; 17:6072-6078. [PMID: 39931898 DOI: 10.1039/d4nr05019c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Mesoporous high-entropy alloy nanoparticles (mp-HEA NPs) are an emerging class of nanostructured materials that bring together the distinctive solid-solution structure and multi-element compositions of their non-porous counterparts and highly accessible surfaces that characterize mesoporous materials. In this study, we present the facile synthesis of mp-HEA NPs (RhAgCuPdPt) via microwave-assisted heating. The structural, compositional, and morphological characteristics of the mp-HEA NPs were assessed using Brunauer-Emmett-Teller (BET) surface area analysis, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). We subsequently extended our approach to realize mesoporous Au core-HEA (RhAgCuPdPt) shell NPs (Au-HEA NPs) and investigated the thermal conversion of the Au-HEA NP to HEA NPs (AuRhAgCuPdPt) using in situ heating TEM. We determined that this conversion involves gradual grain growth at temperatures below 600 °C followed by a rapid grain growth process at elevated temperatures accompanied by the collapse of the mesostructure.
Collapse
Affiliation(s)
- Chuyi Ni
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2.
| | - Suni Guo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2.
| | - Cole Butler
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2.
| | - Jonathan G C Veinot
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2.
| |
Collapse
|
4
|
Li X, Cao J, Chen G, Xie J, Gu C, Li X, Walsh FC, Wang Y, Hu W. A Radical-Assisted Approach to High-Entropy Alloy Nanoparticle Electrocatalysts under Ambient Conditions. ACS NANO 2025; 19:7851-7863. [PMID: 39981577 DOI: 10.1021/acsnano.4c14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
High-entropy alloy (HEA) nanoparticles are rising as promising catalysts but face challenges in both facile synthesis and correlation of the structure with properties. Herein, utilizing the highly reductive carbon-centered isopropyl alcohol radicals generated by UV irradiation, we report a simple yet robust wet chemical method to synthesize HEA nanoparticles under ambient conditions. These isopropanol radicals verified by electron paramagnetic resonance spectroscopy impose very large overpotentials to reduce diverse metal ions into HEA nanoparticles with five to seven different elements. Specially, the PtPdIrRhAuAgCu HEA nanoparticles on a reduced electrochemical graphene oxide (rEGO) support (PtPdIrRhAuAgCu-rEGO) demonstrate superior activity for the hydrogen evolution reaction (HER) across the entire pH range, with very small overpotentials of 11, 30, and 31 mV to deliver a current density of -10 mA cm-2 in 1 M KOH, 1 M phosphate buffer saline, and 0.5 M H2SO4, respectively. The excellent HER performance of PtPdIrRhAuAgCu-rEGO surpasses that of commercial Pt/C and most contemporary HER catalysts in the literature. Density functional theory calculations using random structures mimicking the chemical disordering in PtPdIrRhAuAgCu HEA confirm its superior HER activity and imply a possible correlation between HER activity and d-band centers of the nearest atoms in a face-centered cubic hollow site.
Collapse
Affiliation(s)
- Xu Li
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
- Electron Microscopy Center, Yunnan University, Kunming 650091, P. R. China
| | - Jianyun Cao
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Guoliang Chen
- Institute for Advanced Ceramics, Key Laboratory of Advanced Structure-Function Integrated Materials and Green Manufacturing Technology, Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150001, P. R. China
- School of Energy Science and Engineering, Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jiyang Xie
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
- Electron Microscopy Center, Yunnan University, Kunming 650091, P. R. China
| | - Chengding Gu
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
- Electron Microscopy Center, Yunnan University, Kunming 650091, P. R. China
| | - Xiaohong Li
- Renewable Energy Group, Department of Engineering, Faculty of Environment Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Frank C Walsh
- Electrochemical Engineering Laboratory, Energy Technology Research Group, Engineering Sciences and the Environment, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Yaming Wang
- Institute for Advanced Ceramics, Key Laboratory of Advanced Structure-Function Integrated Materials and Green Manufacturing Technology, Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Wanbiao Hu
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
- Electron Microscopy Center, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
5
|
Nandan R, Nara H, Nam HN, Phung QM, Ngo QP, Na J, Henzie J, Yamauchi Y. Tailored Design of Mesoporous Nanospheres with High Entropic Alloy Sites for Efficient Redox Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402518. [PMID: 39031636 PMCID: PMC11425213 DOI: 10.1002/advs.202402518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/13/2024] [Indexed: 07/22/2024]
Abstract
High Entropy Alloys (HEAs) are a versatile material with unique properties, tailored for various applications. They enable pH-sensitive electrocatalytic transformations like hydrogen evolution reaction (HER) and hydrogen oxidation reactions (HOR) in alkaline media. Mesoporous nanostructures with high surface area are preferred for these electrochemical reactions, but designing mesoporous HEA sis challenging. To overcome this challenge, a low-temperature triblock copolymer-assisted wet-chemical approach is developed to produce mesoporous HEA nanospheres composed of PtPdRuMoNi systems with sufficient entropic mixing. Owing to active sites with inherent entropic effect, mesoporous features, and increased accessibility, optimized HEA nanospheres promote strong HER/HOR performance in alkaline medium. At 30 mV nominal overpotential, it exhibits a mass activity of ≈167 (HER) and 151 A gPt -1 (HOR), far exceeding commercial Pt-C electrocatalysts (34 and 48 A gPt -1) and many recently reported various alloys. The Mott-Schottky analysis reveals HEA nanospheres inherit high charge carrier density, positive flat band potential, and smaller charge transfer barrier, resulting in better activity and faster kinetics. This micelle-assisted synthetic enable the exploration of the compositional and configurational spaces of HEAs at relatively low temperature, while simultaneously facilitating the introduction of mesoporous nanostructures for a wide range of catalytic applications.
Collapse
Affiliation(s)
- Ravi Nandan
- Research Center for Materials NanoarchitectonicsNational Institute for Materials Science (NIMS)1‐1 NamikiTsukubaIbaraki305‐0044Japan
| | - Hiroki Nara
- Waseda Research Institute for Science and EngineeringWaseda University3‐4‐1 OkuboShinjukuTokyo169‐8555Japan
| | - Ho Ngoc Nam
- Department of Materials Process EngineeringGraduate School of EngineeringNagoya UniversityNagoya464‐8603Japan
| | - Quan Manh Phung
- Department of ChemistryGraduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8602Japan
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8601Japan
| | - Quynh Phuong Ngo
- Materials Architecturing Research CenterKorea Institute of Science and Technology (KIST)5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Jongbeom Na
- Materials Architecturing Research CenterKorea Institute of Science and Technology (KIST)5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- KHU‐KIST Department of Converging Science and TechnologyKyung Hee UniversitySeoul02447Republic of Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
| | - Joel Henzie
- Research Center for Materials NanoarchitectonicsNational Institute for Materials Science (NIMS)1‐1 NamikiTsukubaIbaraki305‐0044Japan
| | - Yusuke Yamauchi
- Research Center for Materials NanoarchitectonicsNational Institute for Materials Science (NIMS)1‐1 NamikiTsukubaIbaraki305‐0044Japan
- Department of Materials Process EngineeringGraduate School of EngineeringNagoya UniversityNagoya464‐8603Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
- Department of Plant & Environmental New ResourcesKyung Hee University1732, Deogyeong‐daero, Giheung‐guYongin‐siGyeonggi‐do17104Republic of Korea
| |
Collapse
|
6
|
Su H, Song Y, Yang S, Zhang Z, Shen Y, Yu L, Chen S, Gao L, Chen C, Hou D, Wei X, Ma X, Huang P, Sun D, Zhou J, Qian K. Plasmonic Alloys Enhanced Metabolic Fingerprints for the Diagnosis of COPD and Exacerbations. ACS CENTRAL SCIENCE 2024; 10:331-343. [PMID: 38435520 PMCID: PMC10906255 DOI: 10.1021/acscentsci.3c01201] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 03/05/2024]
Abstract
Accurate diagnosis of chronic obstructive pulmonary disease (COPD) and exacerbations by metabolic biomarkers enables individualized treatment. Advanced metabolic detection platforms rely on designed materials. Here, we design mesoporous PdPt alloys to characterize metabolic fingerprints for diagnosing COPD and exacerbations. As a result, the optimized PdPt alloys enable the acquisition of metabolic fingerprints within seconds, requiring only 0.5 μL of native plasma by laser desorption/ionization mass spectrometry owing to the enhanced electric field, photothermal conversion, and photocurrent response. Machine learning decodes metabolic profiles acquired from 431 individuals, achieving a precise diagnosis of COPD with an area under the curve (AUC) of 0.904 and an accurate distinction between stable COPD and acute exacerbations of COPD (AECOPD) with an AUC of 0.951. Notably, eight metabolic biomarkers identified accurately discriminate AECOPD from stable COPD while providing valuable information on disease progress. Our platform will offer an advanced nanoplatform for the management of COPD, complementing standard clinical techniques.
Collapse
Affiliation(s)
- Haiyang Su
- State
Key Laboratory of Systems Medicine for Cancer, School of Biomedical
Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yuanlin Song
- Department
of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, P. R. China
- Center
of Emergency and Critical Medicine, Jinshan
Hospital of Fudan University, Shanghai 201508, P. R. China
| | - Shouzhi Yang
- State
Key Laboratory of Systems Medicine for Cancer, School of Biomedical
Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ziyue Zhang
- State
Key Laboratory of Systems Medicine for Cancer, School of Biomedical
Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yao Shen
- Department
of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, P. R. China
| | - Lan Yu
- Clinical
Medical Research Center, Inner Mongolia
People’s Hospital, Hohhot 010017, Inner Mongolia, P. R. China
- Inner
Mongolia Key Laboratory of Gene Regulation of The Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot 010017, Inner Mongolia, P.
R. China
- Inner
Mongolia Academy of Medical Sciences, Inner
Mongolia People’s Hospital, Hohhot 010017, Inner
Mongolia, P. R. China
| | - Shujing Chen
- Department
of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, P. R. China
| | - Lei Gao
- Department
of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, P. R. China
| | - Cuicui Chen
- Department
of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, P. R. China
| | - Dongni Hou
- Department
of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, P. R. China
| | - Xinping Wei
- Shanghai
Minhang District Gumei Community Health Center affiliated with Fudan
University, Shanghai 201102, P. R. China
| | - Xuedong Ma
- Shanghai
Minhang District Gumei Community Health Center affiliated with Fudan
University, Shanghai 201102, P. R. China
| | - Pengyu Huang
- Shanghai
Minhang District Gumei Community Health Center affiliated with Fudan
University, Shanghai 201102, P. R. China
| | - Dejun Sun
- Inner
Mongolia Key Laboratory of Gene Regulation of The Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot 010017, Inner Mongolia, P.
R. China
- Department
of Respiratory and Critical Care Medicine, Inner Mongolia People’s Hospital, Hohhot 010017, P. R. China
| | - Jian Zhou
- Department
of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai
Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai 200032, P. R. China
- Center
of Emergency and Critical Medicine, Jinshan
Hospital of Fudan University, Shanghai 201508, P. R. China
| | - Kun Qian
- State
Key Laboratory of Systems Medicine for Cancer, School of Biomedical
Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Shanghai
Key Laboratory of Gynecologic Oncology, Renji Hospital, School of
Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| |
Collapse
|
7
|
Zhou Y, Li X, Zhao Y, Yang S, Huang L. Plasmonic alloys for quantitative determination and reaction monitoring of biothiols. J Mater Chem B 2023; 11:8639-8648. [PMID: 37491995 DOI: 10.1039/d3tb01076g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Biothiols participate in numerous physiological and pathological processes in an organism. Quantitative determination and reaction monitoring of biothiols have important implications for evaluating human health. Herein, we synthesized plasmonic alloys as the matrix to assist the laser desorption and ionization (LDI) process of biothiols in mass spectrometry (MS). Plasmonic alloys were constructed with mesoporous structures for LDI enhancement and trimetallic (PdPtAu) compositions for noble metal-thiol hybridization, toward enhanced detection sensitivity and selectivity, respectively. Plasmonic alloys enabled direct detection of biothiols from complex biosamples without any enrichment or separation. We introduced internal standards into the quantitative MS system, achieving accurate quantitation of methionine directly from serum samples with a recovery rate of 103.19% ± 6.52%. Moreover, we established a rapid monitoring platform for the oxidation-reduction reaction of glutathione, consuming trace samples down to 200 nL with an interval of seconds. This work contributes to the development of molecular tools based on plasmonic materials for biothiol detection toward real-case applications.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Xvelian Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Yuewei Zhao
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Shouzhi Yang
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| |
Collapse
|
8
|
Gu BS, Dutta S, Hong YR, Ngome Okello OF, Im H, Ahn S, Choi SY, Woo Han J, Ryu S, Lee IS. Harmonious Heterointerfaces Formed on 2D-Pt Nanodendrites by Facet-Respective Stepwise Metal Deposition for Enhanced Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2023; 62:e202307816. [PMID: 37335309 DOI: 10.1002/anie.202307816] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
The performance of nanocrystal (NC) catalysts could be maximized by introducing rationally designed heterointerfaces formed by the facet- and spatio-specific modification with other materials of desired size and thickness. However, such heterointerfaces are limited in scope and synthetically challenging. Herein, we applied a wet chemistry method to tunably deposit Pd and Ni on the available surfaces of porous 2D-Pt nanodendrites (NDs). Using 2D silica nanoreactors to house the 2D-PtND, an 0.5-nm-thick epitaxial Pd or Ni layer (e-Pd or e-Ni) was exclusively formed on the flat {110} surface of 2D-Pt, while a non-epitaxial Pd or Ni layer (n-Pd or n-Ni) was typically deposited at the {111/100} edge in absence of nanoreactor. Notably, these differently located Pd/Pt and Ni/Pt heterointerfaces experienced distinct electronic effect to influence unequally in electrocatalytic synergy for hydrogen evolution reaction (HER). For instance, an enhanced H2 generation on the Pt{110} facet with 2D-2D interfaced e-Pd deposition and faster water dissociation on the edge-located n-Ni overpowered their facet-located counterparts in respective HER catalysis. Therefore, a feasible assembling of the valuable heterointerfaces in the optimal 2D n-Ni/e-Pd/Pt catalyst overcame the sluggish alkaline HER kinetics, with a catalytic activity 7.9 times higher than that of commercial Pt/C.
Collapse
Affiliation(s)
- Byeong Su Gu
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Soumen Dutta
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Yu-Rim Hong
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Odongo Francis Ngome Okello
- Department of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Current address: Samsung Electronics, Suwon, Korea
| | - Hyeonae Im
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Seungil Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Si-Young Choi
- Department of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Sunmin Ryu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - In Su Lee
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
9
|
Kang Y, Cretu O, Kikkawa J, Kimoto K, Nara H, Nugraha AS, Kawamoto H, Eguchi M, Liao T, Sun Z, Asahi T, Yamauchi Y. Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites. Nat Commun 2023; 14:4182. [PMID: 37443103 PMCID: PMC10344865 DOI: 10.1038/s41467-023-39157-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/26/2023] [Indexed: 07/15/2023] Open
Abstract
Multimetallic alloys (MMAs) with various compositions enrich the materials library with increasing diversity and have received much attention in catalysis applications. However, precisely shaping MMAs in mesoporous nanostructures and mapping the distributions of multiple elements remain big challenge due to the different reduction kinetics of various metal precursors and the complexity of crystal growth. Here we design a one-pot wet-chemical reduction approach to synthesize core-shell motif PtPdRhRuCu mesoporous nanospheres (PtPdRhRuCu MMNs) using a diblock copolymer as the soft template. The PtPdRhRuCu MMNs feature adjustable compositions and exposed porous structures rich in highly entropic alloy sites. The formation processes of the mesoporous structures and the reduction and growth kinetics of different metal precursors of PtPdRhRuCu MMNs are revealed. The PtPdRhRuCu MMNs exhibit robust electrocatalytic hydrogen evolution reaction (HER) activities and low overpotentials of 10, 13, and 28 mV at a current density of 10 mA cm-2 in alkaline (1.0 M KOH), acidic (0.5 M H2SO4), and neutral (1.0 M phosphate buffer solution (PBS)) electrolytes, respectively. The accelerated kinetics of the HER in PtPdRhRuCu MMNs are derived from multiple compositions with synergistic interactions among various metal sites and mesoporous structures with excellent mass/electron transportation characteristics.
Collapse
Affiliation(s)
- Yunqing Kang
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Ovidiu Cretu
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jun Kikkawa
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Koji Kimoto
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hiroki Nara
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Asep Sugih Nugraha
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hiroki Kawamoto
- Hitachi High-Tech Corporation, 882, Ichige, Hitachinaka-shi, Ibaraki, 312-0033, Japan
| | - Miharu Eguchi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Ting Liao
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Yusuke Yamauchi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan.
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan.
| |
Collapse
|
10
|
Lu Q, Gu X, Li J, Li W, Luque R, Eid K. Unraveling ultrasonic assisted aqueous-phase one-step synthesis of porous PtPdCu nanodendrites for methanol oxidation with a CO-poisoning tolerance. ULTRASONICS SONOCHEMISTRY 2023; 98:106494. [PMID: 37356216 PMCID: PMC10319326 DOI: 10.1016/j.ultsonch.2023.106494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
The tailored design of tri-metallic Pt-based porous nanodendrites (PNDs) is crucial for green energy production technologies, ascribed to their fancy features, great surface areas, accessible active sites, and stability against aggregation. However, their aqueous-phase one-step synthesis at room temperature remains a daunting challenge. Herein, we present a facile, green, and template-free approach for the one-step synthesis of PtPdCu PNDs by ultrasonication of an aqueous solution of metal salts and Pluronic F127 at 25 ℃, based on natural isolation among nucleation and growth step driven by the disparate reduction kinetics of the metals and acoustic cavitation mechanism of ultrasonic waves. The resultant PtPdCu PNDs formed in a spatial nanodendritic shape with a dense array of branches, open corners, interconnected pores, high surface area (46.9 m2/g), and high Cu content (21 %). The methanol oxidation reaction (MOR) mass activity of PtPdCu PNDs (3.66 mA/µgPt) is 1.45, 2.73, and 2.83 times higher than those of PtPd PNDs, PtCu PNDs, and commercial Pt/C, respectively based on equivalent Pt mass, which is superior to previous PtPdCu catalysts reported elsewhere, besides a superior durability and CO-poisoning tolerance. This study may pave the way for the controlled fabrication of ternary Pt-based PNDs for various electrocatalytic applications.
Collapse
Affiliation(s)
- Qingqing Lu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xilei Gu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jiaojiao Li
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wenpeng Li
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation; Universidad ECOTEC, Km 13.5 Samborondón, Samborondón EC092302, Ecuador
| | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
11
|
Wang H, Ren H, Liu S, Deng K, Yu H, Wang X, Xu Y, Wang Z, Wang L. Rare earth Y doping induced lattice strain of mesoporous PtPd nanospheres for alkaline oxygen reduction electrocatalysis. NANOTECHNOLOGY 2022; 34:055401. [PMID: 36240698 DOI: 10.1088/1361-6528/ac9a53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The synthesis of catalysts with controllable morphology and composition is important to enhance the catalytic performance for oxygen reduction reaction (ORR). Herein, trimetallic PtPdY mesoporous nanospheres (PtPdY MNs) are produced via a one-step chemical reduction method applying F127 as soft temple under acidic condition. The mesoporous structure provides a large contact area and also stimulates the diffusion and mass transfer of reactants and products. Besides, synergistic effect among Pt, Pd and Y elements effectively alters their electronic structure, enhancing the catalytic activity. Therefore, the PtPdY MNs show excellent ORR permanence to Pt/C under the alkaline solution. This study offers an effective channel for the preparation of mesoporous metals with rare earth metal doping towards promising electrocatalytic applications.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Hang Ren
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Songliang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xin Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
12
|
Wahidah H, Hong JW. Phosphorus‐doped
Pt nanowires as efficient catalysts for electrochemical hydrogen evolution and methanol oxidation reaction. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Jong Wook Hong
- Department of Chemistry University of Ulsan Ulsan South Korea
| |
Collapse
|
13
|
Zhao M, Lin X, Zhou X, Zhang Y, Wu H, Liu Y. Single Probe-Based Chemical-Tongue Sensor Array for Multiple Bacterial Identification and Photothermal Sterilization in Real Time. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7706-7716. [PMID: 35109650 DOI: 10.1021/acsami.1c24042] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Simple and efficient identification of multiple bacteria and sterilization in real time is of considerable significance for clinical diagnostics and quality control in food. Herein, a novel chemical-tongue sensor array with 3,3',5,5'-tetramethylbenzidine (TMB) as a single probe was developed for bacterial identification and photothermal elimination. The synthesized bimetallic palladium/platinum nanoparticles (Pd/PtNPs) present excellent catalytic capability that can catalyze TMB into oxidized TMB (oxTMB) with four feature absorption peaks. Bacteria have different ability on inhibiting the reaction between TMB and Pd/PtNPs. With the absorbance intensity of oxTMB at the four feature peaks as readout, nine kinds of bacteria including two drug-resistant bacteria can be successfully distinguished via linear discriminant analysis. Remarkably, oxTMB exhibits excellent photothermal properties and can effectively kill bacteria in real time under near-infrared laser irradiation. The strategy of selecting TMB as a single probe simplifies the experimental operation and reduces the time cost. Furthermore, the developed sensing system was used to promote the wound healing process of MRSA-infected mice in vivo. The investigation provides a promising simple and efficient strategy for bacterial identification and sterilization with a universal platform, which has great potential application in clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Minyang Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiaodong Lin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiao Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yujie Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Haotian Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
14
|
Gayrard M, Chancerel F, De Marco ML, Naumenko D, Boissière C, Rozes L, Amenitsch H, Peron J, Cattoni A, Faustini M. Block-Copolymers Enable Direct Reduction and Structuration of Noble Metal-Based Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104204. [PMID: 34821023 DOI: 10.1002/smll.202104204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Noble metal nanostructured films are of great interest for various applications including electronics, photonics, catalysis, and photocatalysis. Yet, structuring and patterning noble metals, especially those of the platinum group, is challenging by conventional nanofabrication. Herein, an approach based on solution processing to obtain metal-based films (rhodium, ruthenium (Ru) or iridium in the presence of residual organic species) with nanostructuration at the 20 nm-scale is introduced. Compared to existing approaches, the dual functionality of block-copolymers acting both as structuring and as reducing agent under inert atmosphere is exploited. A set of in situ techniques has allowed for the capturing of the carbothermal reduction mechanism occurring at the hybrid organic/inorganic interface. Differently from previous literature, a two-step reduction mechanism is unveiled with the formation of a carbonyl intermediate. From a technological point of view, the materials can be solution-processed on a large scale by dip-coating as polymers and simultaneously structured and reduced into metals without requiring expensive equipment or treatments in reducing atmosphere. Importantly, the metal-based films can be patterned directly by block-copolymer lithography or by soft-nanoimprint lithography on various substrates. As proof-of-concept of application, the authors demonstrate that nanostructured Ru films can be used as efficient catalysts for H2 generation into microfluidic reactors.
Collapse
Affiliation(s)
- Maxime Gayrard
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Paris, F-75005, France
| | - Francois Chancerel
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Paris, F-75005, France
- Institut Photovoltaïque d'Ile-de-France (IPVF), CNRS UMR 9006, Palaiseau, 91120, France
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS UMR 9001, Université Paris-Saclay, Palaiseau, 91120, France
| | - Maria Letizia De Marco
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Paris, F-75005, France
| | - Denys Naumenko
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Cédric Boissière
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Paris, F-75005, France
| | - Laurence Rozes
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Paris, F-75005, France
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Jennifer Peron
- Université de Paris, ITODYS, CNRS UMR 7086, 15 rue J-A de Baïf, Paris, F-75013, France
| | - Andrea Cattoni
- Institut Photovoltaïque d'Ile-de-France (IPVF), CNRS UMR 9006, Palaiseau, 91120, France
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS UMR 9001, Université Paris-Saclay, Palaiseau, 91120, France
| | - Marco Faustini
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Paris, F-75005, France
| |
Collapse
|
15
|
Watanabe S, Koshiyama T, Watanabe T, Miyahara MT. Room-Temperature Synthesis of Ni and Pt-Co Alloy Nanoparticles Using a Microreactor. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.780384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metal nanoparticles (NPs) are key materials used in a broad range of industries. Among the various synthetic routes of NPs, liquid-phase chemical reactions are promising because of their versatility in reaction conditions as well as their potential productivity. However, because the synthesis of NPs involves not only chemical reactions but also nucleation and growth processes, which are typically higher-order reactions in terms of the concentration, a small degree of nonuniformity in the concentration during mixing of reaction solutions can easily result in a wide size distribution of the resultant particles. A typical solution to this problem is to slow the rate of reactions compared with that of mixing; however, as a result, the synthetic processes often require long reaction periods and complex procedures. In this study, we applied a microreactor with excellent mixing performance to NP synthesis to simplify and intensify the processes. We synthesized nickel and platinum-cobalt alloy NPs as model materials. For the Ni NP synthesis, we demonstrated that the quick mixing provided by the microreactor enabled the precise control of the residence time, and consequently, monodispersed Ni NPs with an average size of 3.8 nm were synthesized. For the Pt-Co bimetallic system, the microreactor successfully produced Pt-Co alloy NPs, while batch-type synthesis with weaker mixing intensity resulted in a bimodal mixture of larger Pt NPs and smaller Co NPs. For both Ni and Pt-Co, monodispersed NPs were synthesized by simply mixing the reaction solutions in the microreactor at room temperature. These results demonstrate that the mixing process plays a key role in NP synthesis, and application of a microreactor enables the establishment of a facile and robust synthetic process.
Collapse
|
16
|
Liu M, Chen G, Qin Y, Li J, Hu L, Gu W, Zhu C. Proton-Regulated Catalytic Activity of Nanozymes for Dual-Modal Bioassay of Urease Activity. Anal Chem 2021; 93:9897-9903. [PMID: 34240847 DOI: 10.1021/acs.analchem.1c01999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benefiting from the merits of high stability and superior activity, nanozymes are recognized as promising alternatives to natural enzymes. Despite the great leaps in the field of therapy and colorimetric sensing, the development of highly sensitive nanozyme-involved photoelectrochemical (PEC) biosensors is still in its infancy. Specifically, the investigation of multifunctional nanozymes facilitating different catalytic reactions remains largely unexplored due to the difficulty in synergistically amplifying the PEC signals. In this work, mesoporous trimetallic AuPtPd nanospheres were synthesized with both efficient oxidase and peroxidase-like activities, which can synergistically catalyze the oxidation of 4-chloro-1-naphthol to produce benzo-4-chlorohexadienone precipitation on the surface of photoactive materials, and thus lead to the decreased photocurrent as well as increased charge-transfer resistance. Inspired by the proton-dependent catalytic activity of nanozymes, a self-regulated dual-modal PEC and electrochemical bioassay of urease activity was innovatively established by in situ regulating the activity of AuPtPd nanozymes through urease-mediated proton-consuming enzymatic reactions, which can remarkably improve the accuracy of the assay. Meanwhile, the determination of urease activity in spiked human saliva samples was successfully realized, indicating the reliability of the biosensor and its application prospects in clinical diagnosis.
Collapse
Affiliation(s)
- Mingwang Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guojuan Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ying Qin
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jinli Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Liuyong Hu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
17
|
Huang L, Zheng X, Gao G, Zhang H, Rong K, Chen J, Liu Y, Zhu X, Wu W, Wang Y, Wang J, Dong S. Interfacial Electron Engineering of Palladium and Molybdenum Carbide for Highly Efficient Oxygen Reduction. J Am Chem Soc 2021; 143:6933-6941. [PMID: 33915042 DOI: 10.1021/jacs.1c00656] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interfacial electron engineering between noble metal and transition metal carbide is identified as a powerful strategy to improve the intrinsic activity of electrocatalytic oxygen reduction reaction (ORR). However, this short-range effect and the huge structural differences make it a significant challenge to obtain the desired electrocatalyst with atomically thin noble metal layers. Here, we demonstrated the combinatorial strategies to fabricate the heterostructure electrocatalyst of Mo2C-coupled Pd atomic layers (AL-Pd/Mo2C) by precise control of metal-organic framework confinement and covalent interaction. Both atomic characterizations and density functional theory calculations uncovered that the strong electron effect imposed on Pd atomic layers has intensively regulated the electronic structures and d-band center and then optimized the reaction kinetics. Remarkably, AL-Pd/Mo2C showed the highest ORR electrochemical activity and stability, which delivered a mass activity of 2.055 A mgPd-1 at 0.9 V, which is 22.1, 36.1, and 80.3 times higher than Pt/C, Pd/C, and Pd nanoparticles, respectively. The present work has developed a novel approach for atomically noble metal catalysts and provides new insights into interfacial electron regulation.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiliang Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Ge Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - He Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kai Rong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinxing Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yongqin Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xinyang Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weiwei Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
18
|
Chen G, Qin Y, Jiao L, Huang J, Wu Y, Hu L, Gu W, Xu D, Zhu C. Nanozyme-Activated Synergistic Amplification for Ultrasensitive Photoelectrochemical Immunoassay. Anal Chem 2021; 93:6881-6888. [PMID: 33886279 DOI: 10.1021/acs.analchem.1c01217] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
At present, enzyme-mediated signal amplification strategies have been widely applied in photoelectrochemical (PEC) biosensing systems, while the introduction of natural enzymes onto the surface of photoelectrodes inevitably obstructs the electron transfer due to their insulating properties as proteins, leading to severe damage to photocurrent. In this work, the PdPt bimetallic nanozymes with the efficient peroxidase-like activity were used as alternatives to natural enzymes and amplified PEC biosensing signals via their efficient enzymatic reaction and remarkable enhancement in photocurrent. As a result, photoactive CdS nanorods modified with PdPt bimetallic nanozymes showed a boosted PEC performance compared with the pristine CdS nanorods due to the localized surface plasmon resonance effect and Schottky junction. On the basis of the as-prepared CdS/PdPt photoelectrode, a sensitive split-type glucose oxidase-mediated PEC immunoassay for carcinoembryonic antigen (CEA) detection was successfully constructed. Along with the sandwich immunocomplexing, the subsequently produced hydrogen peroxide (H2O2) can oxidize 4-chloro-1-naphthol into insoluble precipitates to inhibit photocurrent and simultaneously trigger the bio-etching of CdS to further restrain photocurrent signals due to the excellent peroxidase-mimicking activity of PdPt nanozymes. Owing to the synergistic signal amplification fulfilled by PdPt nanozymes, an ultrasensitive immunoassay of CEA was realized with a wider linear range from 1 to 5000 pg/mL and a low detection limit of 0.21 pg/mL, opening a new avenue for building ultrasensitive PEC biosensors with nanozymes.
Collapse
Affiliation(s)
- Guojuan Chen
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China.,School of Electronic and Information Engineering, Soochow University, Suzhou 215006, P. R. China
| | - Ying Qin
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jiajia Huang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Liuyong Hu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Dacheng Xu
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
19
|
Su H, Li X, Huang L, Cao J, Zhang M, Vedarethinam V, Di W, Hu Z, Qian K. Plasmonic Alloys Reveal a Distinct Metabolic Phenotype of Early Gastric Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007978. [PMID: 33742513 DOI: 10.1002/adma.202007978] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Indexed: 05/20/2023]
Abstract
Gastric cancer (GC) is a multifactorial process, accompanied by alterations in metabolic pathways. Non-invasive metabolic profiling facilitates GC diagnosis at early stage leading to an improved prognostic outcome. Herein, mesoporous PdPtAu alloys are designed to characterize the metabolic profiles in human blood. The elemental composition is optimized with heterogeneous surface plasmonic resonance, offering preferred charge transfer for photoinduced desorption/ionization and enhanced photothermal conversion for thermally driven desorption. The surface structure of PdPtAu is further tuned with controlled mesopores, accommodating metabolites only, rather than large interfering compounds. Consequently, the optimized PdPtAu alloy yields direct metabolic fingerprints by laser desorption/ionization mass spectrometry in seconds, consuming 500 nL of native plasma. A distinct metabolic phenotype is revealed for early GC by sparse learning, resulting in precise GC diagnosis with an area under the curve of 0.942. It is envisioned that the plasmonic alloy will open up a new era of minimally invasive blood analysis to improve the surveillance of cancer patients in the clinical setting.
Collapse
Affiliation(s)
- Haiyang Su
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xinxing Li
- Department of Gastrointestinal Surgery, Tongji Hospital, Medical College of Tongji University, Shanghai, 200065, P. R. China
- Department of General Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Jing Cao
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Mengji Zhang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Vadanasundari Vedarethinam
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Wen Di
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Zhiqian Hu
- Department of Gastrointestinal Surgery, Tongji Hospital, Medical College of Tongji University, Shanghai, 200065, P. R. China
- Department of General Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
20
|
Song T, Gao F, Guo S, Zhang Y, Li S, You H, Du Y. A review of the role and mechanism of surfactants in the morphology control of metal nanoparticles. NANOSCALE 2021; 13:3895-3910. [PMID: 33576356 DOI: 10.1039/d0nr07339c] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although great progress has been made in the synthesis of metal nanoparticles, good repeatability and accurate predictability are still difficult to achieve. This difficulty can be attributed to the synthetic method based primarily on observation and subjective experience, and the role of many surfactants remains unclear. It should be noted that surfactants play an important role in the synthetic process. Understanding their function and mechanism in the synthetic process is a prerequisite for the rational design of nanocatalysts with ideal morphology and performance. In this review article, the function of surfactants is introduced first, and then the mechanism of action of surfactants in controlling the morphology of nanoparticles is discussed according to the types of surfactants, and the promoting and sealing effects of surfactants on the crystal surface is revealed. The relationship between surfactants and the morphology structure of nanoparticles is studied. The removal methods of surfactants are discussed, and the existing problems in the current development strategy are summarized. Finally, the application of surfactants in controlling the morphology of metal nanocrystals is prospected. It is hoped that the review can open up new avenues for the synthesis of nanocrystals.
Collapse
Affiliation(s)
- Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Huaming You
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
21
|
Zhang G, Ma Y, Liu F, Fu X, Luan X, Qu F, Liu M, Zheng Y. Seeded Growth of Au@PdAg Alloy Core‐Shell Nano‐Dendrites with Tunable Size and Composition. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202000776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gongguo Zhang
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 237000 P. R. China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Feng Liu
- International Research Center for Renewable Energy National Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an Shanxi 710049 China
| | - Xiaowei Fu
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 237000 P. R. China
| | - Xiaoqian Luan
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong China
| | - Fengli Qu
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong China
| | - Maochang Liu
- International Research Center for Renewable Energy National Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an Shanxi 710049 China
| | - Yiqun Zheng
- Department of Chemistry and Chemical Engineering Jining University Qufu Shandong 237000 P. R. China
| |
Collapse
|
22
|
Syubaev S, Gurbatov S, Modin E, Linklater DP, Juodkazis S, Gurevich EL, Kuchmizhak A. Laser Printing of Plasmonic Nanosponges. NANOMATERIALS 2020; 10:nano10122427. [PMID: 33291684 PMCID: PMC7761959 DOI: 10.3390/nano10122427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/02/2022]
Abstract
Three-dimensional porous nanostructures made of noble metals represent novel class of nanomaterials promising for nonlinear nanooptics and sensors. Such nanostructures are typically fabricated using either reproducible yet time-consuming and costly multi-step lithography protocols or less reproducible chemical synthesis that involve liquid processing with toxic compounds. Here, we combined scalable nanosecond-laser ablation with advanced engineering of the chemical composition of thin substrate-supported Au films to produce nanobumps containing multiple nanopores inside. Most of the nanopores hidden beneath the nanobump surface can be further uncapped using gentle etching of the nanobumps by an Ar-ion beam to form functional 3D plasmonic nanosponges. The nanopores 10–150 nm in diameter were found to appear via laser-induced explosive evaporation/boiling and coalescence of the randomly arranged nucleation sites formed by nitrogen-rich areas of the Au films. Density of the nanopores can be controlled by the amount of the nitrogen in the Au films regulated in the process of their magnetron sputtering assisted with nitrogen-containing discharge gas.
Collapse
Affiliation(s)
- Sergey Syubaev
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (S.S.); (S.G.)
- Far Eastern Federal University, 690041 Vladivostok, Russia
| | - Stanislav Gurbatov
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (S.S.); (S.G.)
- Far Eastern Federal University, 690041 Vladivostok, Russia
| | - Evgeny Modin
- CIC NanoGUNE BRTA, Avda Tolosa 76, 20018 Donostia-San Sebastian, Spain;
| | - Denver P. Linklater
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, John st., Hawthorn, VIC 3122, Australia; (D.P.L.); (S.J.)
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Saulius Juodkazis
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, John st., Hawthorn, VIC 3122, Australia; (D.P.L.); (S.J.)
- World Research Hub Initiative (WRHI), School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Evgeny L. Gurevich
- Laser Center (LFM), University of Applied Sciences Munster, Stegerwaldstraße 39, 48565 Steinfurt, Germany;
| | - Aleksandr Kuchmizhak
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (S.S.); (S.G.)
- Far Eastern Federal University, 690041 Vladivostok, Russia
- Correspondence:
| |
Collapse
|
23
|
Iqbal M, Kim Y, Saputro AG, Shukri G, Yuliarto B, Lim H, Nara H, Alothman AA, Na J, Bando Y, Yamauchi Y. Tunable Concave Surface Features of Mesoporous Palladium Nanocrystals Prepared from Supramolecular Micellar Templates. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51357-51365. [PMID: 33146017 DOI: 10.1021/acsami.0c13136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Concave metallic nanocrystals with a high density of low-coordinated atoms on the surface are essential for the realization of unique catalytic properties. Herein, mesoporous palladium nanocrystals (MPNs) that possess various degrees of curvature are successfully synthesized following an approach that relies on a facile polymeric micelle assembly approach. The as-prepared MPNs exhibit larger surface areas compared to conventional Pd nanocrystals and their nonporous counterparts. The MPNs display enhanced electrocatalytic activity for ethanol oxidation when compared to state-of-the-art commercial palladium black and conventional palladium nanocubes used as catalysts. Interestingly, as the degree of curvature increases, the surface-area-normalized activity also increases, demonstrating that the curvature of MPNs and the presence of high-index facets are crucial considerations for the design of electrocatalysts.
Collapse
Affiliation(s)
- Muhammad Iqbal
- Institute of Molecular Plus, Tianjin University, Building 11, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Advanced Functional Materials Research Group and Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
| | - Yena Kim
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Adhitya Gandaryus Saputro
- Advanced Functional Materials Research Group and Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
| | - Ganes Shukri
- Advanced Functional Materials Research Group and Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
| | - Brian Yuliarto
- Advanced Functional Materials Research Group and Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
| | - Hyunsoo Lim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hiroki Nara
- Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-Tsurumakicho, Shinjuku-ku, Tokyo 162-0041, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jongbeom Na
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yoshio Bando
- Institute of Molecular Plus, Tianjin University, Building 11, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute of Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| |
Collapse
|
24
|
Chen G, Yan Y, Wang J, Ok YS, Zhong G, Guan BY, Yamauchi Y. General Formation of Macro‐/Mesoporous Nanoshells from Interfacial Assembly of Irregular Mesostructured Nanounits. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guangrui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yuxing Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Jie Wang
- International Center for Materials Nanoarchitechtonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yong Sik Ok
- Korea Biochar Research Center APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering Korea University Seoul 02841 Republic of Korea
| | - Guiyuan Zhong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Bu Yuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
- Joint Research Center for Future Materials, International Center of Future Science Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitechtonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- School of Chemical Engineering and Australian Institute for, Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
25
|
A universal approach for the synthesis of mesoporous gold, palladium and platinum films for applications in electrocatalysis. Nat Protoc 2020; 15:2980-3008. [PMID: 32839575 DOI: 10.1038/s41596-020-0359-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/20/2020] [Indexed: 01/10/2023]
Abstract
High-surface-area mesoporous materials expose abundant functional sites for improved performance in applications such as gas storage/separation, catalysis, and sensing. Recently, soft templates composed of amphiphilic surfactants and block copolymers have been used to introduce mesoporosity in various materials, including metals, metal oxides and carbonaceous compounds. In particular, mesoporous metals are attractive in electrocatalysis because their porous networks expose numerous unsaturated atoms on high-index facets that are highly active in catalysis. In this protocol, we describe how to create mesoporous metal films composed of gold, palladium, or platinum using block copolymer micelle templates. The amphiphilic block copolymer micelles are the sacrificial templates and generate uniform structures with tunable pore sizes in electrodeposited metal films. The procedure describes the electrodeposition in detail, including parameters such as micelle diameters, deposition potentials, and deposition times to ensure reproducibility. The micelle diameters can be controlled by swelling the micelles with different solvent mixtures or by using block copolymer micelles with different molecular weights. The deposition potentials and deposition times allow further control of the mesoporous structure and its thickness, respectively. Procedures for example applications are included: glucose oxidation, ethanol oxidation and methanol oxidation reactions. The synthetic methods for preparation of mesoporous metal films will take ~4 h; the subsequent electrochemical tests will take ~5 h for glucose sensing and ~3 h for alcohol oxidation reaction.
Collapse
|
26
|
Chen G, Yan Y, Wang J, Ok YS, Zhong G, Guan BY, Yamauchi Y. General Formation of Macro-/Mesoporous Nanoshells from Interfacial Assembly of Irregular Mesostructured Nanounits. Angew Chem Int Ed Engl 2020; 59:19663-19668. [PMID: 32648344 DOI: 10.1002/anie.202007031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 01/01/2023]
Abstract
Mesoporous core-shell nanostructures with controllable ultra-large open channels in their nanoshells are of great interest. However, soft template-directed cooperative assembly to mesoporous nanoshells with highly accessible pores larger than 30 nm, or even above 50 nm into macroporous range, remains a significant challenge. Herein we report a general approach for precisely tailored coating of hierarchically macro-/mesoporous polymer and carbon shells, possessing highly accessible radial channels with extremely wide pore size distribution from ca. 10 nm to ca. 200 nm, on diverse functional materials. This strategy creates opportunities to tailor the interfacial assembly of irregular mesostructured nanounits on core materials and generate various core-shell nanomaterials with controllable pore architectures. The obtained Fe,N-doped macro-/mesoporous carbon nanoshells show enhanced electrochemical performance for the oxygen reduction reaction in alkaline condition.
Collapse
Affiliation(s)
- Guangrui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuxing Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jie Wang
- International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Guiyuan Zhong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bu Yuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.,Joint Research Center for Future Materials, International Center of Future Science, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,School of Chemical Engineering and Australian Institute for, Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
27
|
Lv F, Gong Y, Cao Y, Deng Y, Liang S, Tian X, Gu H, Yin JJ. A convenient detection system consisting of efficient Au@PtRu nanozymes and alcohol oxidase for highly sensitive alcohol biosensing. NANOSCALE ADVANCES 2020; 2:1583-1589. [PMID: 36132318 PMCID: PMC9416945 DOI: 10.1039/d0na00002g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/26/2020] [Indexed: 06/12/2023]
Abstract
Effective alcohol detection represents a substantial concern not only in the context of personal and automobile safety but also in clinical settings as alcohol is a contributing factor in a wide range of health complications including various types of liver cirrhoses, strokes, and cardiovascular diseases. Recently, many kinds of nanomaterials with enzyme-like properties have been widely used as biosensors. Herein, we have developed a convenient detection method that combines Au@PtRu nanozymes and alcohol oxidase (AOx). We found that the Au@PtRu nanorods exhibited peroxidase-like catalytic activity that was much higher than the catalytic activities of the Au and Au@Pt nanorods. The Au@PtRu nanorod-catalyzed generation of hydroxyl radicals in the presence of H2O2 was used to develop an alcohol sensor by monitoring the H2O2 formed by the oxidation of alcohol to acetaldehyde in the presence of AOx. When coupled with AOx, alcohol was detected down to 23.8 μM in a buffer solution for biological assays. Notably, alcohol was successfully detected in mouse blood samples with results comparable to that from commercial alcohol meters. These results highlight the potential of the Au@PtRu nanorods with peroxidase-like activity for alcohol detection, which opens up a new avenue for nanozyme development for biomedical applications.
Collapse
Affiliation(s)
- Feng Lv
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Collaborative Innovation Center for New-type Urbanization and Social Governance of Jiangsu Province, Soochow University Suzhou 215123 P. R. China
| | - Yuzhu Gong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Collaborative Innovation Center for New-type Urbanization and Social Governance of Jiangsu Province, Soochow University Suzhou 215123 P. R. China
| | - Yingying Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Collaborative Innovation Center for New-type Urbanization and Social Governance of Jiangsu Province, Soochow University Suzhou 215123 P. R. China
| | - Yaoyao Deng
- School of Chemical Engineering and Materials, Changzhou Institute of Technology Changzhou 213032 P. R. China
| | - Shufeng Liang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 China
- Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Affiliated Hospital of Shanxi Medical University Taiyuan Shanxi 030013 China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 China
| | - Hongwei Gu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Collaborative Innovation Center for New-type Urbanization and Social Governance of Jiangsu Province, Soochow University Suzhou 215123 P. R. China
| | - Jun-Jie Yin
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration College Park Maryland 20740 USA
| |
Collapse
|
28
|
Nagaura T, Park T, Lim H, Lin J, Iqbal M, Alshehri SM, Ahamad T, Kaneti YV, Yi JW, Kim Y, Na J, Yamauchi Y. Controlled Synthesis of Mesoporous Pt, Pt-Pd and Pt-Pd-Rh Nanoparticles in Aqueous Nonionic Surfactant Solution. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tomota Nagaura
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Teahoon Park
- Carbon Composite Department, Composites Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-daero, Seongsan-gu, Changwon-si, Gyeongsangnam-do, 51508, South Korea
| | - Hyunsoo Lim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jianjian Lin
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Muhammad Iqbal
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Saad M. Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yusuf Valentino Kaneti
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jin Woo Yi
- Carbon Composite Department, Composites Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-daero, Seongsan-gu, Changwon-si, Gyeongsangnam-do, 51508, South Korea
| | - Yena Kim
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jongbeom Na
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| |
Collapse
|
29
|
Zhang L, Ma Q, Hu J, Liu J, Deng Q, Ning P, Zhou C, Wu X, Wu Y. Enhancing the Catalytic Kinetics of Electrodes by using a Multidimensional Carbon Network for Applications in Vanadium Redox Flow Batteries. ChemElectroChem 2020. [DOI: 10.1002/celc.201902131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lei Zhang
- College of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang 414006 China
- School of Chemistry and Materials ScienceHunan Agricultural University Changsha 410128 China
| | - Qiang Ma
- School of Chemistry and Materials ScienceHunan Agricultural University Changsha 410128 China
| | - Jun‐Ping Hu
- School of Chemistry and Materials ScienceHunan Agricultural University Changsha 410128 China
| | - Jun Liu
- School of Chemistry and Materials ScienceHunan Agricultural University Changsha 410128 China
| | - Qi Deng
- School of Chemistry and Materials ScienceHunan Agricultural University Changsha 410128 China
| | - Pan Ning
- College of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang 414006 China
| | - Congshan Zhou
- College of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang 414006 China
| | - Xiongwei Wu
- School of Chemistry and Materials ScienceHunan Agricultural University Changsha 410128 China
| | - Yuping Wu
- School of Chemistry and Materials ScienceHunan Agricultural University Changsha 410128 China
- State Key Laboratory of Materials-Oriented Chemical Engineering & School of Energy Science and EngineeringNanjing Tech University Nanjing Nanjing 211816 China
| |
Collapse
|
30
|
Deng K, Xu Y, Li Y, Dai Z, Wang Z, Li X, Wang H, Wang L. Integration mesoporous surface and hollow cavity into PtPdRh nano-octahedra for enhanced oxygen reduction electrocatalysis. NANOTECHNOLOGY 2020; 31:025401. [PMID: 31546241 DOI: 10.1088/1361-6528/ab46d8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Design and synthesis of Pt-based nanocrystals with controlled structural diversity and complexity can potentially bring about multifunctional properties. In this work, we present a facile two-step strategy for the construction of the PtPdRh mesoporous octahedral nanocages (PtPdRh MONCs). This unique nanoarchitectonics rationally integrates multiple advantages (i.e. the octahedral shape, hollow cavity and mesoporous surface) into one catalyst, which facilitates the efficient utilization of noble metal atoms at both of the interior and exterior surfaces. As expected, the resultant PtPdRh MONCs could effectively catalyze the oxygen reduction reaction (ORR) under acidic conditions. The demonstrated ORR activity and catalytic durability are superior to the commercial Pt/C catalyst. The present study would provide a general guidance for architectural and compositional engineering of noble metal nanocrystals with desired functionalities and properties.
Collapse
Affiliation(s)
- Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Li C, Li Q, Kaneti YV, Hou D, Yamauchi Y, Mai Y. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem Soc Rev 2020; 49:4681-4736. [DOI: 10.1039/d0cs00021c] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This paper reviews the progress in the field of block copolymer-templated mesoporous materials, including synthetic methods, morphological and pore size control and their potential applications in energy storage and conversion devices.
Collapse
Affiliation(s)
- Chen Li
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Qian Li
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Yusuf Valentino Kaneti
- International Center for Materials Nanoarchitectonics (WPI-MANA)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0044
- Japan
| | - Dan Hou
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- Key Laboratory of Marine Chemistry Theory and Technology
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| |
Collapse
|
32
|
Li S, Liu Y, Fan Y, Lu Z, Yan Y, Deng L, Zhang Z, Yu S. Facile sub-/supercritical water synthesis of nanoflake MoVTeNbO x-mixed metal oxides without post-heat treatment and their catalytic performance. RSC Adv 2020; 10:39922-39930. [PMID: 35515359 PMCID: PMC9057401 DOI: 10.1039/d0ra06877b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
A fast and simple sub-/supercritical water synthesis method is presented in this work in which MoVTeNbOx-mixed metal oxides with various phase compositions and morphologies could be synthesized without post-heat treatment. It was demonstrated that the system temperature for synthesis had a significant influence on the physico-chemical properties of MoVTeNbOx. Higher temperatures were beneficial for the formation of a mixed crystalline phase containing TeVO4, Te3Mo2V2O17, Mo4O11 and TeO2, which are very different from the crystalline phases of conventional Mo–V–Te–Nb-mixed metal oxides. While at lower temperatures, Mo4O11 was replaced by Te. At high temperature, the as-prepared samples presented distinct nanoflake morphologies with an average size of 10–60 nm in width and exhibited excellent catalytic performances in the selective oxidation of propylene to acrylic acid. It is illustrated that the large specific surface area, presence of Mo4O11 and superficial Mo6+ and Te4+ ions are responsible for the high propylene conversion, while suitable acidic sites and superficial Nb5+ ions improved the selectivity to acrylic acid. Nanoflake MoVTeNbOx prepared by sub-/supercritical water exhibit excellent catalytic performance in the selective oxidation of propylene to acrylic acid.![]()
Collapse
Affiliation(s)
- Shuangming Li
- College of Chemical Engineering
- Shenyang University of Chemical Technology
- Shenyang 110142
- China
- Key Laboratory of Chemical Separation Technology of Liaoning Province
| | - Yongwei Liu
- College of Chemical Engineering
- Shenyang University of Chemical Technology
- Shenyang 110142
- China
| | - Yaoxin Fan
- College of Chemical Engineering
- Shenyang University of Chemical Technology
- Shenyang 110142
- China
| | - Zixuan Lu
- College of Chemical Engineering
- Shenyang University of Chemical Technology
- Shenyang 110142
- China
| | - Yunong Yan
- College of Chemical Engineering
- Shenyang University of Chemical Technology
- Shenyang 110142
- China
| | - Luyao Deng
- College of Chemical Engineering
- Shenyang University of Chemical Technology
- Shenyang 110142
- China
| | - Zhe Zhang
- College of Chemical Engineering
- Shenyang University of Chemical Technology
- Shenyang 110142
- China
| | - Sansan Yu
- College of Chemical Engineering
- Shenyang University of Chemical Technology
- Shenyang 110142
- China
- Key Laboratory of Chemical Separation Technology of Liaoning Province
| |
Collapse
|
33
|
Lv H, Sun L, Feng J, Na J, Xu D, Yamauchi Y, Liu B. Plasmonic mesoporous AuAg nanospheres with controllable nanostructures. Chem Commun (Camb) 2020; 56:9679-9682. [PMID: 32696766 DOI: 10.1039/d0cc02524k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Three kinds of plasmonic mesoporous AuAg (mesoAuAg) nanospheres, including well-alloyed mesoAuAg, hollow mesoAuAg, and core-shell Ag-mesoAu nanospheres, were successfully synthesized by carefully controlling the reduction kinetics of metal precursors in the presence of a functional surfactant, C22H45N+(CH3)2-C3H6-SH(Cl-). The resulting mesoAuAg exhibited a remarkable structure-dependent electrocatalytic performance toward methanol oxidation reaction.
Collapse
Affiliation(s)
- Hao Lv
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Lizhi Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ji Feng
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | - Jongbeom Na
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Ben Liu
- College of Chemistry, Sichuan University, Chengdu 610064, China. and Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
34
|
Gao S, Wang Z, Ma L, Liu Y, Gao J, Jiang Y. Mesoporous Core–Shell Nanostructures Bridging Metal and Biocatalyst for Highly Efficient Cascade Reactions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04877] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shiqi Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zihan Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- National Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
35
|
Wang H, Yin S, Li C, Deng K, Xu Y, Wang Z, Li X, Xue H, Wang L. All-metallic nanorattles consisting of a Pt core and a mesoporous PtPd shell for enhanced electrocatalysis. NANOTECHNOLOGY 2019; 30:475602. [PMID: 31426034 DOI: 10.1088/1361-6528/ab3c94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fabrication of nanorattles with controllable compositions and structures is very important for catalytic applications. Herein, we propose a facile method for synthesis of very unique all-metallic nanorattle consisting of a Pt core and a mesoporous PtPd shell (named Pt@mPtPd). Owing to its spatially and locally separated active inner Pt core and mesoporous PtPd shell, the Pt@mPtPd nanorattle shows the enhanced performance for oxygen reduction reaction. The newly designed Pt@mPtPd nanorattle is quite different from traditional nanorattles with porous carbon and silica shell in its catalytically functional mesoporous metallic shell. The proposed facile method is highly valuable for the design of all-metallic nanorattle with controllable compositions and desired functions.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jiang B, Song H, Kang Y, Wang S, Wang Q, Zhou X, Kani K, Guo Y, Ye J, Li H, Sakka Y, Henzie J, Yusuke Y. A mesoporous non-precious metal boride system: synthesis of mesoporous cobalt boride by strictly controlled chemical reduction. Chem Sci 2019; 11:791-796. [PMID: 34123054 PMCID: PMC8145993 DOI: 10.1039/c9sc04498a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Generating high surface area mesoporous transition metal boride is interesting because the incorporation of boron atoms generates lattice distortions that lead to the formation of amorphous metal boride with unique properties in catalysis. Here we report the first synthesis of mesoporous cobalt boron amorphous alloy colloidal particles using a soft template-directed assembly approach. Dual reducing agents are used to precisely control the chemical reduction process of mesoporous cobalt boron nanospheres. The Earth-abundance of cobalt boride combined with the high surface area and mesoporous nanoarchitecture enables solar-energy efficient photothermal conversion of CO2 into CO compared to non-porous cobalt boron alloys and commercial cobalt catalysts.
Collapse
Affiliation(s)
- Bo Jiang
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan .,Research Center for Functional Materials, National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Hui Song
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yunqing Kang
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan .,The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Shengyao Wang
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Qi Wang
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Xin Zhou
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Kenya Kani
- School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia
| | - Yanna Guo
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jinhua Ye
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Yoshio Sakka
- Research Center for Functional Materials, National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Joel Henzie
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yamauchi Yusuke
- School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia .,Department of Plant and Environmental New Resources, Kyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 446-701 South Korea
| |
Collapse
|
37
|
Fan C, Liu J, Zhao H, Li L, Liu M, Gao J, Ma L. Molecular imprinting on PtPd nanoflowers for selective recognition and determination of hydrogen peroxide and glucose. RSC Adv 2019; 9:33678-33683. [PMID: 35528877 PMCID: PMC9073546 DOI: 10.1039/c9ra05677g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/02/2019] [Indexed: 12/26/2022] Open
Abstract
PtPd nanoflowers (PtPd NFs) exhibit intrinsic peroxidase-like activity as nanozymes, but the nanozymes lack substrate specificity and have low catalytic activity. Herein, a molecularly imprinted nanogel on PtPd NFs was prepared by using 3,3',5,5'-tetramethylbenzidine (TMB) as the template through the aqueous precipitation polymerization method. After the TMB was washed out, many substrate binding pockets were retained in the PtPd NFs. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) were employed to characterize the molecularly imprinted polymer (MIP) PtPd nanoflowers (T-MIP-PtPd NFs). The obtained T-MIP-PtPd NFs exhibited enhanced catalytic activity and specific recognition for TMB. Compared with PtPd NFs, T-MIP-PtPd NFs showed a linear range from 0.01-5000 μM and a detection limit of 0.005 μM toward the detection of H2O2. Glucose can also be sensitively detected through cascade reaction by the T-MIP-PtPd NFs and glucose oxidase. Therefore, molecular imprinting on nanozymes technology shows promising application in biocatalysis and sensing fields.
Collapse
Affiliation(s)
- Caini Fan
- Department of Hypertension, Henan Provincial People's Hospital Zheng Zhou 450003 China
| | - Junjia Liu
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| | - Haiying Zhao
- Department of Hypertension, Henan Provincial People's Hospital Zheng Zhou 450003 China
| | - Ling Li
- Department of Hypertension, Henan Provincial People's Hospital Zheng Zhou 450003 China
| | - Min Liu
- Department of Hypertension, Henan Provincial People's Hospital Zheng Zhou 450003 China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| |
Collapse
|
38
|
Palladium Nanoparticles/Graphitic Carbon Nitride Nanosheets-Carbon Nanotubes as a Catalytic Amplification Platform for the Selective Determination of 17α-ethinylestradiol in Feedstuffs. Sci Rep 2019; 9:14162. [PMID: 31578339 PMCID: PMC6775042 DOI: 10.1038/s41598-019-50087-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/04/2019] [Indexed: 12/02/2022] Open
Abstract
A new kind of nanocomposite, graphitic carbon nitride (g-C3N4)-carbon nanotubes (CNTs), has been synthesized via solid grinding, and followed by thermal polymerization process of melamine and CNTs. Pd nanoparticles were loaded on the as-prepared nanocomposite by the self-assembly method. The Pd/g-C3N4-CNTs nanocomposite exhibited excellent electrocatalytic activity toward the oxidation of 17α-ethinylestradiol (EE2), and compared with other detection methods of EE2, such as HPLC, this detection platform does not need the samples for further purification processing. And this detection platform was compared with HPLC, there is no significant difference between two methods, and the accuracy and precision of the determination of EE2 in feedstuff sample by differential pulse voltammetry (DPV) to a satisfactory level. Thus, the Pd/g-C3N4-CNTs nanocomposite can be used as a signal amplification platform for the detection of EE2 in feedstuffs samples. Under the optimum condition, the current response increased linearly with EE2 concentration from 2.0 × 10−6 ~ 1.5 × 10−4 M with a detection limit of 5.0 × 10−7 M (S/N = 3) by DPV. The Pd/g-C3N4-CNTs showed good reproducibility and excellent anti-interference ability that the relative standard deviation was 3.3% (n = 5). This strategy may find widespread and promising applications in other sensing systems involving EE2.
Collapse
|
39
|
A Mesoporous Nanorattle‐Structured Pd@PtRu Electrocatalyst. Chem Asian J 2019; 14:3397-3403. [DOI: 10.1002/asia.201901058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/01/2019] [Indexed: 11/07/2022]
|
40
|
Lee YW, Ahn H, Lee SE, Woo H, Han SW. Fine Control over the Compositional Structure of Trimetallic Core-Shell Nanocrystals for Enhanced Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25901-25908. [PMID: 31251023 DOI: 10.1021/acsami.9b06498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pt-based multimetallic nanocrystals (NCs) have attracted tremendous research interest because of their excellent catalytic properties in various electrocatalysis fields. However, the development of rational synthesis approaches that can give multimetallic NCs with desirable compositional structures is still a radical issue. In the present work, we devised an efficient strategy for the systematic control of the spatial distribution of constituent elements in Pt-based trimetallic core-shell NCs, through which NCs with distinctly different compositional structures, such as Au@PdPt, Au@Pd@Pt, AuPd@Pt, and AuPdPt@Pt core-shell NCs, could selectively be generated. The adjustment of the amount of a reducing agent, hydrazine, which can provide control over the relative reduction kinetics of multiple metals, is the key to the selective formation of NCs. Through extensive studies on the effect of the compositional structure of the trimetallic NCs on their catalytic function toward the methanol electro-oxidation reaction, we found that the Au@Pd@Pt NCs exhibited considerably enhanced catalytic performance in comparison to the other trimetallic NCs as well as to their binary counterparts, a commercial catalyst, and reported Pt-based nanocatalysts due to the optimized surface electronic structure. The present strategy will be useful to design and construct multicomponent catalytic systems for various energy and environmental applications.
Collapse
Affiliation(s)
- Young Wook Lee
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury , KAIST , Daejeon 34141 , Korea
| | - Hochan Ahn
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury , KAIST , Daejeon 34141 , Korea
| | - Seung Eun Lee
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury , KAIST , Daejeon 34141 , Korea
| | - Hyunje Woo
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury , KAIST , Daejeon 34141 , Korea
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury , KAIST , Daejeon 34141 , Korea
| |
Collapse
|
41
|
Wang D, Schaaf P. Synthesis and characterization of size controlled bimetallic nanosponges. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-0125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractMetallic and bimetallic nanosponges with well-defined size and form have attracted increasing attention due to their unique structural properties and their potential for many applications. In this chapter, the recently developed methods for the synthesis and preparation of metallic and bimetallic nanosponges are presented. These methods can be mainly cataloged in two groups: dealloying-based methods and reduction reaction-based methods. Different topographical reconstruction methods for the investigation of their structural properties are then reviewed briefly. The optical properties of the metallic nanosponges are clearly different from those of the solid counterparts due to the tailored disordered structure. The recent advances in the exploration of the distinct linear and non-linear optical properties of the nanosponges are summarized.Graphical Abstract:
Collapse
|
42
|
Li C, Iqbal M, Jiang B, Wang Z, Kim J, Nanjundan AK, Whitten AE, Wood K, Yamauchi Y. Pore-tuning to boost the electrocatalytic activity of polymeric micelle-templated mesoporous Pd nanoparticles. Chem Sci 2019; 10:4054-4061. [PMID: 31015946 PMCID: PMC6457336 DOI: 10.1039/c8sc03911a] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding how mesoporous noble metal architectures affect electrocatalytic performance is very important for the rational design and preparation of high-performance electrocatalysts. Herein, by using polymeric micelle-assembled structures as templates, mesoporous Pd nanoparticles with tunable porous constructions are synthesized by simply tuning the solvent compositions. The effect of porous Pd nanoparticles on the electrocatalytic performance is thoroughly studied. Their superior electrocatalytic activity can be attributed to the mass transport efficiency and open porous structures.
Collapse
Affiliation(s)
- Cuiling Li
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Muhammad Iqbal
- Key Laboratory of Eco-chemical Engineering , College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology (QUST) , Qingdao 266042 , China
- International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Bo Jiang
- International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Zhongli Wang
- International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Jeonghun Kim
- Key Laboratory of Eco-chemical Engineering , College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology (QUST) , Qingdao 266042 , China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN) , University of Queensland , Brisbane , QLD 4072 , Australia .
| | - Ashok Kumar Nanjundan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN) , University of Queensland , Brisbane , QLD 4072 , Australia .
| | - Andrew E Whitten
- Australian Nuclear Science and Technology Organisation (ANSTO) , New Illawarra Rd, Lucas Heights , NSW 2234 , Australia
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organisation (ANSTO) , New Illawarra Rd, Lucas Heights , NSW 2234 , Australia
| | - Yusuke Yamauchi
- Key Laboratory of Eco-chemical Engineering , College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology (QUST) , Qingdao 266042 , China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN) , University of Queensland , Brisbane , QLD 4072 , Australia .
- Department of Plant & Environmental New Resources , Kyung Hee University , 1732 Deogyeong-daero, Giheung-gu , Yongin-si , Gyeonggi-do 446-701 , South Korea
| |
Collapse
|
43
|
Xu Y, Li Y, Qian X, Yang D, Chai X, Wang Z, Li X, Wang L, Wang H. Trimetallic PtPdCo mesoporous nanopolyhedra with hollow cavities. NANOSCALE 2019; 11:4781-4787. [PMID: 30834928 DOI: 10.1039/c9nr00598f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The rational design of metallic mesoporous nanoarchitectures with hollow cavities offers an effective way to boost their performance in various catalytic fields. Herein, we report a facile two-step strategy for the fabrication of trimetallic PtPdCo mesoporous nanopolyhedra with hollow cavities (PtPdCo MHNPs), in which Pd@PtPdCo core-shell mesoporous nanopolyhedra (Pd@PtPdCo MNPs) are directly prepared by a simple chemical reduction reaction followed by etching of the Pd cores. The PtPdCo MHNPs show enhanced electrocatalytic activity and durability for the methanol oxidation reaction, enabled by their mesoporous and hollow nanoarchitectures coupled with trimetallic compositions.
Collapse
Affiliation(s)
- You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wu F, Niu W, Lai J, Zhang W, Luque R, Xu G. Highly Excavated Octahedral Nanostructures Integrated from Ultrathin Mesoporous PtCu 3 Nanosheets: Construction of Three-Dimensional Open Surfaces for Enhanced Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804407. [PMID: 30724461 DOI: 10.1002/smll.201804407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Developing electrocatalysts with ultrathin nanostructures and high mesoporosity is a relevant high-priority research direction toward enhancing the performance of noble metals. Herein, mesoporous, highly excavated octahedral PtCu3 nanostructures are prepared by a facile one-pot synthesis. The mesoporous, highly excavated octahedral PtCu3 nanostructures are built with mutually perpendicular interlaced mesoporous nanosheets with a thickness of ≈4.5 nm. Benefiting from its mesoporous features, three-dimensional (3D) open surfaces, ultrathin nanosheets, and a Cu-rich surface, PtCu3 exhibits excellent electrocatalytic performance and high antipoisoning activity toward the methanol oxidation reaction.
Collapse
Affiliation(s)
- Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Anhui, 230026, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jianping Lai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Wei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Anhui, 230026, China
| | - Rafael Luque
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Departamento de Química Orgánica, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie (C-3), Km 396, Córdoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., 117198, Moscow, Russia
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Anhui, 230026, China
| |
Collapse
|
45
|
Lv H, Sun L, Zou L, Xu D, Yao H, Liu B. Size-dependent synthesis and catalytic activities of trimetallic PdAgCu mesoporous nanospheres in ethanol electrooxidation. Chem Sci 2019; 10:1986-1993. [PMID: 30842858 PMCID: PMC6375357 DOI: 10.1039/c8sc04696d] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022] Open
Abstract
Mesoporous noble metal nanocrystals have exhibited significant potential in electrocatalysis. However, it remains a big challenge to controllably synthesize sub-100 nm multimetallic mesoporous nanospheres (MNSs) with precisely tunable sizes and to further understand their size-dependent electrocatalytic performances. In this manuscript, a one-pot solution-phase strategy was developed for the formation of nanosized trimetallic PdAgCu MNSs with cylindrically open mesoporous nanochannels and continuous frameworks. The resultant Pd-based MNSs were precisely tailorable not only in terms of size (from 21 to 104 nm), but also in terms of elemental ratios and compositions (PdAgCu, PdAgPt, PdAgFe, PdPtCu, and PdCuRu). This system thus provided a facile yet straightforward means to evaluate the size effect of trimetallic MNSs in electrocatalysis. As an example, trimetallic PdAgCu MNSs with an average size of 36 nm exhibited the best activity of 4.64 A mgPd -1 in the electrocatalytic ethanol oxidation reaction, 1.1-1.7 fold higher than that of MNSs with smaller or larger sizes and 5.9 fold higher than that of commercial Pd black catalyst. By means of kinetic studies, the size-dependent electrocatalytic performance can be ascribed to the optimization and balance between electron transfer and mass transfer processes inside PdAgCu MNSs. We expect that the size effect of multimetallic MNS nanocatalysts presented here may provide a general synthetic methodology for rational design of size-dependent nanocatalysts for a broad range of applications.
Collapse
Affiliation(s)
- Hao Lv
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , Jiangsu 210023 , China . ;
| | - Lizhi Sun
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , Jiangsu 210023 , China . ;
| | - Lu Zou
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , Jiangsu 210023 , China . ;
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , Jiangsu 210023 , China . ;
| | - Huiqin Yao
- School of Basic Medical Sciences , Ningxia Medical University , Yinchuan 750004 , China
| | - Ben Liu
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , Jiangsu 210023 , China . ;
| |
Collapse
|
46
|
Deng K, Xu Y, Li C, Wang Z, Xue H, Li X, Wang L, Wang H. PtPdRh Mesoporous Nanospheres: An Efficient Catalyst for Methanol Electro-Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:413-419. [PMID: 30567437 DOI: 10.1021/acs.langmuir.8b03656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Porous multimetallic alloyed nanostructures possess unique physical and chemical properties to generate promising potential in fuel cells. However, the controllable synthesis of this kind of materials still remains challenging. Herein, we report a facile method for the one-pot, high-yield synthesis of trimetallic PtPdRh mesoporous nanospheres (PtPdRh MNs) under mild conditions. The resultant PtPdRh MNs possess the features of uniform shape, a narrow size distribution, plenty of well-defined mesopores, highly open structure, and multicomponent effects, which impart advantages such as large surface area, favorable mass diffusion, high utilization of electrocatalysts, and synergy among the various metal components. Benefitting from the synergetic effects originating from the multimetallic composition and unique mesoporous structure, the as-prepared PtPdRh MNs exhibit remarkably enhanced electrocatalytic performance for methanol oxidation reaction relative to bimetallic PtPd MNs and commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Chunjie Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Hairong Xue
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| |
Collapse
|
47
|
Yin HJ, Zhou JH, Zhang YW. Shaping well-defined noble-metal-based nanostructures for fabricating high-performance electrocatalysts: advances and perspectives. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00689c] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent advances in shaping protocols and structure-activity relationships of noble-metal-based catalysts with well-defined nanostructures in electrochemical reactions.
Collapse
Affiliation(s)
- Hai-Jing Yin
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Jun-Hao Zhou
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
48
|
Zou H, Dai J, Wang R. Encapsulating mesoporous metal nanoparticles: towards a highly active and stable nanoreactor for oxidative coupling reactions in water. Chem Commun (Camb) 2019; 55:5898-5901. [DOI: 10.1039/c9cc02704a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We design and prepare a highly active and stable nanoreactor by encapsulating mesoporous metal nanoparticles for efficient production of α,β-unsaturated ketones via a one-pot oxidative coupling reaction.
Collapse
Affiliation(s)
- Houbing Zou
- School of Chemistry and Chemical Engineering
- Shanxi University
- 92 Wucheng Road
- Taiyuan
- P. R. China
| | - Jinyu Dai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Runwei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
49
|
Ma L, Zhou L, He Y, Wang L, Huang Z, Jiang Y, Gao J. Hierarchical nanocomposites with an N-doped carbon shell and bimetal core: Novel enzyme nanocarriers for electrochemical pesticide detection. Biosens Bioelectron 2018; 121:166-173. [DOI: 10.1016/j.bios.2018.08.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/19/2018] [Accepted: 08/16/2018] [Indexed: 12/28/2022]
|
50
|
Kang Y, Jiang B, Alothman ZA, Badjah AY, Naushad M, Habila M, Wabaidur S, Henzie J, Li H, Yamauchi Y. Mesoporous PtCu Alloy Nanoparticles with Tunable Compositions and Particles Sizes Using Diblock Copolymer Micelle Templates. Chemistry 2018; 25:343-348. [DOI: 10.1002/chem.201804305] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/18/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Yunqing Kang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional MaterialsShanghai Normal University Shanghai 200234 P.R. China
| | - Bo Jiang
- International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Zeid A. Alothman
- Advanced Material Research ChairChemistry DepartmentCollege of ScienceKing Saud University, P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Ahmad Yacine Badjah
- Advanced Material Research ChairChemistry DepartmentCollege of ScienceKing Saud University, P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mu Naushad
- Advanced Material Research ChairChemistry DepartmentCollege of ScienceKing Saud University, P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mohamed Habila
- Advanced Material Research ChairChemistry DepartmentCollege of ScienceKing Saud University, P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Saikh Wabaidur
- Advanced Material Research ChairChemistry DepartmentCollege of ScienceKing Saud University, P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Joel Henzie
- International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional MaterialsShanghai Normal University Shanghai 200234 P.R. China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for, Bioengineering and Nanotechnology (AIBN)The University of Queensland Brisbane QLD 4072 Australia
- Department of Plant & Environmental New ResourcesKyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 446-701 South Korea
| |
Collapse
|