1
|
He Q, Ma D, Du Y, Huang Q, Ji J, Wang X, Ji H, Ma W, Zhao J. An Atypical Heterojunction in Favor of Conversion of CO 2 and Sunlight into C 2H 4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503336. [PMID: 40344650 DOI: 10.1002/advs.202503336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Current heterojunction semiconduction assemblies, including type I, II, Z-Scheme, and S-Scheme constructures, enable the utilization of longer-wavelength sunlight for photocatalytic conversions. However, such benefits are often achieved at the expense of either the redox potentials of the conduction and valence bands or the quantum yield due to additional electron-hole recombination across the heterojunction interface. Herein, an atypical type II heterojunction constituted of Au/TiO2/MFU-4l is reported that demonstrates outstanding catalytic performance in photocatalytic reduction of carbon dioxide (CO2) to ethylene (C2H4) through tuning up-converting of holes in MFU-4l component raised from full-spectrum solar irradiation. Anchored to the edge of cube MFU-4l with a TiO2 cover layer, aurum ions (Au+)supported by aurum (Au) nanoparticles enables such a reverse hole-transfer event through leveraging the Ti-O-•-Au+/0-•-O-Zn potential, which significantly accelerates the hole-dominated oxidative desaturation of C-C intermediates from CO2 reduction into C═C bond products. The catalyst efficiently converts CO2 to C2H4 with more than 90% selectivity and a yield of 107.0 µmol g-1 h-1 under simulated sunlight. Electron paramagnetic resonance (EPR) experiments directly observe the holes formed in visible-light excited MFU-4l moiety of Au/TiO2/MFU-4l that are fused into TiO2 component's holes, thereby generating more hydroxyl radicals (•OH) than that TiO2 is excited alone under ultraviolet (UV) carbon dioxide (CO2) light of the same intensity.
Collapse
Affiliation(s)
- Qin He
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dongge Ma
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Yangyang Du
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiang Huang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianfei Ji
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xu Wang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wanhong Ma
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Wang X, Chen A, Wu X, Zhang J, Dong J, Zhang L. Synthesis and Modulation of Low-Dimensional Transition Metal Chalcogenide Materials via Atomic Substitution. NANO-MICRO LETTERS 2024; 16:163. [PMID: 38546814 PMCID: PMC10978568 DOI: 10.1007/s40820-024-01378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/17/2024] [Indexed: 04/01/2024]
Abstract
In recent years, low-dimensional transition metal chalcogenide (TMC) materials have garnered growing research attention due to their superior electronic, optical, and catalytic properties compared to their bulk counterparts. The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications. In this context, the atomic substitution method has emerged as a favorable approach. It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely, crystal structures, and inherent properties of the resulting materials. In this review, we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional, one-dimensional and two-dimensional TMC materials. The effects of substituting elements, substitution ratios, and substitution positions on the structures and morphologies of resulting material are discussed. The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided, emphasizing the role of atomic substitution in achieving these advancements. Finally, challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
Collapse
Affiliation(s)
- Xuan Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Akang Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - XinLei Wu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jiatao Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
| | - Leining Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
3
|
Sun X, Chen Z, Shen Y, Lu J, Shi Y, Cui Y, Guo F, Shi W. Plasmonic coupling-boosted photothermal nanoreactor for efficient solar light-driven photocatalytic water splitting. J Colloid Interface Sci 2023; 652:1016-1027. [PMID: 37639924 DOI: 10.1016/j.jcis.2023.08.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Photothermal nanoreactor with rapid charge transfer and improved spectral utilization is a key point in photocatalysis research. Herein, silver sulfide quantum dots (Ag2S QDs) were coating on the surface of porous graphitic carbon nitride nano vesicles (PCNNVs) to form Ag2S/PCNNVs nanoreactors by a simple calcination method for obtaining efficient photothermal-assisted photocatalytic hydrogen (H2) evolution under simulated/real sunlight irradiation. In particularly, the as-prepared optimal 3% Ag2S/PCNNVs sample exhibited the H2 production rate of 34.8 mmol h-1 g-1, which was 3.5 times higher than that of bare PCNNVs. The enhancement of photothermal-assisted activity over the Ag2S/PCNNVs composite system is mainly attributed to the coupling of the photothermal conversion performance of Ag2S QDs and the thermal insulation performance of PCNNVs based on the plasmonic coupling-boosted photothermal nanoreactor. This study presents a promising strategy for the development of high-efficient photothermal-assisted photocatalysts.
Collapse
Affiliation(s)
- Xinhai Sun
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Zhouze Chen
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Yu Shen
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Jialin Lu
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Yuxing Shi
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Yanhua Cui
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Feng Guo
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.
| | - Weilong Shi
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.
| |
Collapse
|
4
|
Zuo L, King H, Hossain MA, Farhana F, Kist MM, Stratton RL, Chen J, Shen H. Single-Molecule Spectroscopy Reveals the Plasmon-Assisted Nanozyme Catalysis on AuNR@TiO 2. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:760-766. [PMID: 38037610 PMCID: PMC10685447 DOI: 10.1021/cbmi.3c00096] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
Gold nanoparticles are frequently employed as nanozyme materials due to their capacity to catalyze various enzymatic reactions. Given their plasmonic nature, gold nanoparticles have also found extensive utility in chemical and photochemical catalysis owing to their ability to generate excitons upon exposure to light. However, their potential for plasmon-assisted catalytic enhancement as nanozymes has remained largely unexplored due to the inherent challenge of rapid charge recombination. In this study, we have developed a strategy involving the encapsulation of gold nanorods (AuNRs) within a titanium dioxide (TiO2) shell to facilitate the efficient separation of hot electron/hole pairs, thereby enhancing nanozyme reactivity. Our investigations have revealed a remarkable 10-fold enhancement in reactivity when subjected to 530 nm light excitation following the introduction of a TiO2 shell. Leveraging single-molecule kinetic analyses, we discovered that the presence of the TiO2 shell not only amplifies catalytic reactivity by prolonging charge relaxation times but also engenders additional reactive sites within the nanozyme's intricate structure. We anticipate that further enhancements in nanozyme performance can be achieved by optimizing interfacial interactions between plasmonic metals and semiconductors.
Collapse
Affiliation(s)
- Li Zuo
- Department
of Chemistry and Biochemistry, Kent State
University, Kent, Ohio 44242, United States
- School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing, Jiangsu 210008, China
| | - Hallie King
- Department
of Chemistry and Biochemistry, Kent State
University, Kent, Ohio 44242, United States
| | - Mohammad Akter Hossain
- Department
of Chemistry and Biochemistry, Kent State
University, Kent, Ohio 44242, United States
| | - Fatiha Farhana
- Department
of Chemistry and Biochemistry, Kent State
University, Kent, Ohio 44242, United States
| | - Madelyn M. Kist
- Department
of Chemistry and Biochemistry, Kent State
University, Kent, Ohio 44242, United States
| | - Rebecca L. Stratton
- Department
of Chemistry and Biochemistry, Kent State
University, Kent, Ohio 44242, United States
| | - Jiao Chen
- Department
of Chemistry and Biochemistry, Kent State
University, Kent, Ohio 44242, United States
| | - Hao Shen
- Department
of Chemistry and Biochemistry, Kent State
University, Kent, Ohio 44242, United States
| |
Collapse
|
5
|
Zhou Z, Zeng H, Li L, Tang R, Xiong S, Gong D, Huang Y, Deng Y. Internal electric fields drive dual S-scheme heterojunctions: Insights into the role of the triple interlaced lattice. J Colloid Interface Sci 2023; 650:1138-1151. [PMID: 37473474 DOI: 10.1016/j.jcis.2023.07.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
The internal electric field induced by the lattice interfaces in a heterojunction can facilitate charge transfer, thereby improving the photocatalytic performance. However, the details of the relationship between the lattice interfaces and the charge transfer mechanism in heterojunctions remain unclear. In this study, a Bi2WO6/Bi2O2CO3/C3N4 heterojunction (BBC) with an interlaced lattice was prepared, and the role of the interlaced lattice in charge transfer was revealed. Compared to pristine Bi2O2CO3, Bi2WO6, and C3N4, BBC exhibited an increased ciprofloxacin degradation rate constant (0.0573 min-1). A series of experiments were performed to reveal the role of the interlaced lattice interface in the enhanced photocatalytic performance. The results show that the driving force provided by the interlaced lattice interface changes the charge transfer mechanism from a dual Ⅱ-scheme to a dual S-scheme. This work provides profound insights into the effects of lattice interfaces in heterojunctions and the design of efficient photocatalysts.
Collapse
Affiliation(s)
- Zhanpeng Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Hao Zeng
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Ling Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Rongdi Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Sheng Xiong
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Daoxin Gong
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Ying Huang
- College of Resources, Hunan Agricultural University, Changsha 410128, China.
| | - Yaocheng Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
6
|
Wu C, Xing Z, Yang S, Li Z, Zhou W. Nanoreactors for photocatalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Si M, Lin F, Ni H, Wang S, Lu Y, Meng X. Research progress of yolk-shell structured nanoparticles and their application in catalysis. RSC Adv 2023; 13:2140-2154. [PMID: 36712609 PMCID: PMC9834765 DOI: 10.1039/d2ra07541e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Yolk-shell nanoparticles (YSNs) have attracted a broad interest in the field of catalysis due to their unique structure and properties. The hollow structure of YSNs brings high porosity and specific surface areas which is conducive to the catalytic reactions. The flexible tailorability and functionality of both the cores and shells allow a rational design of the catalyst and may have synergistic effect which will improve the catalytic performance. Herein, an overview of the research progress with respect to the synthesis and catalytic applications of YSNs is provided. The major strategies for the synthesis of YSNs are presented, including hard template method, soft template method, ship-in-a-bottle method, galvanic replacement method, Kirkendall diffusion method as well as the Ostwald ripening method. Moreover, we discuss in detail the recent progress of YSNs in catalytic applications including chemical catalysis, photocatalysis and electrocatalysis. Finally, the future research and development of YSNs are prospected.
Collapse
Affiliation(s)
- Meiyu Si
- Department of Chemistry and Chemical Engineering, Heze University Heze 274015 Shandong Province China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai Weihai 264209 Shandong Province China
| | - Feng Lin
- Department of Chemistry and Chemical Engineering, Heze University Heze 274015 Shandong Province China
| | - Huailan Ni
- Department of Chemistry and Chemical Engineering, Heze University Heze 274015 Shandong Province China
| | - Shanshan Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai Weihai 264209 Shandong Province China
| | - Yaning Lu
- Department of Chemistry and Chemical Engineering, Heze University Heze 274015 Shandong Province China
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 Shandong Province China
| | - Xiangyan Meng
- Department of Chemistry and Chemical Engineering, Heze University Heze 274015 Shandong Province China
| |
Collapse
|
8
|
Cu-electrodeposited gold electrode for the sensitive electrokinetic investigations of nitrate reduction and detection of the nitrate ion in acidic medium. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2022.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
9
|
Lei P, Li Y, Song X, Hao Y, Deng Z. DNA‐Programmable AgAuS‐Primed Conductive Nanowelding Wires‐Up Wet Colloids. Angew Chem Int Ed Engl 2022; 61:e202203568. [DOI: 10.1002/anie.202203568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Pengcheng Lei
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Yanjuan Li
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiaojun Song
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Yan Hao
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhaoxiang Deng
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
10
|
Jin Y, Park E, Tang C, Chu Q, Jin S, Guo S, Chen L, Jung YM. Novel insight into charge transfer regulation based on carrier density-dependent Ag/ITO composite films. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121236. [PMID: 35405377 DOI: 10.1016/j.saa.2022.121236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Cosputtering technology was utilized to prepare a Ag and indium tin oxide (ITO) composite on a flat polystyrene (PS) microsphere array. The carrier density estimated by Hall effect testing of different Sn concentrations in the cosputtered films can be tuned from 1018 to 1020 cm-3. The bandgap calculated based on ultraviolet photoelectron spectroscopy can be adjusted within the range of 3.95-4.02 eV. We explored the possible mechanism of charge transfer (CT) by varying the bandgap and explained the causes of the surface-enhanced Raman scattering (SERS). Surprisingly, a synchronous change in the CT process with the carrier density was discovered. This observation suggests that the CT process can be precisely regulated by changes in the composition of the metal-semiconductor nanostructures. Our study provides a reference for the application of Ag/ITO films as alternative near-infrared plasmonic materials.
Collapse
Affiliation(s)
- Yang Jin
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, PR China
| | - Eungyeong Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chenghao Tang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, PR China
| | - Qi Chu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, PR China
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Lei Chen
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, PR China.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
11
|
Yin PF, Fu J, Yun Q, Chen B, Liu G, Li L, Huang Z, Ge Y, Zhang H. Preparation of Amorphous SnO 2 -Encapsulated Multiphased Crystalline Cu Heterostructures for Highly Efficient CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201114. [PMID: 35448914 DOI: 10.1002/adma.202201114] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Controlling the architectures and crystal phases of metal@semiconductor heterostructures is very important for modulating their physicochemical properties and enhancing their application performances. Here, a facile one-pot wet-chemical method to synthesize three types of amorphous SnO2 -encapsulated crystalline Cu heterostructures, i.e., hemicapsule, yolk-shell, and core-shell nanostructures, in which unconventional crystal phases (e.g., 2H, 4H, and 6H) and defects (e.g., stacking faults and twin boundaries) are observed in the crystalline Cu cores, is reported. The hemicapsule Cu@SnO2 heterostructures, with voids that not only expose the Cu core with unconventional phases but also retain the interface between Cu and SnO2 , show an excellent electrocatalytic CO2 reduction reaction (CO2 RR) selectivity toward the production of CO and formate with high Faradaic efficiency (FE) above 90% in a wide potential window from -1.05 to -1.55 V (vs reversible hydrogen electrode (RHE)), and the highest FE of CO2 RR (95.3%) is obtained at -1.45 V (vs RHE). This work opens up a new way for the synthesis of new heterostructured nanomaterials with promising catalytic application.
Collapse
Affiliation(s)
- Peng-Fei Yin
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiaju Fu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Guigao Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
12
|
Lei P, Li Y, Song X, Hao Y, Deng Z. DNA‐Programmable AgAuS‐Primed Conductive Nanowelding Wires up Wet Colloids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pengcheng Lei
- University of Science and Technology of China Department of Chemistry CHINA
| | - Yanjuan Li
- University of Science and Technology of China Department of Chemistry CHINA
| | - Xiaojun Song
- University of Science and Technology of China Department of Chemistry CHINA
| | - Yan Hao
- University of Science and Technology of China Department of Chemistry CHINA
| | - Zhaoxiang Deng
- University of Science and Technology of China Department of Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
13
|
Zhang X, Qin N, Cui H, Guan G, Han MY. Metal-facilitated Photocatalytic Nanohybrids: Rational Design and Promising Environmental Applications. Chem Asian J 2021; 16:3038-3054. [PMID: 34402593 DOI: 10.1002/asia.202100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/15/2021] [Indexed: 11/07/2022]
Abstract
As a promising technique to potentially address the energy crisis and environmental issues, photocatalysis has been reported widely to exhibit various outstanding behaviors in production of new fuels/chemicals and treatment of contaminants. The photocatalytic performance is extremely dependent on the used photocatalysts, so that the design and preparation of efficient photocatalysts are critically important for significantly improving the photocatalytic activity. Among various strategies, the hybridization of metal with semiconductors has recently been attracting more and more research interest owing to their expended spectral absorption, promoted transferring rate of charge carriers and Plasmon-enhanced effect. In this minireview, the metal-facilitated hybrid photocatalysts are overviewed comprehensively to first reveal unique functions of metals in improvement of photoactivity and summarize the emerging metal-involved hybrid systems. Subsequently, the synthetic methods towards hybrid photocatalysts are introduced and their practical applications are emphasized in environmental remediation including degradation of organic pollutants, conversion of harmful gases, treatment of heavy metal ions and sterilization of bacteria. At the end, the challenges for industrializing these hybrid photocatalysts are discussed carefully and future development is suggested rationally.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Neng Qin
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Hongbo Cui
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Guijian Guan
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Ming-Yong Han
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Singapore, 138634, Singapore
| |
Collapse
|
14
|
ZnO Structures with Surface Nanoscale Interfaces Formed by Au, Fe 2O 3, or Cu 2O Modifier Nanoparticles: Characterization and Gas Sensing Properties. SENSORS 2021; 21:s21134509. [PMID: 34209427 PMCID: PMC8271897 DOI: 10.3390/s21134509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 12/22/2022]
Abstract
Zinc oxide rod structures are synthetized and subsequently modified with Au, Fe2O3, or Cu2O to form nanoscale interfaces at the rod surface. X-ray photoelectron spectroscopy corroborates the presence of Fe in the form of oxide-Fe2O3; Cu in the form of two oxides-CuO and Cu2O, with the major presence of Cu2O; and Au in three oxidation states-Au3+, Au+, and Au0, with the content of metallic Au being the highest among the other states. These structures are tested towards nitrogen dioxide, ethanol, acetone, carbon monoxide, and toluene, finding a remarkable increase in the response and sensitivity of the Au-modified ZnO films, especially towards nitrogen dioxide and ethanol. The results for the Au-modified ZnO films report about 47 times higher response to 10 ppm of nitrogen dioxide as compared to the non-modified structures with a sensitivity of 39.96% ppm-1 and a limit of detection of 26 ppb to this gas. These results are attributed to the cumulative effects of several factors, such as the presence of oxygen vacancies, the gas-sensing mechanism influenced by the nano-interfaces formed between ZnO and Au, and the catalytic nature of the Au nanoparticles.
Collapse
|
15
|
Peramaiah K, Ramalingam V, Fu HC, Alsabban MM, Ahmad R, Cavallo L, Tung V, Huang KW, He JH. Optically and Electrocatalytically Decoupled Si Photocathodes with a Porous Carbon Nitride Catalyst for Nitrogen Reduction with Over 61.8% Faradaic Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100812. [PMID: 33792108 DOI: 10.1002/adma.202100812] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 06/12/2023]
Abstract
The photoelectrochemical (PEC) approach is attractive as a promising route for the nitrogen reduction reaction (NRR) toward ammonia (NH3 ) synthesis. However, the challenges in synergistic management of optical, electrical, and catalytic properties have limited the efficiency of PEC NRR devices. Herein, to enhance light-harvesting, carrier separation/transport, and the catalytic reactions, a concept of decoupling light-harvesting and electrocatalysis by employing a cascade n+ np+ -Si photocathode is implemented. Such a decoupling design not only abolishes the parasitic light blocking but also concurrently improves the optical and electrical properties of the n+ np+ -Si photocathode without compromising the efficiency. Experimental and density functional theory studies reveal that the porous architecture and N-vacancies promote N2 adsorption of the Au/porous carbon nitride (PCN) catalyst. Impressively, an n+ np+ -Si photocathode integrating the Au/PCN catalyst exhibits an outstanding PEC NRR performance with maximum Faradaic efficiency (FE) of 61.8% and NH3 production yield of 13.8 µg h-1 cm-2 at -0.10 V versus reversible hydrogen electrode (RHE), which is the highest FE at low applied potential ever reported for the PEC NRR.
Collapse
Affiliation(s)
- Karthik Peramaiah
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Vinoth Ramalingam
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Hui-Chun Fu
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Merfat M Alsabban
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Department of Chemistry, University of Jeddah, Jeddah, 21959, Kingdom of Saudi Arabia
| | - Rafia Ahmad
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Vincent Tung
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Kuo-Wei Huang
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jr-Hau He
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, SAR 999077, Hong Kong
| |
Collapse
|
16
|
Gao LJ, Chen L, Ren JT, Weng CC, Tian WW, Yuan ZY. Mesoporous Cd xZn 1-xS with abundant surface defects for efficient photocatalytic hydrogen production. J Colloid Interface Sci 2020; 589:25-33. [PMID: 33450458 DOI: 10.1016/j.jcis.2020.12.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 11/18/2022]
Abstract
The practical application of photocatalytic water splitting for hydrogen evolution hinges on the development of high-efficient and low-cost photocatalysts. Defects engineering has emerged as a promising strategy to enhance photocatalytic activity effectively. Herein, a facile and versatile co-precipitation method is proposed to fabricate mesoporous Cd-Zn-S solid solutions (E-CdxZn1-xS) with abundant surface defects by the inorganic salts formed in the reaction system as self-template. Compared with Cd-Zn-S solid solutions (W-Cd0.65Zn0.35S) prepared by the traditional co-precipitation method, the enhanced specific surface area and abundant surface defects endow E-Cd0.65Zn0.35S with more accessible active sites and effective separation of electron-hole pairs for the photocatalytic water splitting reaction. The E-Cd0.65Zn0.35S solid solution exhibits hydrogen evolution rate of 5.2 mmol h-1 g-1 without loading noble metal as cocatalyst under visible light, which is 1.13 times higher than that of W-Cd0.65Zn0.35S sample. The present work provides a simple, low-cost and prospective strategy for the synthesis of defective Cd-Zn-S solid solutions, and it also delivers guidance to design and develop the advanced visible-light photocatalyst in the future.
Collapse
Affiliation(s)
- Li-Jiao Gao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jin-Tao Ren
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chen-Chen Weng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wen-Wen Tian
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
17
|
Affiliation(s)
- Chuanbo Gao
- Center for Materials Chemistry, Frontier Institute of Science and Technology, and State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, China
| | - Fenglei Lyu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
18
|
Enhanced OER Performances of Au@NiCo 2S 4 Core-Shell Heterostructure. NANOMATERIALS 2020; 10:nano10040611. [PMID: 32230724 PMCID: PMC7221621 DOI: 10.3390/nano10040611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 01/22/2023]
Abstract
Transition metal sulfides have attracted a lot of attention as potential oxygen evolution reaction (OER) catalysts. Bimetallic sulfide possesses superior physicochemical properties due to the synergistic effect between bimetallic cations. By introducing a metal-semiconductor interface, the physicochemical properties of transition metal sulfide can be further improved. Using the solvothermal method, Au@NiCo2S4 core-shell heterostructure nanoparticles (NPs) and bare NiCo2S4 NPs were prepared. The measurement of the OER catalytic performance showed that the catalytic activity of Au@NiCo2S4 core-shell heterostructure was enhanced compared to bare NiCo2S4 NPs. At the current density of 10 mA cm−2, the overpotential of Au@NiCo2S4 (299 mV) is lower than that of bare NiCo2S4 (312 mV). The Tafel slope of Au@NiCo2S4 (44.5 mV dec−1) was reduced compared to that of bare NiCo2S4 (49.1 mV dec−1), indicating its faster reaction kinetics. Detailed analysis of its electronic structure, chemical state, and electrochemical impedance indicates that the enhanced OER catalytic performances of bare Au@NiCo2S4 core-shell NPs were a result of its increased proportion of high-valance Ni/Co cations, and its increased electronic conductivity. This work provides a feasible method to improve OER catalytic performance by constructing a metal-semiconductor core-shell heterostructure.
Collapse
|
19
|
Ma L, Chen YL, Yang DJ, Li HX, Ding SJ, Xiong L, Qin PL, Chen XB. Multi-interfacial plasmon coupling in multigap (Au/AgAu)@CdS core-shell hybrids for efficient photocatalytic hydrogen generation. NANOSCALE 2020; 12:4383-4392. [PMID: 32025686 DOI: 10.1039/c9nr09696e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmon coupling induced intense light absorption and near-field enhancement have vast potential for high-efficiency photocatalytic applications. Herein, (Au/AgAu)@CdS core-shell hybrids with strong multi-interfacial plasmon coupling were prepared through a convenient strategy for efficient photocatalytic hydrogen generation. Bimetallic Au/AgAu cores with an adjustable number of nanogaps (from one to four) were primarily synthesized by well-controlled multi-cycle galvanic replacement and overgrowth processes. Extinction tests and numerical simulations synergistically revealed that the multigap Au/AgAu hybrids possess a gap-dependent light absorption region and a local electric field owing to the multigap-induced multi-interfacial plasmon coupling. With these characteristics, hetero-photocatalysts prepared by further coating of CdS shells on multigap Au/AgAu cores exhibited a prominent gap-dependent photocatalytic hydrogen production activity from water splitting under light irradiation (λ > 420 nm). It is found that the hydrogen generation rates of multigap (Au/AgAu)@CdS have an exponential improvement compared with that of pure CdS as the number of nanogaps increases. In particular, four-gap (Au/AgAu)@CdS core-shell catalysts displayed the highest hydrogen generation rate, that is 96.1 and 47.2 times those of pure CdS and gapless Au@CdS core-shell hybrids. These improvements can be ascribed to the strong plasmon absorption and near-field enhancement induced by the multi-interfacial plasmon coupling, which can greatly improve the light-harvesting efficiency, offer more plasmonic energy, and boost the generation and separation of electron-hole pairs in the multigap catalysts.
Collapse
Affiliation(s)
- Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
| | - You-Long Chen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
| | - Da-Jie Yang
- Beijing Computational Science Research Center, Beijing, 100193, P. R. China.
| | - Hai-Xia Li
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, 430074, P. R. China.
| | - Lun Xiong
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
| | - Ping-Li Qin
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
| | - Xiang-Bai Chen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
| |
Collapse
|
20
|
Tao R, Shen X, Hu Y, Kang K, Zheng Y, Luo S, Yang S, Li W, Lu S, Jin Y, Qiu L, Zhang W. Phosphine-Based Covalent Organic Framework for the Controlled Synthesis of Broad-Scope Ultrafine Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906005. [PMID: 31971660 DOI: 10.1002/smll.201906005] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/18/2019] [Indexed: 05/22/2023]
Abstract
In this work, a phosphine-based covalent organic framework (Phos-COF-1) is successfully synthesized and employed as a template for the confined growth of broad-scope nanoparticles (NPs). Ascribed to the ordered distribution of phosphine coordination sites in the well-defined pores, various stable and well-dispersed ultrafine metal NPs including Pd, Pt, Au, and bimetallic PdAuNPs with narrow size distributions are successfully prepared as determined by transmission electron microscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, and powder X-ray diffraction analyses. It is also demonstrated that the as-prepared Phos-COF-1-supported ultrafine NPs exhibit excellent catalytic activities and recyclability toward the Suzuki-Miyaura coupling reaction, reduction of nitro-phenol and 1-bromo-4-nitrobenzene, and even tandem coupling and reduction of p-nitroiodobenzene. This work will open many new possibilities for preparing COF-supported ultrafine NPs with good dispersity and stability for a broad range of applications.
Collapse
Affiliation(s)
- Rao Tao
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Xiran Shen
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Yiming Hu
- Department of Chemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Kun Kang
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Yaqian Zheng
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Shichang Luo
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Shiyu Yang
- Research & Development Center of Yunnan Tin Group (Holding) Co. Ltd, Kunming, 650000, China
| | - Wenliang Li
- Faculty of Chemistry, Northeast Normal University, Jilin, 130024, China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yinghua Jin
- Department of Chemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Li Qiu
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Wei Zhang
- Department of Chemistry, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
21
|
Liu J, Zhang J. Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals. Chem Rev 2020; 120:2123-2170. [DOI: 10.1021/acs.chemrev.9b00443] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jia Liu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| |
Collapse
|
22
|
Zhou X, Yin L, Dai K, Gao X, Feng Y, Zhao Y, Zhang B. Preparation of Ni2P on twinned Zn0.5Cd0.5S nanocrystals for high-efficient photocatalytic hydrogen production. J CHEM SCI 2020. [DOI: 10.1007/s12039-019-1727-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Cho G, Park Y, Hong YK, Ha DH. Ion exchange: an advanced synthetic method for complex nanoparticles. NANO CONVERGENCE 2019; 6:17. [PMID: 31155686 PMCID: PMC6545297 DOI: 10.1186/s40580-019-0187-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/29/2019] [Indexed: 05/06/2023]
Abstract
There have been tremendous efforts to develop new synthetic methods for creating novel nanoparticles (NPs) with enhanced and desired properties. Among the many synthetic approaches, NP synthesis through ion exchange is a versatile and powerful technique providing a new pathway to design complex structures as well as metastable NPs, which are not accessible by conventional syntheses. Herein, we introduce kinetic and thermodynamic factors controlling the ion exchange reactions in NPs to fully understand the fundamental mechanisms of the reactions. Additionally, many representative examples are summarized to find related advanced techniques and unique NPs constructed by ion exchange reactions. Cation exchange reactions mainly occur in chalcogenide compounds, while anion exchange reactions are mainly involved in halogen (e.g. perovskite) and metal-chalcogenide compounds. It is expected that NP syntheses through ion exchange reactions can be utilized to create new devices with the required properties by virtue of their versatility and ability to tune fine structures.
Collapse
Affiliation(s)
- Geonhee Cho
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Yoonsu Park
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Yun-Kun Hong
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Don-Hyung Ha
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| |
Collapse
|
24
|
Di Q, Zhu X, Liu J, Zhang X, Shang H, Chen W, Liu J, Rong H, Xu M, Zhang J. High-Performance Quantum Dots with Synergistic Doping and Oxide Shell Protection Synthesized by Cation Exchange Conversion of Ternary-Composition Nanoparticles. J Phys Chem Lett 2019; 10:2606-2615. [PMID: 31034234 DOI: 10.1021/acs.jpclett.9b00617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The insertion of cation impurities into quantum dots (QDs) as a dopant has been proved to be an efficient way to tailor their optical, electronic, and magnetic properties; however, the low quantum yield (QY) and poor photostability strongly limit their further applications. We report a strategy to coat a thin oxide shell around the heterovalent doped QDs to enhance their QYs and photostabilities simultaneously. In the case of Ag+-doped CdS QDs, the controlled cation exchange reaction between Cd2+ and ternary Ag3SbS3 nanoparticles not only realizes the Ag+ doping in CdS QDs but also generates a thin Sb2O3 shell around the surface of the QDs. Enabled by such, as-prepared CdS:Ag@Sb2O3 QDs exhibited enhanced photostability and high QY of 66.5%. We envision that the findings presented here will inspire more novel protocols for advancing the practical applications of doped QDs.
Collapse
Affiliation(s)
- Qiumei Di
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Xiyue Zhu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Jia Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Xiaobin Zhang
- Center for Nano Materials and Technology , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Huishan Shang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Jiajia Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Meng Xu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| |
Collapse
|
25
|
Jin B, Zhang F, Wu G, Yuan T, Wang Q, Zhou H, Zhao Y, Zhang G, Hong X. Structural evolution induced by Au atom diffusion in Ag2S. Chem Commun (Camb) 2019; 55:13176-13178. [DOI: 10.1039/c9cc07660c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transition from amorphous Ag2S to crystalline AuAgS or Ag3AuS2 was discovered through Au single-atom diffusion.
Collapse
Affiliation(s)
- Benjin Jin
- Center of Advanced Nanocatalysis (CAN)
- Department of Applied Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei
| | - Fu Zhang
- CAS Key Laboratory of Materials for Energy Conversion
- Department of Materials Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Geng Wu
- Center of Advanced Nanocatalysis (CAN)
- Department of Applied Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei
| | - Tongwei Yuan
- Center of Advanced Nanocatalysis (CAN)
- Department of Applied Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei
| | - Qian Wang
- Center of Advanced Nanocatalysis (CAN)
- Department of Applied Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei
| | - Huang Zhou
- Center of Advanced Nanocatalysis (CAN)
- Department of Applied Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei
| | - Yafei Zhao
- Center of Advanced Nanocatalysis (CAN)
- Department of Applied Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei
| | - Genqiang Zhang
- CAS Key Laboratory of Materials for Energy Conversion
- Department of Materials Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN)
- Department of Applied Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei
| |
Collapse
|
26
|
Recent Progress in Constructing Plasmonic Metal/Semiconductor Hetero-Nanostructures for Improved Photocatalysis. Catalysts 2018. [DOI: 10.3390/catal8120634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hetero-nanomaterials constructed by plasmonic metals and functional semiconductors show enormous potential in photocatalytic applications, such as in hydrogen production, CO2 reduction, and treatment of pollutants. Their photocatalytic performances can be better regulated through adjusting structure, composition, and components’ arrangement. Therefore, the reasonable design and synthesis of metal/semiconductor hetero-nanostructures is of vital significance. In this mini-review, we laconically summarize the recent progress in efficiently establishing metal/semiconductor nanomaterials for improved photocatalysis. The defined photocatalysts mainly include traditional binary hybrids, ternary multi-metals/semiconductor, and metal/multi-semiconductors heterojunctions. The underlying physical mechanism for the enhanced photocatalysis of the established photocatalysts is highlighted. In the end, a brief summary and possible future perspectives for further development in this field are demonstrated.
Collapse
|
27
|
Di Q, Wang J, Zhao Z, Liu J, Xu M, Liu J, Rong H, Chen W, Zhang J. Near‐Infrared Luminescent Ternary Ag
3
SbS
3
Quantum Dots by in situ Conversion of Ag Nanocrystals with Sb(C
9
H
19
COOS)
3. Chemistry 2018; 24:18643-18647. [DOI: 10.1002/chem.201804800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Qiumei Di
- Beijing Key Laboratory of Construction-Tailorable, Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Juwen Wang
- Beijing Key Laboratory of Construction-Tailorable, Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Zhengjing Zhao
- Beijing Key Laboratory of Construction-Tailorable, Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Jiajia Liu
- Beijing Key Laboratory of Construction-Tailorable, Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Meng Xu
- Beijing Key Laboratory of Construction-Tailorable, Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Jia Liu
- Beijing Key Laboratory of Construction-Tailorable, Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable, Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction-Tailorable, Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable, Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 China
| |
Collapse
|
28
|
Synthesis of edge-site selectively deposited Au nanocrystals on TiO2 nanosheets: An efficient heterogeneous catalyst with enhanced visible-light photoactivity. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|