1
|
Hsu CY, Bediwi AK, Zwamel AH, Uthirapathy S, Ballal S, Singh A, Sharma GC, Devi A, Almalki SG, Kadhim IM. circRNA/TLR interaction: key players in immune regulation and autoimmune diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04221-9. [PMID: 40328911 DOI: 10.1007/s00210-025-04221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
Circular RNAs are a class of non-coding RNAs with covalently closed loops. They have been revealed to regulate immune responses by affecting gene expression. Although initially considered splicing byproducts, new studies have indicated their role in transcriptional and post-transcriptional control, especially with TLRs. TLRs start inflammatory signaling and let the innate immune system recognize PAMPs. circRNAs interact context-dependently with TLR pathways to influence immune homeostasis and inflammation in either pathogenic or protective roles. In autoimmune diseases, dysregulated circRNA expression can aggravate immune responses and damage tissue. CircRNAs can interact with RNA-binding proteins, function as molecular sponges for miRNAs, and change inflammatory pathways like the NF-κB signaling cascade, influencing immune responses. They control adaptive immunity, function of antigen-presenting cells, and cytokine generation. The stability and presence of circRNAs in many body fluids make them therapeutic targets and biomarkers for inflammatory and autoimmune diseases. The several immune control roles of circRNA-TLR interactions are discussed in this review, as well as their consequences for immunologically mediated disease diagnosis and treatment.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA
| | - Alaa Khalaf Bediwi
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq.
| | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University, Najaf, Iraq.
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq.
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Anita Devi
- Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, 11952, Majmaah, Saudi Arabia
| | - Issa Mohammed Kadhim
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
2
|
Saadh MJ, Ehymayed HM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Anbari HHA, Shallal MM, Alsaikhan F, Farhood B. Role of circRNAs in regulating cell death in cancer: a comprehensive review. Cell Biochem Biophys 2025; 83:109-133. [PMID: 39243349 DOI: 10.1007/s12013-024-01492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Despite multiple diagnostic and therapeutic advances, including surgery, radiation therapy, and chemotherapy, cancer preserved its spot as a global health concern. Prompt cancer diagnosis, treatment, and prognosis depend on the discovery of new biomarkers and therapeutic strategies. Circular RNAs (circRNAs) are considered as a stable, conserved, abundant, and varied group of RNA molecules that perform multiple roles such as gene regulation. There is evidence that circRNAs interact with RNA-binding proteins, especially capturing miRNAs. An extensive amount of research has presented the substantial contribution of circRNAs in various types of cancer. To fully understand the linkage between circRNAs and cancer growth as a consequence of various cell death processes, including autophagy, ferroptosis, and apoptosis, more research is necessary. The expression of circRNAs could be controlled to limit the occurrence and growth of cancer, providing a more encouraging method of cancer treatment. Consequently, it is critical to understand how circRNAs affect various forms of cancer cell death and evaluate whether circRNAs could be used as targets to induce tumor death and increase the efficacy of chemotherapy. The current study aims to review and comprehend the effects that circular RNAs exert on cell apoptosis, autophagy, and ferroptosis in cancer to investigate potential cancer treatment targets.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Surgical Dentistry and Dental Implantology, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Department of Scientific affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Márton É, Varga A, Domoszlai D, Buglyó G, Balázs A, Penyige A, Balogh I, Nagy B, Szilágyi M. Non-Coding RNAs in Cancer: Structure, Function, and Clinical Application. Cancers (Basel) 2025; 17:579. [PMID: 40002172 PMCID: PMC11853212 DOI: 10.3390/cancers17040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
We are on the brink of a paradigm shift in both theoretical and clinical oncology. Genomic and transcriptomic profiling, alongside personalized approaches that account for individual patient variability, are increasingly shaping discourse. Discussions on the future of personalized cancer medicine are mainly dominated by the potential of non-coding RNAs (ncRNAs), which play a prominent role in cancer progression and metastasis formation by regulating the expression of oncogenic or tumor suppressor proteins at transcriptional and post-transcriptional levels; furthermore, their cell-free counterparts might be involved in intercellular communication. Non-coding RNAs are considered to be promising biomarker candidates for early diagnosis of cancer as well as potential therapeutic agents. This review aims to provide clarity amidst the vast body of literature by focusing on diverse species of ncRNAs, exploring the structure, origin, function, and potential clinical applications of miRNAs, siRNAs, lncRNAs, circRNAs, snRNAs, snoRNAs, eRNAs, paRNAs, YRNAs, vtRNAs, and piRNAs. We discuss molecular methods used for their detection or functional studies both in vitro and in vivo. We also address the challenges that must be overcome to enter a new era of cancer diagnosis and therapy that will reshape the future of oncology.
Collapse
Affiliation(s)
- Éva Márton
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Alexandra Varga
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Dóra Domoszlai
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Anita Balázs
- Department of Integrative Health Sciences, Institute of Health Sciences, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary;
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| |
Collapse
|
4
|
Hu H, Tang J, Wang H, Guo X, Tu C, Li Z. The crosstalk between alternative splicing and circular RNA in cancer: pathogenic insights and therapeutic implications. Cell Mol Biol Lett 2024; 29:142. [PMID: 39550559 PMCID: PMC11568689 DOI: 10.1186/s11658-024-00662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
RNA splicing is a fundamental step of gene expression. While constitutive splicing removes introns and joins exons unbiasedly, alternative splicing (AS) selectively determines the assembly of exons and introns to generate RNA variants corresponding to the same transcript. The biogenesis of circular RNAs (circRNAs) is inextricably associated with AS. Back-splicing, the biogenic process of circRNA, is a special form of AS. In cancer, both AS and circRNA deviate from the original track. In the present review, we delve into the intricate interplay between AS and circRNAs in the context of cancer. The relationship between AS and circRNAs is intricate, where AS modulates the biogenesis of circRNAs and circRNAs in return regulate AS events. Beyond that, epigenetic and posttranscriptional modifications concurrently regulate AS and circRNAs. On the basis of this modality, we summarize current knowledge on how splicing factors and other RNA binding proteins regulate circRNA biogenesis, and how circRNAs interact with splicing factors to influence AS events. Specifically, the feedback loop regulation between circRNAs and AS events contributes greatly to oncogenesis and cancer progression. In summary, resolving the crosstalk between AS and circRNA will not only provide better insight into cancer biology but also provoke novel strategies to combat cancer.
Collapse
Affiliation(s)
- Hongkun Hu
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Hua Wang
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiaoning Guo
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Chao Tu
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Zhihong Li
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Wang L, Zheng G, Yang Y, Wu J, Du Y, Chen J, Liu C, Liu Y, Zhang B, Zhang H, Deng X, Lian L. Rolling-Translated circRUNX2.2 Promotes Lymphoma Cell Proliferation and Cycle Transition in Marek's Disease Model. Int J Mol Sci 2024; 25:11486. [PMID: 39519039 PMCID: PMC11545863 DOI: 10.3390/ijms252111486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Marek's disease (MD), an immunosuppressive disease induced by the Marek's disease virus (MDV), is regarded as an ideal model for lymphoma research to elucidate oncogenic and anti-oncogene genes. Using this model, we found that circRUNX2.2, derived from exon 6 of RUNX2, was significantly upregulated in MDV-infected tumorous spleens. In this study, we deeply analyzed the potential role of circRUNX2.2 in lymphoma cells. An open reading frame (ORF) in circRUNX2.2 with no stop codon was predicted, and small peptides (named circRUNX2.2-rt) presenting multiple ladder-like bands with different molecular weights encoded by circRUNX2.2 were detected via Western blotting assay. The polysome fraction assay reconfirmed the translation ability of circRUNX2.2, which could be detected in polysome fractions. Subsequent analysis verified that it translated in a rolling circle manner, rather than being assisted by the internal ribosome entry site (IRES) or m6A-mediated mechanism. Furthermore, we found that circRUNX2.2-rt was potently induced in MSB1 cells treated with sodium butyrate (NaB), which reactivated MDV and forced the MDV transition from the latent to reactivation phase. During this phase, MDV particles were clearly observed by electron microscopy, and the viral gene pp38 was also significantly upregulated. A biological function study showed that circRUNX2.2-rt promoted cell proliferation and cell cycle transition from the S to G2 phase and inhibited the apoptosis of MSB1. Further immunoprecipitation and mass spectrometry assays showed that 168 proteins potentially interacting with circRUNX2.2-rt were involved in multiple pathways related to cell cycle regulation, which proved that circRUNX2.2-rt could bind or recruit proteins to mediate the cell cycle.
Collapse
Affiliation(s)
- Lulu Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gang Zheng
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Yuqin Yang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Junfeng Wu
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Yushuang Du
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Jiahua Chen
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Changjun Liu
- Division of Avian Infectious Diseases, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yongzhen Liu
- Division of Avian Infectious Diseases, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Bo Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Hao Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Xuemei Deng
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Ling Lian
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Li Y, Li Z, Ren Y, Lei Y, Yang S, Shi Y, Peng H, Yang W, Guo T, Yu Y, Xiong Y. Mitochondrial-derived peptides in cardiovascular disease: Novel insights and therapeutic opportunities. J Adv Res 2024; 64:99-115. [PMID: 38008175 PMCID: PMC11464474 DOI: 10.1016/j.jare.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Mitochondria-derived peptides (MDPs) represent a recently discovered family of peptides encoded by short open reading frames (ORFs) found within mitochondrial genes. This group includes notable members including humanin (HN), mitochondrial ORF of the 12S rDNA type-c (MOTS-c), and small humanin-like peptides 1-6 (SHLP1-6). MDPs assume pivotal roles in the regulation of diverse cellular processes, encompassing apoptosis, inflammation, and oxidative stress, which are all essential for sustaining cellular viability and normal physiological functions. Their emerging significance extends beyond this, prompting a deeper exploration into their multifaceted roles and potential applications. AIM OF REVIEW This review aims to comprehensively explore the biogenesis, various types, and diverse functions of MDPs. It seeks to elucidate the central roles and underlying mechanisms by which MDPs participate in the onset and development of cardiovascular diseases (CVDs), bridging the connections between cell apoptosis, inflammation, and oxidative stress. Furthermore, the review highlights recent advancements in clinical research related to the utilization of MDPs in CVD diagnosis and treatment. KEY SCIENTIFIC CONCEPTS OF REVIEW MDPs levels are diminished with aging and in the presence of CVDs, rendering them potential new indicators for the diagnosis of CVDs. Also, MDPs may represent a novel and promising strategy for CVD therapy. In this review, we delve into the biogenesis, various types, and diverse functions of MDPs. We aim to shed light on the pivotal roles and the underlying mechanisms through which MDPs contribute to the onset and advancement of CVDs connecting cell apoptosis, inflammation, and oxidative stress. We also provide insights into the current advancements in clinical research related to the utilization of MDPs in the treatment of CVDs. This review may provide valuable information with MDPs for CVD diagnosis and treatment.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Ying Lei
- School of Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Silong Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yuqi Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Han Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Weijie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Tiantian Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China; School of Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, 710018 Xi'an, Shaanxi, PR China.
| |
Collapse
|
7
|
Wang J, Wen W, Liu L, He J, Deng R, Su M, Zhao S, Wang H, Rao M, Tang L. Effect of Humanin and MOTS-c on ameliorating reproductive damage induced by prepubertal cyclophosphamide chemotherapy in male mice. Reprod Toxicol 2024; 129:108674. [PMID: 39079574 DOI: 10.1016/j.reprotox.2024.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Male patients who undergo prepubertal chemotherapy face the dual problems of fertility preservation in adulthood, including low testosterone, hypersexual function, and infertility. Humanin, as a small polypeptide coded within the mitochondrial DNA, with the mitochondrial short open reading frame named MOTS-c, both was believed to regulate mitochondrial homeostasis, be anti-inflammatory, improve metabolism, anti-apoptosis, and multiple pharmacological effects. However, there exists little evidence that reported Humanin and MOTS-c 's effects on moderating male spermatogenic function of patients after prepubertal chemotherapy. Here, we found that in vivo, mitochondrial polypeptides Humanin analog (HNG) and MOTS-c efficaciously protected the testicular spermatogenic function from reproductive injury. Moreover, transcriptomic sequencing analysis was performed to verify the differentially expressed genes such as Piwil2, AGT (angiotensinogen), and PTGDS (glycoprotein prostaglandin D2 synthase), which are related to the regulation of male reproductive function of male mice induced by prepubertal chemotherapy. Collectively, our data revealed that both Humanin analogs HNG and MOTS-c are the feasible approaches attached to the protective effect on the male reproductive function damaged by prepubertal chemotherapy.
Collapse
Affiliation(s)
- Jinyuan Wang
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Wen Wen
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Liu Liu
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Junhui He
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Renhe Deng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Mingxuan Su
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shuhua Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Huawei Wang
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Meng Rao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Li Tang
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
8
|
Wei S, Ma X, Liang G, He J, Wang J, Chen H, Lu W, Qin H, Zou Y. The role of circHmbox1(3,4) in ferroptosis-mediated cognitive impairments induced by manganese. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135212. [PMID: 39024764 DOI: 10.1016/j.jhazmat.2024.135212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Excessive environmental exposure to manganese (Mn) has been linked to cognitive impairments, circular RNAs (circRNAs) have been recognized for their roles in epigenetic regulation in various biological processes, including neurological pathogenesis. Previous studies found that ferroptosis, an iron ion-dependent programmed cell death, may be involved in cognitive impairments. However, specific mechanisms underlying the relationship among circRNA, ferroptosis, and neurotoxicity of Mn are not well-understood. In the current study, RNA sequencing was performed to profile RNA expression in Neuro-2a (N2a) cells that were treated with 300 μM Mn. The potential molecular mechanisms of circHmbox1(3,4) in Mn-induced cognitive impairments were investigated via various experiments, such as Western blot and intracerebroventricular injection in mice. We observed a significant decrease in the expression of circHmbox1(3,4) both in vitro and in vivo following Mn treatment. The results of Y maze test and Morris water maze test demonstrated an improvement in learning and memory abilities following circHmbox1(3,4) overexpression in Mn treated mice. Mn treatment may reduce circHmbox1(3,4) biogenesis through lowered expression of E2F1/QKI. Inhibiting circHmbox1(3,4) expression led to GPX4 protein degradation through protein ligation and ubiquitination. Overall, the current study showed that Mn exposure-induced cognitive dysfunction may be mediated through ferroptosis regulated by circHmbox1(3,4).
Collapse
Affiliation(s)
- Shengtao Wei
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaoli Ma
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Guiqiang Liang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jiacheng He
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jian Wang
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Hao Chen
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Wenmin Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Huiyan Qin
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530028, Guangxi, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning 530021, Guangxi, China.
| |
Collapse
|
9
|
Zhang H, Lu W, Qiu L, Li S, Qiu L, He M, Chen X, Wang J, Fang J, Zhong C, Lan M, Xu X, Zhou Y. Circ_0025373 inhibits carbon black nanoparticles-induced malignant transformation of human bronchial epithelial cells by affecting DNA damage through binding to MSH2. ENVIRONMENT INTERNATIONAL 2024; 191:109001. [PMID: 39284259 DOI: 10.1016/j.envint.2024.109001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/17/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Carbon black nanoparticles (CBNPs) have been demonstrated to induce DNA damage in epithelial cells. However, the potential of the damage to initiate carcinogenesis and the underlying mechanism remain poorly understood. Therefore, we constructed an in vitro model of malignant transformation of human bronchial epithelial cells (16HBE-T) by treating 40 μg/mL CBNPs for 120 passages. We observed tumor-like transformation and sustained DNA damage. Using transcriptome sequencing and RIP-seq, we identified the overexpression of the critical DNA mismatch repair genes MutS homolog 2 (MSH2) and its related circular RNA, circ_0025373, in the 16HBE-T cells. Mechanistically, circ_0025373 was found to inhibit DNA damage by binding to MSH2, thereby modifying its expression and influencing its nuclear and cytoplasmic distribution, which lead to inhibition of CBNP-induced malignant transformation of human bronchial epithelial cells. Our findings provide novel evidence on the carcinogenicity of CBNPs, and offer biological insights into the potential epigenetic regulation and potential therapeutic targets for lung carcinogenesis.
Collapse
Affiliation(s)
- Han Zhang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenfeng Lu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Lan Qiu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Saifeng Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Liqiu Qiu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Mengnan He
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Xintong Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiajing Wang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Jingwen Fang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Chenghui Zhong
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Meiqi Lan
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaole Xu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yun Zhou
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
10
|
Liu Y, Fang S, Lin T, Chen W, Chen Y, Wang Y, Xiao X, Zheng H, Liu L, Zhou J, Jiang Y, Hua Q, Jiang Y. Circular RNA circNIPBL regulates TP53-H179R mutations in NNK-induced bronchial epithelial carcinogenesis. ENVIRONMENT INTERNATIONAL 2024; 190:108829. [PMID: 38908277 DOI: 10.1016/j.envint.2024.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/06/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Exposure to environmental carcinogens is a significant contributor to cancer development, with genetic and epigenetic alterations playing pivotal roles in the carcinogenic process. However, the interplay between epigenetic regulation and genetic changes in carcinogenesis has yet to receive comprehensive attention. This study investigates the impact of continuous exposure to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) on bronchial epithelial cells, leading to malignant transformation. Our findings reveal the down-regulation of the tumor suppressor-like circular RNA circNIPBL during oncogenic processes concomitant with the accumulation of the TP53-H179R, a single nucleotide variant. Diminished circNIPBL expression enhances the proliferative, distant metastatic, and tumor-forming capabilities of NNK-induced cancerous cells and lung cancer cell lines (A549, H1299), while also promoting the accumulation of TP53-H179R during NNK-induced carcinogenesis. Mechanistic investigations demonstrate that circNIPBL interacts with HSP90α to regulate the translocation of AHR into the nucleus, which may be a potential regulatory mechanism for NNK-induced carcinogenesis and TP53-H179R accumulation. This study introduces a novel perspective on the interplay between genetic alterations and epigenetic regulation in chemical carcinogenesis, which provides novel insight into the etiology of cancer.
Collapse
Affiliation(s)
- Yufei Liu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Shusen Fang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Tianshu Lin
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Wei Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yushan Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Ye Wang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Xietian Xiao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Hengfa Zheng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Lulu Liu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiayu Zhou
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yan Jiang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Qiuhan Hua
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yiguo Jiang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
11
|
Thamjamrassri P, Ariyachet C. Circular RNAs in Cell Cycle Regulation of Cancers. Int J Mol Sci 2024; 25:6094. [PMID: 38892280 PMCID: PMC11173060 DOI: 10.3390/ijms25116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer has been one of the most problematic health issues globally. Typically, all cancers share a common characteristic or cancer hallmark, such as sustaining cell proliferation, evading growth suppressors, and enabling replicative immortality. Indeed, cell cycle regulation in cancer is often found to be dysregulated, leading to an increase in aggressiveness. These dysregulations are partly due to the aberrant cellular signaling pathway. In recent years, circular RNAs (circRNAs) have been widely studied and classified as one of the regulators in various cancers. Numerous studies have reported that circRNAs antagonize or promote cancer progression through the modulation of cell cycle regulators or their associated signaling pathways, directly or indirectly. Mostly, circRNAs are known to act as microRNA (miRNA) sponges. However, they also hold additional mechanisms for regulating cellular activity, including protein binding, RNA-binding protein (RBP) recruitment, and protein translation. This review will discuss the current knowledge of how circRNAs regulate cell cycle-related proteins through the abovementioned mechanisms in different cancers.
Collapse
Affiliation(s)
- Pannathon Thamjamrassri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaiyaboot Ariyachet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Yu C, Zhao J, Cheng F, Chen J, Chen J, Xu H, Shi K, Xia K, Ding S, Wang K, Wang R, Chen Y, Li Y, Li H, Chen Q, Yu X, Shao F, Liang C, Li F. Silencing circATXN1 in Aging Nucleus Pulposus Cell Alleviates Intervertebral Disc Degeneration via Correcting Progerin Mislocalization. RESEARCH (WASHINGTON, D.C.) 2024; 7:0336. [PMID: 38533181 PMCID: PMC10964222 DOI: 10.34133/research.0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024]
Abstract
Circular RNAs (circRNAs) play a critical regulatory role in degenerative diseases; however, their functions and therapeutic applications in intervertebral disc degeneration (IVDD) have not been explored. Here, we identified that a novel circATXN1 highly accumulates in aging nucleus pulposus cells (NPCs) accountable for IVDD. CircATXN1 accelerates cellular senescence, disrupts extracellular matrix organization, and inhibits mitochondrial respiration. Mechanistically, circATXN1, regulated by heterogeneous nuclear ribonucleoprotein A2B1-mediated splicing circularization, promotes progerin translocation from the cell nucleus to the cytoplasm and inhibits the expression of insulin-like growth factor 1 receptor (IGF-1R). To demonstrate the therapeutic potential of circATXN1, siRNA targeting the backsplice junction of circATNX1 was screened and delivered by tetrahedral framework nucleic acids (tFNAs) due to their unique compositional and tetrahedral structural features. Our siRNA delivery system demonstrates superior abilities to transfect aging cells, clear intracellular ROS, and enhanced biological safety. Using siRNA-tFNAs to silence circATXN1, aging NPCs exhibit reduced mislocalization of progerin in the cytoplasm and up-regulation of IGF-1R, thereby demonstrating a rejuvenated cellular phenotype and improved mitochondrial function. In vivo, administering an aging cell-adapted siRNA nucleic acid framework delivery system to progerin pathologically expressed premature aging mice (zmpste24-/-) can ameliorate the cellular matrix in the nucleus pulposus tissue, effectively delaying IVDD. This study not only identified circATXN1 functioning as a cell senescence promoter in IVDD for the first time, but also successfully demonstrated its therapeutic potential via a tFNA-based siRNA delivery strategy.
Collapse
Affiliation(s)
- Chao Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Jing Zhao
- Department of Chemistry,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
| | - Feng Cheng
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Jiangjie Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Jinyang Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Haibin Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Kesi Shi
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Siwen Ding
- Westlake Street Community Health Service Center, Hangzhou 310009, Zhejiang, PR China
| | - Kanbin Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Ronghao Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Yazhou Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Yi Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Hao Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Qixin Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Xiaohua Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Fangwei Shao
- Zhejiang University-University of Illinois at Urbana-Champaign Institute,
Zhejiang University, Haining 314400, Zhejiang, PR China
- Biomedical and Health Translational Research Centre,
Zhejiang University, Haining 314400, Zhejiang, PR China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| |
Collapse
|
13
|
Yang M, Hu X, Tang B, Deng F. Exploring the interplay between methylation patterns and non-coding RNAs in non-small cell lung cancer: Implications for pathogenesis and therapeutic targets. Heliyon 2024; 10:e24811. [PMID: 38312618 PMCID: PMC10835372 DOI: 10.1016/j.heliyon.2024.e24811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Lung cancer is a global public health issue, with non-small cell lung cancer (NSCLC) accounting for 80-85 % of cases. With over two million new diagnoses annually, understanding the complex evolution of this disease is crucial. The development of lung cancer involves a complex interplay of genetic, epigenetic, and environmental factors, leading the key oncogenes and tumor suppressor genes to disorder, and activating the cancer related signaling pathway. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNA (circRNAs) are unique RNA transcripts with diverse biological functions. These ncRNAs are generated through genome transcription and play essential roles in cellular processes. Epigenetic modifications such as DNA methylation, N6-methyladenosine (m6A) modification, and histone methylation have gained significant attention in NSCLC research. The complexity of the interactions among these methylation modifications and ncRNAs contribute to the precise regulation of NSCLC development. This review comprehensively summarizes the associations between ncRNAs and different methylation modifications and discusses their effects on NSCLC. By elucidating these relationships, we aim to advance our understanding of NSCLC pathogenesis and identify potential therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Mei Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Xue Hu
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| | - Bin Tang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Fengmei Deng
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
14
|
Wang X, Liu Z, Chu A, Song R, Liu S, Chai T, Sun C. Hsa_circ_0052611 and mir-767-5p guide the warburg effect, migration, and invasion of BRCA cells through modulating SCAI. J Bioenerg Biomembr 2023; 55:381-396. [PMID: 37743442 DOI: 10.1007/s10863-023-09985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Noncoding RNAs are key regulators in the Warburg Effect, an emerging hallmark of cancer. We intended to investigate the role and mechanism of circular RNA hsa_circ_0052611 (circ_0052611) and microRNA (miR)-767-5p in breast cancer (BRCA) hallmarks, especially the Warburg Effect. Expression of circ_0052611 and SCAI was downregulated, and miR-767-5p was upregulated in human BRCA tissues and cells; moreover, circ_0052611 acted as a miR-767-5p sponge to modulate the expression of miR-767-5p-targeted SCAI. Functionally, re-expressing circ_0052611 suppressed migration, invasion, glucose uptake, lactate production, and extracellular acidification rate (ECAR) in BRCA cells, and promoted apoptotic rate. These effects were accompanied by decreased Vimentin, N-cadherin, Bcl-2, and LDHA, and increased E-cadherin and Bax. Consistently, exhausting miR-767-5p exerted similar effects in BRCA cells. High miR-767-5p could counteract the role of circ_0052611 overexpression, and low SCAI likewise blocked the role of miR-767-5p deletion. In vivo, upregulating circ_0052611 delayed tumor growth of BRCA cells by altering miR-767-5p and SCAI expression. circ_0052611/miR-767-5p/SCAI axis might boycott the malignancy of BRCA cells.
Collapse
Affiliation(s)
- Xin Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, 450014, China
| | - Zongwen Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, 450014, China
| | - Alan Chu
- Department of Radiation Oncology, The Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, 450014, China
| | - Rui Song
- Department of Radiation Oncology, The Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, 450014, China
| | - Shijia Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, 450014, China
| | - Ting Chai
- Department of Radiation Oncology, The Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, 450014, China
| | - Chen Sun
- Department of Radiation Oncology, The Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, 450014, China.
| |
Collapse
|
15
|
Thamarai Kannan H, Issac PK, Dey N, Guru A, Arockiaraj J. A Review on Mitochondrial Derived Peptide Humanin and Small Humanin-Like Peptides and Their Therapeutic Strategies. Int J Pept Res Ther 2023; 29:86. [DOI: 10.1007/s10989-023-10558-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 10/16/2023]
|
16
|
Hussein NA, El Sewedy SM, Zakareya MM, Youssef EA, Ibrahim FAR. Expression status of circ-SMARCA5, circ-NOL10, circ-LDLRAD3, and circ-RHOT1 in patients with colorectal cancer. Sci Rep 2023; 13:13308. [PMID: 37587156 PMCID: PMC10432413 DOI: 10.1038/s41598-023-40358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
Colorectal cancer (CRC) poses a significant burden on both the healthcare systems as well as individuals. The high mortality rate of CRC may be attributed to its metastatic potential, heterogeneity, and delayed diagnosis. CircRNAs are an essential class of regulatory RNAs that play significant roles in cancers. This study aimed to detect the expression status of circ-SMARCA5, circ-NOL10, circ-LDLRAD3, and circ-RHOT1 in patients with CRC. This study included 50 CRC patients, 30 individuals with colorectal diseases (non-cancer), and 20 healthy volunteers. By using real-time PCR, the relative expression of circ-SMARCA5, circ-NOL10, circ-LDLRAD3, and circ-RHOT1 was determined in the collected blood samples. In addition, ECLIA was used to quantify carcinoembryonic antigen (CEA) level. All circRNAs expression and CEA levels were significantly up-regulated in cancer patients (CRC, colon, rectum) as compared to healthy controls, except circ-SMARCA5. Moreover, there was a significant up-regulation of circRNAs in most non-cancer patients (UC, polyp, piles). Insignificant upregulation was observed in circRNAs and CEA when comparing cancer with non-cancer patients. No correlations were found between the studied parameters and most clinicopathological characteristics of cancer and non-cancer patients. Circ-SMARCA5, circ-NOL10, circ-LDLRAD3, and circ-RHOT1 were differentially expressed in patients with CRC as well as in non-cancer patients. Circ-SMARCA5 and circ-NOL10 may act as tumor suppressors, while circ-LDLRAD3 and circ-RHOT1 may be oncogenes. Circ-SMARCA5, circ-NOL10, circ-LDLRAD3, and circ-RHOT1 could be promising markers for the early detection of CRC.
Collapse
Affiliation(s)
- Neveen A Hussein
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Shehata M El Sewedy
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohamed M Zakareya
- Colorectal Surgical Unit, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Engy A Youssef
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Fawziya A R Ibrahim
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Sun D, Song N, Li M, Chen X, Zhang X, Yu Y, Ying J, Xu M, Zheng W, Han C, Ji H, Jiang Y. Comprehensive analysis of circRNAs for N7-methylguanosine methylation modification in human oral squamous cell carcinoma. FASEB Bioadv 2023; 5:305-320. [PMID: 37554544 PMCID: PMC10405248 DOI: 10.1096/fba.2023-00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 08/10/2023] Open
Abstract
N7-methylguanosine (m7G) modification is closely related to the occurrence of tumors. However, the m7G modification of circRNAs in oral squamous cell carcinoma (OSCC) remains to be investigated. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) was used to measure the methylation levels of m7G and identify m7G sites in circRNAs in human OSCC and normal tissues. The host genes of differentially methylated and differentially expressed circRNAs were analyzed by Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, and circRNA-miRNA-mRNA networks were predicted using the miRanda and miRDB databases. The analysis identified 2348 m7G peaks in 624 circRNAs in OSCC tissues. In addition, the source of m7G-methylated circRNAs in OSCC was mainly the sense overlap region compared with normal tissues. The most conserved m7G motif in OSCC tissues was CCUGU, whereas the most conserved motif in normal tissues was RCCUG (R = G/A). Importantly, GO enrichment and KEGG pathway analysis showed that the host genes of differentially methylated and differentially expressed circRNAs were involved in many cellular biological functions. Furthermore, the significantly differentially expressed circRNAs were analyzed to predict the circRNA-miRNA-mRNA networks. This study revealed the whole profile of circRNAs of differential m7G methylation in OSCC and suggests that m7G-modified circRNAs may impact the development of OSCC.
Collapse
Affiliation(s)
- Dongyuan Sun
- School of StomatologyWeifang Medical UniversityWeifangChina
- Department of StomatologyAffiliated Hospital of Weifang Medical UniversityWeifangChina
| | - Ning Song
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Minmin Li
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Xi Chen
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Xinyue Zhang
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Yang Yu
- School of StomatologyWeifang Medical UniversityWeifangChina
- Department of StomatologyAffiliated Hospital of Weifang Medical UniversityWeifangChina
| | - Jicheng Ying
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Mengqi Xu
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Wentian Zheng
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Chengbing Han
- Department of StomatologyFirst Affiliated Hospital of Weifang Medical UniversityWeifangChina
| | - Honghai Ji
- School of StomatologyWeifang Medical UniversityWeifangChina
- Department of StomatologyAffiliated Hospital of Weifang Medical UniversityWeifangChina
| | - Yingying Jiang
- School of StomatologyWeifang Medical UniversityWeifangChina
- Department of StomatologyAffiliated Hospital of Weifang Medical UniversityWeifangChina
| |
Collapse
|
18
|
Li M, Chen W, Cui J, Lin Q, Liu Y, Zeng H, Hua Q, Ling Y, Qin X, Zhang Y, Li X, Lin T, Huang L, Jiang Y. circCIMT Silencing Promotes Cadmium-Induced Malignant Transformation of Lung Epithelial Cells Through the DNA Base Excision Repair Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206896. [PMID: 36814305 DOI: 10.1002/advs.202206896] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/03/2023] [Indexed: 05/18/2023]
Abstract
Changes in gene expression in lung epithelial cells are detected in cancer tissues during exposure to pollutants, highlighting the importance of gene-environmental interactions in disease. Here, a Cd-induced malignant transformation model in mouse lungs and bronchial epithelial cell lines is constructed, and differences in the expression of non-coding circRNAs are analyzed. The migratory and invasive abilities of Cd-transformed cells are suppressed by circCIMT. A significant DNA damage response is observed after exposure to Cd, which increased further following circCIMT-interference. It is found that APEX1 is significantly down-regulated following Cd exposure. Furthermore, it is demonstrated that circCIMT bound to APEX1 during Cd exposure to mediate the DNA base excision repair (BER) pathway, thereby reducing DNA damage. In addition, simultaneous knockdown of both circCIMT and APEX1 promotes the expression of cancer-related genes and malignant transformation after long-term Cd exposure. Overall, these findings emphasis the importance of genetic-epigenetic interactions in chemical-induced cancer transformation.
Collapse
Affiliation(s)
- Meizhen Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Wei Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Jinjin Cui
- School of Public Health, Baotou Medical College, Baotou, 014030, P. R. China
| | - Qiuyi Lin
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yufei Liu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Huixian Zeng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Qiuhan Hua
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xiaodi Qin
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yindai Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xueqi Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Tianshu Lin
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Lihua Huang
- School of Public Health, Baotou Medical College, Baotou, 014030, P. R. China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
19
|
Dawoud A, Ihab Zakaria Z, Hisham Rashwan H, Braoudaki M, Youness RA. Circular RNAs: New layer of complexity evading breast cancer heterogeneity. Noncoding RNA Res 2023; 8:60-74. [PMID: 36380816 PMCID: PMC9637558 DOI: 10.1016/j.ncrna.2022.09.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Advances in high-throughput sequencing techniques and bioinformatic analysis have refuted the "junk" RNA hypothesis that was claimed against non-coding RNAs (ncRNAs). Circular RNAs (circRNAs); a class of single-stranded covalently closed loop RNA molecules have recently emerged as stable epigenetic regulators. Although the exact regulatory role of circRNAs is still to be clarified, it has been proven that circRNAs could exert their functions by interacting with other ncRNAs or proteins in their own physiologically authentic environment, regulating multiple cellular signaling pathways and other classes of ncRNAs. CircRNAs have also been reported to exhibit a tissue-specific expression and have been associated with the malignant transformation process of several hematological and solid malignancies. Along this line of reasoning, this review aims to highlight the importance of circRNAs in Breast Cancer (BC), which is ranked as the most prevalent malignancy among females. Notwithstanding the substantial efforts to develop a suitable anticancer therapeutic regimen against the heterogenous BC, inter- and intra-tumoral heterogeneity have resulted in an arduous challenge for drug development research, which in turn necessitates the investigation of other markers to be therapeutically targeted. Herein, the potential of circRNAs as possible diagnostic and prognostic biomarkers have been highlighted together with their possible application as novel therapeutic targets.
Collapse
Affiliation(s)
- Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Zeina Ihab Zakaria
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Hannah Hisham Rashwan
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Maria Braoudaki
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire hosted By Global Academic Foundation, New Administrative Capital, 11586, Cairo, Egypt
| |
Collapse
|
20
|
Bai H, Jiang M, Fang S, Peng Z, Liang N, Cai Y, Wang Y, Zhou C, Han Y, Shen W, Gong Z. Whole Blood-Derived circUSP10 Acts as a Diagnostic Biomarker in Patients With Early-Stage Non-Small-Cell Lung Cancer. Cell Transplant 2023; 32:9636897231193066. [PMID: 37632352 PMCID: PMC10467378 DOI: 10.1177/09636897231193066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 08/28/2023] Open
Abstract
Accumulating evidence has indicated that differentially expressed noncoding circular RNAs (circRNAs) play essential roles in the occurrence and development of various types of cancer. Here, we aimed to identify and explore the diagnostic value of hsa_circ_0003026 (named circUSP10) in patients with early non-small-cell lung cancer (NSCLC). The differentially expressed circRNAs were screened from the microarray-based assay of human NSCLC tissues and their corresponding noncancerous tissues, and the candidate circRNAs were further verified in patients with NSCLC using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Circulating circUSP10 was isolated from whole blood of healthy people and patients with NSCLC and was detected by RT-qPCR. In addition, the diagnostic value of circUSP10 in early NSCLC was evaluated by receiver operating characteristic (ROC) curve analysis. We found that circUSP10 was upregulated in tumor tissues from patients with early NSCLC and associated with tumor size and tumor-node-metastasis (TNM) stage. Importantly, circUSP10 was obviously upregulated in the whole blood of patients with NSCLC. Additionally, whole blood-derived circUSP10 showed good diagnostic performance for screening early NSCLC and was relatively stable in blood under adverse conditions. These findings demonstrate that circUSP10 may act as a novel biomarker for the diagnosis of early-stage NSCLC, suggesting the potential of circUSP10 in RNA-based therapy for cancer.
Collapse
Affiliation(s)
- Huihui Bai
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Meina Jiang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Shuai Fang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Ziyi Peng
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Nan Liang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Yuanting Cai
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Yuanyuan Wang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Chengwei Zhou
- Department of Thoracic Surgery, The Affiliated First Hospital of Ningbo University, Ningbo, China
| | - Ying Han
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Weiyu Shen
- Department of Thoracic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Zhaohui Gong
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
21
|
Prakash Yadav R, Leskinen S, Ma L, Mäkelä JA, Kotaja N. Chromatin remodelers HELLS, WDHD1 and BAZ1A are dynamically expressed during mouse spermatogenesis. Reproduction 2023; 165:49-63. [PMID: 36194437 PMCID: PMC9782464 DOI: 10.1530/rep-22-0240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
Abstract
In brief Proper regulation of heterochromatin is critical for spermatogenesis. This study reveals the dynamic localization patterns of distinct chromatin regulators during spermatogenesis and disrupted sex chromatin status in spermatocytes in the absence of DICER. Abstract Heterochromatin is dynamically formed and organized in differentiating male germ cells, and its proper regulation is a prerequisite for normal spermatogenesis. While heterochromatin is generally transcriptionally silent, we have previously shown that major satellite repeat (MSR) DNA in the pericentric heterochromatin (PCH) is transcribed during spermatogenesis. We have also shown that DICER associates with PCH and is involved in the regulation of MSR-derived transcripts. To shed light on the heterochromatin regulation in the male germline, we studied the expression, localization and heterochromatin association of selected testis-enriched chromatin regulators in the mouse testis. Our results show that HELLS, WDHD1 and BAZ1A are dynamically expressed during spermatogenesis. They display limited overlap in expression, suggesting involvement in distinct heterochromatin-associated processes at different steps of differentiation. We also show that HELLS and BAZ1A interact with DICER and MSR chromatin. Interestingly, deletion of Dicer1 affects the sex chromosome heterochromatin status in late pachytene spermatocytes, as demonstrated by mislocalization of Polycomb protein family member SCML1 to the sex body. These data substantiate the importance of dynamic heterochromatin regulation during spermatogenesis and emphasize the key role of DICER in the maintenance of chromatin status in meiotic male germ cells.
Collapse
Affiliation(s)
- Ram Prakash Yadav
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Sini Leskinen
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Lin Ma
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Juho-Antti Mäkelä
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Noora Kotaja
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| |
Collapse
|
22
|
Hussen BM, Abdullah SR, Hama Faraj GS, Rasul MF, Salihi A, Ghafouri-Fard S, Taheri M, Mokhtari M. Exosomal circular RNA: a signature for lung cancer progression. Cancer Cell Int 2022; 22:378. [PMID: 36457039 PMCID: PMC9714134 DOI: 10.1186/s12935-022-02793-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Membrane vesicles having a diameter of 30-150 nm are known as exosomes. Several cancer types secrete exosomes, which may contain proteins, circular RNAs (circRNAs), microRNAs, or DNA. CircRNAs are endogenous RNAs that do not code for proteins and can create continuous and covalently closed loops. In cancer pathogenesis, especially metastasis, exosomal circRNAs (exo-circRNAs) have a crucial role mainly due to the frequently aberrant expression levels within tumors. However, neither the activities nor the regulatory mechanisms of exo-circRNAs in advancing lung cancer (LC) are obvious. A better understanding of the regulation and network connections of exo-circRNAs will lead to better treatment for LCs. The main objective of the current review is to highlight the functions and mechanisms of exo-circRNAs in LC and assess the relationships between exo-circRNA dysregulation and LC progression. In addition, underline the possible therapeutic targets based on exo-circRNA modulating.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
- Department of Biomedical Sciences, Cihan University-Erbil, Kurdistan Region, Erbil, 44001, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Mokhtari
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Qiu M, Zhang N, Yao S, Zhou H, Chen X, Jia Y, Zhang H, Li X, Jiang Y. DNMT3A-mediated high expression of circ_0057504 promotes benzo[a]pyrene-induced DNA damage via the NONO-SFPQ complex in human bronchial epithelial cells. ENVIRONMENT INTERNATIONAL 2022; 170:107627. [PMID: 36399942 DOI: 10.1016/j.envint.2022.107627] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Benzo[a]pyrene (B[a]P) is a class I carcinogen and hazardous environmental pollutant with genetic toxicity. Understanding the molecular mechanisms underlying genetic deterioration and epigenetic alterations induced by environmental contaminants may contribute to the early detection and prevention of cancer. However, the role and regulatory mechanisms of circular RNAs (circRNAs) in the B[a]P-induced DNA damage response (DDR) have not been elucidated. In this study, human bronchial epithelial cell lines (16HBE and BEAS-2B) were exposed to various concentrations of B[a]P, and BALB/c mice were treated with B[a]P intranasally. B[a]P exposure was found to induce DNA damage and upregulate circular RNA hsa_circ_0057504 (circ_0057504) expression in vitro and in vivo. In addition, B[a]P upregulated TMEM194B mRNA and circ_0057504 expression through inhibition of DNA methyltransferase 3 alpha (DNMT3A) expression in vitro. Modulation (overexpression or knockdown) of circ_0057504 expression levels using a lentiviral system in human bronchial epithelial cells revealed that circ_0057504 promoted B[a]P-induced DNA damage. RNA pull-down and western blot assays showed that circ_0057504 interacted with non-POU domain-containing octamer-binding (NONO) and splicing factor proline and glutamine rich (SFPQ) proteins and regulated formation of the NONO-SFPQ protein complex. Thus, our findings indicate that circ_0057504 acts as a novel regulator of DNA damage in human bronchial epithelial cells exposed to B[a]P. The current study reveals novel insights into the role of circRNAs in the regulation of genetic damage, and describes the effect and regulatory mechanisms of circ_0057504 on B[a]P genotoxicity.
Collapse
Affiliation(s)
- Miaoyun Qiu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Nan Zhang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuwei Yao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Hanyu Zhou
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Xintong Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yangyang Jia
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Han Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
24
|
Venugopala KN. Targeting the DNA Damage Response Machinery for Lung Cancer Treatment. Pharmaceuticals (Basel) 2022; 15:ph15121475. [PMID: 36558926 PMCID: PMC9781725 DOI: 10.3390/ph15121475] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Lung cancer is considered the most commonly diagnosed cancer and one of the leading causes of death globally. Despite the responses from small-cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) patients to conventional chemo- and radiotherapies, the current outcomes are not satisfactory. Recently, novel advances in DNA sequencing technologies have started to take off which have provided promising tools for studying different tumors for systematic mutation discovery. To date, a limited number of DDR inhibition trials have been conducted for the treatment of SCLC and NSCLC patients. However, strategies to test different DDR inhibitor combinations or to target multiple pathways are yet to be explored. With the various biomarkers that have either been recently discovered or are the subject of ongoing investigations, it is hoped that future trials would be designed to allow for studying targeted treatments in a biomarker-enriched population, which is defensible for the improvement of prognosis for SCLC and NSCLC patients. This review article sheds light on the different DNA repair pathways and some of the inhibitors targeting the proteins involved in the DNA damage response (DDR) machinery, such as ataxia telangiectasia and Rad3-related protein (ATR), DNA-dependent protein kinase (DNA-PK), and poly-ADP-ribose polymerase (PARP). In addition, the current status of DDR inhibitors in clinical settings and future perspectives are discussed.
Collapse
Affiliation(s)
- Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| |
Collapse
|
25
|
PARP inhibitors in small cell lung cancer: The underlying mechanisms and clinical implications. Biomed Pharmacother 2022; 153:113458. [DOI: 10.1016/j.biopha.2022.113458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
|
26
|
He W, Zhou X, Mao Y, Wu Y, Tang X, Yan S, Tang S. CircCRIM1 promotes nasopharyngeal carcinoma progression via the miR-34c-5p/FOSL1 axis. Eur J Med Res 2022; 27:59. [PMID: 35484574 PMCID: PMC9052594 DOI: 10.1186/s40001-022-00667-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a rare malignancy with multiple risk factors (Epstein-Barr virus, etc.) that seriously threatens the health of people. CircRNAs are known to regulate the tumorigenesis of malignant tumours, including NPC. Moreover, circCRIM1 expression is reported to be upregulated in NPC. Nevertheless, the impact of circCRIM1 on NPC progression is not clear. METHODS An MTT assay was performed to assess cell viability. In addition, cell invasion and migration were assessed by the transwell assay. Dual luciferase assays were performed to assess the association among circCRIM1, miR-34c-5p and FOSL1. Moreover, RT-qPCR was applied to assess mRNA levels, and protein levels were determined by Western blot. RESULTS CircCRIM1 and FOSL1 were upregulated in NPC cells, while miR-34c-5p was downregulated. Knockdown of circCRIM1 significantly decreased the invasion, viability and migration of NPC cells. The miR-34c-5p inhibitor notably promoted the malignant behaviour of NPC cells, while miR-34c-5p mimics exerted the opposite effect. Moreover, circCRIM1 could bind with miR-34c-5p, and FOSL1 was identified to be downstream of miR-34c-5p. Furthermore, circCRIM1 downregulation notably inhibited the proliferation and invasion of NPC cells, while this phenomenon was significantly reversed by FOSL1 overexpression. CONCLUSION Silencing circCRIM1 inhibited the tumorigenesis of NPC. Thus, circCRIM1 might be a novel target for NPC.
Collapse
Affiliation(s)
- Weifeng He
- Oncology Department, The Second People's Hospital of Hunan Province, Changsha, 410007, Hunan, People's Republic of China
| | - Xiangqi Zhou
- Oncology Department, Affiliated Nanhua Hospital of University of South China, No. 336 Dong Feng South Road, Hengyang, 421002, Hunan, People's Republic of China
| | - Yini Mao
- Oncology Department, The Second People's Hospital of Hunan Province, Changsha, 410007, Hunan, People's Republic of China
| | - YangJie Wu
- Oncology Department, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiyang Tang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Sijia Yan
- Oncology Department, Affiliated Nanhua Hospital of University of South China, No. 336 Dong Feng South Road, Hengyang, 421002, Hunan, People's Republic of China.
| | - Sanyuan Tang
- Oncology Department, The Second People's Hospital of Hunan Province, Changsha, 410007, Hunan, People's Republic of China. .,Oncology Department, Affiliated Nanhua Hospital of University of South China, No. 336 Dong Feng South Road, Hengyang, 421002, Hunan, People's Republic of China.
| |
Collapse
|
27
|
Mechanism of RNA circHIPK3 Involved in Resistance of Lung Cancer Cells to Gefitinib. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4541918. [PMID: 35496045 PMCID: PMC9042616 DOI: 10.1155/2022/4541918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 01/03/2023]
Abstract
To study the mechanism of circular ribonucleic acid (RNA) circHIPK3 involved in the resistance of lung cancer cells to gefitinib, 110 patients with lung cancer were recruited as the research objects, and the tumor tissue and para-cancerous tissue of each patient's surgical specimens were collected and paraffinized to detect the expression of circHIPK3 in different tissues. Gefitinib drug-resistant cell line of lung cancer was constructed with gefitinib to detect cell apoptosis under different conditions. As a result, the relative expression of circHIPK3 in patients with tumor diameter no less than 3 cm was dramatically inferior to that in patients with tumor diameter less than 3 cm (P < 0.05). The relative expression of circHIPK3 in patients with TNM stage II/III was dramatically inferior to that in patients with tumor, node, and metastasis (TNM) stage I (P < 0.05). Expression of circHIPK3 in patients with lymph node metastasis was dramatically inferior to that in patients without lymph node metastasis (P < 0.05). Of the lung cancer tissues of patients with different TNM stages, only six patients had high expression, and the remaining 104 patients had low expression. Moreover, electrophoresis revealed that circHIPK3 can only be amplified in cDNA, but not in gDNA. Gefitinib-mediated apoptosis rate of lung cancer drug-resistant cell lines decreased notably. In summary, the circular RNA circHIPK3 may have a notably low expression in lung cancer tissues, whose low expression had a certain enhancement effect on the drug resistance of lung adenocarcinoma cells to gefitinib.
Collapse
|
28
|
Interactions of circRNAs with methylation: An important aspect of circRNA biogenesis and function (Review). Mol Med Rep 2022; 25:169. [PMID: 35302170 PMCID: PMC8971914 DOI: 10.3892/mmr.2022.12685] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/14/2022] [Indexed: 11/15/2022] Open
Abstract
Circular RNA (circRNA) molecules are noncoding RNAs with unique circular covalently closed structures that contribute to gene expression regulation, protein translation and act as microRNA sponges. circRNAs also have important roles in human disease, particularly tumorigenesis and antitumor processes. Methylation is an epigenetic modification that regulates the expression and roles of DNA and coding RNA and their interactions, as well as of noncoding RNA molecules. Previous studies have focused on the effects of methylation modification on circRNA expression, transport, stability, translation and degradation of circRNAs, as well as how circRNA methylation occurs and the influence of circRNAs on methylation modification processes. circRNA and methylation can also regulate disease pathogenesis via these interactions. In the present study, we define the relationship between circRNAs and methylation, as well as the functions and mechanisms of their interactions during disease progression.
Collapse
|
29
|
Wu S, Xu H, Zhang R, Wang X, Yang J, Li X, Chen S, He W, Nan A. Circular RNA circLAMA3 inhibits the proliferation of bladder cancer by directly binding an mRNA. Mol Ther Oncolytics 2022; 24:742-754. [PMID: 35317525 PMCID: PMC8908064 DOI: 10.1016/j.omto.2022.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
The circular RNA (circRNA) circLAMA3 is significantly downregulated in bladder cancer tissues and cell lines. However, its function in bladder cancer has not yet been explored, and further research is needed. In this study, functional experiments demonstrated that circLAMA3 significantly inhibited the proliferation, migration, and invasion of bladder cancer cells and inhibited bladder cancer growth in vivo. Mechanistically, circLAMA3 directly binds to and promotes the degradation of MYCN mRNA, thereby reducing the MYCN protein expression in bladder cancer cells. Decreased expression of the MYCN protein inhibits the promoter activity and expression of CDK6. Ultimately, circLAMA3 affects DNA replication by downregulating CDK6, resulting in G0/G1 phase arrest and inhibition of bladder cancer proliferation. In summary, we report a potential novel regulatory mechanism via which a circRNA directly binds an mRNA and thereby regulates its fate. Moreover, circLAMA3 significantly affects the progression of bladder cancer and has potential as a diagnostic biomarker and therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Shuilian Wu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haotian Xu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Ruirui Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China.,Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xin Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jialei Yang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaofei Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Sixian Chen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Wanting He
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Aruo Nan
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China.,Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
30
|
Yang G, Chen Q, Jiang Y, Kang Y, Chen L, Xu X, Huang C. Has_Circ_0002490 Circular RNA: A Potential Novel Biomarker for Lung Cancer. Genet Test Mol Biomarkers 2022; 26:1-7. [PMID: 35089074 DOI: 10.1089/gtmb.2021.0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Lung cancer (LC) is ranked as a leading cause of cancer-related death worldwide. However, there are still few reliable screening biomarkers for daily clinical practice in LC. Circular RNAs (circRNAs) have been suggested as valuable diagnostic biomarkers in various cancers. In this study, the expression and diagnostic potential of several circRNAs for LC were explored. Methods: Seventy-two pairs of LC tissues and adjacent normal lung tissues were collected to measure the relative expression level of circRNAs using quantitative reverse transcription-polymerase chain reaction. In addition, the relationships between circRNAs and the clinicopathological features of LC patients were analyzed. Furthermore, the sensitivities and specificities of the circRNAs were evaluated by receiver operating characteristic (ROC) analysis. Results: The expression levels of has_circ_0002490, has_circ_0087357, has_circ_0004891, has_circ_0074368, and has_circ_0000896 were downregulated in LC tissues compared with adjacent normal lung tissues. The lower levels of has_circ_0002490, has_circ_0087357, has_circ_0004891, and has_circ_0000896 were significantly correlated with advanced disease stages. The area under the ROC curves of has_circ_0002490, has_circ_0087357, has_circ_0074368, has_circ_0004891, and has_circ_0000896 were 0.833, 0.793, 0.773, 0.730, and 0.645, respectively. Conclusions: Has_circ_0002490, has_circ_0087357, has_circ_0074368, has_circ_0004891, and has_circ_0000896 are capable of distinguishing LC tissues from normal lung tissues. Besides, the biggest area under the ROC curve value of has_circ_000249 suggests it appears to be a better diagnosis marker for LC patients.
Collapse
Affiliation(s)
- Guoliu Yang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qianshun Chen
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yingfeng Jiang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yanli Kang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Liangyuan Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xunyu Xu
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chen Huang
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
31
|
Wang M, Yu F, Zhang Y, Zhang L, Chang W, Wang K. The Emerging Roles of Circular RNAs in the Chemoresistance of Gastrointestinal Cancer. Front Cell Dev Biol 2022; 10:821609. [PMID: 35127685 PMCID: PMC8814461 DOI: 10.3389/fcell.2022.821609] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) cancer represents a major global health problem due to its aggressive characteristics and poor prognosis. Despite the progress achieved in the development of treatment regimens, the clinical outcomes and therapeutic responses of patients with GI cancer remain unsatisfactory. Chemoresistance arising throughout the clinical intervention is undoubtedly a critical barrier for the successful treatment of GI cancer. However, the precise mechanisms associated with chemoresistance in GI cancer remain unclear. In the past decade, accumulating evidence has indicated that circular RNAs (circRNAs) play a key role in regulating cancer progression and chemoresistance. Notably, circRNAs function as molecular sponges that sequester microRNAs (miRNAs) and/or proteins, and thus indirectly control the expression of specific genes, which eventually promote or suppress drug resistance in GI cancer. Therefore, circRNAs may represent potential therapeutic targets for overcoming drug resistance in patients with GI cancer. This review comprehensively summarizes the regulatory roles of circRNAs in the development of chemoresistance in different GI cancers, including colorectal cancer, gastric cancer and esophageal cancer, as well as deciphers the underlying mechanisms and key molecules involved. Increasing knowledge of the important functions of circRNAs underlying drug resistance will provide new opportunities for developing efficacious therapeutic strategies against GI cancer.
Collapse
Affiliation(s)
- Man Wang
- *Correspondence: Man Wang, ; Kun Wang,
| | | | | | | | | | - Kun Wang
- *Correspondence: Man Wang, ; Kun Wang,
| |
Collapse
|
32
|
Shen Q, Liu X, Li W, Zhao X, Li T, Zhou K, Zhou J. Emerging Role and Mechanism of circRNAs in Pediatric Malignant Solid Tumors. Front Genet 2022; 12:820936. [PMID: 35116058 PMCID: PMC8804321 DOI: 10.3389/fgene.2021.820936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with covalent closed-loop structures and are widely distributed in eukaryotes, conserved and stable as well as tissue-specific. Malignant solid tumors pose a serious health risk to children and are one of the leading causes of pediatric mortality. Studies have shown that circRNAs play an important regulatory role in the development of childhood malignant solid tumors, hence are potential biomarkers and therapeutic targets for tumors. This paper reviews the biological characteristics and functions of circRNAs as well as the research progress related to childhood malignant solid tumors.
Collapse
Affiliation(s)
- Qiyang Shen
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xingyu Liu
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Li
- Department of ENT, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Zhao
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tao Li
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zhou
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- *Correspondence: Jianfeng Zhou, ; Kai Zhou,
| | - Jianfeng Zhou
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jianfeng Zhou, ; Kai Zhou,
| |
Collapse
|
33
|
Rochette L, Rigal E, Dogon G, Malka G, Zeller M, Vergely C, Cottin Y. Mitochondrial-derived peptides: New markers for cardiometabolic dysfunction. Arch Cardiovasc Dis 2022; 115:48-56. [PMID: 34972639 DOI: 10.1016/j.acvd.2021.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023]
Abstract
Great attention is being paid to the evaluation of new markers in blood circulation for the estimation of tissue metabolism disturbance. This endogenous disturbance may contribute to the onset and progression of cardiometabolic disease. In addition to their role in energy production and metabolism, mitochondria play a main function in cellular mechanisms, including apoptosis, oxidative stress and calcium homeostasis. Mitochondria produce mitochondrial-derived peptides that mediate the transcriptional stress response by translocating into the nucleus and interacting with deoxyribonucleic acid. This class of peptides includes humanin, mitochondrial open reading frame of the 12S ribosomal ribonucleic acid type c (MOTS-c) and small humanin-like peptides. Mitochondrial-derived peptides are regulators of metabolism, exerting cytoprotective effects through antioxidative stress, anti-inflammatory responses and antiapoptosis; they are emerging biomarkers reflecting mitochondrial function, and the circulating concentration of these proteins can be used to diagnose cardiometabolic dysfunction. The aims of this review are: (1) to describe the emerging role for mitochondrial-derived peptides as biomarkers; and (2) to discuss the therapeutic application of these peptides.
Collapse
Affiliation(s)
- Luc Rochette
- Équipe d'Accueil (EA 7460), physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche Comté, 21000 Dijon, France.
| | - Eve Rigal
- Équipe d'Accueil (EA 7460), physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Geoffrey Dogon
- Équipe d'Accueil (EA 7460), physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Gabriel Malka
- Centre interface applications médicales (CIAM), université Mohammed VI Polytechnique, 43150 Ben Guerir, Morocco
| | - Marianne Zeller
- Équipe d'Accueil (EA 7460), physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Catherine Vergely
- Équipe d'Accueil (EA 7460), physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Yves Cottin
- Cardiology Unit, CHU de Dijon-Bourgogne, 21000 Dijon, France
| |
Collapse
|
34
|
Cai Y, Zhao X, Chen D, Zhang F, Chen Q, Shao CC, Ouyang YX, Feng J, Cui L, Chen M, Xu J. circ-NOL10 regulated by MTDH/CASC3 inhibits breast cancer progression and metastasis via multiple miRNAs and PDCD4. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:773-786. [PMID: 34729247 PMCID: PMC8526500 DOI: 10.1016/j.omtn.2021.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 09/24/2021] [Indexed: 02/05/2023]
Abstract
Circular RNAs (circRNAs) play important roles in carcinogenesis. Here, we investigated the mechanisms and clinical significance of circ-NOL10, a highly repressed circRNA in breast cancer. Subsequently, we also identified RNA-binding proteins (RBPs) that regulate circ-NOL10. Bioinformatics analysis was utilized to predict regulatory RBPs as well as circ-NOL10 downstream microRNAs (miRNAs) and mRNA targets. RNA immunoprecipitation, luciferase assay, fluorescence in situ hybridization, cell proliferation, wound healing, Matrigel invasion, cell apoptosis assays, and a xenograft model were used to investigate the function and mechanisms of circ-NOL10 in vitro and in vivo. The clinical value of circ-NOL10 was evaluated in a large cohort of breast cancer by quantitative real-time PCR. Circ-NOL10 is downregulated in breast cancer and associated with aggressive characteristics and shorter survival time. Upregulation of circ-NOL10 promotes apoptosis, decreases proliferation, and inhibits invasion and migration. Furthermore, circ-NOL10 binds multiple miRNAs to alleviate carcinogenesis by regulating PDCD4. CASC3 and metadherin (MTDH) can bind directly to circ-NOL10 with characterized motifs. Accordingly, ectopic expression or depletion of CASC3 or MTDH leads to circ-NOL10 expression changes, suggesting that these two RBPs modulate circ-NOL10 in cancer cells. circ-NOL10 is a novel biomarker for diagnosis and prognosis in breast cancer. These results highlight the importance of therapeutic targeting of the RBP-noncoding RNA (ncRNA) regulation network.
Collapse
Affiliation(s)
- Yujie Cai
- Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, China
| | - Xing Zhao
- Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700 RB Groningen, the Netherlands
| | - Danze Chen
- Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China
| | - Fan Zhang
- Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China
| | - Qiuyang Chen
- Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China
| | - Chang-Chun Shao
- ChangJiang Scholar’s Laboratory, Shantou University Medical College (SUMC), 515041 Shantou, China
| | - Yan-Xiu Ouyang
- ChangJiang Scholar’s Laboratory, Shantou University Medical College (SUMC), 515041 Shantou, China
| | - Jun Feng
- Clinical Central Research Core, Xiang’an Hospital of Xiamen University, No. 2000, Xiang’an Road East, Xiamen, 361101 Fujian, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, China
| | - Min Chen
- Clinical Central Research Core, Xiang’an Hospital of Xiamen University, No. 2000, Xiang’an Road East, Xiamen, 361101 Fujian, China
- Corresponding author Min Chen, Clinical Central Research Core, Xiang’an Hospital of Xiamen University, No. 2000, Xiang’an Road East, Xiamen, 361101, Fujian, China
| | - Jianzhen Xu
- Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China
- Corresponding author Jianzhen Xu, Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China.
| |
Collapse
|
35
|
Chen J, Gu J, Tang M, Liao Z, Tang R, Zhou L, Su M, Jiang J, Hu Y, Chen Y, Zhou Y, Liao Q, Xiong W, Zhou J, Tang Y, Nie S. Regulation of cancer progression by circRNA and functional proteins. J Cell Physiol 2021; 237:373-388. [PMID: 34676546 DOI: 10.1002/jcp.30608] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs) are closed back-splicing products of precursor mRNA in eukaryotes. Compared with linear mRNAs, circRNAs have a special structure and stable expression. A large number of studies have provided different regulatory mechanisms of circRNAs in tumors. Challenges exist in understanding the control of circRNAs because of their sequence overlap with linear mRNA. Here, we survey the most recent progress regarding the regulation of circRNA biogenesis by RNA-binding proteins, one of the vital functional proteins. Furthermore, substantial circRNAs exert compelling biological roles by acting as protein sponges, by being translated themselves or regulating posttranslational modifications of proteins. This review will help further explore more types of functional proteins that interact with circRNA in cancer and reveal other unknown mechanisms of circRNA regulation.
Collapse
Affiliation(s)
- Junhong Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The University of South China, Hengyang, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jie Gu
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, China.,Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Mengtian Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The University of South China, Hengyang, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhiqiang Liao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The University of South China, Hengyang, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Rui Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The University of South China, Hengyang, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lianqing Zhou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Min Su
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Central Laboratory, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Jiarui Jiang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yingbin Hu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongyi Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yujuan Zhou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Central Laboratory, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Wei Xiong
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jumei Zhou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yanyan Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Central Laboratory, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Shaolin Nie
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
36
|
Xiao W, Li J, Hu J, Wang L, Huang JR, Sethi G, Ma Z. Circular RNAs in cell cycle regulation: Mechanisms to clinical significance. Cell Prolif 2021; 54:e13143. [PMID: 34672397 PMCID: PMC8666285 DOI: 10.1111/cpr.13143] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/20/2021] [Accepted: 10/03/2021] [Indexed: 12/27/2022] Open
Abstract
Circular RNAs (circRNAs), a type of non‐coding RNA, are single‐stranded circularized molecules characterized by high abundance, evolutionary conservation and cell development‐ and tissue‐specific expression. A large body of studies has found that circRNAs exert a wide variety of functions in diverse biological processes, including cell cycle. The cell cycle is controlled by the coordinated activation and deactivation of cell cycle regulators. CircRNAs exert mutifunctional roles by regulating gene expression via various mechanisms. However, the functional relevance of circRNAs and cell cycle regulation largely remains to be elucidated. Herein, we briefly describe the biogenesis and mechanistic models of circRNAs and summarize their functions and mechanisms in the regulation of critical cell cycle modulators, including cyclins, cyclin‐dependent kinases and cyclin‐dependent kinase inhibitors. Moreover, we highlight the participation of circRNAs in cell cycle‐related signalling pathways and the clinical value of circRNAs as promising biomarkers or therapeutic targets in diseases related to cell cycle disorder.
Collapse
Affiliation(s)
- Wei Xiao
- Health Science Center, Yangtze University, Jingzhou, China
| | - Juan Li
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - June Hu
- The Second School of Clinical Medicine, Yangtze University, Jingzhou, China
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhaowu Ma
- Health Science Center, Yangtze University, Jingzhou, China
| |
Collapse
|
37
|
Vadlamudi Y, Dey DK, Kang SC. Emerging Multi-cancer Regulatory Role of ESRP1: Orchestration of Alternative Splicing to Control EMT. Curr Cancer Drug Targets 2021; 20:654-665. [PMID: 32564755 DOI: 10.2174/1568009620666200621153831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
RNA binding proteins (RBPs) associate with nascent and mature RNAs to perform biological functions such as alternative splicing and RNA stability. Having unique RNA recognition binding motifs, RBPs form complexes with RNA in a sequence- and structure-based manner. Aberrant expressions of several RBPs have been identified in tumorigenesis and cancer progression. These uncontrolled RBPs affect several mechanisms, including cell proliferation, tumor growth, invasion, metastasis and chemoresistance. Epithelial splicing regulatory protein 1 (ESRP1) is a member of the hnRNP family of proteins that play a crucial role in regulating numerous cellular processes, including alternative splicing and translation of multiple genes during organogenesis. Abnormal expression of ESRP1 alters the cell morphology, and leads to cell proliferation and tumor growth during cancer progression. ESRP1 mediated alternative splicing of target genes, including CD44, FGFR, PTBP1, LYN, ENAH, SPAG1 and ZMYND8, results in cancer progression. In addition, ESRP1 also regulates circularization and biogenesis of circular RNAs such as circUHRF1, circNOL10 and circANKS1B, whose expressions have been identified as key factors in various cancers. This multi-functional protein is also involved in imposing stability of target mRNAs such as cyclin A2, and thereby cell cycle regulation. The scope of this review is to examine recent scientific data, outcomes of the up- and down-regulated proteins, and the role of ESRP1 in various cancers. We conclude by summarizing ESRP1 dysregulation and its consequences on target genes in various human cancers. Collectively, the consequences of ESRP1 mediated splicing in cancer cells suggest the role of ESRP1 in cell proliferation and chemoresistance via apoptosis and autophagy modulation, which could, therefore, be potential targets for cancer therapeutics.
Collapse
Affiliation(s)
| | - Debasish K Dey
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk-38453, Korea
| | - Sun C Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk-38453, Korea
| |
Collapse
|
38
|
Ju H, Hu Z, Wei D, Huang J, Zhang X, Rui M, Li Z, Zhang X, Hu J, Guo W, Ren G. A novel intronic circular RNA, circGNG7, inhibits head and neck squamous cell carcinoma progression by blocking the phosphorylation of heat shock protein 27 at Ser78 and Ser82. Cancer Commun (Lond) 2021; 41:1152-1172. [PMID: 34498800 PMCID: PMC8626595 DOI: 10.1002/cac2.12213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/02/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023] Open
Abstract
Background There is increasing evidence that circular RNAs (circRNAs) play a significant role in pathological processes including tumorigenesis. In contrast to exonic circRNAs, which are the most frequently reported circRNAs in cancer so far, the studies of intronic circRNAs have been greatly lagged behind. Here, we aimed to investigate the regulatory role of intronic circRNAs in head and neck squamous cell carcinoma (HNSCC). Methods We conducted whole‐transcriptome sequencing with four pairs of primary tumor tissues and adjacent normal tissues from HNSCC patients. Then, we characterized circGNG7 expression in HNSCC tissues and cell lines and explored its association with the prognosis of HNSCC patients. We also identified interactions between circGNG7 and functional proteins, which alter downstream signaling that regulate HNSCC progression. Results In this study, we identified a new intronic circRNA, circGNG7, and validated its functional roles in HNSCC progression. CircGNG7 was predominately localized to the cytoplasm, and its expression was downregulated in both HNSCC tissues andCAL27, CAL33, SCC4, SCC9, HN6, and HN30 cells. Low expression of circGNG7 was significantly correlated with poor prognosis in HNSCC patients. Consistent with this finding, overexpression of circGNG7 strongly inhibited tumor cell proliferation, colony formation, in vitro migration, and in vivo tumor growth. Mechanistically, the expression of circGNG7 in HNSCC cells was regulated by the transcription factor SMAD family member 4 (SMAD4). Importantly, we discovered that circGNG7 could bind to serine residues 78 and 82 of the functional heat shock protein 27 (HSP27), occupying its phosphorylation sites and hindering its phosphorylation, which reduced HSP27‐JNK/P38 mitogen‐activated protein kinase (MAPK) oncogenic signaling. Downregulation of circGNG7 expression in HNSCC increased HSP27‐JNK/P38 MAPK signaling and promoted tumor progression. Conclusions Our results revealed that a new intronic circRNA, circGNG7, functions as a strong tumor suppressor and that circGNG7/HSP27‐JNK/P38 MAPK signaling is a novel mechanism by which HNSCC progression can be controlled.
Collapse
Affiliation(s)
- Houyu Ju
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China
| | - Zhenrong Hu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,School of Stomatology, Weifang Medical University, Weifang, Shandong, 261053, P. R. China
| | - Dongliang Wei
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China
| | - Jinyun Huang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,School of Stomatology, Weifang Medical University, Weifang, Shandong, 261053, P. R. China
| | - Xinyi Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,School of Stomatology, Weifang Medical University, Weifang, Shandong, 261053, P. R. China
| | - Mengyu Rui
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China
| | - Zhi Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,School of Stomatology, Weifang Medical University, Weifang, Shandong, 261053, P. R. China
| | - Xiaomeng Zhang
- National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology, Department of Oral and Maxillo-facial Implantology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200011, P. R. China
| | - Jingzhou Hu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China
| | - Wei Guo
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China
| | - Guoxin Ren
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China
| |
Collapse
|
39
|
Bai J, Deng J, Han Z, Cui Y, He R, Gu Y, Zhang Q. CircRNA_0026344 via exosomal miR-21 regulation of Smad7 is involved in aberrant cross-talk of epithelium-fibroblasts during cigarette smoke-induced pulmonary fibrosis. Toxicol Lett 2021; 347:58-66. [PMID: 33961985 DOI: 10.1016/j.toxlet.2021.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 01/15/2023]
Abstract
For smoking-induced pulmonary fibrosis (PF), a serious disease endangering human health, there is no effective clinical treatment. Aberrant epithelium-fibroblast cross-talk is involved in formation of the excessive extracellular matrix (ECM) that contributes to PF. Circular RNAs have been associated with various pulmonary diseases. However, the mechanisms of circRNAs in PF are not clear. Herein, our goals were to investigate the involvement of circRNA_0026344 in the aberrant epithelium-fibroblast cross-talk induced by cigarette smoke (CS) and to define its mechanism. Chronic exposure (16 weeks) of BALB/c mice to 500 mg/m3 CS induced lung injury and fibrosis in lung tissues. From HBE cells, circRNA_0026344 was selected by microarray analysis and verified as that with the most severe down-regulation caused by cigarette smoke extract (CSE). The regulatory relationship between circRNA_0026344 and miR-21 was assessed by use of bioinformatics, RNA pull-down assays, and qRT-PCR. We found that miR-21 binding sites were present in circRNA_0026344 and, in HBE cells, it could act as a sponge for miR-21. When pcDNA3.0-circRNA_0026344, a high expression plasmid of circRNA_0026344, was transfected into HBE cells, the CSE-induced up-regulation of miR-21 levels was reversed. In MRC-5 cells, HBE-secreted exosomal miR-21 decreased levels of Smad7 and activated the TGF-β1/Smad3 pathway. By using the Targetscan database, the presence of species-conserved miR-21 binding sites in the Smad7 3'UTR region were predicted. We verified, by use of a luciferase reporter gene, that miR-21 bound to the 3'UTR region of Smad7 mRNA to inhibit its transcription. In conclusion, the results reveal that, in CS-induced pulmonary fibrosis, circRNA_0026344, via exosomal miR-21 regulation of Smad7, is involved in aberrant cross-talk of epithelium-fibroblasts. These results will be useful for the discovery of early biomarkers and for providing therapeutic targets for smoking-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Jun Bai
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jianjun Deng
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China
| | - Zhixia Han
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yan Cui
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Renjiang He
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yuanyun Gu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
40
|
Zeng H, Li M, Hua Q, Liu Y, Shao Y, Diao Q, Ling Y, Zhang H, Qiu M, Zhu J, Li X, Zhang R, Jiang Y. Circular RNA circ_Cabin1 promotes DNA damage in multiple mouse organs via inhibition of non-homologous end-joining repair upon PM 2.5 exposure. Arch Toxicol 2021; 95:3235-3251. [PMID: 34402960 DOI: 10.1007/s00204-021-03138-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/11/2021] [Indexed: 12/01/2022]
Abstract
Fine particulate matter (PM2.5) has been shown to induce DNA damage. Circular RNAs (circRNAs) have been implicated in various disease processes related to environmental chemical exposure. However, the role of circRNAs in the regulation of DNA damage response (DDR) after PM2.5 exposure remains unclear. In this study, male ICR mice were exposed to PM2.5 at a daily mean concentration of 382.18 μg/m3 for 3 months in an enriched-ambient PM2.5 exposure system in Shijiazhuang, China, and PM2.5 collected form Shijiazhuang was applied to RAW264.7 cells at 100 µg/mL for 48 h. The results indicated that exposure to PM2.5 induced histopathological changes and DNA damage in the lung, kidney and spleen of male ICR mice, and led to decreased cell viability, increased LDH activity and DNA damage in RAW264.7 cells. Furthermore, circ_Cabin1 expression was significantly upregulated in multiple mouse organs as well as in RAW264.7 cells upon exposure to PM2.5. PM2.5 exposure also resulted in impairment of non-homologous end joining (NHEJ) repair via the downregulation of Lig4 or Dclre1c expression in vivo and in vitro. Importantly, circ_Cabin1 promoted PM2.5-induced DNA damage via inhibiting of NHEJ repair. Moreover, the expression of circ_Cabin1 and Lig4 or Dclre1c was strongly correlated in multiple mouse organs, as well as in the blood. In summary, our study provides a new perspective on circRNAs in the regulation of DDR after environmental chemical exposure.
Collapse
Affiliation(s)
- Huixian Zeng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Meizhen Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Qiuhan Hua
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Yufei Liu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Yueting Shao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Qinqin Diao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Han Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Miaoyun Qiu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Jialu Zhu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Xun Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China. .,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China.
| |
Collapse
|
41
|
Dabravolski SA, Nikiforov NG, Starodubova AV, Popkova TV, Orekhov AN. The Role of Mitochondria-Derived Peptides in Cardiovascular Diseases and Their Potential as Therapeutic Targets. Int J Mol Sci 2021; 22:ijms22168770. [PMID: 34445477 PMCID: PMC8396025 DOI: 10.3390/ijms22168770] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria-derived peptides (MDPs) are small peptides hidden in the mitochondrial DNA, maintaining mitochondrial function and protecting cells under different stresses. Currently, three types of MDPs have been identified: Humanin, MOTS-c and SHLP1-6. MDPs have demonstrated anti-apoptotic and anti-inflammatory activities, reactive oxygen species and oxidative stress-protecting properties both in vitro and in vivo. Recent research suggests that MDPs have a significant cardioprotective role, affecting CVDs (cardiovascular diseases) development and progression. CVDs are the leading cause of death globally; this term combines disorders of the blood vessels and heart. In this review, we focus on the recent progress in understanding the relationships between MDPs and the main cardiovascular risk factors (atherosclerosis, insulin resistance, hyperlipidaemia and ageing). We also will discuss the therapeutic application of MDPs, modified and synthetic MDPs, and their potential as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Str., 210026 Vitebsk, Belarus
- Correspondence:
| | - Nikita G. Nikiforov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.N.O.)
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Therapy Faculty, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.N.O.)
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| |
Collapse
|
42
|
Li X, Feng Y, Yang B, Xiao T, Ren H, Yu X, Li L, Li M, Zhang W. A novel circular RNA, hsa_circ_0030998 suppresses lung cancer tumorigenesis and Taxol resistance by sponging miR-558. Mol Oncol 2021; 15:2235-2248. [PMID: 33190405 PMCID: PMC8333779 DOI: 10.1002/1878-0261.12852] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/27/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022] Open
Abstract
Circular RNAs (circRNAs) are single-stranded RNAs which form a covalently closed continuous loop. Although originally shown to be non-protein-coding, some circRNAs can give rise to micropeptides. circRNAs have also been shown to play essential regulatory roles in a variety of developmental and disease processes. In a previous study, hsa_circ_0030998 was identified as a circRNA downregulated in lung cancer, but its potential implications and mechanisms in lung cancer were not addressed. Here, we showed that overexpressing circ_0030998 decreased proliferation, migration, and invasion of lung cancer cells, while also dampening resistance to Taxol, a classical antitumor drug. Depleting circ_0030998 reversed these phenotypic effects. A high circ_0030998 expression was correlated with a high survival rate in lung cancer patients. Additionally, we found circ_0030998 could downregulate miR-558 expression, serving as a microRNA sponge. In conclusion, our data support that hsa_circ_0030998 can slow down the progression of lung cancer by targeting miR-558 and suppress malignant phenotypes such as proliferation, migration, and invasion progression of lung cancer cells. Therefore, we highlight that circ_0030998 could be a novel tumor suppressor of lung cancer.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Thoracic SurgeryTianjin First Central HospitalChina
| | - Yiling Feng
- Department of Oncology Armed Police Characteristic Medical CenterTianjinChina
| | - Bo Yang
- Department of Thoracic SurgeryTianjin First Central HospitalChina
| | - Ting Xiao
- College of PharmacyState Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Haixia Ren
- Department of PharmacyTianjin First Central HospitalChina
| | - Xi Yu
- Department of RespiratoryTianjin First Central HospitalChina
| | - Lei Li
- Department of Thoracic SurgeryTianjin First Central HospitalChina
| | - Mingjiang Li
- Department of Thoracic SurgeryTianjin First Central HospitalChina
| | - Weidong Zhang
- Department of Thoracic SurgeryTianjin First Central HospitalChina
| |
Collapse
|
43
|
Pan S, Wang Q, Zhang Q, Zhou M, Li L, Zhou X. A novel circular RNA, circPUS7 promotes cadmium-induced transformation of human bronchial epithelial cells by regulating Kirsten rat sarcoma viral oncogene homolog expression via sponging miR-770. Metallomics 2021; 13:6316787. [PMID: 34232319 DOI: 10.1093/mtomcs/mfab043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/26/2021] [Accepted: 07/03/2021] [Indexed: 11/14/2022]
Abstract
Cadmium is a human carcinogen, which induces cancers by mechanisms that are not fully understood. Induction of oxidative stress, apoptosis resistance, genotoxic effects, and epigenetic modulations have been indicated to regulate cadmium-induced carcinogenesis. Circular RNAs are epigenetic regulators that have been recognized to play essential roles in carcinogenesis. Yet, the involvement of circular RNAs in cadmium carcinogenesis remains unclear. In this study, a novel circular RNA, circPUS7, was identified and described for the first time. CircPUS7 was significantly upregulated at week 12, 16, and 20 during the cadmium-induced transformation of human bronchial epithelial BEAS-2B cells. Knockdown of circPUS7 in cadmium-transformed BEAS-2B (T-BEAS-2B) cells significantly attenuated transformation markers including cell proliferation, migration, invasion, and anchorage-independent growth. Moreover, circPUS7 promoted malignant phenotypes by competitively binding with miR-770. Overexpression of miR-770 significantly inhibited the transformation properties of T-BEAS-2B cells while inhibition of miR-770 potently reversed the inhibitory effects of circPUS7 knockdown in proliferation, migration, invasion, and anchorage-independent growth of the T-BEAS-2B cells. Kirsten rat sarcoma viral oncogene homolog (KRAS), which was increased synchronically with circPUS7 during cadmium-induced cell transformation, was regulated by circPUS7 through sponging miR-770. In summary, our findings demonstrate that circPUS7 promotes cadmium-induced cell transformation through sponging miR-770 to regulate KRAS expression, providing a new perspective with the involvement of circular RNAs to further understand the mechanisms of cadmium carcinogenesis.
Collapse
Affiliation(s)
- Shuya Pan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Qin Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Qian Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Mei Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Luyao Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| |
Collapse
|
44
|
Zhang Y, Yao H, Li Y, Yang L, Zhang L, Chen J, Wang Y, Li X. Circular RNA TADA2A promotes proliferation and migration via modulating of miR‑638/KIAA0101 signal in non‑small cell lung cancer. Oncol Rep 2021; 46:201. [PMID: 34296306 PMCID: PMC8317161 DOI: 10.3892/or.2021.8152] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence indicates that circular (circ)RNAs exhibit complex functions in diverse malignant tumors, including non-small cell lung cancer (NSCLC). The role of the circRNA transcription adaptor 2A (circTADA2A) in NSCLC remains unclear. The expression, function and mechanism of circTADA2A in NSCLC development were investigated in the present study. The results revealed that circTADA2A was upregulated in NSCLC, and that knockdown of circTADA2A inhibited cell proliferation and migration in the NSCLC cell lines A549 and H1299. Functional assays demonstrated that circTADA2A promoted proliferation and migration via interacting with microRNA (miR)-638. Bioinformatics and reverse transcription-quantitative PCR assay confirmed that miR-638 was expressed at low levels in NSCLC. In addition, it was found that miR-638 served a tumor-suppressive role and suppressed proliferation and migration via PCNA clamp associated factor (KIAA0101) inhibition in A549 and H1299 cells. Lastly, it was verified that circTADA2A promoted cell proliferation and migration, at least partially, via miR-638/KIAA0101 signaling in A549 and H1299 cells. In summary, the present study showed that circTADA2A promoted NSCLC cell proliferation and migration via modulating miR-638/KIAA0101 signaling.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Radiation Oncology, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Dadong, Shenyang, Liaoning 110042, P.R. China
| | - Hongmin Yao
- Department of Radiation Oncology, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Dadong, Shenyang, Liaoning 110042, P.R. China
| | - Ying Li
- Department of Radiation Oncology, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Dadong, Shenyang, Liaoning 110042, P.R. China
| | - Lu Yang
- First Department of Gastroenterology, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Dadong, Shenyang, Liaoning 110042, P.R. China
| | - Liang Zhang
- Department of Breast Internal Medicine, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Dadong, Shenyang, Liaoning 110042, P.R. China
| | - Jinxin Chen
- Department of Gynecological Oncology, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Dadong, Shenyang, Liaoning 110042, P.R. China
| | - Yong Wang
- Central Laboratory, Central Hospital Affiliated to Shenyang Medical College, Dadong, Shenyang, Liaoning 110024, P.R. China
| | - Xia Li
- Department of Radiation Oncology, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Dadong, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
45
|
Chen HH, Zhang TN, Wu QJ, Huang XM, Zhao YH. Circular RNAs in Lung Cancer: Recent Advances and Future Perspectives. Front Oncol 2021; 11:664290. [PMID: 34295810 PMCID: PMC8290158 DOI: 10.3389/fonc.2021.664290] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Globally, lung cancer is the most commonly diagnosed cancer and carries with it the greatest mortality rate, with 5-year survival rates varying from 4–17% depending on stage and geographical differences. For decades, researchers have studied disease mechanisms, occurrence rates and disease development, however, the mechanisms underlying disease progression are not yet fully elucidated, thus an increased understanding of disease pathogenesis is key to developing new strategies towards specific disease diagnoses and targeted treatments. Circular RNAs (circRNAs) are a class of non-coding RNA widely expressed in eukaryotic cells, and participate in various biological processes implicated in human disease. Recent studies have indicated that circRNAs both positively and negatively regulate lung cancer cell proliferation, migration, invasion and apoptosis. Additionally, circRNAs could be promising biomarkers and targets for lung cancer therapies. This review systematically highlights recent advances in circRNA regulatory roles in lung cancer, and sheds light on their use as potential biomarkers and treatment targets for this disease.
Collapse
Affiliation(s)
- Huan-Huan Chen
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Pediatric, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
46
|
Jiang MP, Xu WX, Hou JC, Xu Q, Wang DD, Tang JH. The Emerging Role of the Interactions between Circular RNAs and RNA-binding Proteins in Common Human Cancers. J Cancer 2021; 12:5206-5219. [PMID: 34335937 PMCID: PMC8317540 DOI: 10.7150/jca.58182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are a unique family of noncoding RNAs that could regulate multiple biological processes, which play a crucial role in carcinogenesis, progression and chemotherapy resistance of cancers. Growing studies have demonstrated that circRNAs act as novel biomarkers and therapeutic targets for cancers by sponging microRNAs (miRNAs). Up to date, another function of circRNAs, combining with RNA-binding proteins (RBPs), was uncovered. However, there is limit studies illustrating the underlying mechanism of circRNAs-RBPs interactions, as well as showing its roles in diverse types of cancers. In this review, we collected the biogenesis, properties of circRNAs, and then synthesize the connection between circRNAs and RBPs, and try to clarify its molecular mechanisms involving in the pathogenesis and progression of several common cancers, aiming to provide a brand-new insight to the prognosis and treatment strategy for cancers.
Collapse
Affiliation(s)
- Meng-Ping Jiang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen-Xiu Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun-Chen Hou
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dan-Dan Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin-Hai Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
47
|
Circ_0044516 Regulates miR-136/MAT2A Pathway to Facilitate Lung Cancer Development. J Immunol Res 2021; 2021:5510869. [PMID: 34258296 PMCID: PMC8253637 DOI: 10.1155/2021/5510869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/05/2021] [Accepted: 06/04/2021] [Indexed: 01/22/2023] Open
Abstract
Circular RNA (circRNA) is a type of noncoding RNA that can interact with miRNAs to regulate gene expression. However, little is known concerning circRNA, which is crucial in the pathogenesis of lung cancer. To date, limited studies have explored the role of circ_0044516 in lung cancer progression. Recently, we observed that circ_0044516 expression levels were obviously elevated in lung cancer tissues and cells. A549 and SPCA1 cells were transfected with circ_0044516 siRNA. We observed that knockdown of circ_0044516 dramatically repressed cell proliferation, increased cell apoptosis, and repressed the cell cycle. Moreover, A549 and SPCA1 cell migration and invasion abilities were greatly repressed by circ_0044516 siRNA. Due to accumulating evidence demonstrating the vital role of cancer stem cells, their mechanism of involvement has drawn increasing attention in tumor progression and metastasis research. We also found that cancer stem cell properties were restrained by silencing circ_0044516 in A549 and SPC-A1 cells. Moreover, in vivo xenograft experiments showed that circ_0044516 downregulation reduced tumor growth. Mechanistically, in lung cancer and using bioinformatics, we demonstrated that circ_0044516 sponges miR-136 targeting MAT2A. Furthermore, rescue assays were carried out to identify that circ_0044516 modulates cell proliferation, invasion, and stemness by regulating miR-136 and MAT2A in lung cancer. In summary, our study revealed that the circ_0044516/miR-136/MAT2A axis is involved in lung cancer progression. Our findings may provide novel targets for diagnosis and therapeutic intervention in lung cancer patients.
Collapse
|
48
|
Hua S, Gao J, Li T, Wang M, You L, Chen G, Han X, Liao Q. The promoting effects of hsa_circ_0050102 in pancreatic cancer and the molecular mechanism by targeting miR-1182/NPSR1. Carcinogenesis 2021; 42:471-480. [PMID: 33289016 DOI: 10.1093/carcin/bgaa130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/08/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer is one of the most lethal tumors across the world with an overall 5-year survival rate of 9%, and great efforts have been devoted in early diagnosis and treatment in the past decades. Competing endogenous RNAs are novel and specific regulatory mechanisms of gene expression, and researches have indicated its important roles in tumor regulation. In this study, we explored the circ-0050102 expression in pancreatic cancer and its impacts on tumor malignant phenotypes and further investigated the correlations among circ-0050102, miR-1182 and NPSR1. Results of real-time quantitative PCR showed that circ-0050102 expressed higher in pancreatic cancers compared with that in adjacent normal tissues. In cell functional experiment, downregulation of circ-0050102 could suppress cell proliferation, migration and invasion ability, boost cell apoptosis and arrest cell cycle in both PANC-1 and CFPAC-1 cells. Furthermore, allogeneic transplantation in nude mice was performed and results showed that the inhibition of circ-0050102 could slow down tumor formation in vivo. Mechanism research suggested that circ-0050102 could downregulate miR-1182, while miR-1182 could not influence the expression of circ-0050102, and miR-1182 could directly target at NPSR1 and suppress it. Moreover, circ-0050102 could reverse the effects of si-NPSR1 on pancreatic cancer cells. In conclusion, we identified that circ-0050102 played an important role in promoting pancreatic cancer by regulating the miR-1182/NPSR1 pathway.
Collapse
Affiliation(s)
- Surong Hua
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyi Gao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tong Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengyi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ge Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianlin Han
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
49
|
Ghafouri-Fard S, Dinger ME, Maleki P, Taheri M, Hajiesmaeili M. Emerging role of circular RNAs in the pathobiology of lung cancer. Biomed Pharmacother 2021; 141:111805. [PMID: 34120067 DOI: 10.1016/j.biopha.2021.111805] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Abstract
Lung cancer is among the leading causes of cancer mortality and incidence in both sexes. Different classes of transcripts have been proposed as molecular markers in this type of cancer. Circular RNAs (circRNAs) are a group of transcripts with circular enclosed and stable configuration. These transcripts are stable in the blood, thus can be used as markers for detection of disorders. Moreover, dysregulation of circRNAs in the affected tissues of patients with different cancers shows their possible roles in the carcinogenesis. Several circRNAs including circPRKC1, circFGFR1, hsa-circ-0020123 and circTP63 have been found to be up-regulated in lung cancer samples. Meanwhile, cir-ITCH, hsa_circ_100395, hsa_circ_0033155, circRNF13, circNOL10, circ-UBR5, circPTK2 and circCRIM1 have been shown to be down-regulated in lung cancer tissues compared with noncancerous counterparts. Finally, prognostic values of circPRKC1, circFGFR1, has-circ-00120123, circTP63, circ_0067934, CDR1as, hsa_circRN_103809 and some other circRNAs have been appraised in lung cancer. In the current manuscript, we describe the impact and utility of circRNAs in the pathology of lung cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Parichehr Maleki
- Department of Molecular Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Li S, Liu Y, Qiu G, Luo Y, Li X, Meng F, Li N, Xu T, Wang Y, Qin B, Xia S. Emerging roles of circular RNAs in non‑small cell lung cancer (Review). Oncol Rep 2021; 45:17. [PMID: 33649862 PMCID: PMC7876988 DOI: 10.3892/or.2021.7968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of novel endogenous transcripts with limited protein‑coding abilities. CircRNAs have been demonstrated to function as critical regulators of tumor development and distant metastasis through binding to microRNAs (miRNAs) and interacting with RNA‑binding proteins, thereby regulating transcription and translation. Emerging evidence has illustrated that certain circRNAs can serve as biomarkers for diagnosis and prognosis of cancer, and/or serve as potential therapeutic targets. Expression of functional circRNAs is commonly dysregulated in cancer and this is correlated with advanced Tumor‑Node‑Metastasis stage, lymph node status, distant metastasis, poor differentiation and shorter overall survival of cancer patients. Recently, an increasing number of studies have shown that circRNAs are closely associated with NSCLC. Functional experiments have revealed that circRNAs are intricately associated with the pathological progression of NSCLC. The present review provides an overview of the regulatory effect of circRNAs in the development and progression of NSCLC, taking into consideration various physiological and pathological processes, such as proliferation, apoptosis, invasion and migration, and their potential value as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Respiratory, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yize Liu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Guanzhen Qiu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yinzhou Luo
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Xiang Li
- Department of Respiratory, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Fei Meng
- Department of Gynaecology and Obstetrics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Nanyang Li
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Tiance Xu
- Second Department of Neurology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
- Central Laboratory, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Baoli Qin
- Department of Internal Medicine, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Shuyue Xia
- Department of Respiratory, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
- Dean's Office, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| |
Collapse
|