1
|
Guo ZH, Wang PL, Jiang YT, Ma MG. 3D dual-network structure poly (vinyl alcohol)/cellulose nanofibers/MXene hydrogel evaporator with high-efficiency desalination for solar-driven water purification. Int J Biol Macromol 2025; 307:142176. [PMID: 40101815 DOI: 10.1016/j.ijbiomac.2025.142176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Interfacial solar steam generation (ISSG) provides a sustainable solution to global water scarcity, yet achieving high efficiency, salt resistance, and long-term stability remains challenging. Here, we report a 3D umbrella-shaped poly (vinyl alcohol)/cellulose nanofiber (CNF)/MXene (PCM) hydrogel evaporator with a rigid-flexible dual-network structure for efficient solar desalination. The dual-network architecture, combining rigid CNF and flexible PVA chains, reduces water evaporation enthalpy by 18 % (from 2223.9 to 1825.2 J/g) through enhanced hydrogen bonding while improving mechanical strength by 68 %. The hierarchical porous structure enables rapid water transport and localized heat accumulation, achieving an evaporation rate of 2.09 kg m-2 h-1 with 86.37 % efficiency under one-sun irradiation. A self-regulating salt crystallization mechanism directs salt deposition to the hydrogel periphery, forming detachable rings that prevent performance degradation in 3.5-20 wt% brine. The evaporator demonstrates exceptional durability, maintaining >85 % efficiency over 8 weeks in 3.5 wt% brine through oxidation-resistant multilayer MXene (Ti3C2Tx) and CNF reinforcement. Outdoor testing yields a peak evaporation rate of 2.82 kg m-2 h-1 (34.7 % higher than lab-scale), with desalinated water meeting WHO drinking standards. This work provides a scalable, energy-efficient strategy for stable solar-driven water purification in diverse environments.
Collapse
Affiliation(s)
- Zhong-Hui Guo
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Pei-Lin Wang
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Yu-Tan Jiang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Ming-Guo Ma
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
2
|
Eltigani H, Boonyongmaneerat Y. High-Performance Roller Tube-Shaped Copper Foam Solar Evaporators with Copper Foil Integration for Enhanced Thermal Control. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40304062 DOI: 10.1021/acs.langmuir.5c01314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The growing global freshwater shortage and climate crisis are increasing the dependence on water desalination technologies. To meet this pressing demand, innovative solutions that utilize renewable energy sources like solar power, with an emphasis on improving evaporation processes, are essential. Although considerable research has been conducted on a variety of materials and structural designs, the development of highly efficient solar steam generators for large-scale use remains a challenge. Here, we introduce a novel design: a two-layer vertical evaporation cylinder in a roll format that integrates a small, inverted cone-shaped pure copper (ICPC) foam and etched copper foil to enhance thermal management. The primary objective is to advance direct solar desalination and interfacial evaporation by effectively capturing both direct and reflected light while preventing salt accumulation through self-cleaning. This design leverages the optical properties of the three materials─absorption, reflection, and transmission─while providing deeper insights into seawater behavior within the foam's interconnected pores. It also addresses common challenges encountered by traditional solar evaporators, such as salt buildup, uncontrolled water flow, and poor thermal management. This cutting-edge solar evaporation system exhibits exceptional performance, remarkable adaptability to diverse configurations, and represents a breakthrough in sustainable chemistry, featuring an advanced engineering design that achieves an outstanding evaporation rate of 17.15 kg·m-2·h-1 under 1 sun irradiation.
Collapse
Affiliation(s)
- Husam Eltigani
- Metallurgy and Materials Science Research Institute (MMRI), Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Yuttanant Boonyongmaneerat
- Metallurgy and Materials Science Research Institute (MMRI), Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Ji Z, He L, Sun M, Lv M, Chen R, Zhao C, Ma L, Cheng J, Qin J, Xu X, Fan Z. Nanoporous Plasmonic Microneedle Arrays Induced High-Efficiency Intracellular Delivery of Metabolism Regulating Protein. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412106. [PMID: 40042405 DOI: 10.1002/smll.202412106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/05/2025] [Indexed: 04/11/2025]
Abstract
Patterned micro/nanostructure arrays have shown the potential to effectively regulate cellular behavior, and their unique microstructure may address the limitations of conventional pore materials, leading to novel phenomena. In this work, a large-area gold micro/nano-array substrate with an average hole of ≈32 nm is designed and extensively screened. Precisely engineered nanopores on the substrate can effectively improve photothermal conversion efficiency, and instant heat dissipation in the absence of laser irradiation. The mesoporous arrays are fabricated by hybrid lithography, offering advantages such as simple processing, high reproducibility, and immense commercial potential. Notably, its heating rate is as rapid as ≈45 K µs-1 at low power levels, with the cooling duration reduced to ≈50 µs after the laser irradiation. Metabolism regulatory proteins such as cytochrome C (CytoC) and β-galactosidase (β-gal) can be efficiently introduced into the U87 cell model without inducing phototoxicity or protein inactivation, maintaining catalytic activity to modulate the cellular metabolic state. This delivery platform based on transient nano-cyclones stimulating cell perturbations can be further expanded through modulated microstructures, such as delivering functional proteins or biomolecules for efficient intracellular regulation, cellular transfection, and in the future application as a potential high-throughput screening tool for clustered regularly interspaced short palindromic repeats (CAR-T) biopharmaceutical and clustered regularly interspaced short palindromic repeats (CRISPR) technologies.
Collapse
Affiliation(s)
- Zhenkai Ji
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai, 201804, China
| | - Le He
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Min Sun
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai, 201804, China
| | - Mingchen Lv
- School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai, 201804, China
| | - Ran Chen
- School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai, 201804, China
| | - Chuanzhen Zhao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jiajing Cheng
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Jinlong Qin
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Xiaobin Xu
- School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai, 201804, China
| | - Zhen Fan
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai, 201804, China
| |
Collapse
|
4
|
Tian S, Chen C, Huang L, Yao X, She A, Su X. The liquid-vapor water generation characteristics of thermo-responsive polymer based on the multi-scale method. iScience 2025; 28:111619. [PMID: 39850361 PMCID: PMC11754082 DOI: 10.1016/j.isci.2024.111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/21/2024] [Accepted: 12/14/2024] [Indexed: 01/25/2025] Open
Abstract
Thermo-responsive polymer is becoming a potential water purification and water harvesting material. To clarify the water diffusion characteristics, the desorption ratio of liquid water and water vapor for a poly (N-isopropylacrylamide) was researched by the multi-scale method. Firstly, macro and micro structures for the hydrogel with different water content were characterized. Second, the dynamic moisture preserving status of the hydrogel during the desorption process were tested. Thirdly, the dynamic liquid-vapor desorption rate was quantified. The macro volume of the polymer is of liner relationship with water content. During the desorption process, free and immobilized water transfers to immobilized and bound water. About 80% of the purified liquid water can be collected directly in closed environment, while the amount decreased to 21%-25% in air convection condition. The results suggested a heating method for improving liquid water collection rate with low energy cost for practical applications.
Collapse
Affiliation(s)
- Shaochen Tian
- School of Mechanical Engineering, Tongji University, Shanghai 201804, China
| | - Chaoyang Chen
- School of Mechanical Engineering, Tongji University, Shanghai 201804, China
| | - Lei Huang
- Jiangsu JINYOU New Material Co., Ltd., Nantong, Jiangsu 226151, China
| | - Xueliang Yao
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Anming She
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Xing Su
- School of Mechanical Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
5
|
Han W, Yan Y, Wang H, Li J, Zhao P, Liu Z, Yu F, Cui J, Zhang G. Bifunctional Photothermal Evaporator Based on an MXene/Fe-MOF Collaborative Effect toward Efficient Solar Steam Generation and Simultaneous VOC Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21767-21779. [PMID: 39370613 DOI: 10.1021/acs.langmuir.4c02924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Solar-driven interfacial water evaporation has become one of the most promising approaches to effectively harvesting freshwater, yet the fabrication of high-performance and multifunctional solar interfacial evaporators (SIEs) still remains a huge challenge to date. In this study, a multifunctional MXene and Fe-MOF@cellulose acetate/polyvinylpyrrolidone (MXM@CP) SIE was prepared via a facile "electrospinning and suction filtration deposition" coupling strategy. Thanks to the incorporation of MXene, MXM@CP displayed excellent photothermal conversion performance. Together with the fast water transport channel provided by the porous cellulose acetate electrospinning substrate, a remarkable solar-driven water evaporation property was achieved for MXM@CP, showing a higher water evaporation rate of 1.1 kg m-2 h-1 under one sun irradiation. Moreover, the resultant composite film also exhibited excellent Fenton catalytic activity to effectively degrade volatile organic compounds (VOCs) due to the synergistic effect of the MXene and Fe-based MOF (Fe-MOF). Particularly, a relatively higher degradation rate of 82.8% was acquired for the resulting evaporator toward the benzene contaminant. These results provide new insights into the construction of high-performance and multifunctional SIEs toward clean freshwater collection from the VOC-contaminated water system.
Collapse
Affiliation(s)
- Wenqing Han
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yehai Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huifang Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Jinzhong Li
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ping Zhao
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhihao Liu
- Shandong Changyi Petrochemical Co., Ltd., Weifang 261300, China
| | - Fei Yu
- Park Environmental Technology (Shanghai) Co., Ltd., Shanghai 201203, China
| | - Jian Cui
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guangfa Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
6
|
Chen Q, Liu Y, Yi A, Man Z, Jiao R, Sun H, Li J, Li A. MXene-Coated Porous Films Prepared by Breathing Figure Method for Efficient Solar Steam Generation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52432-52444. [PMID: 39299907 DOI: 10.1021/acsami.4c11093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The interfacial solar steam generation for seawater desalination has attracted attention because of its excellent photothermal performance and efficiency. However, the process of preparing evaporators is often complex and costly, which limits their further practicality. Here, we report an integrated solar evaporator that is easy to prepare and has good salt resistance. The porous structure of poly(methyl methacrylate) and polycarbonate (PMMA-PC) films prepared by the breathing figure (BF) method was used as the upper layer, while MXene was deposited on the as-resulted PMMA-PC film and served as a light absorption layer. Meanwhile, the hydrophilicity of the lower layer of expanded polyethylene (EPE) foam can promote the upward transfer of water and inhibit heat loss. Under one solar irradiation, the water evaporation rate of the composite film was found to be 1.79 kg m-2 h-1 in distilled water and 1.67 kg m-2 h-1 in a 15 wt % NaCl solution, exhibiting excellent evaporation performance and salt resistance. In addition, the PMMA-PC/MXene films exhibit excellent mechanical properties. Based on these merits of the PMMA-PC/MXene solar generator, it may find useful applications in practical solar interfacial evaporation. Moreover, the findings of this investigation may provide a new opportunity for the rational design of large-aperture photothermal conversion materials via a simple breathing figure method.
Collapse
Affiliation(s)
- Qianzhi Chen
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yuxuan Liu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Anli Yi
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zhongyan Man
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Rui Jiao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hanxue Sun
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jiyan Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
7
|
Shi Y, Wang Y, Meng N, Liao Y. Photothermal Conversion Porous Organic Polymers: Design, Synthesis, and Applications. SMALL METHODS 2024; 8:e2301554. [PMID: 38485672 DOI: 10.1002/smtd.202301554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/15/2024] [Indexed: 10/18/2024]
Abstract
Solar energy is a primary form of renewable energy, and photothermal conversion is a direct conversion process with tunable conversion efficiency. Among various kinds of photothermal conversion materials, porous organic polymers (POP) are widely investigated owing to their controllable molecular design, tailored porous structures, good absorption of solar light, and low thermal conductivity. A variety of POP, such as conjugated microporous polymers (CMP), covalent organic frameworks (COF), hyper-crosslinked porous polymers (HCP), polymers of intrinsic microporosity (PIM), porous ionic polymers (PIP), are developed and applied in photothermal conversion applications of seawater desalination, latent energy storage, and biomedical fields. In this review, a comprehensive overview of the recent advances in POP for photothermal conversion is provided. The micro molecular structure characteristics and macro morphology of POP are designed for applications such as seawater desalination, latent heat energy storage, phototherapy and photodynamic therapy, and drug delivery. Besides, a probe into the underlying mechanism of structural design for constructing POP with excellent photothermal conversion performance is methodicalized. Finally, the remaining challenges and prospective opportunities for the future development of POP for solar energy-driven photothermal conversion applications are elucidated.
Collapse
Affiliation(s)
- Yu Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuzhu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Nan Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
8
|
Huang J, Li H, Saravanamurugan S, Su Y, Yang S, Riisager A. Interfacial Thermoconvection and Atomic Relay Catalysis Enable Equilibrium Shifting and Rapid Glucose-to-Fructose Isomerization. Angew Chem Int Ed Engl 2024:e202411544. [PMID: 39330915 DOI: 10.1002/anie.202411544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 09/28/2024]
Abstract
The aqueous glucose-to-fructose isomerization is controlled by thermodynamics to an equilibrium limit of ~50 % fructose yield. However, here we report an in situ fructose removal strategy enabled by an interfacial local photothermal effect in combination with relay catalysis of geminal and isolated potassium single atoms (K SAs) on graphene-type carbon (Ksg/GT) to effectively bypass the equilibrium limit and markedly speed up glucose-to-fructose isomerization. At 25 °C, an unprecedented fructose yield of 68.2 % was obtained over Ksg/GT in an aqueous solution without any additives under 30-min solar-like irradiation. Mechanistic studies expounded that the interfacial thermoconvection caused by the local photothermal effect of the graphene-type carbon and preferable glucose adsorption on single-atom K could facilitate the release of in situ formed fructose. The geminal K SAs were prone to form a stable metal-glucose complex via bidentate coordination, and could significantly reduce the C-H bond electron density by light-driven electron transfer toward K. This facilitated the hydride shift rate-determining step and expedited glucose isomerization. In addition, isolated K SAs favored the subsequent protonation and ring-closure process to furnish fructose. The integration of the interfacial thermoconvection-enhanced in situ removal protocol and tailored atomic catalysis opens a prospective avenue for boosting equilibrium-limited reactions under mild conditions.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, 550025, Guiyang, Guizhou, China
| | - Hu Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, 550025, Guiyang, Guizhou, China
| | - Shunmugavel Saravanamurugan
- Laboratory of Bioproduct Chemistry, Centre of Innovative and Applied Bioprocessing (CIAB), 140306, Mohali, Punjab, India
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Song Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, 550025, Guiyang, Guizhou, China
| | - Anders Riisager
- Centre for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
9
|
Li S, Xiao P, Chen T. Superhydrophobic Solar-to-Thermal Materials Toward Cutting-Edge Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311453. [PMID: 38719350 DOI: 10.1002/adma.202311453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Solar-to-thermal conversion is a direct and effective way to absorb sunlight for heat via the rational design and control of photothermal materials. However, when exposed to water-existed conditions, the conventional solar-to-thermal performance may experience severe degradation owing to the high specific heat capacity of water. To tackle with the challenge, the water-repellent function is introduced to construct superhydrophobic solar-to-thermal materials (SSTMs) for achieving stable heating, and even, for creating new application possibilities under water droplets, sweat, seawater, and ice environments. An in-depth review of cutting-edge research of SSTMs is given, focusing on synergetic functions, typical construction methods, and cutting-edge potentials based on water medium. Moreover, the current challenges and future prospects based on SSTMs are also carefully discussed.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Peng Xiao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Tao Chen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
10
|
Jawed AS, Nassar L, Hegab HM, van der Merwe R, Al Marzooqi F, Banat F, Hasan SW. Recent developments in solar-powered membrane distillation for sustainable desalination. Heliyon 2024; 10:e31656. [PMID: 38828351 PMCID: PMC11140715 DOI: 10.1016/j.heliyon.2024.e31656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
The freshwater shortage continues to be one of the greatest challenges affecting our planet. Although traditional membrane distillation (MD) can produce clean water regardless of climatic conditions, the process wastes a lot of energy. The technique of solar-powered membrane distillation (SPMD) has received a lot of interest in the past decade, thanks to the development of photothermal materials. SPMD is a promising replacement for the traditional MD based on fossil fuels, as it can prevent the harmful effects of emissions on the environment. Integrating green solar energy with MD can reduce the cost of the water purification process and secure freshwater production in remote areas. At this point, it is important to consider the most current progress of the SPMD system and highlight the challenges and prospects of this technology. Based on this, the background, recent advances, and principles of MD and SPMD, their configurations and mechanisms, fabrication methods, advantages, and current limitations are discussed. Detailed comparisons between SPMD and traditional MD, assessments of various standards for incorporating photothermal materials with desirable properties, discussions of desalination and other applications of SPMD and MD, and energy consumption rates are also covered. The final section addresses the potential of SPMD to outperform traditional desalination technology while improving water production without requiring a significant amount of electrical or high-grade thermal energy.
Collapse
Affiliation(s)
- Ahmad S. Jawed
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Lobna Nassar
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Hanaa M. Hegab
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Riaan van der Merwe
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Faisal Al Marzooqi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W. Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Bezza FA, Iwarere SA, Brink HG, Chirwa EMN. Design and fabrication of porous three-dimensional Ag-doped reduced graphene oxide (3D Ag@rGO) composite for interfacial solar desalination. Sci Rep 2024; 14:13793. [PMID: 38877030 PMCID: PMC11178800 DOI: 10.1038/s41598-024-62987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024] Open
Abstract
Solar-driven interfacial desalination technology has shown great promise in tackling the urgent global water scarcity crisis due to its ability to localize heat and its high solar-to-thermal energy conversion efficiency. For the realization of sustainable saline water desalination, the exploration of novel photothermal materials with higher water vapor generation and photothermal conversion efficiency is indispensable. In the current study, a novel 3D interconnected monolithic Ag-doped rGO network was synthesized for efficient photothermal application. The Ultraviolet-Visible-Near Infrared (UV-Vis-NIR) and FTIR analyses demonstrated that the controlled hydrothermal reduction of GO enabled the restoration of the conjugated sp2 bonded carbon network and the subsequent electrical and thermal conductivity through a significant reduction of oxygen-containing functional groups while maintaining the hydrophilicity of the composite photothermal material. In the solar simulated interfacial desalination study conducted using 3.5 wt.% saline water, the average surface temperatures of the 3D material increased from 27.1 to 54.7 °C in an hour, achieving an average net dark-excluded evaporation rate of 1.40 kg m-2 h-1 and a photothermal conversion efficiency of ~ 97.54% under 1 sun solar irradiance. In the outdoor real-world application test carried out, the surface temperature of the 3D solar evaporator reached up to 60 °C and achieved a net water evaporation rate of 1.50 kg m-2 h-1 under actual solar irradiation. The 3D interwoven porous hierarchical evaporator displayed no salt precipitation over the 54-h period monitored, demonstrating the promising salt rejection and real-world application potential for efficient desalination of saline water.
Collapse
Affiliation(s)
- Fisseha A Bezza
- Water Utilization and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa
| | - Samuel A Iwarere
- Water Utilization and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa
| | - Hendrik G Brink
- Water Utilization and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa
| | - Evans M N Chirwa
- Water Utilization and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
12
|
Zhang W, Xue L, Zhang J, Zhang M, Wang K, Huang M, Yang F, Jiang Z, Liang T. (Ca 0. 25La 0. 5Dy 0. 25)CrO 3 Ceramic Fiber@Biomass-Derived Carbon Aerogel with Enhanced Solute Transport Channels for Highly Efficient Solar Interface Evaporation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2205. [PMID: 38793275 PMCID: PMC11123292 DOI: 10.3390/ma17102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024]
Abstract
The use of solar interface evaporation for seawater desalination or sewage treatment is an environmentally friendly and sustainable approach; however, achieving efficient solar energy utilization and ensuring the long-term stability of the evaporation devices are two major challenges for practical application. To address these issues, we developed a novel ceramic fiber@bioderived carbon composite aerogel with a continuous through-hole structure via electrospinning and freeze-casting methods. Specifically, an aerogel was prepared by incorporating perovskite oxide (Ca0.25La0.5Dy0.25)CrO3 ceramic fibers (CCFs) and amylopectin-derived carbon (ADC). The CCFs exhibited remarkable photothermal conversion efficiencies, and the ADC served as a connecting agent and imparted hydrophilicity to the aerogel due to its abundant oxygen-containing functional groups. After optimizing the composition and microstructure, the (Ca0.25La0.5Dy0.25)CrO3 ceramic fiber@biomass-derived carbon aerogel demonstrated remarkable properties, including efficient light absorption and rapid transport of water and solutes. Under 1 kW m-2 light intensity irradiation, this novel material exhibited a high temperature (48.3 °C), high evaporation rate (1.68 kg m-2 h-1), and impressive solar vapor conversion efficiency (91.6%). Moreover, it exhibited long-term stability in water evaporation even with highly concentrated salt solutions (25 wt%). Therefore, the (Ca0.25La0.5Dy0.25)CrO3 ceramic fiber@biomass-derived carbon aerogel holds great promise for various applications of solar interface evaporation.
Collapse
Affiliation(s)
- Wei Zhang
- School of Materials Science and Engineering, Jiangxi University of Science & Technology, Ganzhou 341000, China;
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (L.X.); (J.Z.); (M.Z.); (K.W.)
- Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Liyan Xue
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (L.X.); (J.Z.); (M.Z.); (K.W.)
- Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jincheng Zhang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (L.X.); (J.Z.); (M.Z.); (K.W.)
- Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Meng Zhang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (L.X.); (J.Z.); (M.Z.); (K.W.)
- Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kaixian Wang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (L.X.); (J.Z.); (M.Z.); (K.W.)
- Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Minzhong Huang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (L.X.); (J.Z.); (M.Z.); (K.W.)
- Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Fan Yang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (L.X.); (J.Z.); (M.Z.); (K.W.)
- Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Zhengming Jiang
- China Nuclear Power (Shanghai) Simulation Technology Co., Ltd., Shanghai 200241, China
| | - Tongxiang Liang
- College of Rare Earths, Jiangxi University of Science & Technology, Ganzhou 341000, China
| |
Collapse
|
13
|
Misra U, Barbhuiya NH, Rather ZH, Singh SP. Solar interfacial evaporation devices for desalination and water treatment: Perspective and future. Adv Colloid Interface Sci 2024; 327:103154. [PMID: 38640844 DOI: 10.1016/j.cis.2024.103154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Water is an essential commodity for society, and alternate resources such as seawater and wastewater are vital for the future. There are various desalination technologies that can provide sufficient and sustainable water sources. Renewable energy-based desalination technologies like solar-based interfacial evaporation are very efficient and sustainable desalination methods. Solar-based interfacial evaporation has been a focus due to its efficient and easy-to-use methods. Still, research is needed for fouling resistance, scalable and low-cost materials, and devices for solar interfacial evaporation. Recent research focuses on the materials for evaporation devices, but various other aspects of device design and fabrication methods are also necessary to improve device performance. In this article, all the evaporator device configurations and strategies for efficient evaporator devices are compiled and summarized. The evaporator devices have been classified into eight main categories: monolayer, bilayer, tree-like design, low-temperature designs, 3D-Origami-based designs, latent heat recovery design, design with storage/batch process, and contactless design. It was found that a good absorber, well-engineered air-water interface, and bottom-layer insulation are necessary for the best systems. The current research focuses on the vapor production output of the devices but not on the water production from devices. So, the focus on device-based water production and the associated cost of the water produced is essential. This article articulates the strategies and various scalable and efficient devices for evaporation-based solar-driven desalination. This article will be helpful for the researchers in improving devices output and coming up with a sustainable desalination and water treatment.
Collapse
Affiliation(s)
- Utkarsh Misra
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Najmul Haque Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, India
| | - Zakir Hussain Rather
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Swatantra P Singh
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India; Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, India; Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, India; Centre of Excellence on Membrane Technologies for Desalination, Brine Management, and Water Recycling, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
14
|
Yan D, Yin K, He Y, Liu Y, Wang L, Deng Q, He J, Awan SU, Khalil ASG. Recent advances in functional micro/nanomaterials for removal of crude oil via thermal effects. NANOSCALE 2024; 16:7341-7362. [PMID: 38511991 DOI: 10.1039/d4nr00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Crude oil is one of the most widely used energy and industrial raw materials that is crucial to the world economy, and is used to produce various petroleum products. However, crude oil often spills during extraction, transportation and use, causing negative impacts on the environment. Thus, there is a high demand for products to remediate leaked crude oil. Among them, oleophilic and hydrophobic adsorbents can absorb crude oil through thermal effects and are research hotspots. In this review, we first present an overview of wettability theory, the heating principles of various thermal effects, and the theory of reducing crude oil viscosity by heating. Then we discuss adsorbents based on different heating methods including the photothermal effect, Joule heating effect, alternating magnetic field heating effect, and composite heating effect. Preparation methods and oil adsorption performance of adsorbents are summarized. Finally, the advantages and disadvantages of various heating methods are briefly summarized, as well as the prospects for future research.
Collapse
Affiliation(s)
- Duanhong Yan
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Kai Yin
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Yuchun He
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Yao Liu
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Lingxiao Wang
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Qinwen Deng
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Jun He
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Saif Ullah Awan
- Department of Electrical Engineering, NUST College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST), Islamabad 54000, Pakistan
| | - Ahmed S G Khalil
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST), 179 New Borg El-Arab City, Alexandria, Egypt
- Environmental and Smart Technology Group, Faculty of Science, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
15
|
Ren J, Liu Z, Li Q, Chen L, Gong J, Wang H, Li Y, Qu J, Niu R. Harnessing Synchronous Photothermal and Photocatalytic Effects of Substoichiometric MoO 3-x Nanoparticle-Decorated Membranes for Clean Water Generation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18855-18866. [PMID: 38577763 DOI: 10.1021/acsami.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Solar-driven interfacial evaporation provides a promising pathway for sustainable freshwater and energy generation. However, developing highly efficient photothermal and photocatalytic nanomaterials is challenging. Herein, substoichiometric molybdenum oxide (MoO3-x) nanoparticles are synthesized via step-by-step reduction treatment of l-cysteine under mild conditions for simultaneous photothermal conversion and photocatalytic reactions. The MoO3-x nanoparticles of low reduction degree are decorated on hydrophilic cotton cloth to prepare a MCML evaporator toward rapid water production, pollutant degradation, as well as electricity generation. The obtained MCML evaporator has a strong local light-to-heat effect, which can be attributed to excellent photothermal conversion via the local surface plasmon resonance effect in MoO3-x nanoparticles and the low heat loss of the evaporator. Meanwhile, the rich surface area of MoO3-x nanoparticles and the localized photothermal effect together effectively accelerate the photocatalytic degradation reaction of the antibiotic tetracycline. With the benefit of these advantages, the MCML evaporator attains a superior evaporation rate of 4.14 kg m-2 h-1, admirable conversion efficiency of 90.7%, and adequate degradation efficiency of 96.2% under 1 sun irradiation. Furthermore, after being rationally assembled with a thermoelectric module, the hybrid device can be employed to generate 1.0 W m-2 of electric power density. This work presents an effective complementary strategy for freshwater production and sewage treatment as well as electricity generation in remote and off-grid regions.
Collapse
Affiliation(s)
- Jiaxin Ren
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhipeng Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Qiang Li
- Luthou North Chemical Industries Co., Ltd., Sichuan 646605, China
| | - Ling Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huina Wang
- Zhongxing Innovative Material Technologies Co., Ltd., Shenzhen 518120, China
| | - Yiwen Li
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
16
|
Farid MU, Kharraz JA, Sun J, Boey MW, Riaz MA, Wong PW, Jia M, Zhang X, Deka BJ, Khanzada NK, Guo J, An AK. Advancements in Nanoenabled Membrane Distillation for a Sustainable Water-Energy-Environment Nexus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307950. [PMID: 37772325 DOI: 10.1002/adma.202307950] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Indexed: 09/30/2023]
Abstract
The emergence of nano innovations in membrane distillation (MD) has garnered increasing scientific interest. This enables the exploration of state-of-the-art nano-enabled MD membranes with desirable properties, which significantly improve the efficiency and reliability of the MD process and open up opportunities for achieving a sustainable water-energy-environment (WEE) nexus. This comprehensive review provides broad coverage and in-depth analysis of recent innovations in nano-enabled MD membranes, focusing on their role in achieving desirable properties, such as strong liquid-repellence, high resistance to scaling, fouling, and wetting, as well as efficient self-heating and self-cleaning functionalities. The recent developments in nano-enhanced photothermal-catalytic applications for water-energy co-generation within a single MD system are also discussed. Furthermore, the bottlenecks are identified that impede the scale-up of nanoenhanced MD membranes and a future roadmap is proposed for their sustainable commercialiation. This holistic overview is expected to inspire future research and development efforts to fully harness the potential of nano-enabled MD membranes to achieve sustainable integration of water, energy, and the environment.
Collapse
Affiliation(s)
- Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Min-Wei Boey
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Adil Riaz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Xinning Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| |
Collapse
|
17
|
Ji X, Fan X, Liu X, Gu J, Lu H, Luan Z, Liang J. Highly Elastic, Robust, and Efficient Hydrogel Solar Absorber against Harsh Environmental Impacts. NANO LETTERS 2024; 24:3498-3506. [PMID: 38440992 DOI: 10.1021/acs.nanolett.4c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Solar distillation is a promising approach for addressing water scarcity, but relentless stress/strain perturbations induced by wind and waves would inevitably cause structural damage to solar absorbers. Despite notable advances in efficient solar absorbers, there have been no reports of compliant and robust solar absorbers withstanding practical mechanical impacts. Herein, an elastic and robust hydrogel absorber that exhibited a high level of evaporation performance was fabricated by introducing ion-coordinated MXene nanosheets as photothermal conversion units and mechanically enhanced fillers. The ion-coordinated MXene nanosheets acting as strong cross-linking points provided excellent elasticity and robustness to the hydrogel absorber. As a result, the evaporation rate of hydrogel absorber, with a high initial value of 2.61 kg m-2 h-1 under one sun irradiation, remained at 2.15 kg m-2 h-1 under a 100% tensile strain state and 2.40 kg m-2 h-1 after 10 000 stretching-releasing cycles. This continuous and stable water desalination approach provides a promising device for actual seawater distillation.
Collapse
Affiliation(s)
- Xinyi Ji
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xiangqian Fan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Xue Liu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jianfeng Gu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Haolin Lu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Zhaohui Luan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jiajie Liang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
18
|
Xie JF, Li D, Huo HW, Huang YY, Wu P, Zhao QB, Zheng YM. Activating nickel foam with trace titanium oxide for enhanced water oxidation. Chem Commun (Camb) 2024; 60:2914-2917. [PMID: 38372145 DOI: 10.1039/d3cc05956a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Nickel-based electrocatalysts for water oxidation suffer from low activity and poor stability. In this work, 0.015 mg cm-2 TiO2 nanosheets anchored on Ni foam addressed these problems after electrochemical activation. In situ investigations, including Raman spectra, corroborated the enhanced generation of highly active Ni(III)-O-O species on Ni foam in the presence of trace TiO2.
Collapse
Affiliation(s)
- Jia-Fang Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Research Center of Urban Carbon Neutrality, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding Li
- CAS Key Laboratory of Urban Pollutant Conversion, Research Center of Urban Carbon Neutrality, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Wen Huo
- CAS Key Laboratory of Urban Pollutant Conversion, Research Center of Urban Carbon Neutrality, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Yin Huang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Peng Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Research Center of Urban Carbon Neutrality, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Quan-Bao Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Research Center of Urban Carbon Neutrality, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Ming Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Research Center of Urban Carbon Neutrality, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Li Q, Wang F, Zhang Y, Shi M, Zhang Y, Yu H, Liu S, Li J, Tan SC, Chen W. Biopolymers for Hygroscopic Material Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209479. [PMID: 36652538 DOI: 10.1002/adma.202209479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The effective management of atmospheric water will create huge value for mankind. Diversified and sustainable biopolymers that are derived from organisms provide rich building blocks for various hygroscopic materials. Here, a comprehensive review of recent advances in developing biopolymers for hygroscopic materials is provided. It is begun with a brief introduction of species diversity and the processes of obtaining various biopolymer materials from organisms. The fabrication of hygroscopic materials is then illustrated, with a specific focus on the use of biopolymer-derived materials as substrates to produce composites and the use of biopolymers as building blocks to fabricate composite gels. Next, the representative applications of biopolymer-derived hygroscopic materials for dehumidification, atmospheric water harvesting, and power generation are systematically presented. An outlook on future challenges and key issues worthy of attention are finally provided.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Fei Wang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yaoxin Zhang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering drive 1, Singapore, 117574, Singapore
| | - Mengjiao Shi
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering drive 1, Singapore, 117574, Singapore
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
20
|
Zhu Z, Xu J, Liang Y, Luo X, Chen J, Yang Z, He J, Chen Y. Bioinspired Solar-Driven Osmosis for Stable High Flux Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3800-3811. [PMID: 38350025 DOI: 10.1021/acs.est.3c08848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The growing global water crisis necessitates sustainable desalination solutions. Conventional desalination technologies predominantly confront environmental issues such as high emissions from fossil-fuel-driven processes and challenges in managing brine disposal during the operational stages, emphasizing the need for renewable and environmentally friendly alternatives. This study introduces and assesses a bioinspired, solar-driven osmosis desalination device emulating the natural processes of mangroves with effective contaminant rejection and notable productivity. The bioinspired solar-driven osmosis (BISO) device, integrating osmosis membranes, microporous absorbent paper, and nanoporous ceramic membranes, was evaluated under different conditions. We conducted experiments in both controlled and outdoor settings, simulating seawater with a 3.5 wt % NaCl solution. With a water yield of 1.51 kg m-2 h-1 under standard solar conditions (one sun), the BISO system maintained excellent salt removal and accumulation resistance after up to 8 h of experiments and demonstrated great cavitation resistance even at 58.14 °C. The outdoor test recorded a peak rate of 1.22 kg m-2 h-1 and collected 16.5 mL in 8 h, showing its practical application potential. These results highlight the BISO device's capability to address water scarcity using a sustainable approach, combining bioinspired design with solar power, presenting a viable pathway in renewable-energy-driven desalination technology.
Collapse
Affiliation(s)
- Zihao Zhu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianwei Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingzong Liang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory on Functional Soft Matter, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianglong Luo
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory on Functional Soft Matter, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianyong Chen
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory on Functional Soft Matter, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi Yang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory on Functional Soft Matter, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiacheng He
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory on Functional Soft Matter, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory on Functional Soft Matter, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
21
|
Xi M, Xu C, Zhong L, Liu C, Li N, Zhang S, Wang Z. Dipole-multipole plasmonic coupling between gold nanorods and titanium nitride nanoparticles for enhanced photothermal conversion. Phys Chem Chem Phys 2024; 26:6196-6207. [PMID: 38305020 DOI: 10.1039/d3cp05933b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The plasmonic photothermal conversion efficiency can be enhanced by coupling among plasmonic atoms or plasmonic molecules due to the amplified local electric field and extinction cross-section. Recently, it has been theoretically proved that hybridization between dipolar modes and higher order modes can provide higher enhancement than that among dipolar modes in terms of both near- and far-field, which may lead to a higher photothermal conversion rate. In this work, we systematically investigated the photothermal conversion enhancement of plasmonic coupling between a dipolar mode of a titanium nitride nanoparticle (TiN NP) and a higher order mode of a gold nanorod (Au NR), which was compared to that of coupling among TiN NPs' dipolar modes. We evaluated the photothermal conversion efficiency of dipole-dipole coupling and dipole-multipole coupling in the nanocluster under the illumination of a monochromatic laser of 808 nm wavelength and simulated solar light, respectively. Both experimental tests and numerical simulations suggested that the plasmonic dipole-multipole coupling exhibited higher enhancement in photothermal conversion than dipole-dipole plasmonic coupling.
Collapse
Affiliation(s)
- Min Xi
- Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| | - Chenyang Xu
- School of Mechatronics & Vehicle Engineering, Chongqing Jiaotong University, Chongqing, 400074, P. R. China.
| | - Li Zhong
- School of Mechatronics & Vehicle Engineering, Chongqing Jiaotong University, Chongqing, 400074, P. R. China.
| | - Cui Liu
- Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| | - Nian Li
- Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| | - Shudong Zhang
- Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| | - Zhenyang Wang
- Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| |
Collapse
|
22
|
Zhao G, Sun X, Fu G, Liu Q, Cui J, Jiang R, He J, Cao L, Jing T, Qin F, Tian M, Xu X. Engineering High-Tortuosity 3D Gradient Structure and CFD-Assisted Multifield Analysis for Solar Interfacial Evaporation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305855. [PMID: 37759418 DOI: 10.1002/smll.202305855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Solar interfacial evaporation is a promising method for solving the global shortage of fresh water. While 2D evaporators can efficiently localize solar-converted heat at the thin layer of the water-air interface, 3D solar evaporators can maximize energy reutilization while maintaining effective mass transport ability, few studies are conducted to explore the effect of gradient porosity on evaporation performance. In this study, a multifield assisted strategy based on a gradient 3D structure with high tortuosity is proposed, which creates a thermal field environment for efficient evaporation through high absorption of sunlight and excellent photothermal conversion and uses the gradient structure to optimize the internal pressure field to enhance water evaporation and transport. This hierarchically nanostructured solar absorber, with porosity inhomogeneity-induced pressure gradient and optimized temperature management, is a valuable design idea for manufacturing a more efficient 3D solar evaporator in the field of seawater desalination. Owing to the understanding of optimizing the dimension by various simulation parameters, the evaporation efficiencies of such structures are found to be 165.7%, suppressing the most evaporator. Moreover, it can provide new ideas and references for the fields of mass transfer and thermal management.
Collapse
Affiliation(s)
- Guanru Zhao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
| | - Xing Sun
- School of Astronautics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Gangwen Fu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qingsong Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jiaojiao Cui
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ruiyi Jiang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Junyuan He
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Leiqing Cao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Tingting Jing
- School of Astronautics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Fei Qin
- School of Astronautics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Miao Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xi Xu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science &Technology Building, No. 45th, Gaoxin South 9th Road, Nanshan District, Shenzhen City, 518063, China
| |
Collapse
|
23
|
Hu S, Qin L, Yi H, Lai C, Yang Y, Li B, Fu Y, Zhang M, Zhou X. Carbonaceous Materials-Based Photothermal Process in Water Treatment: From Originals to Frontier Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305579. [PMID: 37788902 DOI: 10.1002/smll.202305579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Indexed: 10/05/2023]
Abstract
The photothermal process has attracted considerable attention in water treatment due to its advantages of low energy consumption and high efficiency. In this respect, photothermal materials play a crucial role in the photothermal process. Particularly, carbonaceous materials have emerged as promising candidates for this process because of exceptional photothermal performance. While previous research on carbonaceous materials has primarily focused on photothermal evaporation and sterilization, there is now a growing interest in exploring the potential of photothermal effect-assisted advanced oxidation processes (AOPs). However, the underlying mechanism of the photothermal effect assisted by carbonaceous materials remains unclear. This review aims to provide a comprehensive review of the photothermal process of carbonaceous materials in water treatment. It begins by introducing the photothermal properties of carbonaceous materials, followed by a discussion on strategies for enhancing these properties. Then, the application of carbonaceous materials-based photothermal process for water treatment is summarized. This includes both direct photothermal processes such as photothermal evaporation and sterilization, as well as indirect photothermal processes that assisted AOPs. Meanwhile, various mechanisms assisted by the photothermal effect are summarized. Finally, the challenges and opportunities of using carbonaceous materials-based photothermal processes for water treatment are proposed.
Collapse
Affiliation(s)
- Shuyuan Hu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| |
Collapse
|
24
|
Wang M, Wei Y, Li R, Wang X, Wang C, Ren N, Ho SH. Sustainable Seawater Desalination and Energy Management: Mechanisms, Strategies, and the Way Forward. RESEARCH (WASHINGTON, D.C.) 2023; 6:0290. [PMID: 38125698 PMCID: PMC10732324 DOI: 10.34133/research.0290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Solar-driven desalination systems have been recognized as an effective technology to address the water crisis. Recently, evaporators prepared based on advanced manufacturing technologies have emerged as a promising tool in enhancing ocean energy utilization. In this review, we discussed the thermal conversion, energy flow, salt deposition mechanisms, and design strategies for solar-driven desalination systems, and explored how to improve the desalination performance and energy use efficiency of the systems through advanced manufacturing technologies. In future perspectives, we determined the feasibility of coupling solar-driven solar desalination systems with multi-stage energy utilization systems and emerging artificial intelligence technologies, for which conclusions are given and new directions for future desalination system development are envisioned. Finally, exciting opportunities and challenges in the face of basic research and practical implementation are discussed, providing promising solutions and blueprints for green and novel desalination technologies while achieving sustainable development.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment,
Harbin Institute of Technology, Harbin 150001, China
| | - Yen Wei
- Department of Chemistry,
Tsinghua University, Beijing 100084, China
| | - Ruoxin Li
- Department of Chemistry,
Tsinghua University, Beijing 100084, China
| | - Xin Wang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Chengyu Wang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment,
Harbin Institute of Technology, Harbin 150001, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment,
Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
25
|
Hou Y, Shah P, Constantoudis V, Gogolides E, Kappl M, Butt HJ. A super liquid-repellent hierarchical porous membrane for enhanced membrane distillation. Nat Commun 2023; 14:6886. [PMID: 37898660 PMCID: PMC10613234 DOI: 10.1038/s41467-023-42204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/28/2023] [Indexed: 10/30/2023] Open
Abstract
Membrane distillation (MD) is an emerging desalination technology that exploits phase change to separate water vapor from saline based on low-grade energy. As MD membranes come into contact with saline for days or weeks during desalination, membrane pores have to be sufficiently small (typically <0.2 µm) to avoid saline wetting into the membrane. However, in order to achieve high distillation flux, the pore size should be large enough to maximize transmembrane vapor transfer. These conflicting requirements of pore geometry pose a challenge to membrane design and currently hinder broader applications of MD. To address this fundamental challenge, we developed a super liquid-repellent membrane with hierarchical porous structures by coating a polysiloxane nanofilament network on a commercial micro-porous polyethersulfone membrane matrix. The fluorine-free nanofilament coating effectively prevents membrane wetting under high hydrostatic pressure (>11.5 bar) without compromising vapor transport. With large inner micro-porous structures, the nanofilament-coated membrane improves the distillation flux by up to 60% over the widely used commercially available membranes, while showing excellent salt rejection and operating stability. Our approach will allow the fabrication of high-performance composite membranes with multi-scale porous structures that have wide-ranging applications beyond desalination, such as in cleaning wastewater.
Collapse
Affiliation(s)
- Youmin Hou
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- School of Power and Mechanical Engineering, Wuhan University, 430072, Wuhan, China
| | - Prexa Shah
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | | | - Evangelos Gogolides
- Institute of Nanoscience and Nanotechnology NCSR Demokritos, 15341, Agia Paraskevi, Greece
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
26
|
He F, Tang Y, Lu Z, Hu Q, Yang Y, Li G, Li H, Chen K. An effective purification of double-effect distillation for bio-based pentamethylene diisocyanate. RSC Adv 2023; 13:31518-31527. [PMID: 37901260 PMCID: PMC10603822 DOI: 10.1039/d3ra06235j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023] Open
Abstract
Bio-based pentamethylene diisocyanate (PDI) is a new type of sustainable isocyanate, which has important applications in coatings, foams, and adhesives. Technical-economic analysis of the PDI distillation process can promote the industrialization of PDI. The thermal analysis of PDI facilitates the smooth running of the simulation process. A new PDI heat capacity prediction method was established. The distillation processes of a crude PDI solution by conventional distillation and double-effect distillation were studied. Countercurrent double-effect distillation showed the best energy-saving effects in all double-effect distillation. However, combined with total annual charge (TAC), parallel double-effect distillation was the optimal method for PDI purification. Parallel double-effect distillation can significantly reduce the TAC of production PDI, which is 33.39% lower than that of the conventional distillation. The study demonstrates a clear economic incentive for reducing the cost of PDI purification by parallel double-effect distillation.
Collapse
Affiliation(s)
- Feng He
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University Nanjing 211816 China
- Jiangsu Jicui Industrial Biotechnology Research Institute Co., Ltd Nanjing 211816 China
| | - Yibo Tang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Zhufeng Lu
- Gansu Yinguang Juyin Chemical Industry Co., Ltd Yinguang 730999 China
| | - Qixu Hu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Yue Yang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Ganlu Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Hui Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
27
|
Wu Y, Tang Y, Xu W, Su R, Qin Y, Jiao L, Wang H, Cui X, Zheng L, Wang C, Hu L, Gu W, Du D, Lin Y, Zhu C. Photothermal-Switched Single-Atom Nanozyme Specificity for Pretreatment and Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302929. [PMID: 37282757 DOI: 10.1002/smll.202302929] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 06/08/2023]
Abstract
Various applications lead to the requirement of nanozymes with either specific activity or multiple enzyme-like activities. To this end, intelligent nanozymes with freely switching specificity abilities hold great promise to adapt to complicated and changeable practical conditions. Herein, a nitrogen-doped carbon-supported copper single-atom nanozyme (named Cu SA/NC) with switchable specificity is reported. Atomically dispersed active sites endow Cu SA/NC with specific peroxidase-like activity at room temperature. Furthermore, the intrinsic photothermal conversion ability of Cu SA/NC enables the specificity switch by additional laser irradiation, where photothermal-induced temperature elevation triggers the expression of oxidase-like and catalase-like activity of Cu SA/NC. For further applications in practice, a pretreatment-and-sensing integration kit (PSIK) is constructed, where Cu SA/NC can successively achieve sample pretreatment and sensitive detection by switching from multi-activity mode to specific-activity mode. This study sets the foundation for nanozymes with switchable specificity and broadens the application scope in point-of-care testing.
Collapse
Affiliation(s)
- Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yinjun Tang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Rina Su
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ying Qin
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Lei Jiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hengjia Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xiaowen Cui
- Beijing Synchrotron Radiation Facility, Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Canglong Wang
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou, 730000, P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
28
|
Sah A, Sharma S, Saha S, Subramaniam C. Phonon-Engineered Hard-Carbon Nanoflorets Achieving Rapid and Efficient Solar-Thermal Based Water Evaporation and Space-Heating. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43810-43821. [PMID: 37682231 DOI: 10.1021/acsami.3c09078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Generation and utilization of green heat produced from solar energy demand broadband absorbers with the elusive combination of strong phonon-driven photon thermalization and, contrastingly, weak phonon-lattice thermal conductivity. Here, we report a new class of porous, nanostructured hard-carbon florets (NCFs) consisting of isotropically assembled conical microcavities for greater light entrapment and efficient broad-band absorption (95% over 250-2500 nm). Resembling marigolds, the NCF exhibits short-range graphitic order that promotes instantaneous and efficient solar-thermal conversion (ηSTC = 87%) while exhibiting long-range intrinsic disorder providing low thermal conductivity (1.5 W m-1 K-1) to minimize thermal loss (13%). Solution processable NCF coatings on arbitrarily substrates (filter paper, terracotta, Cu and Al tubes) generate surface temperature of 400 ± 2 K and exhibit high thermal effusance (519 W s0.5 m-2 K-1) to achieve highest combination of (a) rate of solar-driven interfacial water evaporation (Rw = 5.4 kg m-2 h-1, 2 sun), (b) solar-vapor conversion efficiency (ηSVC = 186%), and (c) ηSTC (87%) among known materials. Such robust performance is retained for beyond 30 days of continuous operation and under different solar power (1 sun to 5 sun). Furthermore, active space heating (outlet air temperature = 346 ± 3 K) using NCF coatings is demonstrated.
Collapse
Affiliation(s)
- Ananya Sah
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sumit Sharma
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Saha
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | |
Collapse
|
29
|
Li X, Feng J, Wang H, Petrescu FIT, Li Y. Self-Healing Hydrogel Membrane Provides a Strategy for the Steady Production of Clean Water from Organic Wastewater. MEMBRANES 2023; 13:648. [PMID: 37505014 PMCID: PMC10383306 DOI: 10.3390/membranes13070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
When the typical solar-driven hydrogel water evaporator treats the organic sewage, the organic pollutants will be accumulated in the evaporator and affect the evaporation performance. This issue is resolved by using silver-disulfide bonding to fix the silver oxide/silver (Ag2O/Ag) nanoparticles inside the polyacrylamide-acrylic acid hydrogel, resulting in the photocatalytic degradation of methyl orange and solar-driven water evaporation. Ag2O/Ag nanoparticles are a solar-thermal conversion material used to replace the traditional carbon material. On the one hand, the heterojunction structure of Ag2O/Ag enhances the separation ability of the photogenerated carriers, thereby increasing the photocatalytic efficiency. On the other hand, the surface of the nanoparticles is grafted with N, N'-bis(acryloyl) cystamine and becomes the crosslinking agent which is fixed in the hydrogel. Meanwhile, the inverted pyramid structure can be built at the surface of the hydrogel by soft imprinting technology. This kind of structure has excellent light trapping performance, which can increase the efficiency of Ag2O/Ag photocatalysis. Furthermore, the dynamic reversible coordination effect between Fe3+ and carboxyl realizes the self-healing capability of the hydrogel. Here are the properties of hydrogel: the fracture stress is 0.35 MPa, the fracture elongation is 1320%, the evaporation rate is 1.2 kg·m-2·h-1, and the rate of the photocatalytic degradation of methyl orange is 96% in 3 h. This self-healing hydrogel membrane provides a strategy to steadily get clean water from organic sewage.
Collapse
Affiliation(s)
- Xin Li
- The Key Laboratory of Food Colloids and Biotechnology, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jionghao Feng
- The Key Laboratory of Food Colloids and Biotechnology, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Haijun Wang
- The Key Laboratory of Food Colloids and Biotechnology, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | | | - Ying Li
- The Key Laboratory of Food Colloids and Biotechnology, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
30
|
Lv F, Miao J, Hu J, Orejon D. 3D Solar Evaporation Enhancement by Superhydrophilic Copper Foam Inverted Cone and Graphene Oxide Functionalization Synergistic Cooperation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208137. [PMID: 37046186 DOI: 10.1002/smll.202208137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Solar evaporation has become a promising and sustainable technique for harvesting freshwater from seawater and wastewater. However, the applicability and efficacy of solar evaporation need further improvement to achieve high production closer to theoretical limits in compact systems. A 3D (three-dimensional) hierarchical inverted conical solar evaporation is developed, which consists of a 3D copper foam skeleton cone decorated with micro-/nano-structures functionalized with graphene oxide, fabricated via easy and scalable wet oxidation, impregnation, and drying at room temperature. The proposed configuration empowers high-efficiency solar absorption, continuous liquid film spreading and transport, enhanced interfacial local evaporation, and rapid vapor diffusion through the pores. More notably, the 3D conical evaporator realizes thermal localization at the skeleton interface and allows evaporation to occur along the complete structure with unimpeded liquid and vapor rapid diffusion. The solar-thermal evaporation efficiency under 1-Sun is as high as 93% with a maximum evaporation rate per unit area of 1.71 kg·m-2 ·h-1 . This work highlights the benefits of synergistic cooperation of an easily scalable 3D hierarchical functiomicro-/nano-structured copper foam skeletons and functionalized graphene oxide for high-efficient solar evaporation of interest to numerous applications.
Collapse
Affiliation(s)
- Fengyong Lv
- School of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jie Miao
- School of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Daniel Orejon
- School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, Edinburgh, Scotland, EH9 3FD, UK
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
31
|
Abstract
A significant challenge in the development of functional materials is understanding the growth and transformations of anisotropic colloidal metal nanocrystals. Theory and simulations can aid in the development and understanding of anisotropic nanocrystal syntheses. The focus of this review is on how results from first-principles calculations and classical techniques, such as Monte Carlo and molecular dynamics simulations, have been integrated into multiscale theoretical predictions useful in understanding shape-selective nanocrystal syntheses. Also, examples are discussed in which machine learning has been useful in this field. There are many areas at the frontier in condensed matter theory and simulation that are or could be beneficial in this area and these prospects for future progress are discussed.
Collapse
Affiliation(s)
- Kristen A Fichthorn
- Department of Chemical Engineering and Department of Physics The Pennsylvania State University University Park, Pennsylvania 16803 United States
| |
Collapse
|
32
|
Song J, Liu Z, Boñgol JP, Zhang Z, Yeung KL. An atmospheric water harvester with fast and energy‐saving water removal and recovery. BIOSURFACE AND BIOTRIBOLOGY 2023. [DOI: 10.1049/bsb2.12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Affiliation(s)
- Jiayu Song
- Department of Chemical and Biological Engineering the Hong Kong University of Science and Technology Kowloon Hong Kong
| | - Zhang Liu
- Division of Environment and Sustainability the Hong Kong University of Science and Technology Kowloon Hong Kong
| | - Jhoanne Pedres Boñgol
- Department of Chemical and Biological Engineering the Hong Kong University of Science and Technology Kowloon Hong Kong
| | - Zhaoxin Zhang
- Division of Emerging Interdisciplinary Areas The Hong Kong University of Science and Technology Kowloon Hong Kong
| | - King Lun Yeung
- Department of Chemical and Biological Engineering the Hong Kong University of Science and Technology Kowloon Hong Kong
- Division of Environment and Sustainability the Hong Kong University of Science and Technology Kowloon Hong Kong
- HKUST Shenzhen‐Hong Kong Collaborative Innovation Research Institute Shenzhen Guangdong China
| |
Collapse
|
33
|
Lv J, Xie J, Mohamed AGA, Zhang X, Feng Y, Jiao L, Zhou E, Yuan D, Wang Y. Solar utilization beyond photosynthesis. Nat Rev Chem 2022; 7:91-105. [PMID: 37117911 DOI: 10.1038/s41570-022-00448-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Natural photosynthesis is an efficient biochemical process which converts solar energy into energy-rich carbohydrates. By understanding the key photoelectrochemical processes and mechanisms that underpin natural photosynthesis, advanced solar utilization technologies have been developed that may be used to provide sustainable energy to help address climate change. The processes of light harvesting, catalysis and energy storage in natural photosynthesis have inspired photovoltaics, photoelectrocatalysis and photo-rechargeable battery technologies. In this Review, we describe how advanced solar utilization technologies have drawn inspiration from natural photosynthesis, to find sustainable solutions to the challenges faced by modern society. We summarize the uses of advanced solar utilization technologies, such as converting solar energy to electrical and chemical energy, electrochemical storage and conversion, and associated thermal tandem technologies. Both the foundational mechanisms and typical materials and devices are reported. Finally, potential future solar utilization technologies are presented that may mimic, and even outperform, natural photosynthesis.
Collapse
|
34
|
Sayed H, Aly AH, Krauss TF. Photonic crystals umbrella for thermal desalination: simulation study. Sci Rep 2022; 12:21499. [PMID: 36513708 DOI: 10.1038/s41598-022-24336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
For sustainable water desalination, there is a worldwide push towards solar thermal desalination with the objective to limit the amount of consumed energy in other desalination technologies and maximize the resulting freshwater from saline water. Here, we demonstrate a photonic crystals solar umbrella that covers the saline water surface, demanding to absorb all the incident electromagnetic wave and remit it as greater wavelengths in the range of mid-infrared (MIR) to be highly absorbed and localized close to the water surface. The temperature of the saline water with a refractive index of 1.3326 is reached to [Formula: see text] after one hour of illumination with the incident power intensity equal 680 [Formula: see text]. Hence, by adding one-dimensional PCs the surface temperature is reached [Formula: see text]. Also, by adding 2D PCs to allow the vapor to flow up through the pores of the structure with the diameter of the pore equal to 500 nm, the surface temperature is reached [Formula: see text] after three hour of illumination. Thus, the effective use of electromagnetic waves and warmth localization at the surface of saline water is accomplished by radiative coupling with the effect of 2D PCs. We design the considered structure by using COMSOL multiphysics which based on the finite element method (FEM).
Collapse
Affiliation(s)
- Hassan Sayed
- TH-PPM Group, Physics Department, Faculty of Sciences, Beni-Suef University, Beni Suef, Egypt
| | - Arafa H Aly
- TH-PPM Group, Physics Department, Faculty of Sciences, Beni-Suef University, Beni Suef, Egypt.
| | - Thomas F Krauss
- Department of Physics, University of York, York, YO10 5DD, UK
| |
Collapse
|
35
|
Onggowarsito C, Feng A, Mao S, Nguyen LN, Xu J, Fu Q. Water Harvesting Strategies through Solar Steam Generator Systems. CHEMSUSCHEM 2022; 15:e202201543. [PMID: 36163592 PMCID: PMC10098618 DOI: 10.1002/cssc.202201543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/25/2022] [Indexed: 05/27/2023]
Abstract
Solar steam generator (SSG) systems have attracted increasing attention, owing to its simple manufacturing, material abundance, cost-effectiveness, and environmentally friendly freshwater production. This system relies on photothermic materials and water absorbing substrates for a clean continuous distillation process. To optimize this process, there are factors that are needed to be considered such as selection of solar absorber and water absorbent materials, followed by micro/macro-structural system design for efficient water evaporation, floating, and filtration capability. In this contribution, we highlight the general interfacial SSG concept, review and compare recent progresses of different SSG systems, as well as discuss important factors on performance optimization. Furthermore, unaddressed challenges such as SSG's cost to performance ratio, filtration of untreatable micropollutants/microorganisms, and the need of standardization testing will be discussed to further advance future SSG studies.
Collapse
Affiliation(s)
- Casey Onggowarsito
- Centre for Technology in Water and WastewaterSchool of Civil and Environmental EngineeringUniversity of Technology Sydney15 BroadwayUltimoNSW 2007Australia
| | - An Feng
- Centre for Technology in Water and WastewaterSchool of Civil and Environmental EngineeringUniversity of Technology Sydney15 BroadwayUltimoNSW 2007Australia
| | - Shudi Mao
- Centre for Technology in Water and WastewaterSchool of Civil and Environmental EngineeringUniversity of Technology Sydney15 BroadwayUltimoNSW 2007Australia
| | - Luong Ngoc Nguyen
- Centre for Technology in Water and WastewaterSchool of Civil and Environmental EngineeringUniversity of Technology Sydney15 BroadwayUltimoNSW 2007Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular DesignSchool of Chemical EngineeringUNSW InstitutionSydneyNSW 2052Australia
| | - Qiang Fu
- Centre for Technology in Water and WastewaterSchool of Civil and Environmental EngineeringUniversity of Technology Sydney15 BroadwayUltimoNSW 2007Australia
| |
Collapse
|
36
|
Zhang Y, Guo F. Breaking the Saturated Vapor Layer with a Thin Porous Membrane. MEMBRANES 2022; 12:1231. [PMID: 36557138 PMCID: PMC9784513 DOI: 10.3390/membranes12121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The main idea of membrane distillation is to use a porous hydrophobic membrane as a barrier that isolates vapor from aqueous solutions. It is similar to the evaporation process from a free water surface but introduces solid-liquid interfaces and solid-vapor interfaces to a liquid-vapor interface. The transmembrane mass flux of a membrane-distillation process is affected by the membrane's intrinsic properties and the temperature gradient across the membrane. It is interesting and important to know whether the evaporation process of membrane distillation is faster or slower than that of a free-surface evaporation under the same conditions and know the capacity of the transmembrane mass flux of a membrane-distillation process. In this work, a set of proof-of-principle experiments with various water surface/membrane interfacial conditions is performed. The effect and mechanism of membrane-induced evaporation are investigated. Moreover, a practical engineering model is proposed based on mathematical fitting and audacious simplification, which reflects the capacity of transmembrane flux.
Collapse
|
37
|
Synergistic Enhanced Solar-Driven Water Purification and CO2 Reduction via Photothermal Catalytic Membrane Distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Deng F, Chen Z, Wang C, Xiang C, Poredoš P, Wang R. Hygroscopic Porous Polymer for Sorption-Based Atmospheric Water Harvesting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204724. [PMID: 36209387 PMCID: PMC9685462 DOI: 10.1002/advs.202204724] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Sorption-based atmospheric water harvesting (SAWH) holds huge potential due to its freshwater capabilities for alleviating water scarcity stress. The two essential parts, sorbent material and system structure, dominate the water sorption-desorption performance and the total water productivity for SAWH system together. Attributed to the superiorities in aspects of sorption-desorption performance, scalability, and compatibility in practical SAWH devices, hygroscopic porous polymers (HPPs) as next-generation sorbents are recently going through a vast surge. However, as HPPs' sorption mechanism, performance, and applied potential lack comprehensive and accurate guidelines, SAWH's subsequent development is restricted. To address the aforementioned problems, this review introduces HPPs' recent development related to mechanism, performance, and application. Furthermore, corresponding optimized strategies for both HPP-based sorbent bed and coupling structural design are proposed. Finally, original research routes are directed to develop next-generation HPP-based SAWH systems. The presented guidelines and insights can influence and inspire the future development of SAWH technology, further achieving SAWH's practical applications.
Collapse
Affiliation(s)
- Fangfang Deng
- Institute of Refrigeration and CryogenicsMOE Engineering Research Center of Solar Power and RefrigerationShanghai Jiao Tong UniversityShanghai200040China
| | - Zhihui Chen
- Institute of Refrigeration and CryogenicsMOE Engineering Research Center of Solar Power and RefrigerationShanghai Jiao Tong UniversityShanghai200040China
| | - Chenxi Wang
- Institute of Refrigeration and CryogenicsMOE Engineering Research Center of Solar Power and RefrigerationShanghai Jiao Tong UniversityShanghai200040China
| | - Chengjie Xiang
- Institute of Refrigeration and CryogenicsMOE Engineering Research Center of Solar Power and RefrigerationShanghai Jiao Tong UniversityShanghai200040China
| | - Primož Poredoš
- Institute of Refrigeration and CryogenicsMOE Engineering Research Center of Solar Power and RefrigerationShanghai Jiao Tong UniversityShanghai200040China
| | - Ruzhu Wang
- Institute of Refrigeration and CryogenicsMOE Engineering Research Center of Solar Power and RefrigerationShanghai Jiao Tong UniversityShanghai200040China
| |
Collapse
|
39
|
Yuan Q, Huang LZ, Wang PL, Mai T, Ma MG. Cellulose nanofiber/molybdenum disulfide aerogels for ultrahigh photothermal effect. J Colloid Interface Sci 2022; 624:70-78. [PMID: 35660912 DOI: 10.1016/j.jcis.2022.05.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022]
Abstract
The photothermal materials have a broad range of applications in crude oil spills treatment, desalination, and photothermal therapy. However, the rational construction of aerogels with exceptional photothermal performance is highly desired yet still challenging. Herein, a class of stable aerogels comprised of molybdenum disulfide (MoS2) nanoflowers and cellulose nanofibers (CNFs) was fabricated, affording extraordinary light-to-heat energy conversion capability. Benefiting from the intercalated porous structure, the resultant cellulose nanofibers/molybdenum disulfide (CNF/MoS2) aerogels deliver an ultrahigh temperature output up to 260.4 °C with near infrared (NIR) laser power densities of 0.8 W cm-2. Remarkably, when NIR laser power density increased to 1.0 W cm-2, the aerogels began to burn, achieving the superhigh surface temperature of ∼ 690 °C. The combustion process of CNF/MoS2 composite aerogels was evaluated in detail. Therefore, this work provides experiment evidence and theoretical basis for the rational applications of photothermal materials at high temperature in future.
Collapse
Affiliation(s)
- Qi Yuan
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Ling-Zhi Huang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Pei-Lin Wang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Tian Mai
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Ming-Guo Ma
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China.
| |
Collapse
|
40
|
Sadoun AK, Gebreil A, Eltabey RM, Kospa DA, Ahmed AI, Ibrahim AA. Silver sulfide decorated carbonaceous sawdust/ES-PANI composites as salt-resistant solar steam generator. RSC Adv 2022; 12:28843-28852. [PMID: 36320508 PMCID: PMC9552864 DOI: 10.1039/d2ra04362a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Solar steam generation (SSG) is a potential approach for resolving the global water and energy crisis while causing the least amount of environmental damage. However, using adaptable photothermal absorbers with salt resistance through a simple, scalable, and cost-effective production approach is difficult. Herein, taking advantage of the ultra-fast water transportation in capillaries, and the large seawater storage capacity of wood, we develop a highly efficient natural evaporator. The wood wastes (sawdust) were carbonized at low temperatures to fabricate a green and low-cost carbonaceous porous material (CW). To enhance the salt resistance in high saline water, this evaporator was coated with polyaniline emeraldine salt (ES-PANI) which was synthesized through facile and cost-effective one-step oxidation of aniline. Furthermore, the composite was decorated with silver sulfide to increase the evaporation rate which reached up to 1.1 kg m−2 h−1 under 1 sun irradiation with 91.5% efficiency. Besides, the evaporator performs exceptionally well over 10 cycles due to the salt resistance capability of ES-PANI which generates a “Donnan exclusion” effect against cations in saline water. The Ag2S@PANI/CW evaporator may be a viable large-scale generator of drinking water due to its high efficiency for energy conversion, simple and low-cost fabrication approach, salt-resistance, and durability. Solar steam generation (SSG) is a potential approach for resolving the global water and energy crisis while causing the least amount of environmental damage.![]()
Collapse
Affiliation(s)
- Ahmed K. Sadoun
- Department of Chemistry, Faculty of Science, Mansoura UniversityAl-Mansoura 35516Egypt+20-1091313272
| | - Ahmed Gebreil
- Department of Chemistry, Faculty of Science, Mansoura UniversityAl-Mansoura 35516Egypt+20-1091313272,Nile Higher Institutes of Engineering and TechnologyEl-MansouraEgypt
| | - Rania M. Eltabey
- Department of Chemistry, Faculty of Science, Mansoura UniversityAl-Mansoura 35516Egypt+20-1091313272
| | - Doaa A. Kospa
- Department of Chemistry, Faculty of Science, Mansoura UniversityAl-Mansoura 35516Egypt+20-1091313272
| | - Awad I. Ahmed
- Department of Chemistry, Faculty of Science, Mansoura UniversityAl-Mansoura 35516Egypt+20-1091313272
| | - Amr Awad Ibrahim
- Department of Chemistry, Faculty of Science, Mansoura UniversityAl-Mansoura 35516Egypt+20-1091313272
| |
Collapse
|
41
|
Wang Q, Zhou R, Sun J, Liu J, Zhu Q. Naturally Derived Janus Cellulose Nanomaterials: Anisotropic Cellulose Nanomaterial Building Blocks and Their Assembly into Asymmetric Structures. ACS NANO 2022; 16:13468-13491. [PMID: 36075202 DOI: 10.1021/acsnano.2c04883] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Naturally derived cellulose nanomaterials (CNMs) with desirable physicochemical properties have drawn tremendous attention for their versatile applications in a broad range of fields. More recently, Janus amphiphilic cellulose nanomaterial particles with asymmetric structures (i.e., reducing and nonreducing ends and crystalline and amorphous domains) have been in the spotlight, offering a rich and sophisticated toolbox for Janus nanomaterials. With careful surface and interfacial engineering, Janus CNM particles have demonstrated great potential as surface modifiers, emulsifiers, stabilizers, compatibilizers, and dispersants in emulsions, nanocomposites, and suspensions. Naturally derived Janus CNM particles offer a fascinating opportunity for scaling up the production of self-standing Janus CNM membranes. Nevertheless, most Janus CNM membranes to date are constructed by asymmetric fabrication or asymmetric modification without considering the Janus traits of CNM particles. More future research should focus on the self-assembly of Janus CNM particles into bulk self-standing Janus CNM membranes to enable more straightforward and sustainable approaches for Janus membranes. This review explores the fabrication, structure-property relationship, and Janus configuration mechanisms of Janus CNM particles and membranes. Janus CNM membranes are highlighted for their versatile applications in liquid, thermal, and light management. This review also highlights the significant advances and future perspectives in the construction and application of sustainable Janus CNM particles and membranes.
Collapse
Affiliation(s)
- Qianqian Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Jinan 250353, People's Republic of China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, People's Republic of China
| | - Rui Zhou
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qianqian Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Jinan 250353, People's Republic of China
| |
Collapse
|
42
|
Ma X, Jia X, Yao G, Wen D. Double-Sided Suspending Evaporator with Top Water Supply for Concurrent Solar Evaporation and Salt Harvesting. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:12843-12851. [PMID: 36189112 PMCID: PMC9516765 DOI: 10.1021/acssuschemeng.2c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Solar evaporation of seawater is promising to mitigate the fresh water scarcity problem in a green and sustainable way. However, salt accumulation on the photothermal material prevents the system continuous operation, and the water supply driven by capillary force severely limits the scale-up of the evaporators. Here, we demonstrate a double-sided suspending evaporator with top water supply and a surface water distributor for high-efficient concurrent solar evaporation and salt harvesting for large area applications. Both sides of the evaporator can evaporate water with automatic salt harvesting from the edge concurrently. Top water supply gets away from the limitation of capillary force for a larger area application and completely cuts off the heat leak to the bulk water below for higher efficiency. The energy conversion efficiency reaches 95.7% at 1.40 kg·m-2·h-1 with deionized water under 1 sun with a remarkable low surface average temperature (28.2 °C). Based on the simulation and experiment, a novel radial arterial water distribution system is developed to efficiently distribute water on a larger evaporation surface. The water distribution system alters the water transport path in the evaporation surface, leading to salt accumulation on the surface body, where salt is unable to be harvested by gravity automatically. This problem is further resolved by cutting out the salt accumulation area (16.4%) on the surface to create a floriform evaporator, which forcedly exposes the salt at the edge for harvesting. Up to70 h continuous solar evaporation from salt water at a rate of 1.04 kg·m-2·h-1 with concurrent salt collection on this floriform evaporator is achieved. This work resolves water supply and salt accumulation problems in scaling up the solar evaporators and advances the structural design of evaporators for high-efficient large area applications.
Collapse
Affiliation(s)
- Xiaolong Ma
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Xiaodong Jia
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Guice Yao
- School
of Aeronautical Science and Engineering, Beihang University, Beijing 100191, China
| | - Dongsheng Wen
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
- School
of Aeronautical Science and Engineering, Beihang University, Beijing 100191, China
- Lehrstuhl
für Thermodynamik, Technical University
of Munich, Garching 85748, Germany
| |
Collapse
|
43
|
Abramovich S, Dutta D, Rizza C, Santoro S, Aquino M, Cupolillo A, Occhiuzzi J, Russa MFL, Ghosh B, Farias D, Locatelli A, Boukhvalov DW, Agarwal A, Curcio E, Bar Sadan M, Politano A. NiSe and CoSe Topological Nodal-Line Semimetals: A Sustainable Platform for Efficient Thermoplasmonics and Solar-Driven Photothermal Membrane Distillation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201473. [PMID: 35808958 DOI: 10.1002/smll.202201473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The control of heat at the nanoscale via the excitation of localized surface plasmons in nanoparticles (NPs) irradiated with light holds great potential in several fields (cancer therapy, catalysis, desalination). To date, most thermoplasmonic applications are based on Ag and Au NPs, whose cost of raw materials inevitably limits the scalability for industrial applications requiring large amounts of photothermal NPs, as in the case of desalination plants. On the other hand, alternative nanomaterials proposed so far exhibit severe restrictions associated with the insufficient photothermal efficacy in the visible, the poor chemical stability, and the challenging scalability. Here, it is demonstrated the outstanding potential of NiSe and CoSe topological nodal-line semimetals for thermoplasmonics. The anisotropic dielectric properties of NiSe and CoSe activate additional plasmonic resonances. Specifically, NiSe and CoSe NPs support multiple localized surface plasmons in the optical range, resulting in a broadband matching with sunlight radiation spectrum. Finally, it is validated the proposed NiSe and CoSe-based thermoplasmonic platform by implementing solar-driven membrane distillation by adopting NiSe and CoSe nanofillers embedded in a polymeric membrane for seawater desalination. Remarkably, replacing Ag with NiSe and CoSe for solar membrane distillation increases the transmembrane flux by 330% and 690%, respectively. Correspondingly, costs of raw materials are also reduced by 24 and 11 times, respectively. The results pave the way for the advent of NiSe and CoSe for efficient and sustainable thermoplasmonics and related applications exploiting sunlight within the paradigm of the circular blue economy.
Collapse
Affiliation(s)
- Shir Abramovich
- Department of Chemistry, Ben-Gurion University, Be'er Sheva, 8410501, Israel
| | - Debasis Dutta
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Carlo Rizza
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - Sergio Santoro
- Department of Environmental Engineering, University of Calabria, Via Pietro Bucci CUBO 44A, Rende, CS, 87036, Italy
| | - Marco Aquino
- Department of Environmental Engineering, University of Calabria, Via Pietro Bucci CUBO 44A, Rende, CS, 87036, Italy
| | - Anna Cupolillo
- Department of Physics, University of Calabria, Via P. Bucci cubo 31/C, Rende, CS, 87036, Italy
| | - Jessica Occhiuzzi
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - Mauro Francesco La Russa
- Department of Biology, Ecology, and Earth Sciences, Università della Calabria, Via Pietro Bucci, cubo 12/B, Arcavacata di, Rende, CS, 87036, Italy
| | - Barun Ghosh
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Daniel Farias
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto "Nicolás Cabrera", Campus de Cantoblanco, Madrid, 28049, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Andrea Locatelli
- Elettra-Sincrotrone S.C.p.A, S.S. 14-km 163.5 in AREA Science Park, Trieste, 34149, Italy
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Danil W Boukhvalov
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University, Be'er Sheva, 8410501, Israel
| | - Amit Agarwal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Efrem Curcio
- Department of Environmental Engineering, University of Calabria, Via Pietro Bucci CUBO 44A, Rende, CS, 87036, Italy
- Seligenda Membrane Technologies s.r.l., c/o University of Calabria, Via P. Bucci Cubo 45A, Rende, CS, 87036, Italy
| | - Maya Bar Sadan
- Department of Chemistry, Ben-Gurion University, Be'er Sheva, 8410501, Israel
| | - Antonio Politano
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| |
Collapse
|
44
|
Li H, Liu Y, Hu Y, Zhu C, Huang X, Wu J, Greiner A, Xu Z. Magnetic‐controllable Janus fibrous membranes with wind‐resistant floatability for airflow‐enhanced solar evaporation. JOURNAL OF POLYMER SCIENCE 2022; 60:2309-2317. [DOI: 10.1002/pol.20210942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/24/2022] [Indexed: 02/05/2023]
Abstract
AbstractInterfacial solar evaporation has been widely regarded as a promising pathway to desalinate seawater without secondary pollution and additional carbon emission. However, one of the challenges rarely considered is the floating stability and remote controllability of the evaporator in the face of wind and waves at the seawater surface. Herein, we demonstrate magnetic Janus membranes (MJMs) with remotely magnetic controllability and wind‐resistant floatation for enhanced interfacial solar evaporation in airflow condition. These membranes are fabricated by sequential electrospinning of a hydrophobic Fe3O4‐embedded polyvinylidene fluoride (PVDF) layer and a hydrophilic polyacrylonitrile (PAN) layer. Due to the superparamagnetism of Fe3O4, our MJMs can be remotely manipulated by a magnet and can float in situ with the aid of a magnetic field, even facing the blast of airflow with a speed of 1.75 m/s. Moreover, the MJMs realize an enhanced vapor diffusion under airflow (v = 0.5 m/s) and show a water evaporation rate of 1.39 ± 0.06 kg∙m−2∙h−1 under one sun, which is 40.4% higher than that in windless condition. This work provides a promising material solution with magnetic design for the practical offshore application of Janus membranes in interfacial solar evaporation.
Collapse
Affiliation(s)
- Hao‐Nan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
- The “Belt and Road” Sino‐Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers Zhejiang University Hangzhou China
| | - Yu‐Wei Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
- The “Belt and Road” Sino‐Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers Zhejiang University Hangzhou China
| | - Ye‐Qi Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
- The “Belt and Road” Sino‐Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers Zhejiang University Hangzhou China
| | - Cheng‐Ye Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
- The “Belt and Road” Sino‐Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers Zhejiang University Hangzhou China
| | - Xiao‐Jun Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
- The “Belt and Road” Sino‐Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers Zhejiang University Hangzhou China
| | - Jian Wu
- Department of Chemistry Zhejiang University Hangzhou China
| | - Andreas Greiner
- Macromolecular Chemistry and Bavarian Polymer Institute University of Bayreuth Bayreuth Germany
| | - Zhi‐Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
- The “Belt and Road” Sino‐Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers Zhejiang University Hangzhou China
| |
Collapse
|
45
|
Santoro S, Avci AH, Politano A, Curcio E. The advent of thermoplasmonic membrane distillation. Chem Soc Rev 2022; 51:6087-6125. [PMID: 35789347 DOI: 10.1039/d0cs00097c] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Freshwater scarcity is a vital societal challenge related to climate change, population pressure, and agricultural and industrial demands. Therefore, sustainable desalination/purification of salty/contaminated water for human uses is particularly relevant. Membrane distillation is an emerging hybrid thermal-membrane technology with the potential to overcome the drawbacks of conventional desalination by a synergic exploitation of the water-energy nexus. Although membrane distillation is considered a green technology, efficient heat management remains a critical concern affecting the cost of the process and hindering its viability at large scale. A multidisciplinary approach that involves materials chemistry, physical chemistry, chemical engineering, and materials and polymer science is required to solve this problem. The combination of solar energy with membrane distillation is considered a potentially feasible low-cost approach for providing high-quality freshwater with a low carbon footprint. In particular, recent discoveries about efficient light-to-heat conversion in nanomaterials have opened unprecedented perspectives for the implementation of sunlight-based renewable energy in membrane distillation. The integration of nanofillers enabling photothermal effects into membranes has been demonstrated to be able to significantly enhance the energy efficiency without impacting on economic costs. Here, we provide a comprehensive overview on the state of the art, the opportunities, open challenges and pitfalls of the emerging field of solar-driven membrane distillation. We also assess the peculiar physicochemical properties and synthesis scalability of photothermal materials, as well as the strategies for their integration into polymeric nanocomposite membranes enabling efficient light-to-heat conversion and freshwater.
Collapse
Affiliation(s)
- Sergio Santoro
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| | - Ahmet H Avci
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| | - Antonio Politano
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila (AQ), Italy.
| | - Efrem Curcio
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| |
Collapse
|
46
|
Ibrahim I, Seo DH, Park MJ, Angeloski A, McDonagh A, Bendavid A, Shon HK, Tijing L. Highly stable gold nanolayer membrane for efficient solar water evaporation under a harsh environment. CHEMOSPHERE 2022; 299:134394. [PMID: 35331744 DOI: 10.1016/j.chemosphere.2022.134394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Interfacial solar water evaporation has attracted tremendous attention for sunlight harvesting for water purification. However, salt formation and stability of the photothermal materials (PTMs) remain a challenge that need addressing before bringing this technology to real-world applications. In this work, a nanoscale thin film of gold (Au) on a polytetrafluoroethylene (PTFE) membrane has been prepared using a magnetic sputtering technique. The fabricated membrane displays a robust mechanical strength and chemical stability arising from the adhesiveness of the thin film Au nanolayer on the PTFE membrane as well as the chemical inertness of the noble metal PTM. The Au nanolayer/PTFE membrane with cellulose sponge substrate resulted in an evaporation rate of 0.88 kg m-2 h-1 under 1 sun intensity. Remarkable salt ion rejection of 99.9% has been obtained, meeting the required standard for drinking water. Moreover, the membrane exhibited excellent stability and reusability in natural seawater and high salinity brine (150 g/L) and even in severe conditions (acidic, basic, and oxidized). No noticeable salt formation was observed on the evaporator surface after the tests. These findings reveal promising prospects for using a magnetron sputtering technique to fabricate a stable photothermal membrane for seawater and high salinity brine desalination.
Collapse
Affiliation(s)
- Idris Ibrahim
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, 15 Broadway, Sydney, NSW, 2007, Australia
| | - Dong Han Seo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, 15 Broadway, Sydney, NSW, 2007, Australia; Energy Materials & Devices, Korea Institute of Energy Technology (KENTECH), Naju, Republic of Korea.
| | - Myoung Jun Park
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, 15 Broadway, Sydney, NSW, 2007, Australia
| | - Alexander Angeloski
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, 2007, Australia
| | - Andrew McDonagh
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, 2007, Australia
| | - Avi Bendavid
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, NSW, 2070, Australia; School of Materials Science and Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, 15 Broadway, Sydney, NSW, 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Sydney, NSW, 2007, Australia
| | - Leonard Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, 15 Broadway, Sydney, NSW, 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
47
|
Ding S, Zhang J, Liu C, Li N, Zhang S, Wang Z, Xi M. Investigation of Plasmonic-Enhanced Solar Photothermal Effect of Au NR@PVDF Micro-/Nanofilms. ACS OMEGA 2022; 7:20750-20760. [PMID: 35755366 PMCID: PMC9219058 DOI: 10.1021/acsomega.2c01146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Gold nanospheres (Au NSs) and gold nanorods (Au NRs) are traditional noble metal plasmonic nanomaterials. Particularly, Au NRs with tunable longitudinal plasmon resonance from the visible to the near-infrared (NIR) range were suitable for highly efficient photothermal applications due to the extended light-receiving range. In this work, we synthesized Au NRs and Au NSs of similar volumes and subsequently developed them into Au NR/poly(vinylidene fluoride) (PVDF) and Au NS/PVDF nanofilms, both of which exhibited excellent solar photothermal performance evaluated by solar photothermal experiments. We found that the Au NR/PVDF nanofilm showed a higher solar photothermal performance than the Au NS/PVDF nanofilm. Through detailed analysis, such as morphological characterization, optical measurement, and finite element method (FEM) modeling, we found that the plasmonic coupling effects inside the aggregated Au NR nanoclusters contributed to the spectral blue shifts and intensified the photothermal performance. As compared to Au NS/PVDF nanofilms, the Au NR/PVDF nanofilm exhibited a higher efficient light-to-heat conversion rate because of the extended light-receiving range and high absorbance, as a result of the strong plasmonic interactions inside nanoclusters, which was further validated by monochromatic laser photothermal experiments and FEM simulations. Our work proved that the Au NRs have huge potential for plasmonic solar photothermal applications and are envisioned for novel plasmonic applications.
Collapse
Affiliation(s)
- Shenyi Ding
- School
of Mechatronics & Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Jixiang Zhang
- School
of Mechatronics & Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Cui Liu
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Nian Li
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Shudong Zhang
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Zhenyang Wang
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Min Xi
- Institute
of Solid State Physics and Key Laboratory of Photovoltaic and Energy
Conservation Materials, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- The
Key Laboratory Functional Molecular Solids Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
48
|
Zhang B, Wong PW, Guo J, Zhou Y, Wang Y, Sun J, Jiang M, Wang Z, An AK. Transforming Ti 3C 2T x MXene's intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination. Nat Commun 2022; 13:3315. [PMID: 35676294 PMCID: PMC9177613 DOI: 10.1038/s41467-022-31028-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Owing to its 100% theoretical salt rejection capability, membrane distillation (MD) has emerged as a promising seawater desalination approach to address freshwater scarcity. Ideal MD requires high vapor permeate flux established by cross-membrane temperature gradient (∆T) and excellent membrane durability. However, it’s difficult to maintain constant ∆T owing to inherent heat loss at feedwater side resulting from continuous water-to-vapor transition and prevent wetting transition-induced membrane fouling and scaling. Here, we develop a Ti3C2Tx MXene-engineered membrane that imparts efficient localized photothermal effect and strong water-repellency, achieving significant boost in freshwater production rate and stability. In addition to photothermal effect that circumvents heat loss, high electrically conductive Ti3C2Tx MXene also allows for self-assembly of uniform hierarchical polymeric nanospheres on its surface via electrostatic spraying, transforming intrinsic hydrophilicity into superhydrophobicity. This interfacial engineering renders energy-efficient and hypersaline-stable photothermal membrane distillation with a high water production rate under one sun irradiation. Membrane distillation is susceptible to thermal inefficiency and membrane wetting issues during seawater desalination. Here, authors design a MXene-engineered membrane that imparts efficient localized photothermal effect and strong water repellency, achieving sustainable freshwater production.
Collapse
Affiliation(s)
- Baoping Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong.,Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Jiaxin Guo
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Yongsen Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Yang Wang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Mengnan Jiang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong.
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong, Hong Kong.
| |
Collapse
|
49
|
Zhao Y, Wu F, Wei J, Sun H, Yuan Y, Bao H, Li F, Zhang Z, Han S, Niu W. Designer Gold-Framed Palladium Nanocubes for Plasmon-Enhanced Electrocatalytic Oxidation of Ethanol. Chemistry 2022; 28:e202200494. [PMID: 35319121 DOI: 10.1002/chem.202200494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 02/05/2023]
Abstract
Surface plasmon of coinage metal nanostructures has been employed as a powerful route in boosting the performances in heterogenous catalysis. Development of efficient plasmonic nanocatalysts with high catalytic performance and efficient light harvesting properties is of vital importance. Herein, we rationally designed and synthesized a plasmonic nanocatalyst composed of Au-framed Pd nanocubes by an Ag(I)-assisted seed-mediated growth method. In the synthesis, the incorporation of Ag(I) suppresses the reduction of Au on the {100} surface of cubic Pd seeds and leads to the formation of Au nanoframes on the Pd nanocubes. The unique Au-framed Pd nanocubes can integrate the superior electrocatalytic of Pd and the outstanding plasmonic properties of Au. Thus, these nanostructures were employed as plasmonic nanocatalysts for plasmon-enhanced electrocatalytic oxidation of ethanol with improved stability.
Collapse
Affiliation(s)
- Yuhui Zhao
- School of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
| | - Jinping Wei
- School of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Hongda Sun
- School of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Yali Yuan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Haibo Bao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
| | - Fenghua Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
| | - Zhichao Zhang
- School of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Shuang Han
- School of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
| |
Collapse
|
50
|
Li J, Ma L, Fu C, Huang Y, Luo B, Cao J, Geng J, Jing D. Urchinlike Carbon-Coated TiO 2 Microspheres with Enhanced Photothermal–Photocatalytic Hydrogen Evolution Performance for Full-Spectrum Solar Energy Conversion. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jinghua Li
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Lijing Ma
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Cisheng Fu
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Yalong Huang
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Bing Luo
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Jiamei Cao
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Jiafeng Geng
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Dengwei Jing
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| |
Collapse
|