1
|
Aja PM, Agu PC, Ogbu C, Alum EU, Fasogbon IV, Musyoka AM, Ngwueche W, Egwu CO, Tusubira D, Ross K. RNA research for drug discovery: Recent advances and critical insight. Gene 2025; 947:149342. [PMID: 39983851 DOI: 10.1016/j.gene.2025.149342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
The field of RNA research has experienced significant changes and is now at the forefront of contemporary drug development. This narrative overview explores the scientific developments and historical turning points in RNA research, emphasising the field's critical significance in the development of novel therapeutics. Important discoveries like antisense oligonucleotides (ASOs), mRNA therapies, and RNA interference (RNAi) have created novel treatment options that can be targeted, such as the ground-breaking mRNA vaccinations against COVID-19. Advances in high-throughput sequencing, single-cell RNA sequencing, and epitranscriptomics have further unravelled the complexity of RNA biology, shedding light on the intricacies of gene regulation and cellular diversity. The integration of computational tools and bioinformatics has propelled the identification of RNA-based biomarkers and the development of RNA therapeutics. Despite significant progress, challenges such as RNA stability, delivery, and off-target effects persist, necessitating continuous innovation and ethical considerations. This review provides a critical insight into the current state and prospects of RNA research, emphasising its transformative potential in drug discovery. By examining the interplay between technological advancements and therapeutic applications, we underscore the promising horizon for RNA-based interventions in treating a myriad of diseases, marking a new era in precision medicine.
Collapse
Affiliation(s)
- Patrick Maduabuchi Aja
- Biochemistry Department, Biomedical Sciences Faculty, Kampala International University, P.O. Box Ishaka, Bushenyi, Uganda; Biochemistry Department, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria.
| | - Peter Chinedu Agu
- Biochemistry Department, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria; Department of Biochemistry, Faculty of Science, Evangel University, Nigeria
| | - Celestine Ogbu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Federal University of Health Sciences, Otukpo, Nigeria
| | - Esther Ugo Alum
- Publications and Extension Department, Kampala International University, P. O. Box 20000, Uganda; Biochemistry Department, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria
| | - Ilemobayo Victor Fasogbon
- Biochemistry Department, Biomedical Sciences Faculty, Kampala International University, P.O. Box Ishaka, Bushenyi, Uganda
| | - Angela Mumbua Musyoka
- Biochemistry Department, Biomedical Sciences Faculty, Kampala International University, P.O. Box Ishaka, Bushenyi, Uganda
| | - Wisdom Ngwueche
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinedu Ogbonia Egwu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | - Deusdedit Tusubira
- Department of Biochemistry, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Institute for Health Research, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
2
|
Liberty JT, Bromage S, Peter E, Ihedioha OC, Alsalman FB, Odogwu TS. CRISPR revolution: Unleashing precision pathogen detection to safeguard public health and food safety. Methods 2025:S1046-2023(25)00115-X. [PMID: 40311721 DOI: 10.1016/j.ymeth.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025] Open
Abstract
Foodborne pathogens represent a significant challenge to global food safety, causing widespread illnesses and economic losses. The growing complexity of food supply chains and the emergence of antimicrobial resistance necessitate rapid, sensitive, and portable diagnostic tools. CRISPR technology has emerged as a transformative solution, offering unparalleled precision and adaptability in pathogen detection. This review explores CRISPR's role in addressing critical gaps in traditional and modern diagnostic methods, emphasizing its advantages in sensitivity, specificity, and scalability. CRISPR-based diagnostics, such as Cas12 and Cas13 systems, enable rapid detection of bacterial and viral pathogens, as well as toxins and chemical hazards, directly in food matrices. Their integration with isothermal amplification techniques and portable biosensors enhances field applicability, making them ideal for decentralized and real-time testing. Additionally, CRISPR's potential extends beyond food safety, contributing to public health efforts by monitoring antimicrobial resistance and supporting One Health frameworks. Despite these advancements, challenges remain, including issues with performance in complex food matrices, scalability, and regulatory barriers. This review highlights future directions, including AI integration for assay optimization, the development of universal CRISPR platforms, and the adoption of sustainable diagnostic solutions. By tackling these challenges, CRISPR has the potential to redefine global food safety standards and create a more resilient food system. Collaborative research and innovation will be critical to fully unlocking its transformative potential in food safety and public health.
Collapse
Affiliation(s)
| | - Sabri Bromage
- Community Nutrition Unit, Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand; Department of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Boston, MA 02115, United States
| | - Endurance Peter
- Department of Public Health, Nazarbayev University, School of Medicine, Astana, Kazakhstan
| | - Olivia C Ihedioha
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6842, United States
| | - Fatemah B Alsalman
- Food Security Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - Tochukwu Samuel Odogwu
- Aston Medical School, College of Health & Life Sciences, Aston University, United Kingdom
| |
Collapse
|
3
|
Li J, Yu Q, Liu C, Zhang N, Xu W. Flavonoids as key players in cold tolerance: molecular insights and applications in horticultural crops. HORTICULTURE RESEARCH 2025; 12:uhae366. [PMID: 40070400 PMCID: PMC11894532 DOI: 10.1093/hr/uhae366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/22/2024] [Indexed: 03/14/2025]
Abstract
Cold stress profoundly affects the growth, development, and productivity of horticultural crops. Among the diverse strategies plants employ to mitigate the adverse effects of cold stress, flavonoids have emerged as pivotal components in enhancing plant resilience. This review was written to systematically highlight the critical role of flavonoids in plant cold tolerance, aiming to address the increasing need for sustainable horticultural practices under climate stress. We provide a comprehensive overview of the role of flavonoids in the cold tolerance of horticultural crops, emphasizing their biosynthesis pathways, molecular mechanisms, and regulatory aspects under cold stress conditions. We discuss how flavonoids act as antioxidants, scavenging reactive oxygen species (ROS) generated during cold stress, and how they regulate gene expression by modulating stress-responsive genes and pathways. Additionally, we explore the application of flavonoids in enhancing cold tolerance through genetic engineering and breeding strategies, offering insights into practical interventions for improving crop resilience. Despite significant advances, a research gap remains in understanding the precise molecular mechanisms by which specific flavonoids confer cold resistance, especially across different crop species. By addressing current knowledge gaps, proposing future research directions and highlighting implications for sustainable horticulture, we aim to advance strategies to enhance cold tolerance in horticultural crops.
Collapse
Affiliation(s)
- Jiaxin Li
- College of Enology & Horticulture, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
| | - Qinhan Yu
- School of Life Science, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
| | - Chang Liu
- School of Life Science, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
| | - Ningbo Zhang
- College of Enology & Horticulture, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, No.498 Helanshan West Street, Xixia District, Yinchuan 750021, China
| | - Weirong Xu
- College of Enology & Horticulture, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
- School of Life Science, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, No.498 Helanshan West Street, Xixia District, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, No.498 Helanshan West Street, Xixia District, Yinchuan 750021, China
| |
Collapse
|
4
|
Noruzi S, Mohammadi R, Jamialahmadi K. CRISPR/Cas9 system: a novel approach to overcome chemotherapy and radiotherapy resistance in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3373-3408. [PMID: 39560750 DOI: 10.1007/s00210-024-03480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/21/2024] [Indexed: 11/20/2024]
Abstract
Cancer presents a global health challenge with rising incidence and mortality. Despite treatment advances in cancer therapy, radiotherapy and chemotherapy remained the most common treatments for all types of cancers. However, resistance phenotype in cancer cells leads to unsatisfactory results in the efficiency of therapeutic strategies. Therefore, researchers strive to propose effective solutions to overcome treatment failure, which requires a deep knowledge of treatment-resistant mechanisms. The progression and occurrence of tumors can be attributed to gene mutation. Over the past decade, the emergence of clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) genome editing has revolutionized cancer research. This versatile technology enables cancer modeling, manipulation of specific DNA sequences, and genome-wide screening. CRISPR/Cas9 is an effective tool for identifying radio- and chemoresistance genes and offering potential adjunctive treatments to overcome tumor recurrence after chemo- and radiotherapy. This article aims to explain the potential of the CRISPR/Cas9 system in improving the effectiveness of chemo- and radiotherapy and ultimately overcoming treatment failure.
Collapse
Affiliation(s)
- Somaye Noruzi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Mohammadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Tian R, Tian X, Yang M, Song Y, Zhao T, Zhong C, Zhu W, Zhou P, Han Z, Hu Z. Systematic high-throughput evaluation reveals FrCas9's superior specificity and efficiency for therapeutic genome editing. SCIENCE ADVANCES 2025; 11:eadu7334. [PMID: 40138428 PMCID: PMC11939069 DOI: 10.1126/sciadv.adu7334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
CRISPR-Cas9 systems have revolutionized genome editing, but the off-target effects of Cas9 limit its use in clinical applications. Here, we systematically evaluate FrCas9, a variant from Faecalibaculum rodentium, for cell and gene therapy (CGT) applications and compare its performance to SpCas9 and OpenCRISPR-1. OpenCRISPR-1 is a CRISPR system synthesized de novo using large language models (LLMs) but has not yet undergone systematic characterization. Using AID-seq, Amplicon sequencing, and GUIDE-seq, we assessed the on-target activity and off-target profiles of these systems across multiple genomic loci. FrCas9 demonstrated higher on-target efficiency and substantially fewer off-target effects than SpCas9 and OpenCRISPR-1. Furthermore, TREX2 fusion with FrCas9 reduced large deletions and translocations, enhancing genomic stability. Through screening of 1903 sgRNAs targeting 21 CGT-relevant genes using sequential AID-seq, Amplicon sequencing, and GUIDE-seq analysis, we identified optimal sgRNAs for each gene. Our high-throughput screening platform highlights FrCas9, particularly in its TREX2-fused form, as a highly specific and efficient tool for precise therapeutic genome editing.
Collapse
Affiliation(s)
- Rui Tian
- Generulor Company Bio-X Lab, Zhuhai 519000, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Meiying Yang
- Department of Gynecology, Guilin People’s Hospital, Guilin 541000, China
| | - Yuping Song
- Department of Dermatology, Wuhan Donghu Hospital, Wuhan 430074, Hubei, China
| | | | | | - Wei Zhu
- Generulor Company Bio-X Lab, Zhuhai 519000, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Hu
- Department of Gynecologic Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
6
|
Zhou K, Qin Q, Lu J. Pathophysiological mechanisms of ARDS: a narrative review from molecular to organ-level perspectives. Respir Res 2025; 26:54. [PMID: 39948645 PMCID: PMC11827456 DOI: 10.1186/s12931-025-03137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) remains a life-threatening pulmonary condition with persistently high mortality rates despite significant advancements in supportive care. Its complex pathophysiology involves an intricate interplay of molecular and cellular processes, including cytokine storms, oxidative stress, programmed cell death, and disruption of the alveolar-capillary barrier. These mechanisms drive localized lung injury and contribute to systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Unlike prior reviews that primarily focus on isolated mechanisms, this narrative review synthesizes the key pathophysiological processes of ARDS across molecular, cellular, tissue, and organ levels. MAIN BODY By integrating classical theories with recent research advancements, we provide a comprehensive analysis of how inflammatory mediators, metabolic reprogramming, oxidative stress, and immune dysregulation synergistically drive ARDS onset and progression. Furthermore, we critically evaluate current evidence-based therapeutic strategies, such as lung-protective ventilation and prone positioning, while exploring innovative therapies, including stem cell therapy, gene therapy, and immunotherapy. We emphasize the significance of ARDS subtypes and their inherent heterogeneity in guiding the development of personalized treatment strategies. CONCLUSIONS This narrative review provides fresh perspectives for future research, ultimately enhancing patient outcomes and optimizing management approaches in ARDS.
Collapse
Affiliation(s)
- Kaihuan Zhou
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Qianqian Qin
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Junyu Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
| |
Collapse
|
7
|
Clarissa EM, Karmacharya M, Choi H, Kumar S, Cho YK. Nature Inspired Delivery Vehicles for CRISPR-Based Genome Editing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409353. [PMID: 39901476 DOI: 10.1002/smll.202409353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/16/2025] [Indexed: 02/05/2025]
Abstract
The advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing technologies has opened up groundbreaking possibilities for treating a wide spectrum of genetic disorders and diseases. However, the success of these technologies relies heavily on the development of efficient and safe delivery systems. Among the most promising approaches are natural and synthetic nanocarrier-mediated delivery systems, including viral vectors, extracellular vesicles (EVs), engineered cellular membrane particles, liposomes, and various nanoparticles. These carriers enhance the efficacy of the CRISPR system by providing a unique combination of efficiency, specificity, and reduced immunogenicity. Synthetic carriers such as liposomes and nanoparticles facilitate CRISPR delivery with high reproducibility and customizable functions. Viral vectors, renowned for their high transduction efficiency and broad tropism, serve as powerful vehicles for delivering CRISPR components to various cell types. EVs, as natural carriers of RNA and proteins, offer a stealth mechanism to evade immune detection, allowing for the targeted delivery of genome editors with minimal off-target effects. Engineered cellular membrane particles further improve delivery by simulating the cellular environment, enhancing uptake, and minimizing immune response. This review explores the innovative integration of CRISPR genome editors with various nanocarrier systems, focusing on recent advancements, applications, and future directions in therapeutic genome editing.
Collapse
Affiliation(s)
- Elizabeth Maria Clarissa
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Mamata Karmacharya
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Hyunmin Choi
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Sumit Kumar
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
8
|
Ali Agha AS, Al-Samydai A, Aburjai T. New frontiers in CRISPR: Addressing antimicrobial resistance with Cas9, Cas12, Cas13, and Cas14. Heliyon 2025; 11:e42013. [PMID: 39906792 PMCID: PMC11791237 DOI: 10.1016/j.heliyon.2025.e42013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Background The issue of antimicrobial resistance (AMR) poses a major challenge to global health, evidenced by alarming mortality predictions and the diminishing efficiency of conventional antimicrobial drugs. The CRISPR-Cas system has proven to be a powerful tool in addressing this challenge. It originated from bacterial adaptive immune mechanisms and has gained significant recognition in the scientific community. Objectives This review aims to explore the applications of CRISPR-Cas technologies in combating AMR, evaluating their effectiveness, challenges, and potential for integration into current antimicrobial strategies. Methods We conducted a comprehensive review of recent literature from databases such as PubMed and Web of Science, focusing on studies that employ CRISPR-Cas technologies against AMR. Conclusions CRISPR-Cas technologies offer a transformative approach to combat AMR, with potential applications that extend beyond traditional antimicrobial strategies. Integrating these technologies with existing methods could significantly enhance our ability to manage and potentially reverse the growing problem of antimicrobial resistance. Future research should address technical and ethical barriers to facilitate safe and effective clinical and environmental applications. This review underscores the necessity for interdisciplinary collaboration and international cooperation to harness the full potential of CRISPR-Cas technologies in the fight against superbugs.
Collapse
Affiliation(s)
- Ahmed S.A. Ali Agha
- School of Pharmacy, Department of Pharmaceutical Sciences, The University of Jordan, Amman, 11942, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Center, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, (AA), Amman, 19328, Jordan
| | - Talal Aburjai
- School of Pharmacy, Department of Pharmaceutical Sciences, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
9
|
Bridges JP, Vladar EK, Kurche JS, Krivoi A, Stancil IT, Dobrinskikh E, Hu Y, Sasse SK, Lee JS, Blumhagen RZ, Yang IV, Gerber AN, Peljto AL, Evans CM, Redente EF, Riches DW, Schwartz DA. Progressive lung fibrosis: reprogramming a genetically vulnerable bronchoalveolar epithelium. J Clin Invest 2025; 135:e183836. [PMID: 39744946 PMCID: PMC11684817 DOI: 10.1172/jci183836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is etiologically complex, with well-documented genetic and nongenetic origins. In this Review, we speculate that the development of IPF requires two hits: the first establishes a vulnerable bronchoalveolar epithelium, and the second triggers mechanisms that reprogram distal epithelia to initiate and perpetuate a profibrotic phenotype. While vulnerability of the bronchoalveolar epithelia is most often driven by common or rare genetic variants, subsequent injury of the bronchoalveolar epithelia results in persistent changes in cell biology that disrupt tissue homeostasis and activate fibroblasts. The dynamic biology of IPF can best be contextualized etiologically and temporally, including stages of vulnerability, early disease, and persistent and progressive lung fibrosis. These dimensions of IPF highlight critical mechanisms that adversely disrupt epithelial function, activate fibroblasts, and lead to lung remodeling. Together with better recognition of early disease, this conceptual approach should lead to the development of novel therapeutics directed at the etiologic and temporal drivers of lung fibrosis that will ultimately transform the care of patients with IPF from palliative to curative.
Collapse
Affiliation(s)
- James P. Bridges
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eszter K. Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan S. Kurche
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Andrei Krivoi
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ian T. Stancil
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, School of Medicine, Stanford, California, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yan Hu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sarah K. Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Joyce S. Lee
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel Z. Blumhagen
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Ivana V. Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony N. Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Anna L. Peljto
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher M. Evans
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Elizabeth F. Redente
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - David W.H. Riches
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A. Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
10
|
Dixit Y, Yadav P, Asnani H, Sharma AK. CRISPR/Cas9-Engineering for Increased Amylolytic Potential of Microbes for Sustainable Wastewater Treatment: A Review. Curr Microbiol 2024; 82:44. [PMID: 39690340 DOI: 10.1007/s00284-024-04024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Amylases are pivotal enzymes with extensive industrial applications, including food processing, textile manufacturing, pharmaceuticals, and biofuel production. Traditional methods for enhancing amylase production in microbial strains often lack precision and efficiency. The advent of CRISPR/Cas9 technology has revolutionized genetic engineering, offering precise and targeted modifications to microbial genomes. This review explores the potential of CRISPR/Cas9 for improving amylase production, highlighting its advantages over conventional methods. This review discusses the mechanism of CRISPR/Cas9, the identification and targeting of key genes involved in amylase synthesis and regulation, and the optimization of expression systems. Additionally, current review examines case studies demonstrating successful CRISPR/Cas9 applications in various microbial hosts. The review also delves into the integration of CRISPR/Cas9 in wastewater treatment, where genetically engineered amylolytic strains enhance the degradation of complex organic pollutants. Despite the promising prospects, challenges such as off-target effects and regulatory considerations remain. This review provides a comprehensive overview of the current advancements, challenges, and future directions in the application of CRISPR/Cas9 technology for amylase production and environmental biotechnology.
Collapse
Affiliation(s)
- Yatika Dixit
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Preeti Yadav
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Hitakshi Asnani
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Arun Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India.
| |
Collapse
|
11
|
Lara-Navarro IJ, Jave-Suárez LF, Marchal JA, Jaloma-Cruz AR. CRISPR/Cas9 Edition of the F9 Gene in Human Mesenchymal Stem Cells for Hemophilia B Therapy. Life (Basel) 2024; 14:1640. [PMID: 39768347 PMCID: PMC11676118 DOI: 10.3390/life14121640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Hemophilia B is a genetic disorder characterized by clotting factor IX deficiency and bleeding in joints and muscles. Current treatments involve intravenous infusion of plasma-derived products or recombinant proteins, which have limited efficacy due to the short half-life of infused proteins. Recently, gene therapy for bleeding disorders has offered a potential solution. This study aimed to develop an in vitro gene therapy model using the CRISPR/Cas9 system to incorporate the F9 cDNA in human mesenchymal stem cells (hMSCs) to produce clotting factor IX. RNA guide sequences targeting the promoter-exon 1 region of the F9 gene were designed to incorporate a wild-type F9 cDNA into the cells. Knockin was performed with the CRISPR/Cas9 system and pDONOR-CMV/cDNAF9/IRES/EGFP vector template recombination in Lenti-X HEK293 cells and MSCs. A lentiviral F9 cDNA vector was designed as a FIX secretor model to validate the CRISPR/Cas9 system. Results showed successful gene editing and F9 expression in both cell models, although editing efficiency was lower in hMSCs. Future investigations will focus on improving gene editing efficiency using different transfection conditions or hybrid methodologies. This study demonstrates the potential of CRISPR/Cas9-based gene therapy in hMSCs as a target for hemophilia B. Further optimizations are required to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Irving Jair Lara-Navarro
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico;
| | - Juan Antonio Marchal
- Departamento de Anatomía y Embriología Humana, Universidad de Granada, 18012 Granada, Spain;
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18100 Granada, Spain
- Excellence Research Unit Modelling Nature (MNat), BioFab i3D-Biofabricación y 3D (Bio) Printing Laboratory Granada, Universidad de Granada, 18100 Granada, Spain
| | - Ana Rebeca Jaloma-Cruz
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
12
|
Wang Q, Yang G, Jia R, Wang F, Wang G, Xu Z, Li J, Li B, Yu L, Zhang Y, Alariqi M, Cao J, Liang S, Zhang X, Nie X, Jin S. Utilizing the mutant library to investigate the functional characterization of GhGLR3.4 regulating jasmonic acid to defense pest infestation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2889-2903. [PMID: 39589913 DOI: 10.1111/tpj.17152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/06/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
The glutamate receptor (GLR) serves as a ligand-gated ion channel that plays a vital role in plant growth, development, and stress response. Nevertheless, research on GLRs in cotton is still very limited. The present study conducted a comprehensive analysis of GLRs gene family in cotton. In total, 41 members of the GLR family were identified in cotton unveiling distinct subgroups in comparison to Arabidopsis. Among these members, the third subgroup highlights its pivotal role in cotton's defense against insect infestation. Furthermore, the CRISPR/Cas9 system was utilized to create a mutant library of GLR members, which consisted of a total of 135 independent mutant lines, resulting in the production of novel cotton materials with valuable breeding potential for pest control. Further, this study elucidates the influence of GhGLR3.4 on jasmonic acid (JA) pathway signal transduction and demonstrated its participation in the influx of intracellular Ca2+, which regulates "calcium transients" following stimulation, thereby influencing multiple intracellular reactions. The study also found that GhGLR3.4 influences the synthesis of the JA pathway and actively partakes in long-distance signal transmission among plants, facilitating the transfer of defense signals to neighbor leaves and thereby triggering systemic defense. Consequently, this research advances our knowledge of plants' comprehensive defense mechanism against insect pest infestation.
Collapse
Affiliation(s)
- Qiongqiong Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guangqin Yang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruoyu Jia
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuqiu Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongping Xu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianying Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu Yu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muna Alariqi
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinglin Cao
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China
| | - Sijia Liang
- Huanghuai University, Zhumadian, 463000, Henan, China
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinhui Nie
- Key Laboratory of Oasis Eco-agricultural, Xinjiang Production and Construction Corps/Agricultural College, Shihezi University, Shihezi, 832003, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
13
|
Ali F, Iqbal A, Azhar I, Qayyum A, Hassan SA, Hasan MSA, Jawi M, Hassan HM, Al-Emam A, Sajid M. Exploring a novel four-gene system as a diagnostic and prognostic biomarker for triple-negative breast cancer, using clinical variables. Comput Biol Chem 2024; 113:108247. [PMID: 39427606 DOI: 10.1016/j.compbiolchem.2024.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis. This research aims to find real hub genes for prognostic biomarkers of TNBC therapy. The GEO datasets GSE27447 and GSE233242 were analyzed using R package limma to explore DEGs. The PPI was generated using the STRING database. Cytoscape software plug-ins were used to screen the hub genes. Using the DAVID database, GO functional enrichment and KEGG pathway enrichment analysis were performed. Different online expression databases were employed to investigate the functions of real hub genes in tumor driving, diagnosis, and prognosis in TNBC patients with various clinicopathologic characteristics. A total of one hundred DEGs were identified between both datasets. The seven hub genes were identified after the topological parameter analysis of the PPI network. The KEGG pathway and GO analysis suggest that four genes (PSMB1, PSMC1, PSMF1, and PSMD8) are highly enriched in proteasome and were finally considered as real hub genes. Additionally, the expression analysis demonstrated that hub genes were notably up-regulated in TNBC patients compared to controls. Furthermore, correlational analyses revealed the positive and negative correlations among the expression of the real hub genes and various ancillary data, including tumor purity, promoter methylation status, overall survival (OS), genetic alterations, infiltration of CD8+ T and CD4+ immune cells, and a few more, across TNBC samples. Finally, our analysis identified a couple of significant chemotherapeutic drugs, miRNAs and transcription factors (TFS) with intriguing curative potential. In conclusion, we identified four real hub genes as novel biomarkers to overcome heterogenetic-particular challenges in diagnosis, prognosis, and therapy for TNBC patients.
Collapse
Affiliation(s)
- Faisal Ali
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Azhar Iqbal
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Iqra Azhar
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Adiba Qayyum
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Syed Ali Hassan
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science And Technology University, Gopalgonj, Dhaka 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh.
| | - Motasim Jawi
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Hesham M Hassan
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia.
| | - Muhammad Sajid
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan.
| |
Collapse
|
14
|
Lei T, Wang Y, Zhang Y, Yang Y, Cao J, Huang J, Chen J, Chen H, Zhang J, Wang L, Xu X, Gale RP, Wang L. Leveraging CRISPR gene editing technology to optimize the efficacy, safety and accessibility of CAR T-cell therapy. Leukemia 2024; 38:2517-2543. [PMID: 39455854 PMCID: PMC11588664 DOI: 10.1038/s41375-024-02444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Chimeric Antigen Receptor (CAR)-T-cell therapy has revolutionized cancer immune therapy. However, challenges remain including increasing efficacy, reducing adverse events and increasing accessibility. Use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology can effectively perform various functions such as precise integration, multi-gene editing, and genome-wide functional regulation. Additionally, CRISPR screening using large-scale guide RNA (gRNA) genetic perturbation provides an unbiased approach to understanding mechanisms underlying anti-cancer efficacy of CAR T-cells. Several emerging CRISPR tools with high specificity, controllability and efficiency are useful to modify CAR T-cells and identify new targets. In this review we summarize potential uses of the CRISPR system to improve results of CAR T-cells therapy including optimizing efficacy and safety and, developing universal CAR T-cells. We discuss challenges facing CRISPR gene editing and propose solutions highlighting future research directions in CAR T-cell therapy.
Collapse
Affiliation(s)
- Tao Lei
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Yazhuo Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuchen Zhang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Yufei Yang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiaying Cao
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiansong Huang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiali Chen
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Huajing Chen
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiayi Zhang
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Luzheng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, UK.
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
15
|
Panda G, Ray A. Deciphering Cas9 specificity: Role of domain dynamics and RNA:DNA hybrid interactions revealed through machine learning and accelerated molecular simulations. Int J Biol Macromol 2024; 283:137835. [PMID: 39566771 DOI: 10.1016/j.ijbiomac.2024.137835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
CRISPR/Cas9 technology is widely used for gene editing, but off-targeting still remains a major concern in therapeutic applications. Although Cas9 variants with better mismatch discrimination have been developed, they have significantly lower rates of on-target DNA cleavage. This study compares the dynamics of the highly specific Cas9 from Francisella novicida (FnCas9) to the commonly used SpCas9. Using long-scale atomistic Gaussian accelerated molecular dynamic simulations and machine learning techniques, we deciphered the structural factors behind FnCas9's higher specificity in native and off-target forms. Our analysis revealed that Cas9's cleavage specificity relies more on its domain rearrangement than on RNA:DNA heteroduplex shape, with significant conformational variations in Cas9 domains among off-target forms, while the RNA:DNA hybrid showed minimal changes, especially in FnCas9 compared to SpCas9. REC1-REC3 domains contacts with the RNA:DNA hybrid in FnCas9 acted as critical discriminator of off-target effects playing a pivotal role in influencing specificity. In FnCas9, allosteric signal transmission involves the REC3 and HNH domain, bypassing REC2, leading to a superior efficiency in information transmission. This study offers a quantitative framework for understanding the structural basis of elevated specificity, paving the way for the rational design of Cas9 variants with improved precision and specificity in genome editing applications.
Collapse
Affiliation(s)
- Gayatri Panda
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.
| |
Collapse
|
16
|
Shah DD, Chorawala MR, Pandya AJ, Kothari N, Prajapati BG, Parekh PS. Advancing the Battle against Cystic Fibrosis: Stem Cell and Gene Therapy Insights. Curr Med Sci 2024; 44:1155-1174. [PMID: 39676146 DOI: 10.1007/s11596-024-2936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/03/2024] [Indexed: 12/17/2024]
Abstract
Cystic fibrosis (CF) is a hereditary disorder characterized by mutations in the CFTR gene, leading to impaired chloride ion transport and subsequent thickening of mucus in various organs, particularly the lungs. Despite significant progress in CF management, current treatments focus mainly on symptom relief and do not address the underlying genetic defects. Stem cell and gene therapies present promising avenues for tackling CF at its root cause. Stem cells, including embryonic, induced pluripotent, mesenchymal, hematopoietic, and lung progenitor cells, offer regenerative potential by differentiating into specialized cells and modulating immune responses. Similarly, gene therapy aims to correct CFTR gene mutations by delivering functional copies of the gene into affected cells. Various approaches, such as viral and nonviral vectors, gene editing with CRISPR-Cas9, small interfering RNA (siRNA) therapy, and mRNA therapy, are being explored to achieve gene correction. Despite their potential, challenges such as safety concerns, ethical considerations, delivery system optimization, and long-term efficacy remain. This review provides a comprehensive overview of the current understanding of CF pathophysiology, the rationale for exploring stem cell and gene therapies, the types of therapies available, their mechanisms of action, and the challenges and future directions in the field. By addressing these challenges, stem cell and gene therapies hold promise for transforming CF management and improving the quality of life of affected individuals.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Aanshi J Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, 384012, India.
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | | |
Collapse
|
17
|
Jayakody TB, Zarka D, Cho KH, Jensen J, Sikora S, Buell CR, Douches DS, Nadakuduti SS. Genome-wide evaluation of gene editing outcomes using CRISPR/Cas9 in seed propagated Camelina sativa and vegetatively propagated Solanum tuberosum. FRONTIERS IN PLANT SCIENCE 2024; 15:1496861. [PMID: 39659410 PMCID: PMC11628256 DOI: 10.3389/fpls.2024.1496861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024]
Abstract
CRISPR/Cas9 is the most popular genome editing platform for investigating gene function or improving traits in plants. The specificity of gene editing has yet to be evaluated at a genome-wide scale in seed-propagated Camelina sativa (L.) Crantz (camelina) or clonally propagated Solanum tuberosum L. (potato). In this study, seven potato and nine camelina stable transgenic Cas9-edited plants were evaluated for on and off-target editing outcomes using 55x and 60x coverage whole genome shotgun sequencing data, respectively. For both potato and camelina, a prevalence of mosaic somatic edits from constitutive Cas9 expression was discovered as well as evidence of transgenerational editing in camelina. CRISPR/Cas9 editing provided negligible off-target activity compared to background variation in both species. The results from this study guide deployment and risk assessment of genome editing in commercially relevant traits in food crops.
Collapse
Affiliation(s)
- Thilani B. Jayakody
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Daniel Zarka
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Keun Ho Cho
- Environmental Horticulture Department, University of Florida, Gainesville, FL, United States
| | - Jacob Jensen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Samantha Sikora
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - C. Robin Buell
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA, United States
- The Plant Center, University of Georgia, Athens, GA, United States
| | - David S. Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Satya Swathi Nadakuduti
- Environmental Horticulture Department, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- University of Florida Genetics Institute, Gainesville, FL, United States
| |
Collapse
|
18
|
Wang J, Li CH, Xiang CF, Zhou PH, Li LS, Li X, Yang SC, Zhang GH, Zhao Y. Establishment and application of highly efficient regeneration, genetic transformation and genome editing system for cucurbitacins biosynthesis in Hemsleya chinensis. BMC PLANT BIOLOGY 2024; 24:1052. [PMID: 39511511 PMCID: PMC11542421 DOI: 10.1186/s12870-024-05717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Hemsleya Chinensis is a perennial plant in the Cucurbitaceae family containing antibacterial and anti-inflammatory compounds. The lack of genetic transformation systems makes it difficult to verify the functions of genes controlling important traits and conduct molecular breeding in H. chinensis. RESULTS Highly efficient calli were induced on MS medium added 1.5 mg·L- 1 6-benzylaminopurine (6-BA) and 0.02 mg·L- 1 1-naphthylacetic acid (NAA) with high efficiency (> 95%). The frequency of shoot induction was increased to 90% with a plant growth regulator combination of 1.5 mg·L- 1 6-BA and 0.1 mg·L- 1 NAA. Our results also showed that 100% of shoot regeneration was achieved in a shoot regeneration medium. Additionally, more than 92% of kanamycin-resistant plants were confirmed. Furthermore, we achieved 42% genome editing efficiency by applying this transformation method to HcOSC6, a gene that catalyzes the formation of cucurbitadienol. HPLC analysis showed OE-HcOSC6 lines exhibited significantly higher cucurbitadienol levels than the genome-edited lines. Transcriptomic analysis revealed that some downstream genes related to cucurbitadienol biosynthesis, such as HcCYP87D20, HcCYP81Q58, and HcSDR34, were up-regulated in OE lines and down-regulated in mutants. CONCLUSIONS Here, we established a process for regeneration, transformation, and genome editing of H. chinensis using stem segments. This provides valuable insight into the underlying molecular mechanisms of medicinal compound production. By combining high-efficiency tissue culture, transformation, and genome editing systems, we provide a powerful platform that supports functional research on molecular mechanisms of secondary metabolism.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, 650106, China
| | - Chao-Hui Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chun-Fan Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Pin-Han Zhou
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Le-Song Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xia Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Sheng-Chao Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, 650106, China
| | - Guang-Hui Zhang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, 650106, China
| | - Yan Zhao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China.
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, 650106, China.
| |
Collapse
|
19
|
Song X, Li Y, Zhang X, Hsiang T, Xu M, Guo Z, He K, Yu J. An Isoflavone Synthase Gene in Arachis hypogea Responds to Phoma arachidicola Infection Causing Web Blotch. PLANTS (BASEL, SWITZERLAND) 2024; 13:2948. [PMID: 39519870 PMCID: PMC11547825 DOI: 10.3390/plants13212948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Peanut web blotch is an important leaf disease caused by Phoma arachidicola, which seriously affects the quality and yield of peanuts. However, the molecular mechanisms of peanut resistance to peanut web blotch are not well understood. In this study, a transcriptome analysis of the interaction between peanut (Arachis hypogaea) and P. arachidicola revealed that total 2989 (779 up- and 2210 down-regulated) genes were all differentially expressed in peanut leaves infected by P. arachidicola at 7, 14, 21 days post inoculation. The pathways that were strongly differentially expressed were the flavone or isoflavone biosynthesis pathways. In addition, two 2-hydroxy isoflavanone synthase genes, IFS1 and IFS2, were strongly induced by P. arachidicola infection. Overexpression of the two genes enhanced resistance to Phytophthora parasitica in Nicotiana benthamiana. Knockout of AhIFS genes in peanut reduced disease resistance to P. arachidicola. These findings demonstrated that AhIFS genes play key roles in peanut resistance to P. arachidicola infection. Promoter analysis of the two AhIFS genes showed several defense-related cis-elements distributed in the promoter region. This study improves our understanding of the molecular mechanisms behind resistance of peanut infection by P. arachidicola, and provides important information that could be used to undertake greater detailed characterization of web blotch resistance genes in peanut.
Collapse
Affiliation(s)
- Xinying Song
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| | - Ying Li
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| | - Xia Zhang
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Manlin Xu
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| | - Zhiqing Guo
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| | - Kang He
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| | - Jing Yu
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| |
Collapse
|
20
|
Badwal AK, Singh S. A comprehensive review on the current status of CRISPR based clinical trials for rare diseases. Int J Biol Macromol 2024; 277:134097. [PMID: 39059527 DOI: 10.1016/j.ijbiomac.2024.134097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
A considerable fraction of population in the world suffers from rare diseases. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its related Cas proteins offer a modern form of curative gene therapy for treating the rare diseases. Hereditary transthyretin amyloidosis, hereditary angioedema, duchenne muscular dystrophy and Rett syndrome are a few examples of such rare diseases. CRISPR/Cas9, for example, has been used in the treatment of β-thalassemia and sickle cell disease (Frangoul et al., 2021; Pavani et al., 2021) [1,2]. Neurological diseases such as Huntington's have also been focused in some studies involving CRISPR/Cas (Yang et al., 2017; Yan et al., 2023) [3,4]. Delivery of these biologicals via vector and non vector mediated methods depends on the type of target cells, characteristics of expression, time duration of expression, size of foreign genetic material etc. For instance, retroviruses find their applicability in case of ex vivo delivery in somatic cells due to their ability to integrate in the host genome. These have been successfully used in gene therapy involving X-SCID patients although, incidence of inappropriate activation has been reported. On the other hand, ex vivo gene therapy for β-thalassemia involved use of BB305 lentiviral vector for high level expression of CRISPR biological in HSCs. The efficacy and safety of these biologicals will decide their future application as efficient genome editing tools as they go forward in further stages of human clinical trials. This review focuses on CRISPR/Cas based therapies which are at various stages of clinical trials for treatment of rare diseases and the constraints and ethical issues associated with them.
Collapse
Affiliation(s)
- Amneet Kaur Badwal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
21
|
Yang Y, Liang Y, Wang C, Wang Y. MicroRNAs as potent regulators in nitrogen and phosphorus signaling transduction and their applications. STRESS BIOLOGY 2024; 4:38. [PMID: 39264517 PMCID: PMC11393275 DOI: 10.1007/s44154-024-00181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/18/2024] [Indexed: 09/13/2024]
Abstract
Nitrogen (N) and phosphorus (Pi) are essential macronutrients that affect plant growth and development by influencing the molecular, metabolic, biochemical, and physiological responses at the local and whole levels in plants. N and Pi stresses suppress the physiological activities of plants, resulting in agricultural productivity losses and severely threatening food security. Accordingly, plants have elaborated diverse strategies to cope with N and Pi stresses through maintaining N and Pi homeostasis. MicroRNAs (miRNAs) as potent regulators fine-tune N and Pi signaling transduction that are distinct and indivisible from each other. Specific signals, such as noncoding RNAs (ncRNAs), interact with miRNAs and add to the complexity of regulation. Elucidation of the mechanisms by which miRNAs regulate N and Pi signaling transduction aids in the breeding of plants with strong tolerance to N and Pi stresses and high N and Pi use efficiency by fine-tuning MIR genes or miRNAs. However, to date, there has been no detailed and systematic introduction and comparison of the functions of miRNAs in N and Pi signaling transduction from the perspective of miRNAs and their applications. Here, we summarized and discussed current advances in the involvement of miRNAs in N and Pi signaling transduction and highlighted that fine-tuning the MIR genes or miRNAs involved in maintaining N and Pi homeostasis might provide valuable sights for sustainable agriculture.
Collapse
Affiliation(s)
- Yuzhang Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
22
|
Yadav V, Pal D, Poonia AK. A Study on Genetically Engineered Foods: Need, Benefits, Risk, and Current Knowledge. Cell Biochem Biophys 2024; 82:1931-1946. [PMID: 39020085 DOI: 10.1007/s12013-024-01390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Food requirements have always been a top priority, and with the exponential growth of the human population, there is an increasing need for large quantities of food. Traditional cultivation methods are not able to meet the current demand for food products. One significant challenge is the shortened shelf-life of naturally occurring food items, which directly contributes to food scarcity. Contaminating substances such as weeds and pests play a crucial role in this issue. In response, researchers have introduced genetically engineered (GE) food as a potential solution. These food products are typically created by adding or replacing genes in the DNA of naturally occurring foods. GE foods offer various advantages, including increased quality and quantity of food production, adaptability to various climatic conditions, modification of vitamin and mineral levels, and prolonged shelf life. They address the major concerns of global food scarcity and food security. However, the techniques used in the production of GE foods may not be universally acceptable due to the genetic alteration of animal genes into plants or vice versa. Additionally, their unique nature necessitates further long-term studies. This study delves into the procedures and growth stages of DNA sequencing, covering the benefits, risks, industrial relevance, current knowledge, and future challenges of GE foods. GE foods have the potential to extend the shelf life of food items, alleviate food shortages, and fulfill the current nutritional food demand.
Collapse
Affiliation(s)
- Venkteshwar Yadav
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India
| | - Dharm Pal
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India.
| | - Anil Kumar Poonia
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India
| |
Collapse
|
23
|
Chokwassanasakulkit T, McMillan NAJ. Merkel Cell Polyomavirus-Pathophysiology and Treatment in the Era of Gene-Targeted Therapies. Rev Med Virol 2024; 34:e2580. [PMID: 39228116 DOI: 10.1002/rmv.2580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
Merkel cell polyomavirus (MCPyV) is a significant contributor to the development of Merkel cell carcinoma (MCC), an aggressive skin cancer with high recurrence and a low survival rate. In fact, it is the deadliest skin cancer. The precise routes of transmission for MCPyV-positive MCC remain unclear, but several factors may trigger its development. Conventional treatments for MCC are not highly effective, especially in patients with metastasis, with a clear need for new treatment options. Gene-targeted therapies hold great promise for the treatment of MCC, including the use of siRNA and CRISPR/Cas (C/Cas) but critically none have yet been translated into clinical trials. Validating this approach is the fact that several siRNA products are already FDA licenced, while C/Cas has entered clinical trial, albeit for conditions other than MCC. There are many challenges that must be overcome to move from preclinical research to the clinic. In this review, we provide a comprehensive summary of the current understanding of MCC, with a particular focus on MCPyV-positive MCC, and the status of gene-targeted therapies. Additionally, we discuss the major obstacles that impede MCC research and explore future prospects.
Collapse
Affiliation(s)
- Trairong Chokwassanasakulkit
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Gold Coast, Australia
| | - Nigel A J McMillan
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Gold Coast, Australia
| |
Collapse
|
24
|
Rymarquis L, Wu C, Hohorst D, Vega‐Sanchez M, Mullen TE, Vemulapalli V, Smith DR. Impact of predictive selection of LbCas12a CRISPR RNAs upon on- and off-target editing rates in soybean. PLANT DIRECT 2024; 8:e627. [PMID: 39157758 PMCID: PMC11328349 DOI: 10.1002/pld3.627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technology has revolutionized creating targeted genetic variation in crops. Although CRISPR enzymes have been reported to have high sequence-specificity, careful design of the editing reagents can also reduce unintended edits at highly homologous sites. This work details the first large-scale study of the heritability of on-target edits and the rate of edits at off-target sites in soybean (Glycine max), assaying ~700 T1 plants each resulting from transformation with LbCas12a constructs containing CRISPR RNAs (crRNAs) predicted to be either "unique" with no off-target sites or "promiscuous" with >10 potential off-targets in the soybean genome. Around 80% of the on-target edits observed in T0 plants were inherited in the T1 generation, and ~49% of the total observed on-target edits in T1 were not observed at T0, indicating continued activity of LbCas12a throughout the life cycle of the plant. In planta editing at off-target sites was observed for the Promiscuous but not the Unique crRNA. Examination of the edited off-target sites revealed that LbCas12a was highly tolerant to mismatches between the crRNA and target site in bases 21-23 relative to the start of the protospacer, but even a single mismatch in the first 20 nt drastically reduced the editing rate. In addition, edits at off-target sites have lower inheritance rates than on-target edits, suggesting that they occur later in the plant's lifecycle. Plants with a desired on-target edit and no off-target edits could be identified in the T1 generation for 100% of the T0 plants edited with the Unique crRNA compared with the 65% of T0 plants edited with the Promiscuous crRNA. This confirms that proper crRNA selection can reduce or eliminate off-target editing. Even when potential off-target sites are predicted, plants containing only the intended edits can still be identified and propagated.
Collapse
Affiliation(s)
| | - Chenxi Wu
- Bayer Crop ScienceChesterfieldMissouriUSA
| | | | | | | | | | | |
Collapse
|
25
|
Shang J, Song F, Zhang Z, Chen D, Yang S. Application of novel CRISPR tools in brain therapy. Life Sci 2024; 352:122855. [PMID: 38908787 DOI: 10.1016/j.lfs.2024.122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
In recent years, the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing toolkit has been widely used to modify the genome sequence of organisms. As the CRISPR toolbox continues to grow and new CRISPR-associated (Cas) proteins are discovered, its applications have expanded beyond conventional genome editing. This now encompass epigenetic editing, gene expression control, and various other functions. Notably, these advancements are finding practical application in the treatment of brain diseases. Furthermore, the amalgamation of CRISPR and Chimeric Antigen Receptor T-cell (CAR-T) technologies has emerged as a potential approach for disease treatment. With this in mind, this review commences by offering a comprehensive overview of recent advancements in CRISPR gene editing tools. This encompasses an exploration of various Cas proteins, gene expression control, epigenetic editing, base editing and primer editing. Additionally, we present an in-depth examination of the manifold applications of these innovative CRISPR tools in the realms of brain therapeutics, such as neurodegenerative diseases, neurological syndromes and genetic disorders, epileptic disorders, and brain tumors, also explore the pathogenesis of these diseases. This includes their utilization in modeling, gene screening, therapeutic gene editing, as well as their emerging synergy with CAR-T technology. Finally, we discuss the remaining technical challenges that need to be addressed for effective utilization of CRISPR tools in disease treatment.
Collapse
Affiliation(s)
- Jiawen Shang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Fei Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China.
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China.
| | - Sen Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China.
| |
Collapse
|
26
|
Khoshandam M, Soltaninejad H, Bhia I, Goudarzi MTH, Hosseinkhani S. CRISPR challenges in clinical developments. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:263-279. [PMID: 39824584 DOI: 10.1016/bs.pmbts.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats and associated proteins) is a novel genome editing technology with potential applications in treating diseases. Currently, its use in humans is restricted to clinical trials, although its growth rate is significant, and some have received initial FDA approval. It is crucial to examine and address the challenges for this technology to be implemented in clinical settings. This review aims to identify and explore new research ideas to increase of CRISPR's efficiency in treating genetic diseases and cancer, as well as its future prospects. Given that a substantial amount of previous research has focused on CRISPR-Cas delivery strategies and materials, this overview introduces specific conditions and strategies. It also discusses some of the challenges and opportunities in this field, offering a unique perspective.
Collapse
Affiliation(s)
- Mohadeseh Khoshandam
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom, Iran; National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Soltaninejad
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran.
| | - Iman Bhia
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
27
|
Ge W, Gou S, Zhao X, Jin Q, Zhuang Z, Zhao Y, Liang Y, Ouyang Z, Liu X, Chen F, Shi H, Yan H, Wu H, Lai L, Wang K. In vivo evaluation of guide-free Cas9-induced safety risks in a pig model. Signal Transduct Target Ther 2024; 9:184. [PMID: 39025833 PMCID: PMC11258294 DOI: 10.1038/s41392-024-01905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/20/2024] Open
Abstract
The CRISPR/Cas9 system has shown great potential for treating human genetic diseases through gene therapy. However, there are concerns about the safety of this system, specifically related to the use of guide-free Cas9. Previous studies have shown that guide-free Cas9 can induce genomic instability in vitro. However, the in vivo safety risks associated with guide-free Cas9 have not been evaluated, which is necessary for the development of gene therapy in clinical settings. In this study, we used doxycycline-inducible Cas9-expressing pigs to evaluate the safety risks of guide-free Cas9 in vivo. Our findings demonstrated that expression of guide-free Cas9 could induce genomic damages and transcriptome changes in vivo. The severity of the genomic damages and transcriptome changes were correlate with the expression levels of Cas9 protein. Moreover, prolonged expression of Cas9 in pigs led to abnormal phenotypes, including a significant decrease in body weight, which may be attributable to genomic damage-induced nutritional absorption and metabolic dysfunction. Furthermore, we observed an increase in whole-genome and tumor driver gene mutations in pigs with long-term Cas9 expression, raising the risk of tumor occurrence. Our in vivo evaluation of guide-free Cas9 in pigs highlights the necessity of considering and monitoring the detrimental effects of Cas9 alone as genome editing via the CRISPR/Cas9 system is implemented in clinical gene therapy. This research emphasizes the importance of further study and implementation of safety measures to ensure the successful and safe application of the CRISPR/Cas9 system in clinical practice.
Collapse
Affiliation(s)
- Weikai Ge
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Shixue Gou
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Xiaozhu Zhao
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qin Jin
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
| | - Zhenpeng Zhuang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
| | - Yu Zhao
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
| | - Yanhui Liang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
| | - Zhen Ouyang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
| | - Xiaoyi Liu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Hui Shi
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
| | - Haizhao Yan
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Han Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
| | - Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Sanya institute of Swine resource, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
| |
Collapse
|
28
|
Choi W, Cha S, Kim K. Navigating the CRISPR/Cas Landscape for Enhanced Diagnosis and Treatment of Wilson's Disease. Cells 2024; 13:1214. [PMID: 39056796 PMCID: PMC11274827 DOI: 10.3390/cells13141214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system continues to evolve, thereby enabling more precise detection and repair of mutagenesis. The development of CRISPR/Cas-based diagnosis holds promise for high-throughput, cost-effective, and portable nucleic acid screening and genetic disease diagnosis. In addition, advancements in transportation strategies such as adeno-associated virus (AAV), lentiviral vectors, nanoparticles, and virus-like vectors (VLPs) offer synergistic insights for gene therapeutics in vivo. Wilson's disease (WD), a copper metabolism disorder, is primarily caused by mutations in the ATPase copper transporting beta (ATP7B) gene. The condition is associated with the accumulation of copper in the body, leading to irreversible damage to various organs, including the liver, nervous system, kidneys, and eyes. However, the heterogeneous nature and individualized presentation of physical and neurological symptoms in WD patients pose significant challenges to accurate diagnosis. Furthermore, patients must consume copper-chelating medication throughout their lifetime. Herein, we provide a detailed description of WD and review the application of novel CRISPR-based strategies for its diagnosis and treatment, along with the challenges that need to be overcome.
Collapse
Affiliation(s)
- Woong Choi
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
| | - Seongkwang Cha
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
29
|
Teboul L, Amos-Landgraf J, Benavides FJ, Birling MC, Brown SDM, Bryda E, Bunton-Stasyshyn R, Chin HJ, Crispo M, Delerue F, Dobbie M, Franklin CL, Fuchtbauer EM, Gao X, Golzio C, Haffner R, Hérault Y, Hrabe de Angelis M, Lloyd KCK, Magnuson TR, Montoliu L, Murray SA, Nam KH, Nutter LMJ, Pailhoux E, Pardo Manuel de Villena F, Peterson K, Reinholdt L, Sedlacek R, Seong JK, Shiroishi T, Smith C, Takeo T, Tinsley L, Vilotte JL, Warming S, Wells S, Whitelaw CB, Yoshiki A, Pavlovic G. Improving laboratory animal genetic reporting: LAG-R guidelines. Nat Commun 2024; 15:5574. [PMID: 38956430 PMCID: PMC11220107 DOI: 10.1038/s41467-024-49439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
The biomedical research community addresses reproducibility challenges in animal studies through standardized nomenclature, improved experimental design, transparent reporting, data sharing, and centralized repositories. The ARRIVE guidelines outline documentation standards for laboratory animals in experiments, but genetic information is often incomplete. To remedy this, we propose the Laboratory Animal Genetic Reporting (LAG-R) framework. LAG-R aims to document animals' genetic makeup in scientific publications, providing essential details for replication and appropriate model use. While verifying complete genetic compositions may be impractical, better reporting and validation efforts enhance reliability of research. LAG-R standardization will bolster reproducibility, peer review, and overall scientific rigor.
Collapse
Affiliation(s)
- Lydia Teboul
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, OX11 0RD, Oxon, UK.
| | - James Amos-Landgraf
- University of Missouri School of Medicine, Columbia, MO, USA
- University of Missouri College of Veterinary Medicine, Columbia, MO, USA
- Rat Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Fernando J Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marie-Christine Birling
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Grafenstaden, 67404, Strasbourg, France
| | - Steve D M Brown
- Visiting Scientist, Institut Clinique de la Souris, Université de Strasbourg, Illkirch-Grafenstaden, 67404, Strasbourg, France
| | - Elizabeth Bryda
- Rat Resource and Research Center, University of Missouri, Columbia, MO, 65201, USA
| | | | - Hsian-Jean Chin
- National Laboratory Animal Center (NLAC), NARLabs, Taipei, Taiwan
| | - Martina Crispo
- Laboratory Animal Biotechnology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 1400, Montevideo, Uruguay
| | - Fabien Delerue
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Dobbie
- Phenomics Australia, Australian National University, 131 Garran Road, Canberra, ACT 2601, Australia
| | - Craig L Franklin
- University of Missouri Mutant Mouse Resource and Research Center (MU MMRRC), University of Missouri, Columbia, MO, 65201, USA
| | | | - Xiang Gao
- National Resource Center of Mutant Mice (NRCMM), Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Christelle Golzio
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Rebecca Haffner
- Department Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yann Hérault
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Grafenstaden, 67404, Strasbourg, France
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
- German Center for Diabetes Research (DZD), Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
| | | | - Terry R Magnuson
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, USA
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), 28049, Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029, Madrid, Spain
| | | | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Lauryl M J Nutter
- Genetics and Genome Biology, The Hospital for Sick Children and The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada
| | - Eric Pailhoux
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, and Korea Mouse Phenotyping Center, Seoul, 08826, Republic of Korea
| | | | - Cynthia Smith
- Mouse Genome Informatics (MGI), Jackson Laboratory, Bar Harbor, ME, USA
| | - Toru Takeo
- Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Louise Tinsley
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, OX11 0RD, Oxon, UK
| | - Jean-Luc Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Søren Warming
- Genentech, Inc., a member of the Roche group, South San Francisco, CA, USA
| | - Sara Wells
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, OX11 0RD, Oxon, UK
- Francis Crick Institute, London, NW1 1AT, UK
| | - C Bruce Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Guillaume Pavlovic
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Grafenstaden, 67404, Strasbourg, France.
| |
Collapse
|
30
|
Liu Y, Wang D, Luan Y, Tao B, Li Q, Feng Q, Zhou H, Mu J, Yu J. The application of organoids in colorectal diseases. Front Pharmacol 2024; 15:1412489. [PMID: 38983913 PMCID: PMC11231380 DOI: 10.3389/fphar.2024.1412489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Intestinal organoids are a three-dimensional cell culture model derived from colon or pluripotent stem cells. Intestinal organoids constructed in vitro strongly mimic the colon epithelium in cell composition, tissue architecture, and specific functions, replicating the colon epithelium in an in vitro culture environment. As an emerging biomedical technology, organoid technology has unique advantages over traditional two-dimensional culture in preserving parental gene expression and mutation, cell function, and biological characteristics. It has shown great potential in the research and treatment of colorectal diseases. Organoid technology has been widely applied in research on colorectal topics, including intestinal tumors, inflammatory bowel disease, infectious diarrhea, and intestinal injury regeneration. This review focuses on the application of organoid technology in colorectal diseases, including the basic principles and preparation methods of organoids, and explores the pathogenesis of and personalized treatment plans for various colorectal diseases to provide a valuable reference for organoid technology development and application.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yanhong Luan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Boqiang Tao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jianfeng Mu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jinhai Yu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Akanmu AO, Asemoloye MD, Marchisio MA, Babalola OO. Adoption of CRISPR-Cas for crop production: present status and future prospects. PeerJ 2024; 12:e17402. [PMID: 38860212 PMCID: PMC11164064 DOI: 10.7717/peerj.17402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/25/2024] [Indexed: 06/12/2024] Open
Abstract
Background Global food systems in recent years have been impacted by some harsh environmental challenges and excessive anthropogenic activities. The increasing levels of both biotic and abiotic stressors have led to a decline in food production, safety, and quality. This has also contributed to a low crop production rate and difficulty in meeting the requirements of the ever-growing population. Several biotic stresses have developed above natural resistance in crops coupled with alarming contamination rates. In particular, the multiple antibiotic resistance in bacteria and some other plant pathogens has been a hot topic over recent years since the food system is often exposed to contamination at each of the farm-to-fork stages. Therefore, a system that prioritizes the safety, quality, and availability of foods is needed to meet the health and dietary preferences of everyone at every time. Methods This review collected scattered information on food systems and proposes methods for plant disease management. Multiple databases were searched for relevant specialized literature in the field. Particular attention was placed on the genetic methods with special interest in the potentials of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and Cas (CRISPR associated) proteins technology in food systems and security. Results The review reveals the approaches that have been developed to salvage the problem of food insecurity in an attempt to achieve sustainable agriculture. On crop plants, some systems tend towards either enhancing the systemic resistance or engineering resistant varieties against known pathogens. The CRISPR-Cas technology has become a popular tool for engineering desired genes in living organisms. This review discusses its impact and why it should be considered in the sustainable management, availability, and quality of food systems. Some important roles of CRISPR-Cas have been established concerning conventional and earlier genome editing methods for simultaneous modification of different agronomic traits in crops. Conclusion Despite the controversies over the safety of the CRISPR-Cas system, its importance has been evident in the engineering of disease- and drought-resistant crop varieties, the improvement of crop yield, and enhancement of food quality.
Collapse
Affiliation(s)
- Akinlolu Olalekan Akanmu
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, University of North-West, Mmabatho, South Africa
| | - Michael Dare Asemoloye
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, University of North-West, Mmabatho, South Africa
| | | | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, University of North-West, Mmabatho, South Africa
| |
Collapse
|
32
|
Androsavich JR. Frameworks for transformational breakthroughs in RNA-based medicines. Nat Rev Drug Discov 2024; 23:421-444. [PMID: 38740953 DOI: 10.1038/s41573-024-00943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
RNA has sparked a revolution in modern medicine, with the potential to transform the way we treat diseases. Recent regulatory approvals, hundreds of new clinical trials, the emergence of CRISPR gene editing, and the effectiveness of mRNA vaccines in dramatic response to the COVID-19 pandemic have converged to create tremendous momentum and expectation. However, challenges with this relatively new class of drugs persist and require specialized knowledge and expertise to overcome. This Review explores shared strategies for developing RNA drug platforms, including layering technologies, addressing common biases and identifying gaps in understanding. It discusses the potential of RNA-based therapeutics to transform medicine, as well as the challenges associated with improving applicability, efficacy and safety profiles. Insights gained from RNA modalities such as antisense oligonucleotides (ASOs) and small interfering RNAs are used to identify important next steps for mRNA and gene editing technologies.
Collapse
Affiliation(s)
- John R Androsavich
- RNA Accelerator, Pfizer Inc, Cambridge, MA, USA.
- Ginkgo Bioworks, Boston, MA, USA.
| |
Collapse
|
33
|
Vasconcelos Komninakis S, Domingues W, Saeed Sanabani S, Angelo Folgosi V, Neves Barbosa I, Casseb J. CRISPR/CAS as a Powerful Tool for Human Immunodeficiency Virus Cure: A Review. AIDS Res Hum Retroviruses 2024; 40:363-375. [PMID: 38164106 DOI: 10.1089/aid.2022.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Despite care and the availability of effective antiretroviral treatment, some human immunodeficiency virus (HIV)-infected individuals suffer from neurocognitive disorders associated with HIV (HAND) that significantly affect their quality of life. The different types of HAND can be divided into asymptomatic neurocognitive impairment, mild neurocognitive disorder, and the most severe form known as HIV-associated dementia. Little is known about the mechanisms of HAND, but it is thought to be related to infection of astrocytes, microglial cells, and macrophages in the human brain. The formation of a viral reservoir that lies dormant as a provirus in resting CD4+ T lymphocytes and in refuge tissues such as the brain contributes significantly to HIV eradication. In recent years, a new set of tools have emerged: the gene editing based on the clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 system, which can alter genome segments by insertion, deletion, and replacement and has great therapeutic potential. This technology has been used in research to treat HIV and appears to offer hope for a possible cure for HIV infection and perhaps prevention of HAND. This approach has the potential to directly impact the quality of life of HIV-infected individuals, which is a very important topic to be known and discussed.
Collapse
Affiliation(s)
- Shirley Vasconcelos Komninakis
- Laboratory of Medical Investigation (LIM56) of the School of Medicine/Institute de Tropical Medicine, Department of Dermatology, São Paulo University, São Paulo, São Paulo, Brazil
| | - Wilson Domingues
- Laboratory of Medical Investigation (LIM56) of the School of Medicine/Institute de Tropical Medicine, Department of Dermatology, São Paulo University, São Paulo, São Paulo, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation (LIM56) of the School of Medicine/Institute de Tropical Medicine, Department of Dermatology, São Paulo University, São Paulo, São Paulo, Brazil
| | - Victor Angelo Folgosi
- Laboratory of Medical Investigation (LIM56) of the School of Medicine/Institute de Tropical Medicine, Department of Dermatology, São Paulo University, São Paulo, São Paulo, Brazil
| | - Igor Neves Barbosa
- Institute of Genetic Biology at the Biological Institute of São Paulo University, São Paulo, São Paulo, Brazil
| | - Jorge Casseb
- Laboratory of Medical Investigation (LIM56) of the School of Medicine/Institute de Tropical Medicine, Department of Dermatology, São Paulo University, São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Li B, Li Q, Qi Z, Li Z, Yan X, Chen Y, Xu X, Pan Q, Chen Y, Huang F, Ping Y. Supramolecular Genome Editing: Targeted Delivery and Endogenous Activation of CRISPR/Cas9 by Dynamic Host-Guest Recognition. Angew Chem Int Ed Engl 2024; 63:e202316323. [PMID: 38317057 DOI: 10.1002/anie.202316323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
We synthesize supramolecular poly(disulfide) (CPS) containing covalently attached cucurbit[7]uril (CB[7]), which is exploited not only as a carrier to deliver plasmid DNA encoding destabilized Cas9 (dsCas9), but also as a host to include trimethoprim (TMP) by CB[7] moieties through the supramolecular complexation to form TMP@CPS/dsCas9. Once the plasmid is transfected into tumor cells by CPS, the presence of polyamines can competitively trigger the decomplexation of TMP@CPS, thereby displacing and releasing TMP from CB[7] to stabilize dsCas9 that can target and edit the genomic locus of PLK1 to inhibit the growth of tumor cells. Following the systemic administration of TMP@CPS/dsCas9 decorated with hyaluronic acid (HA), tumor-specific editing of PLK1 is detected due to the elevated polyamines in tumor microenvironment, greatly minimizing off-target editing in healthy tissues and non-targeted organs. As the metabolism of polyamines is dysregulated in a wide range of disorders, this study offers a supramolecular approach to precisely control CRISPR/Cas9 functions under particular pathological contexts.
Collapse
Affiliation(s)
- Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, P. R. China
| | - Qing Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Zidan Qi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhiyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiaojie Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiaojie Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, P. R. China
| | - Qi Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuxuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, P. R. China
| |
Collapse
|
35
|
Wang S, Zhu Y, Du S, Zheng Y. Preclinical Advances in LNP-CRISPR Therapeutics for Solid Tumor Treatment. Cells 2024; 13:568. [PMID: 38607007 PMCID: PMC11011435 DOI: 10.3390/cells13070568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Solid tumors, with their intricate cellular architecture and genetic heterogeneity, have long posed therapeutic challenges. The advent of the CRISPR genome editing system offers a promising, precise genetic intervention. However, the journey from bench to bedside is fraught with hurdles, chief among them being the efficient delivery of CRISPR components to tumor cells. Lipid nanoparticles (LNPs) have emerged as a potential solution. This biocompatible nanomaterial can encapsulate the CRISPR/Cas9 system, ensuring targeted delivery while mitigating off-target effects. Pre-clinical investigations underscore the efficacy of LNP-mediated CRISPR delivery, with marked disruption of oncogenic pathways and subsequent tumor regression. Overall, CRISPR/Cas9 technology, when combined with LNPs, presents a groundbreaking approach to cancer therapy, offering precision, efficacy, and potential solutions to current limitations. While further research and clinical testing are required, the future of personalized cancer treatment based on CRISPR/Cas9 holds immense promise.
Collapse
Affiliation(s)
- Shuting Wang
- School of Pharmacy, Hainan Medical University, Haikou 571199, China;
| | - Yuxi Zhu
- Department of Pediatrics, University Hospitals Rainbow Babies & Children’s Hospital, Cleveland, OH 44106, USA;
| | - Shi Du
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yunsi Zheng
- School of Pharmacy, Hainan Medical University, Haikou 571199, China;
| |
Collapse
|
36
|
Wu K, Bu F, Wu Y, Zhang G, Wang X, He S, Liu MF, Chen R, Yuan H. Exploring noncoding variants in genetic diseases: from detection to functional insights. J Genet Genomics 2024; 51:111-132. [PMID: 38181897 DOI: 10.1016/j.jgg.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Previous studies on genetic diseases predominantly focused on protein-coding variations, overlooking the vast noncoding regions in the human genome. The development of high-throughput sequencing technologies and functional genomics tools has enabled the systematic identification of functional noncoding variants. These variants can impact gene expression, regulation, and chromatin conformation, thereby contributing to disease pathogenesis. Understanding the mechanisms that underlie the impact of noncoding variants on genetic diseases is indispensable for the development of precisely targeted therapies and the implementation of personalized medicine strategies. The intricacies of noncoding regions introduce a multitude of challenges and research opportunities. In this review, we introduce a spectrum of noncoding variants involved in genetic diseases, along with research strategies and advanced technologies for their precise identification and in-depth understanding of the complexity of the noncoding genome. We will delve into the research challenges and propose potential solutions for unraveling the genetic basis of rare and complex diseases.
Collapse
Affiliation(s)
- Ke Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Fengxiao Bu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Gen Zhang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mo-Fang Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China; State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
37
|
Luo Y, Chen Y, Xie H, Zhu W, Zhang G. Interpretable CRISPR/Cas9 off-target activities with mismatches and indels prediction using BERT. Comput Biol Med 2024; 169:107932. [PMID: 38199209 DOI: 10.1016/j.compbiomed.2024.107932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/25/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
Off-target effects of CRISPR/Cas9 can lead to suboptimal genome editing outcomes. Numerous deep learning-based approaches have achieved excellent performance for off-target prediction; however, few can predict the off-target activities with both mismatches and indels between single guide RNA (sgRNA) and target DNA sequence pair. In addition, data imbalance is a common pitfall for off-target prediction. Moreover, due to the complexity of genomic contexts, generating an interpretable model also remains challenged. To address these issues, firstly we developed a BERT-based model called CRISPR-BERT for enhancing the prediction of off-target activities with both mismatches and indels. Secondly, we proposed an adaptive batch-wise class balancing strategy to combat the noise exists in imbalanced off-target data. Finally, we applied a visualization approach for investigating the generalizable nucleotide position-dependent patterns of sgRNA-DNA pair for off-target activity. In our comprehensive comparison to existing methods on five mismatches-only datasets and two mismatches-and-indels datasets, CRISPR-BERT achieved the best performance in terms of AUROC and PRAUC. Besides, the visualization analysis demonstrated how implicit knowledge learned by CRISPR-BERT facilitates off-target prediction, which shows potential in model interpretability. Collectively, CRISPR-BERT provides an accurate and interpretable framework for off-target prediction, further contributes to sgRNA optimization in practical use for improved target specificity in CRISPR/Cas9 genome editing. The source code is available at https://github.com/BrokenStringx/CRISPR-BERT.
Collapse
Affiliation(s)
- Ye Luo
- College of Engineering, Shantou University, Shantou, 515063, China
| | - Yaowen Chen
- College of Engineering, Shantou University, Shantou, 515063, China
| | - HuanZeng Xie
- College of Engineering, Shantou University, Shantou, 515063, China
| | - Wentao Zhu
- College of Engineering, Shantou University, Shantou, 515063, China
| | - Guishan Zhang
- College of Engineering, Shantou University, Shantou, 515063, China.
| |
Collapse
|
38
|
Wang H, Ai L, Xia Y, Wang G, Xiong Z, Song X. Software-based screening for efficient sgRNAs in Lactococcus lactis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1200-1206. [PMID: 37647419 DOI: 10.1002/jsfa.12946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The two essential editing elements in the clustered regularly interspaced short palindromic repeats (CRISPR) editing system are promoter and single-guide RNA (sgRNA), the latter of which determines whether Cas protein can precisely target a specific location to edit the targeted gene. Therefore, the selection of sgRNA is crucial to the efficiency of the CRISPR editing system. Various online prediction tools for sgRNA are currently available. These tools can predict all possible sgRNAs of the targeted gene and rank sgRNAs according to certain scoring criteria according to the demands of the user. RESULTS We designed sgRNAs for Lactococcus lactis NZ9000 LLNZ_RS02020 (ldh) and LLNZ_RS10925 (upp) individually using online prediction software - CRISPOR - and successfully constructed a series of knockout strains to allow comparison of the knockout efficiency of each sgRNA and analyze the differences between software predictions and actual experimental results. CONCLUSION Our experimental results showed that the actual editing efficiency of the screened sgRNAs did not match the predicted results - a phenomenon that suggests that established findings from eukaryotic studies are not universally applicable to prokaryotes. Software prediction can still be used as a tool for the initial screening of sgRNAs before further selection of suitable sgRNAs through experimental experience. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
39
|
Yang DD, Rusch LM, Widney KA, Morgenthaler AB, Copley SD. Synonymous edits in the Escherichia coli genome have substantial and condition-dependent effects on fitness. Proc Natl Acad Sci U S A 2024; 121:e2316834121. [PMID: 38252823 PMCID: PMC10835057 DOI: 10.1073/pnas.2316834121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
CRISPR-Cas-based genome editing is widely used in bacteria at scales ranging from construction of individual mutants to massively parallel libraries. This procedure relies on guide RNA-directed cleavage of the genome followed by repair with a template that introduces a desired mutation along with synonymous "immunizing" mutations to prevent re-cleavage of the genome after editing. Because the immunizing mutations do not change the protein sequence, they are often assumed to be neutral. However, synonymous mutations can change mRNA structures in ways that alter levels of the encoded proteins. We have tested the assumption that immunizing mutations are neutral by constructing a library of over 50,000 edits that consist of only synonymous mutations in Escherichia coli. Thousands of edits had substantial effects on fitness during growth of E. coli on acetate, a poor carbon source that is toxic at high concentrations. The percentage of high-impact edits varied considerably between genes and at different positions within genes. We reconstructed clones with high-impact edits and found that 69% indeed had significant effects on growth in acetate. Interestingly, fewer edits affected fitness during growth in glucose, a preferred carbon source, suggesting that changes in protein expression caused by synonymous mutations may be most important when an organism encounters challenging conditions. Finally, we showed that synonymous edits can have widespread effects; a synonymous edit at the 5' end of ptsI altered expression of hundreds of genes. Our results suggest that the synonymous immunizing edits introduced during CRISPR-Cas-based genome editing should not be assumed to be innocuous.
Collapse
Affiliation(s)
- Dong-Dong Yang
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Leo M. Rusch
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Karl A. Widney
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Andrew B. Morgenthaler
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
- Amyris, Inc., Emeryville, CA94608
| | - Shelley D. Copley
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
| |
Collapse
|
40
|
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23:9. [PMID: 38195537 PMCID: PMC10775503 DOI: 10.1186/s12943-023-01925-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Eskandari
- Faculty of Molecular and Cellular Biology -Genetics, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Abbas Mokhtari-Farsani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
41
|
Cao M, Li B, Zhang X. Anti-CRISPR with non-protein substances. Trends Biotechnol 2024; 42:14-16. [PMID: 37482468 DOI: 10.1016/j.tibtech.2023.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
Therapeutics based on clustered regularly interspaced short palindromic repeats (CRISPR) have gained significant attention as a promising synthetic biology technique, but there are concerns about the potential for persistent activation of CRISPR-associated protein (Cas) and subsequent off-target effects. This forum focuses on advances in anti-CRISPR studies based on non-protein substances in the hope of developing effective anti-CRISPR strategies to mitigate these concerns.
Collapse
Affiliation(s)
- Min Cao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
42
|
Sun L, Alariqi M, Wang Y, Wang Q, Xu Z, Zafar MN, Yang G, Jia R, Hussain A, Chen Y, Ding X, Zhou J, Wang G, Wang F, Li J, Zou J, Zhu X, Yu L, Sun Y, Liang S, Hui F, Chen L, Guo W, Wang Y, Zhu H, Lindsey K, Nie X, Zhang X, Jin S. Construction of Host Plant Insect-Resistance Mutant Library by High-Throughput CRISPR/Cas9 System and Identification of A Broad-Spectrum Insect Resistance Gene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306157. [PMID: 38032126 PMCID: PMC10811493 DOI: 10.1002/advs.202306157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Insects pose significant challenges in cotton-producing regions. Here, they describe a high-throughput CRISPR/Cas9-mediated large-scale mutagenesis library targeting endogenous insect-resistance-related genes in cotton. This library targeted 502 previously identified genes using 968 sgRNAs, generated ≈2000 T0 plants and achieved 97.29% genome editing with efficient heredity, reaching upto 84.78%. Several potential resistance-related mutants (10% of 200 lines) their identified that may contribute to cotton-insect molecular interaction. Among these, they selected 139 and 144 lines showing decreased resistance to pest infestation and targeting major latex-like protein 423 (GhMLP423) for in-depth study. Overexpression of GhMLP423 enhanced insect resistance by activating the plant systemic acquired resistance (SAR) of salicylic acid (SA) and pathogenesis-related (PR) genes. This activation is induced by an elevation of cytosolic calcium [Ca2+ ]cyt flux eliciting reactive oxygen species (ROS), which their demoted in GhMLP423 knockout (CR) plants. Protein-protein interaction assays revealed that GhMLP423 interacted with a human epidermal growth factor receptor substrate15 (EPS15) protein at the cell membrane. Together, they regulated the systemically propagating waves of Ca2+ and ROS, which in turn induced SAR. Collectively, this large-scale mutagenesis library provides an efficient strategy for functional genomics research of polyploid plant species and serves as a solid platform for genetic engineering of insect resistance.
Collapse
Affiliation(s)
- Lin Sun
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
- Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanShandong250100China
| | - Muna Alariqi
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
- Department of Agronomy and Pastures, Faculty of AgricultureSana’a UniversitySana’aYemen
| | - Yaxin Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Qiongqiong Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Zhongping Xu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Muhammad Naeem Zafar
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Guangqin Yang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Ruoyu Jia
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Amjad Hussain
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Yilin Chen
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Xiao Ding
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Jiawei Zhou
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Guanying Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Fuqiu Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Jianying Li
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Jiawei Zou
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Xiangqian Zhu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Lu Yu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Yiwen Sun
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Sijia Liang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Fengjiao Hui
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Luo Chen
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Weifeng Guo
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim BasinTarim UniversityAlaerXinjiang843300China
| | - Yanqin Wang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim BasinTarim UniversityAlaerXinjiang843300China
| | - Huaguo Zhu
- College of Biology and Agricultural ResourcesHuanggang Normal UniversityHuanggangHubei438000China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang BingtuanAgricultural CollegeShihezi UniversityShiheziXinjiangChina
| | - Xianlong Zhang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Shuangxia Jin
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| |
Collapse
|
43
|
Lei P, Ju Y, Peng F, Luo J. Applications and advancements of CRISPR-Cas in the treatment of lung cancer. Front Cell Dev Biol 2023; 11:1295084. [PMID: 38188023 PMCID: PMC10768725 DOI: 10.3389/fcell.2023.1295084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
Lung cancer is one of the most malignant diseases and a major contributor to cancer-related deaths worldwide due to the deficiency of early diagnosis and effective therapy that are of great importance for patient prognosis and quality of life. Over the past decade, the advent of clustered regularly interspaced short palindromic repeats/CRISPR associated protein (CRISPR/Cas) system has significantly propelled the progress of both fundamental research and clinical trials of lung cancer. In this review, we review the current applications of the CRISPR/Cas system in diagnosis, target identification, and treatment resistance of lung cancer. Furthermore, we summarize the development of lung cancer animal models and delivery methods based on CRISPR system, providing novel insights into clinical diagnosis and treatment strategies of lung cancer.
Collapse
Affiliation(s)
- Pan Lei
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Yixin Ju
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Fenfen Peng
- Department of Pharmacy, Jianyang City Hospital of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Jianyang, Sichuan, China
| | - Jie Luo
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
44
|
Prokhorova D, Matveeva A, Zakabunin A, Ryabchenko A, Stepanov G. Influence of N1-Methylpseudouridine in Guide RNAs on CRISPR/Cas9 Activity. Int J Mol Sci 2023; 24:17116. [PMID: 38069437 PMCID: PMC10707292 DOI: 10.3390/ijms242317116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
At present, there are many strategies to improve the activity of CRISPR/Cas9. A well-known and effective approach is guide RNA modification. Many chemical guide RNA modifications have been studied, whereas naturally occurring RNA modifications are largely unexplored. N1-methylpseudouridine (m1Ψ) is an RNA base modification widely used in mRNA therapy, and it holds great promise for application in genome editing systems. The present study focuses on investigating the effect of N1-methylpseudouridine on the functioning of CRISPR/Cas9. In vitro cleavage assays helped determine the level of m1Ψ guide RNA modification that is sufficient to cleave the target substrate. By analyzing FAM-labeled dsDNA substrate cleavage, we calculated the kinetic parameters and the specificity scores of modified guide RNAs. Neon transfection and digital PCR enabled us to assess the activity of modified guide RNAs in mammalian cells. Our study shows that the presence of m1Ψ in guide RNAs can help preserve on-target genome editing while significantly reducing the off-target effects of CRISPR/Cas9 in vitro. We also demonstrate that Cas9 complexes with guide RNAs containing m1Ψ allow for genome editing in human cells. Thus, the incorporation of m1Ψ into guide RNAs supports CRISPR/Cas9 activity both in vitro and in cells.
Collapse
Affiliation(s)
| | | | | | | | - Grigory Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (A.Z.)
| |
Collapse
|
45
|
Motoche-Monar C, Ordoñez JE, Chang O, Gonzales-Zubiate FA. gRNA Design: How Its Evolution Impacted on CRISPR/Cas9 Systems Refinement. Biomolecules 2023; 13:1698. [PMID: 38136570 PMCID: PMC10741458 DOI: 10.3390/biom13121698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 12/24/2023] Open
Abstract
Over the past decade, genetic engineering has witnessed a revolution with the emergence of a relatively new genetic editing tool based on RNA-guided nucleases: the CRISPR/Cas9 system. Since the first report in 1987 and characterization in 2007 as a bacterial defense mechanism, this system has garnered immense interest and research attention. CRISPR systems provide immunity to bacteria against invading genetic material; however, with specific modifications in sequence and structure, it becomes a precise editing system capable of modifying the genomes of a wide range of organisms. The refinement of these modifications encompasses diverse approaches, including the development of more accurate nucleases, understanding of the cellular context and epigenetic conditions, and the re-designing guide RNAs (gRNAs). Considering the critical importance of the correct performance of CRISPR/Cas9 systems, our scope will emphasize the latter approach. Hence, we present an overview of the past and the most recent guide RNA web-based design tools, highlighting the evolution of their computational architecture and gRNA characteristics over the years. Our study explains computational approaches that use machine learning techniques, neural networks, and gRNA/target interactions data to enable predictions and classifications. This review could open the door to a dynamic community that uses up-to-date algorithms to optimize and create promising gRNAs, suitable for modern CRISPR/Cas9 engineering.
Collapse
Affiliation(s)
- Cristofer Motoche-Monar
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Julián E. Ordoñez
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Oscar Chang
- Departamento de Electrónica, Universidad Simon Bolivar, Caracas 1080, Venezuela
- MIND Research Group, Model Intelligent Networks Development, Urcuquí 100119, Ecuador
| | - Fernando A. Gonzales-Zubiate
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
- MIND Research Group, Model Intelligent Networks Development, Urcuquí 100119, Ecuador
| |
Collapse
|
46
|
Matinvafa MA, Makani S, Parsasharif N, Zahed MA, Movahed E, Ghiasvand S. CRISPR-Cas technology secures sustainability through its applications: a review in green biotechnology. 3 Biotech 2023; 13:383. [PMID: 37920190 PMCID: PMC10618153 DOI: 10.1007/s13205-023-03786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 09/09/2023] [Indexed: 11/04/2023] Open
Abstract
The CRISPR-Cas system's applications in biotechnology offer a promising avenue for addressing pressing global challenges, such as climate change, environmental pollution, the energy crisis, and the food crisis, thereby advancing sustainability. The ever-growing demand for food due to the projected population of around 9.6 billion by 2050 requires innovation in agriculture. CRISPR-Cas technology emerges as a powerful solution, enhancing crop varieties, optimizing yields, and improving resilience to stressors. It offers multiple gene editing, base editing, and prime editing, surpassing conventional methods. CRISPR-Cas introduces disease and herbicide resistance, high-yielding, drought-tolerant, and water-efficient crops to address rising water utilization and to improve the efficiency of agricultural practices which promise food sustainability and revolutionize agriculture for the benefit of future generations. The application of CRISPR-Cas technology extends beyond agriculture to address environmental challenges. With the adverse impacts of climate change and pollution endangering ecosystems, there is a growing need for sustainable solutions. The technology's potential in carbon capture and reduction through bio-sequestration is a pivotal strategy for combating climate change. Genomic advancements allow for the development of genetically modified organisms, optimizing biofuel and biomaterial production, and contributing to a renewable and sustainable energy future. This study reviews the multifaceted applications of CRISPR-Cas technology in the agricultural and environmental fields and emphasizes its potential to secure a sustainable future.
Collapse
Affiliation(s)
- Mohammad Ali Matinvafa
- Department of Biotechnology & Environment, Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Negin Parsasharif
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, NY USA
| | - Saeedeh Ghiasvand
- Department of Biology, Faculty of Basic Science, Malayer University, Malayer, Hamedan, Iran
| |
Collapse
|
47
|
Koller F, Cieslak M. A perspective from the EU: unintended genetic changes in plants caused by NGT-their relevance for a comprehensive molecular characterisation and risk assessment. Front Bioeng Biotechnol 2023; 11:1276226. [PMID: 37965049 PMCID: PMC10641861 DOI: 10.3389/fbioe.2023.1276226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Several regions in the world are currently holding discussions in regard to the regulation of new genomic techniques (NGTs) and their application in agriculture. The European Commission, for instance, is proposing the introduction of specific regulation for NGT plants. Various questions need to be answered including e.g., the extent to which NGT-induced intended and unintended genetic modifications must be subjected to a mandatory risk assessment as part of an approval procedure. This review mostly focuses on findings in regard to unintended genetic changes that can be caused by the application of NGTs. More specifically, the review deals with the application of the nuclease CRISPR/Cas, which is currently the most important tool for developing NGT plants, and its potential to introduce double strand breaks (DSBs) at a targeted DNA sequence. For this purpose, we identified the differences in comparison to non-targeted mutagenesis methods used in conventional breeding. The review concludes that unintended genetic changes caused by NGT processes are relevant to risk assessment. Due to the technical characteristics of NGTs, the sites of the unintended changes, their genomic context and their frequency (in regard to specific sites) mean that the resulting gene combinations (intended or unintended) may be unlikely to occur with conventional methods. This, in turn, implies that the biological effects (phenotypes) can also be different and may cause risks to health and the environment. Therefore, we conclude that the assessment of intended as well as unintended genetic changes should be part of a mandatory comprehensive molecular characterisation and risk assessment of NGT plants that are meant for environmental releases or for market authorisation.
Collapse
Affiliation(s)
- Franziska Koller
- Fachstelle Gentechnik und Umwelt (FGU), Munich, Bavaria, Germany
| | | |
Collapse
|
48
|
Chen BC, Chen YZ, Lin HY. An Introduced RNA-Only Approach for Plasmid Curing via the CRISPR-Cpf1 System in Saccharomyces cerevisiae. Biomolecules 2023; 13:1561. [PMID: 37892243 PMCID: PMC10604987 DOI: 10.3390/biom13101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The CRISPR-Cas system has been widely used for genome editing due to its convenience, simplicity and flexibility. Using a plasmid-carrying Cas protein and crRNA or sgRNA expression cassettes is an efficient strategy in the CRISPR-Cas genome editing system. However, the plasmid remains in the cells after genome editing. Development of general plasmid-curing strategies is necessary. Based on our previous CRISPR-Cpf1 genome-editing system in Saccharomyces cerevisiae, the crRNA, designed for the replication origin of the CRISPR-Cpf1 plasmid, and the ssDNA, as a template for homologous recombination, were introduced for plasmid curing. The efficiency of the plasmid curing was 96 ± 4%. In addition, we further simplified the plasmid curing system by transforming only one crRNA into S. cerevisiae, and the curing efficiency was about 70%. In summary, we have developed a CRISPR-mediated plasmid-curing system. The RNA-only plasmid curing system is fast and easy. This plasmid curing strategy can be applied in broad hosts by designing crRNA specific for the replication origin of the plasmid. The plasmid curing system via CRISPR-Cas editing technology can be applied to produce traceless products without foreign genes and to perform iterative processes in multiple rounds of genome editing.
Collapse
Affiliation(s)
- Bo-Chou Chen
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300, Taiwan;
| | - Yu-Zhen Chen
- Department of Food Science and Technology, Hungkuang University, Taichung 433, Taiwan;
| | - Huan-Yu Lin
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300, Taiwan;
| |
Collapse
|
49
|
Liu Q, Meng G, Wang M, Li X, Liu M, Wang F, Yang Y, Dong C. Safe-Harbor-Targeted CRISPR/Cas9 System and Cmhyd1 Overexpression Enhances Disease Resistance in Cordyceps militaris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15249-15260. [PMID: 37807760 DOI: 10.1021/acs.jafc.3c05131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Fungal disease of mushroomCordyceps militaris (CM) caused byCalcarisporium cordycipiticola (CC) is destructive to fruiting body cultivation, resulting in significant economic loss and potential food safety risks. CRISPR/Cas9 genome editing has proven to be a powerful tool for crop improvement but seldom succeeded in mushrooms. Here, the first genomic safe-harbor site, CmSH1 locus, was identified in the CM genome. A safe-harbor-targeted CRISPR/Cas9 system based on an autonomously replicating plasmid was designed to facilitate alien gene integration at the CmSH1 locus. Cmhyd1, one of the hydrophobin genes, was confirmed as a defensive factor against CC infection, and Cmhyd1 overexpression by this system showed enhancement of disease resistance with negligible effect on the agronomic traits of CM. No off-target events and residues of plasmid sequence were tested by PCR and genome resequencing. This study provided the first safe harbor site for genetic manipulations, a safe harbor-targeted CRISPR/Cas9 system, and the first disease-resistant gene-editing breeding system in mushrooms.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Meng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei Province, China
| | - Mengqian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
50
|
Feng S, Xie X, Liu J, Li A, Wang Q, Guo D, Li S, Li Y, Wang Z, Guo T, Zhou J, Tang DYY, Show PL. A potential paradigm in CRISPR/Cas systems delivery: at the crossroad of microalgal gene editing and algal-mediated nanoparticles. J Nanobiotechnology 2023; 21:370. [PMID: 37817254 PMCID: PMC10563294 DOI: 10.1186/s12951-023-02139-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Microalgae as the photosynthetic organisms offer enormous promise in a variety of industries, such as the generation of high-value byproducts, biofuels, pharmaceuticals, environmental remediation, and others. With the rapid advancement of gene editing technology, CRISPR/Cas system has evolved into an effective tool that revolutionised the genetic engineering of microalgae due to its robustness, high target specificity, and programmability. However, due to the lack of robust delivery system, the efficacy of gene editing is significantly impaired, limiting its application in microalgae. Nanomaterials have become a potential delivery platform for CRISPR/Cas systems due to their advantages of precise targeting, high stability, safety, and improved immune system. Notably, algal-mediated nanoparticles (AMNPs), especially the microalgae-derived nanoparticles, are appealing as a sustainable delivery platform because of their biocompatibility and low toxicity in a homologous relationship. In addition, living microalgae demonstrated effective and regulated distribution into specified areas as the biohybrid microrobots. This review extensively summarised the uses of CRISPR/Cas systems in microalgae and the recent developments of nanoparticle-based CRISPR/Cas delivery systems. A systematic description of the properties and uses of AMNPs, microalgae-derived nanoparticles, and microalgae microrobots has also been discussed. Finally, this review highlights the challenges and future research directions for the development of gene-edited microalgae.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Xin Xie
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Junjie Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Dandan Guo
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Zilong Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China.
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|