1
|
Yu K, Wang Y, Sun H, Lou Y, Bao H, Wang X, Zhang J, Shi J, Tang G, Wang Q, Bai H. Silk Fibroin-Based Lenvatinib Nanomedicine with Conformation Tunability for Systemic Treatment of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60070-60083. [PMID: 39436973 DOI: 10.1021/acsami.4c16424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Multitarget tyrosine kinase inhibitors (TKIs) serve as first-line therapeutics in the systemic treatment of hepatocellular carcinoma (HCC), yet their clinical effectiveness is hampered by suboptimal pharmacokinetics and bioavailability. There is a critical need to enhance the circulation, tumor targeting, and infiltration of TKIs. In this context, we developed a silk fibroin (SF)-based nanomedicine that exploits the chemical versatility and conformation tunability of SF. Folic acid (FA) with affinity toward HCC cells is utilized to functionalize SF, simultaneously aiding in the pH-sensitive β-sheet transitions of SF. This dynamic conformation behavior is key to improving the nanomedicine's circulation, biological adhesion, and tumor localization. By encapsulating Lenvatinib (Leva) TKI, the nanomedicine exhibits tumor-targeted accumulation and potent inhibition on HCC cell survival and angiogenesis, thereby amplifying Leva's bioavailability and therapeutic impact. Owing to SF's low immunogenicity and high reproducibility, this SF-based approach for TKI delivery holds substantial promise for advancing HCC systemic therapy.
Collapse
Affiliation(s)
- Kaxi Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Yu Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
- Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Hong Sun
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Yijie Lou
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Hanxiao Bao
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | | | - Jinguo Zhang
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, P. R. China
| | - Junhui Shi
- Zhejiang Lab. Hangzhou 311100, P. R. China
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, P. R. China
| | - Qiwen Wang
- Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| |
Collapse
|
2
|
Yi X, Guo L, Zeng Q, Huang S, Wen D, Wang C, Kou Y, Zhang M, Li H, Wen L, Chen G. Magnetic/Acoustic Dual-Controlled Microrobot Overcoming Oto-Biological Barrier for On-Demand Multidrug Delivery against Hearing Loss. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401369. [PMID: 39016116 DOI: 10.1002/smll.202401369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/28/2024] [Indexed: 07/18/2024]
Abstract
Multidrug combination therapy in the inner ear faces diverse challenges due to the distinct physicochemical properties of drugs and the difficulties of overcoming the oto-biologic barrier. Although nanomedicine platforms offer potential solutions to multidrug delivery, the access of drugs to the inner ear remains limited. Micro/nanomachines, capable of delivering cargo actively, are promising tools for overcoming bio-barriers. Herein, a novel microrobot-based strategy to penetrate the round window membrane (RWM) is presented and multidrug in on-demand manner is delivered. The tube-type microrobot (TTMR) is constructed using the template-assisted layer-by-layer (LbL) assembly of chitosan/ferroferric oxide/silicon dioxide (CS/Fe3O4/SiO2) and loaded with anti-ototoxic drugs (curcumin, CUR and tanshinone IIA, TSA) and perfluorohexane (PFH). Fe3O4 provides magnetic actuation, while PFH ensures acoustic propulsion. Upon ultrasound stimulation, the vaporization of PFH enables a microshotgun-like behavior, propelling the drugs through barriers and driving them into the inner ear. Notably, the proportion of drugs entering the inner ear can be precisely controlled by varying the feeding ratios. Furthermore, in vivo studies demonstrate that the drug-loaded microrobot exhibits superior protective effects and excellent biosafety toward cisplatin (CDDP)-induced hearing loss. Overall, the microrobot-based strategy provides a promising direction for on-demand multidrug delivery for ear diseases.
Collapse
Affiliation(s)
- Xinyang Yi
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Lifang Guo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Qi Zeng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Suling Huang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Dingsheng Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Chu Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yuwei Kou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Ming Zhang
- Guangdong Sunho Pharmaceutical Co. Ltd, Zhongshan, 528437, P. R. China
| | - Huaan Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Gang Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
3
|
Liu Y, Wang H, Ding M, Yao W, Wang K, Ullah I, Bulatov E, Yuan Y. Ultrasound-Activated PROTAC Prodrugs Overcome Immunosuppression to Actuate Efficient Deep-Tissue Sono-Immunotherapy in Orthotopic Pancreatic Tumor Mouse Models. NANO LETTERS 2024; 24:8741-8751. [PMID: 38953486 DOI: 10.1021/acs.nanolett.4c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The degradation of oncoproteins mediated by proteolysis-targeting chimera (PROTAC) has emerged as a potent strategy in cancer therapy. However, the clinical application of PROTACs is hampered by challenges such as poor water solubility and off-target adverse effects. Herein, we present an ultrasound (US)-activatable PROTAC prodrug termed NPCe6+PRO for actuating efficient sono-immunotherapy in a spatiotemporally controllable manner. Specifically, US irradiation, which exhibits deep-tissue penetration capability, results in Ce6-mediated generation of ROS, facilitating sonodynamic therapy (SDT) and inducing immunogenic cell death (ICD). Simultaneously, the generated ROS cleaves the thioketal (TK) linker through a ROS-responsive mechanism, realizing the on-demand activation of the PROTAC prodrug in deep tissues. This prodrug activation results in the degradation of the target protein BRD4, while simultaneously reversing the upregulation of PD-L1 expression associated with the SDT process. In the orthotopic mouse model of pancreatic tumors, NPCe6+PRO effectively suppressed tumor growth in conjunction with US stimulation.
Collapse
Affiliation(s)
- Ye Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Haiyang Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Mengchao Ding
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, People's Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Wang Yao
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Kewei Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, People's Republic of China
| | - Ihsan Ullah
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, People's Republic of China
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
4
|
Song P, Han R, Yang F. Super enhancer lncRNAs: a novel hallmark in cancer. Cell Commun Signal 2024; 22:207. [PMID: 38566153 PMCID: PMC10986047 DOI: 10.1186/s12964-024-01599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Super enhancers (SEs) consist of clusters of enhancers, harboring an unusually high density of transcription factors, mediator coactivators and epigenetic modifications. SEs play a crucial role in the maintenance of cancer cell identity and promoting oncogenic transcription. Super enhancer lncRNAs (SE-lncRNAs) refer to either transcript from SEs locus or interact with SEs, whose transcriptional activity is highly dependent on SEs. Moreover, these SE-lncRNAs can interact with their associated enhancer regions in cis and modulate the expression of oncogenes or key signal pathways in cancers. Inhibition of SEs would be a promising therapy for cancer. In this review, we summarize the research of SE-lncRNAs in different kinds of cancers so far and decode the mechanism of SE-lncRNAs in carcinogenesis to provide novel ideas for the cancer therapy.
Collapse
Affiliation(s)
- Ping Song
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, Zhejiang Province, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310006, China
| | - Rongyan Han
- Department of emergency, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, Zhejiang Province, China
| | - Fan Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
5
|
Ye J, Wang Y, Zeng W, Li Y, Yao B, Wang S, Wu J, Hou J. Local Injection of Rapamycin-Loaded Pcl-Peg Nanoparticles for Enhanced Tendon Healing in Rotator Cuff Tears via Simultaneously Reducing Fatty Infiltration and Drug Toxicity. Adv Healthc Mater 2024; 13:e2300612. [PMID: 37931903 DOI: 10.1002/adhm.202300612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/20/2023] [Indexed: 11/08/2023]
Abstract
As a common cause of shoulder pain, rotator cuff tears (RCTs) are difficult to treat clinically because of their unsatisfactory prognosis due to the fatty infiltration caused by muscle-derived stem cells (MDSCs). Previous studies have found that rapamycin (RAPA) can inhibit fatty infiltration. However, systemic administration of RAPA may cause complications such as infection and nausea, while local administration of RAPA may lead to the cytotoxicity of tendon cells, affecting the healing of rotator cuffs. In this study, biocompatible and clinically approved polycaprolactone-polyethylene glycol (PCL-PEG) is formulated into an injectable nanoparticle for the sustained release of RAPA. The results indicate that the RAPA/PCL-PEG nanoparticles (NPs) can efficiently prolong the release of RAPA and significantly reduce the cytotoxicity of tendon cells caused by RAPA. The study of the fatty infiltration model in rats with delayed rotator cuff repair shows that weekly intraarticular injection of RAPA/PCL-PEG NPs can more effectively reduce the fatty infiltration and muscle atrophy of rat rotator cuffs and leads to better mechanical properties and gait improvements than a daily intraarticular injection of RAPA. These findings imply that local injection of RAPA/PCL-PEG NPs in the shoulder joints can be a potential clinical option for RCTs patients with fatty infiltration.
Collapse
Affiliation(s)
- Jichao Ye
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Yongbo Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511458, China
| | - Weike Zeng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Yuxiang Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Bin Yao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Siheng Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511458, China
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, P. R. China
| | - Jingyi Hou
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| |
Collapse
|
6
|
Li X, Zheng C, Liu Y, Sun H, Qian Y, Fan H. Co-overexpression of BRD4 and CDK7 promotes cell proliferation and predicts poor prognosis in HCC. Heliyon 2024; 10:e24389. [PMID: 38293462 PMCID: PMC10826729 DOI: 10.1016/j.heliyon.2024.e24389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Aberrant expression of critical components of the trans-acting super-enhancers (SE) complex contributes to the continuous and robust transcription of oncogenes in human cancers. Small-molecule inhibitors targeting core-transcriptional components such as transcriptional bromodomain protein 4 (BRD4) and cyclin-dependent kinase 7 (CDK7) have been developed and are currently undergoing preclinical and clinical testing in several malignant cancers. By analysis of TCGA data and clinical specimens, we demonstrated that BRD4 and CDK7 were frequently overexpressed in human HCCs and were associated with the poor prognosis. Shorter survival and poorly differentiated histology were linked to high BRD4 or CDK7 expression levels. Interestingly, co-overexpression of BRD4 and CDK7 was a more unfavorable prognostic factor in HCC. Treatment with JQ1 or THZ1 alone exhibited an inhibitory impact on the proliferation of HCC cells, while JQ1 synergized with THZ1 showed a more pronounced suppression. Concurrently, a combined JQ1 and THZ1 treatment abolished the transcription of oncogenes ETV4, MYC, NFE2L2. Our study suggested that BRD4 and CDK7 coupled can be a valuable biomarker in HCC diagnosis and the combination of JQ1 and THZ1 can be a promising therapeutic treatment against HCC.
Collapse
Affiliation(s)
- Xinxiu Li
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China
| | - Chuqian Zheng
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China
| | - Yue Liu
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China
| | - Hui Sun
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yanyan Qian
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Gu A, Li J, Wu JA, Li MY, Liu Y. Exploration of Dan-Shen-Yin against pancreatic cancer based on network pharmacology combined with molecular docking and experimental validation. CURRENT RESEARCH IN BIOTECHNOLOGY 2024; 7:100228. [DOI: 10.1016/j.crbiot.2024.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
|
8
|
Qian H, Zhu M, Tan X, Zhang Y, Liu X, Yang L. Super-enhancers and the super-enhancer reader BRD4: tumorigenic factors and therapeutic targets. Cell Death Discov 2023; 9:470. [PMID: 38135679 PMCID: PMC10746725 DOI: 10.1038/s41420-023-01775-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Transcriptional super-enhancers and the BET bromodomain protein BRD4 are emerging as critical drivers of tumorigenesis and therapeutic targets. Characterized by substantial accumulation of histone H3 lysine 27 acetylation (H3K27ac) signals at the loci of cell identity genes and critical oncogenes, super-enhancers are recognized, bound and activated by BRD4, resulting in considerable oncogene over-expression, malignant transformation, cancer cell proliferation, survival, tumor initiation and progression. Small molecule compound BRD4 BD1 and BD2 bromodomain inhibitors block BRD4 binding to super-enhancers, suppress oncogene transcription and expression, reduce cancer cell proliferation and survival, and repress tumor progression in a variety of cancer types. Like other targeted therapy agents, BRD4 inhibitors show moderate anticancer effects on their own, and exert synergistic anticancer effects in vitro and in preclinical models, when combined with other anticancer agents including CDK7 inhibitors, CBP/p300 inhibitors and histone deacetylase inhibitors. More recently, BRD4 BD2 bromodomain selective inhibitors, proteolysis-targeting chimera (PROTAC) BRD4 protein degraders, and dual BRD4 and CBP/p300 bromodomain co-inhibitors have been developed and shown better anticancer efficacy and/or safety profile. Importantly, more than a dozen BRD4 inhibitors have entered clinical trials in patients with cancer of various organ origins. In summary, super-enhancers and their reader BRD4 are critical tumorigenic drivers, and BRD4 BD1 and BD2 bromodomain inhibitors, BRD4 BD2 bromodomain selective inhibitors, PROTAC BRD4 protein degraders, and dual BRD4 and CBP/p300 bromodomain co-inhibitors are promising novel anticancer agents for clinical translation.
Collapse
Affiliation(s)
- Haihong Qian
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Min Zhu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Xinyu Tan
- Department of Dentistry, Kunming Medical University, Kunming, 650032, China
| | - Yixing Zhang
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Xiangning Liu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Li Yang
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| |
Collapse
|
9
|
Yang L, Jing Y, Xia X, Yin X. ARV-825 Showed Antitumor Activity against BRD4-NUT Fusion Protein by Targeting the BRD4. JOURNAL OF ONCOLOGY 2023; 2023:9904143. [PMID: 38130463 PMCID: PMC10735731 DOI: 10.1155/2023/9904143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 10/07/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Objective The bromodomain-containing 4 (BRD4) is a member of the bromodomain and extra terminal domain (BET) family, which is an important epigenetic reader. It is currently a promising oncology target. In some tumors, BET bromodomain inhibitors have demonstrated promising results. Proteolysis-targeting methods (PROTAC), which rapidly and effectively degrade BRD4, have displayed considerable potential in the treatment of tumors in recent years. The purpose of this study is to examine the potential impact of BRD4 PROTAC compounds ARV-825 on oncogene BRD4-NUT fused protein in NUT carcinoma. Methods The effectiveness of ARV-825 was evaluated at the cellular level using the cell counting kit 8 test, wound healing, cell transfection, western blotting analysis, and RNA sequencing. The effectiveness of ARV-825 was also examined in vivo using a xenograft model. Results The BRD4-NUT fusion gene was overexpressed in 3T3 cells, and the pathogenic fusion gene was simulated. The results showed that the overexpression of BRD4-NUT could promote the proliferation and migration of 3T3 cells, but the expression of BRD4 protein was degraded after the addition of the novel cereblon-based PROTAC compound ARV-825 against BRD4, resulting in inhibition of BRD4-NUT 3T3 cell proliferation and migration. Further RNA-seq analysis showed that overexpression of BRD4-NUT was accompanied by increased expression of gene (e.g., Myc, E2F, TRAFs, Wnt, Gadd45g, and Sox6) with significantly enriched pathway (e.g., small cell lung cancer, NF-kappa B signaling pathway, and breast cancer), promoted cell cycle from G 1 phase to S phase, and increased cell proliferation and migration, activated the antiapoptosisi signal, led to abnormal cell growth, and ultimately led to tumorigenesis. The addition of ARV-825 effectively rescued this process and effectively inhibited cell vitality, proliferation, and migration. In vivo studies demonstrated that treatment with ARV-825 greatly suppressed tumor growth without causing harmful side effects and downregulated the BRD4-NUT expression level. Conclusion Through the induction of BRD4 protein degradation, ARV-825 can successfully limit BRD4-NUT 3T3 cell proliferation in vitro and in vivo. These findings suggested that the BRD4 inhibitor ARV-825 would be an effective therapeutic strategy for treating NUT carcinoma that with the genetic feature of BRD4-NUT fusion event.
Collapse
Affiliation(s)
- Liu Yang
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yue Jing
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xia Xia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiushan Yin
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
- Roc Rock Biotechnology (Shenzhen), Shenzhen 518118, China
| |
Collapse
|
10
|
Huang L, Yang H, Chen K, Yuan J, Li J, Dai G, Gu M, Shi Y. The suppressive efficacy of THZ1 depends on KRAS mutation subtype and is associated with super-enhancer activity and the PI3K/AKT/mTOR signalling in pancreatic ductal adenocarcinoma: A hypothesis-generating study. Clin Transl Med 2023; 13:e1500. [PMID: 38037549 PMCID: PMC10689978 DOI: 10.1002/ctm2.1500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Inhibition of CDK7, a potent transcription regulator, may bring new hope for treating pancreatic ductal adenocarcinoma (PDAC), which is featured by large genetic heterogeneity and abundant KRAS mutations. This investigation aimed at exploring the discrepant efficacies of THZ1, a small-molecule covalent CDK7 inhibitor, on PDACs with different KRAS mutations and the underlying mechanisms. METHODS Associations of CDK7 expression with survival by KRAS mutations were first assessed. Effects of THZ1 on PDAC by different KRAS mutations were then investigated in vitro and in vivo. Moreover, the effects of THZ1 on gene transcription and phosphorylation of RNA polymerase II (RNAPOLII) in different KRAS mutant PDACs were assessed, and the effect of THZ1 on super-enhancer activity was evaluated using chromatin immunoprecipitation sequencing. Lastly, the effects of THZ1 on the binding of H3K27ac to PIK3CA and on the PI3K/AKT/mTOR signalling were analysed. RESULTS High CDK7 expression was significantly linked to worse survival within PDAC patients carrying KRAS-G12V mutation but not in those with KRAS-G12D mutation. The apoptosis-inducing effect of THZ1 was markedly stronger in KRAS-G12V PDAC than KRAS-G12D cancer. THZ1 significantly inhibited the growth of xenograft tumour with KRAS-G12V mutation, and the inhibition was markedly stronger than for KRAS-G12D tumour. In mini-cell-derived xenograft (CDX) models, THZ1 significantly suppressed KRAS-G12V PDAC but not KRAS-G12D cancer. THZ1 significantly suppressed the phosphorylation of RNAPOLII, and this effect was stronger in KRAS-G12V PDAC (especially at ser5). KRAS-G12V PDAC had more H3K27ac-binding super-enhancers, and the inhibition of THZ1 on super-enhancer activity was also stronger in KRAS-G12V PDAC. Furthermore, THZ1 significantly weakened the binding of H3K27ac to PIK3CA in KRAS-G12V PDAC. THZ1 significantly suppressed the PI3K/AKT/mTOR pathway and its downstream markers, and this effect was stronger in KRAS-G12V cells. CONCLUSIONS In this hypothesis-generating study, THZ1 might selectively inhibit certain PDACs with KRAS-G12V mutation more potently compared with some other PDACs with KRAS-G12D mutation, which might be associated with its effect on super-enhancer activity and the PI3K/AKT/mTOR signalling. Our findings might offer novel key clues for the precise management of PDAC and important evidence for future targeted trial design. HIGHLIGHTS THZ1 had a stronger effect on PDAC-bearing KRAS-G12V mutation than G12D mutation. Suppressive effect of THZ1 on phosphorylation of RNAPOLII was stronger in KRAS-G12V than KRAS-G12D PDAC. Inhibition of THZ1 on super-enhancer activity and H3K27ac binding to PIK3CA was stronger in KRAS-G12V PDAC. Suppressive effect of THZ1 on PI3K/AKT/mTOR pathway was stronger in KRAS-G12V PDAC.
Collapse
Affiliation(s)
- Lei Huang
- Department of OncologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Yang
- Department of OncologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kaidi Chen
- School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Jing Yuan
- Department of PathologyChinese PLA General HospitalBeijingChina
| | - Jie Li
- Department of PathologyChinese PLA General HospitalBeijingChina
| | - Guanghai Dai
- Department of Medical OncologyChinese PLA General HospitalBeijingChina
| | - Mancang Gu
- School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
- Academy of Chinese Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yan Shi
- Department of General SurgeryShanghai Seventh People's HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
11
|
Urade R, Chang WT, Ko CC, Li RN, Yang HM, Chen HY, Huang LY, Chang MY, Wu CY, Chiu CC. A fluorene derivative inhibits human hepatocellular carcinoma cells by ROS-mediated apoptosis, anoikis and autophagy. Life Sci 2023; 329:121835. [PMID: 37295712 DOI: 10.1016/j.lfs.2023.121835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Fluorene was previously reported to have anticancer activity against human cancer cells. In this study, we examined the in vitro function of 9-methanesulfonylmethylene-2, 3-dimethoxy-9 H -fluorene (MSDF), a novel fluorene derivative, its anticancer potential in human hepatocellular carcinoma (HCC) cells and its underlying molecular mechanism. The disruption of cellular homeostasis caused by MSDF was found to promote reactive oxygen species (ROS) generation, leading to the activation of cellular apoptosis. As a survival strategy, cells undergo autophagy during oxidative stress. MSDF-induced apoptosis occurred through both receptor-mediated extrinsic and mitochondrial-mediated intrinsic routes. The development of acidic vesicular organelles and the accumulation of LC3-II protein suggest an increase in the autophagic process. Apoptosis was detected by double staining. The MAPK/ERK and PI3K/Akt signaling pathways were indeed suppressed during treatment. Along with elevated ROS generation and apoptosis, MSDF also caused anoikis and cell death by causing cells to lose contact with their extracellular matrix. ROS production was induced by MSDF and sustained by an NAC scavenger. MSDF-induced apoptosis led to increased autophagy, as shown by the suppression of apoptosis by Z-VAD-FMK. However, inhibition of autophagy by inhibitor 3-MA increased MSDF-induced apoptosis. More evidence shows that MSDF downregulated the expression of immune checkpoint proteins, suggesting that MSDF could be used in the future as an adjuvant to improve the effectiveness of HCC immunotherapy. Altogether, our results highlight the potential of MSDF as a multitarget drug for the treatment of HCC.
Collapse
Affiliation(s)
- Ritesh Urade
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ching-Chung Ko
- Department of Medical Imaging, Chi Mei Medical Center, Tainan 71004, Taiwan; Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan717, Taiwan
| | - Ruei-Nian Li
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Min Yang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsuan-Yu Chen
- Department of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Lin-Ya Huang
- Department of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chien-Chih Chiu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
12
|
Meng Y, Han S, Yin J, Wu J. Therapeutic Copolymer from Salicylic Acid and l-Phenylalanine as a Nanosized Drug Carrier for Orthotopic Breast Cancer with Lung Metastasis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41743-41754. [PMID: 37610187 DOI: 10.1021/acsami.3c08608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Nanoparticle (NP)-mediated drug delivery systems are promising for treating various diseases. However, clinical translation has been delayed by a variety of limitations, such as weak drug loading, nonspecific drug leakage, lack of bioactivity, and short blood circulation. These issues are in part due to the unsatisfactory function of biomaterials for nanocarriers. In addition, the synthesis procedures of drug carrier materials, especially polymers, were usually complicated and led to high cost. In this report, a bioactive copolymer of hydroxy acid and amino acid, poly(salicylic acid-co-phenylalanine) (PSP), was developed for the first time via a one-step rapid and facile synthesis strategy. The PSP could self-assemble into NPs (PSP-NPs) to co-load relatively hydrophilic sphingosine kinase 1 inhibitor (PF543 in HCl salt format) and highly hydrophobic paclitaxel (PTX) to form PF543/PTX@PSP-NPs with efficient dual drug loading. Encouragingly, PF543/PTX@PSP-NPs showed long blood circulation, good stability, and high tumor accumulation, leading to significantly enhanced therapeutic effects on breast cancer. Furthermore, PF543/PTX@PSP-NPs could additionally suppress the lung metastasis of breast cancer, and more importantly, the PSP-NPs themselves as therapeutic nanocarriers also showed an anti-breast cancer effect. With these combined advantages, this new polymer and corresponding NPs will provide valuable insights into the development of new functional polymers and nanomedicines for important diseases.
Collapse
Affiliation(s)
- Yabin Meng
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Shuyan Han
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong China
- Division of Life Science, The Hong Kong University of Science and Technology, Hongkong SAR, China
| |
Collapse
|
13
|
Xie C, You X, Zhang H, Li J, Wang L, Liu Y, Wang Z, Yao R, Tong T, Li M, Wang X, Cui L, Zhang H, Guo H, Li C, Wu J, Xia X. A Nanovaccine Based on Adjuvant Peptide FK-13 and l-Phenylalanine Poly(ester amide) Enhances CD8 + T Cell-Mediated Antitumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300418. [PMID: 37162249 PMCID: PMC10369282 DOI: 10.1002/advs.202300418] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/17/2023] [Indexed: 05/11/2023]
Abstract
Cancer vaccines have shown promise as effective means of antitumor immunotherapy by inducing tumor antigen-specific T cell immunity. In this study, a novel peptide-based tumor nanovaccine that boosts antigen presentation and elicits effective antitumor immunity is developed. The adjuvant characteristics of an antimicrobial peptide-derived core peptide, FK-13, are investigated and used it to generate a fusion peptide named FK-33 with tumor antigen epitopes. l-phenylalanine-based poly(ester amide) (Phe-PEA), 8p4, is also identified as a competent delivery vehicle for the fusion peptide FK-33. Notably, the vaccination of 8p4 + FK-33 nanoparticles (8FNs) in vivo induces dendritic cell activation in the lymph nodes and elicits robust tumor antigen-specific CD8+ T cell response. The nanovaccine 8FNs demonstrate significant therapeutic and prophylactic efficacy against in situ tumor growth, effectively inhibit tumor metastasis, and significantly prolong the survival of tumor-bearing mice. Moreover, 8FNs can incorporate different tumor antigens and exhibit a synergistic therapeutic effect with antiprogrammed cell death protein 1 (PD-1) therapy. In summary, 8FNs represent a promising platform for personalized cancer vaccines and may serve as a potential combinational modality to improve current immunotherapy.
Collapse
Affiliation(s)
- Chunyuan Xie
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Xinru You
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Hongxia Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Jiahui Li
- School of Food Science and TechnologyNational Engineering Research Center of SeafoodDalian Polytechnic UniversityDalian116024China
| | - Liying Wang
- School of Biomedical EngineeringSun Yat‐sen University66 Gongchang RoadShenzhen518107China
| | - Yongxiang Liu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Zining Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Ruhui Yao
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Tong Tong
- School of Biomedical EngineeringSun Yat‐sen University66 Gongchang RoadShenzhen518107China
| | - Mengyun Li
- State Key Laboratory of BiocontrolSchool of Life ScienceSun Yat‐sen University135 Xingang West RoadGuangzhou510275China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Lei Cui
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Huanling Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Hui Guo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Chunwei Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Jun Wu
- Bioscience and Biomedical Engineering ThrustThe Hong Kong University of Science and Technology (Guangzhou)NanshaGuangzhou511400China
- Division of Life ScienceThe Hong Kong University of Science and TechnologyHong Kong SAR999077China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| |
Collapse
|
14
|
Chen Z, Tian D, Chen X, Cheng M, Xie H, Zhao J, Liu J, Fang Z, Zhao B, Bian E. Super-enhancer-driven lncRNA LIMD1-AS1 activated by CDK7 promotes glioma progression. Cell Death Dis 2023; 14:383. [PMID: 37385987 PMCID: PMC10310775 DOI: 10.1038/s41419-023-05892-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/07/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
Long non-coding RNAs (lncRNAs) are tissue-specific expression patterns and dysregulated in cancer. How they are regulated still needs to be determined. We aimed to investigate the functions of glioma-specific lncRNA LIMD1-AS1 activated by super-enhancer (SE) and identify the potential mechanisms. In this paper, we identified a SE-driven lncRNA, LIMD1-AS1, which is expressed at significantly higher levels in glioma than in normal brain tissue. High LIMD1-AS1 levels were significantly associated with a shorter survival time of glioma patients. LIMD1-AS1 overexpression significantly enhanced glioma cells proliferation, colony formation, migration, and invasion, whereas LIMD1-AS1 knockdown inhibited their proliferation, colony formation, migration, and invasion, and the xenograft tumor growth of glioma cells in vivo. Mechanically, inhibition of CDK7 significantly attenuates MED1 recruitment to the super-enhancer of LIMD1-AS1 and then decreases the expression of LIMD1-AS1. Most importantly, LIMD1-AS1 could directly bind to HSPA5, leading to the activation of interferon signaling. Our findings support the idea that CDK7 mediated-epigenetically activation of LIMD1-AS1 plays a crucial role in glioma progression and provides a promising therapeutic approach for patients with glioma.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Dasheng Tian
- Department of Orthopaedics, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Xueran Chen
- Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230601, China
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230601, China
| | - Meng Cheng
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Han Xie
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - JiaJia Zhao
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Jun Liu
- Department of Orthopaedics, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Zhiyou Fang
- Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230601, China.
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230601, China.
| | - Bing Zhao
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China.
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China.
| | - Erbao Bian
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China.
- Department of Orthopaedics, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China.
| |
Collapse
|
15
|
Chen D, Cao Y, Tang H, Zang L, Yao N, Zhu Y, Jiang Y, Zhai S, Liu Y, Shi M, Zhao S, Wang W, Wen C, Peng C, Chen H, Deng X, Jiang L, Shen B. Comprehensive machine learning-generated classifier identifies pro-metastatic characteristics and predicts individual treatment in pancreatic cancer: A multicenter cohort study based on super-enhancer profiling. Theranostics 2023; 13:3290-3309. [PMID: 37351165 PMCID: PMC10283048 DOI: 10.7150/thno.84978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/13/2023] [Indexed: 06/24/2023] Open
Abstract
Rationale: Accumulating evidence illustrated that the reprogramming of the super-enhancers (SEs) landscape could promote the acquisition of metastatic features in pancreatic cancer (PC). Given the anatomy-based TNM staging is limited by the heterogeneous clinical outcomes in treatment, it is of great clinical significance to tailor individual stratification and to develop alternative therapeutic strategies for metastatic PC patients based on SEs. Methods: In our study, ChIP-Seq analysis for H3K27ac was performed in primary pancreatic tumors (PTs) and hepatic metastases (HMs). Bootstrapping and univariate Cox analysis were implemented to screen prognostic HM-acquired, SE-associated genes (HM-SE genes). Then, based on 1705 PC patients from 14 multicenter cohorts, 188 machine-learning (ML) algorithm integrations were utilized to develop a comprehensive super-enhancer-related metastatic (SEMet) classifier. Results: We established a novel SEMet classifier based on 38 prognostic HM-SE genes. Compared to other clinical traits and 33 published signatures, the SEMet classifier possessed robust and powerful performance in predicting prognosis. In addition, patients in the SEMetlow subgroup owned dismal survival rates, more frequent genomic alterations, and more activated cancer immunity cycle as well as better benefits in immunotherapy. Remarkably, there existed a tight correlation between the SEMetlow subgroup and metastatic phenotypes of PC. Among 18 SEMet genes, we demonstrated that E2F7 may promote PC metastasis through the upregulation of TGM2 and DKK1. Finally, after in silico screening of potential compounds targeted SEMet classifier, results revealed that flumethasone could enhance the sensitivity of metastatic PC to routine gemcitabine chemotherapy. Conclusion: Overall, our study provided new insights into personalized treatment approaches in the clinical management of metastatic PC patients.
Collapse
Affiliation(s)
- Dongjie Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yizhi Cao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Haoyu Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Longjun Zang
- Department of General Surgery, Taiyuan Central Hospital, Shanxi, P.R. China
| | - Na Yao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yongsheng Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Shuyu Zhai
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yihao Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Shulin Zhao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Weishen Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Chenlei Wen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
16
|
Zhang J, Huang L, Ge G, Hu K. Emerging Epigenetic-Based Nanotechnology for Cancer Therapy: Modulating the Tumor Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206169. [PMID: 36599655 PMCID: PMC9982594 DOI: 10.1002/advs.202206169] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Indexed: 06/02/2023]
Abstract
Dysregulated epigenetic modifications dynamically drive the abnormal transcription process to affect the tumor microenvironment; thus, promoting cancer progression, drug resistance, and metastasis. Nowadays, therapies targeting epigenetic dysregulation of tumor cells and immune cells in the tumor microenvironment appear to be promising adjuncts to other cancer therapies. However, the clinical results of combination therapies containing epigenetic agents are disappointing due to systemic toxicities and limited curative effects. Here, the role of epigenetic processes, including DNA methylation, post-translational modification of histones, and noncoding RNAs is discussed, followed by detailed descriptions of epigenetic regulation of the tumor microenvironment, as well as the application of epigenetic modulators in antitumor therapy, with an emphasis on the epigenetic-based advanced drug delivery system in targeting the tumor microenvironment.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Kaili Hu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| |
Collapse
|
17
|
Li XP, Qu J, Teng XQ, Zhuang HH, Dai YH, Yang Z, Qu Q. The Emerging Role of Super-enhancers as Therapeutic Targets in The Digestive System Tumors. Int J Biol Sci 2023; 19:1036-1048. [PMID: 36923930 PMCID: PMC10008685 DOI: 10.7150/ijbs.78535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/09/2022] [Indexed: 02/05/2023] Open
Abstract
Digestive system tumors include malignancies of the stomach, pancreas, colon, rectum, and the esophagus, and are associated with high morbidity and mortality. Aberrant epigenetic modifications play a vital role in the progression of digestive system tumors. The aberrant transcription of key oncogenes is driven by super-enhancers (SEs), which are characterized by large clusters of enhancers with significantly high density of transcription factors, cofactors, and epigenetic modulatory proteins. The SEs consist of critical epigenetic regulatory elements, which modulate the biological characteristics of digestive system tumors including tumor cell identity and differentiation, tumorigenesis, environmental response, immune response, and chemotherapeutic resistance. The core transcription regulatory loop of the digestive system tumors is complex and a high density of transcription regulatory complexes in the SEs and the crosstalk between SEs and the noncoding RNAs. In this review, we summarized the known characteristics and functions of the SEs in the digestive system tumors. Furthermore, we discuss the oncogenic roles and regulatory mechanisms of SEs in the digestive system tumors. We highlight the role of SE-driven genes, enhancer RNAs (eRNAs), lncRNAs, and miRNAs in the digestive system tumor growth and progression. Finally, we discuss clinical significance of the CRISPR-Cas9 gene editing system and inhibitors of SE-related proteins such as BET and CDK7 as potential cancer therapeutics.
Collapse
Affiliation(s)
- Xiang-Ping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410007, PR China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410007, PR China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha 410011, PR China.,Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, PR China
| | - Xin-Qi Teng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha 410011, PR China
| | - Hai-Hui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha 410011, PR China
| | - Ying-Huan Dai
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Zhi Yang
- Department of Colorectal and Anal Surgery, Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha 410007, PR China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410007, PR China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410007, PR China.,Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, PR China
| |
Collapse
|
18
|
Enhanced Antitumoral Activity of Encapsulated BET Inhibitors When Combined with PARP Inhibitors for the Treatment of Triple-Negative Breast and Ovarian Cancers. Cancers (Basel) 2022; 14:cancers14184474. [PMID: 36139634 PMCID: PMC9496913 DOI: 10.3390/cancers14184474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Poly (adenosine diphosphate ribose) polymerase inhibitors (PARPis) have demonstrated antitumoral activity in several cancers harbouring germline and somatic BRCA1/2 mutations. The widespread use of these agents in clinical practice is restricted by the development of acquired resistance due to the presence of compensatory pathways. A strategy to deal with this is the use of combination therapies with drugs that act synergistically against the tumour. BETis can completely disrupt the HR pathway by repressing the expression of BRCA1 and could be aimed at generation combination regimes to overcome PARPi resistance and enhance PARPi efficacy. However, this strategy is hampered by the poor pharmacokinetic profile and short half-life of BETis. In this work and as a proof of concept, we discuss the potential preclinical benefit provided by the combination of the PARPi olaparib and the BET inhibitor JQ1 encapsulated into nanoparticles for the treatment of BRCAness tumours. Abstract BRCA1/2 protein-deficient or mutated cancers comprise a group of aggressive malignancies. Although PARPis have shown considerably efficacy in their treatment, the widespread use of these agents in clinical practice is restricted by various factors, including the development of acquired resistance due to the presence of compensatory pathways. BETis can completely disrupt the HR pathway by repressing the expression of BRCA1 and could be aimed at generation combination regimes to overcome PARPi resistance and enhance PARPi efficacy. Due to the poor pharmacokinetic profile and short half-life, the first-in-class BETi JQ1 was loaded into newly developed nanocarrier formulations to improve the effectivity of olaparib for the treatment of BRCAness cancers. First, polylactide polymeric nanoparticles were generated by double emulsion. Moreover, liposomes were prepared by ethanol injection and evaporation solvent method. JQ1-loaded drug delivery systems display optimal hydrodynamic radii between 60 and 120 nm, with a very low polydispersity index (PdI), and encapsulation efficiencies of 92 and 16% for lipid- and polymeric-based formulations, respectively. Formulations show high stability and sustained release. We confirmed that all assayed JQ1 formulations improved antiproliferative activity compared to the free JQ1 in models of ovarian and breast cancers. In addition, synergistic interaction between JQ1 and JQ1-loaded nanocarriers and olaparib evidenced the ability of encapsulated JQ1 to enhance antitumoral activity of PARPis.
Collapse
|
19
|
Xiao Q, Xiao Y, Li LY, Chen MK, Wu M. Multifaceted regulation of enhancers in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194839. [PMID: 35750313 DOI: 10.1016/j.bbagrm.2022.194839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022]
Abstract
Enhancer is one kind of cis-elements regulating gene transcription, whose activity is tightly controlled by epigenetic enzymes and histone modifications. Active enhancers are classified into typical enhancers, super-enhancers and over-active enhancers, according to the enrichment and location of histone modifications. Epigenetic factors control the level of histone modifications on enhancers to determine their activity, such as histone methyltransferases and acetylases. Transcription factors, cofactors and mediators co-operate together and are required for enhancer functions. In turn, abnormalities in these trans-acting factors affect enhancer activity. Recent studies have revealed enhancer dysregulation as one of the important features for cancer. Variations in enhancer regions and mutations of enhancer regulatory genes are frequently observed in cancer cells, and altering the activity of onco-enhancers is able to repress oncogene expression, and suppress tumorigenesis and metastasis. Here we summarize the recent discoveries about enhancer regulation in cancer and discuss their potential application in diagnosis and treatment.
Collapse
Affiliation(s)
- Qiong Xiao
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Yong Xiao
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Ming-Kai Chen
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China.
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
20
|
PHF13 epigenetically activates TGFβ driven epithelial to mesenchymal transition. Cell Death Dis 2022; 13:487. [PMID: 35597793 PMCID: PMC9124206 DOI: 10.1038/s41419-022-04940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Epigenetic alteration is a pivotal factor in tumor metastasis. PHD finger protein 13 (PHF13) is a recently identified epigenetic reader of H3K4me2/3 that functions as a transcriptional co-regulator. In this study, we demonstrate that PHF13 is required for pancreatic-cancer-cell growth and metastasis. Integrative analysis of transcriptome and epigenetic profiles provide further mechanistic insights into the epigenetic regulation of genes associated with cell metastasis during the epithelial-to-mesenchymal transition (EMT) induced by transforming growth factor β (TGFβ). Our data suggest PHF13 depletion impairs activation of TGFβ stimulated genes and correlates with a loss of active epigenetic marks (H3K4me3 and H3K27ac) at these genomic regions. These observations argue for a dependency of TGFβ target activation on PHF13. Furthermore, PHF13-dependent chromatin regions are enriched in broad H3K4me3 domains and super-enhancers, which control genes critical to cancer-cell migration and invasion, such as SNAI1 and SOX9. Overall, our data indicate a functional and mechanistic correlation between PHF13 and EMT.
Collapse
|
21
|
He X, Dai L, Ye L, Sun X, Enoch O, Hu R, Zan X, Lin F, Shen J. A Vehicle-Free Antimicrobial Polymer Hybrid Gold Nanoparticle as Synergistically Therapeutic Platforms for Staphylococcus aureus Infected Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105223. [PMID: 35274475 PMCID: PMC9108595 DOI: 10.1002/advs.202105223] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/16/2022] [Indexed: 05/12/2023]
Abstract
Pathogenic bacteria infection is a serious threat to human public health due to the high morbidity and mortality rates. Nano delivery system for delivering antibiotics provides an alternative option to improve the efficiency compared to conventional therapeutic agents. In addition to the drug loading capacity of nanocarriers, which is typically around 10%, further lowers the drug dose that pathological bacteria are exposed to. Moreover, nanocarriers that are not eliminated from the body may cause side effects. These limitations have motivated the development of self-delivery systems that are formed by the self-assembly of different therapeutic agents. In this study, a vehicle-free antimicrobial polymer polyhexamethylene biguanide (PHMB, with bactericidal and anti-biofilm functions) hybrid gold nanoparticle (Au NPs, with photothermal therapy (PTT)) platform (PHMB@Au NPs) is developed. This platform exhibits an excellent synergistic effect to enhance the photothermal bactericidal effect for Staphylococcus aureus under near-infrared irradiation. Furthermore, the results showed that PHMB@Au NPs inhibit the formation of biofilms, quickly remove bacteria to promote wound healing through PTT in infection model in vivo, and even mediate the transition of macrophages from M1 to M2 type, and accelerate tissue angiogenesis. PHMB@Au NPs will have promising value as highly effective antimicrobial agents for patient management.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & OptometrySchool of Biomedical EngineeringWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Lixiong Dai
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325000China
| | - Lisong Ye
- School of StomatologyWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Xiaoshuai Sun
- School of StomatologyWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Obeng Enoch
- School of Ophthalmology & OptometrySchool of Biomedical EngineeringWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Rongdang Hu
- School of StomatologyWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Xingjie Zan
- School of Ophthalmology & OptometrySchool of Biomedical EngineeringWenzhou Medical UniversityWenzhouZhejiang325035China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouZhejiang325001China
| | - Feng Lin
- Department of gynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Jianliang Shen
- School of Ophthalmology & OptometrySchool of Biomedical EngineeringWenzhou Medical UniversityWenzhouZhejiang325035China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouZhejiang325001China
| |
Collapse
|
22
|
Abstract
Biodegradable and biocompatible biomaterials have offered much more opportunities from an engineering standpoint for treating diseases and maintaining health. Poly(ester amide)s (PEAs), as an outstanding family among such biomaterials, have risen overwhelmingly in the past decades. These synthetic polymers have easily and widely available raw materials and a diversity of synthetic approaches, which have attracted considerable attention. More importantly, combining the superiorities of polyamides and polyesters, PEAs have emerged with better functions. They could have improved biodegradability, biocompatibility, and cell-material interactions. The PEAs derived from α-amino acids even allow the introduction of pendant sites for further modification or functionalization. Meanwhile, it is gradually recognized that the chemical structures are closely related to the physiochemical and biological properties of PEAs so that their properties can be precisely controlled. PEAs therefore become significant materials in the biomedical fields. This review will attempt to summarize the recent progress in the development of PEAs with respect to the preparation materials and methods, structure-property relationships along with their latest biomedical accomplishments, especially for drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Shuyan Han
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518057, People's Republic of China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518057, People's Republic of China
| |
Collapse
|
23
|
BRD4 inhibitor GNE987 exerts anti-cancer effects by targeting super-enhancers in neuroblastoma. Cell Biosci 2022; 12:33. [PMID: 35303940 PMCID: PMC8932231 DOI: 10.1186/s13578-022-00769-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/26/2022] [Indexed: 12/14/2022] Open
Abstract
Background Neuroblastoma (NB) is a common extracranial malignancy with high mortality in children. Recently, super-enhancers (SEs) have been reported to play a critical role in the tumorigenesis and development of NB via regulating a wide range of oncogenes Thus, the synthesis and identification of chemical inhibitors specifically targeting SEs are of great urgency for the clinical therapy of NB. This study aimed to characterize the activity of the SEs inhibitor GNE987, which targets BRD4, in NB. Results In this study, we found that nanomolar concentrations of GNE987 markedly diminished NB cell proliferation and survival via degrading BRD4. Meanwhile, GNE987 significantly induced NB cell apoptosis and cell cycle arrest. Consistent with in vitro results, GNE987 administration (0.25 mg/kg) markedly decreased the tumor size in the xenograft model, with less toxicity, and induced similar BRD4 protein degradation to that observed in vitro. Mechanically, GNE987 led to significant downregulation of hallmark genes associated with MYC and the global disruption of the SEs landscape in NB cells. Moreover, a novel candidate oncogenic transcript, FAM163A, was identified through analysis of the RNA-seq and ChIP-seq data. FAM163A is abnormally transcribed by SEs, playing an important role in NB occurrence and development. Conclusion GNE987 destroyed the abnormal transcriptional regulation of oncogenes in NB by downregulating BRD4, which could be a potential therapeutic candidate for NB. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00769-8.
Collapse
|
24
|
Yuan J, Li X, Yu S. CDK7-dependent transcriptional addiction in bone and soft tissue sarcomas: Present and Future. Biochim Biophys Acta Rev Cancer 2022; 1877:188680. [PMID: 35051528 DOI: 10.1016/j.bbcan.2022.188680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022]
Abstract
Cancer arises from genetic alterations that invariably contribute to dysregulated transcriptional programs. These dysregulated programs establish and maintain specific cancer cell states, leading to an intensive dependence on a set of certain regulators of gene expression. The CDK7 functions as the core of transcription, and governs RNA polymerase II and the downstream oncogenes expression in cancers. CDK7 inhibition leads to reduced recruitment of super-enhancers-driven oncogenic transcription factors, and the depression of these associated oncogenes expression, which indicates the dependence of transcriptional addiction of cancers on CDK7. Given that specified oncoproteins of sarcomas commonly function at oncogenic transcription, targeting CDK7-denpendent transcriptional addiction may be of guiding significance for the treatment of sarcomas. In this review, we summarize the advances in mechanism of targeted CDK7-dependent transcriptional addiction and discuss the path ahead to potential application discovery in bone and soft tissue sarcomas, providing theoretical considerations for bio-orthogonal therapeutic strategies.
Collapse
Affiliation(s)
- Jin Yuan
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical sciences and Peking Union Medical College, Beijing, China.
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
25
|
Control of Expression of Key Cell Cycle Enzymes Drives Cell Line-Specific Functions of CDK7 in Human PDAC Cells. Int J Mol Sci 2022; 23:ijms23020812. [PMID: 35054996 PMCID: PMC8775745 DOI: 10.3390/ijms23020812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 01/16/2023] Open
Abstract
Inhibition of the dual function cell cycle and transcription kinase CDK7 is known to affect the viability of cancer cells, but the mechanisms underlying cell line-specific growth control remain poorly understood. Here, we employed a previously developed, highly specific small molecule inhibitor that non-covalently blocks ATP binding to CDK7 (LDC4297) to study the mechanisms underlying cell line-specific growth using a panel of genetically heterogeneous human pancreatic tumor lines as model system. Although LDC4297 diminished both transcription rates and CDK T-loop phosphorylation in a comparable manner, some PDAC lines displayed significantly higher sensitivity than others. We focused our analyses on two well-responsive lines (Mia-Paca2 and Panc89) that, however, showed significant differences in their viability upon extended exposure to limiting LDC4297 concentrations. Biochemical and RNAseq analysis revealed striking differences in gene expression and cell cycle control. Especially the downregulation of a group of cell cycle control genes, among them CDK1/2 and CDC25A/C, correlated well to the observed viability differences in Panc89 versus Mia-Paca2 cells. A parallel downregulation of regulatory pathways supported the hypothesis of a feedforward programmatic effect of CDK7 inhibitors, eventually causing hypersensitivity of PDAC lines.
Collapse
|
26
|
Zhao J, Zhu Y, Li Z, Liang J, Zhang Y, Zhou S, Zhang Y, Fan Z, Shen Y, Liu Y, Zhang F, Shen S, Xu G, Wang L, Lv Y, Zhang S, Zou X. Pirfenidone-loaded exosomes derived from pancreatic ductal adenocarcinoma cells alleviate fibrosis of premetastatic niches to inhibit liver metastasis. Biomater Sci 2022; 10:6614-6626. [DOI: 10.1039/d2bm00770c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pirfenidone delivery systems based on pancreatic cancer cell exosomes precisely reach HSCs and alleviate fibrotic microenvironments, thus inhibiting tumour metastasis.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing University Institute of Pancreatology, Nanjing 210008, China
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, China
| | - Zhuojin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210000, China
| | - Jiawei Liang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yin Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Siqi Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210008, China
| | - Yixuan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yonghua Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing University Institute of Pancreatology, Nanjing 210008, China
| | - Yifeng Liu
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221000, China
| | - Feng Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing University Institute of Pancreatology, Nanjing 210008, China
| | - Shanshan Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing University Institute of Pancreatology, Nanjing 210008, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing University Institute of Pancreatology, Nanjing 210008, China
| | - Ying Lv
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing University Institute of Pancreatology, Nanjing 210008, China
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing University Institute of Pancreatology, Nanjing 210008, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing University Institute of Pancreatology, Nanjing 210008, China
| |
Collapse
|
27
|
Nanomedicine in Pancreatic Cancer: Current Status and Future Opportunities for Overcoming Therapy Resistance. Cancers (Basel) 2021; 13:cancers13246175. [PMID: 34944794 PMCID: PMC8699181 DOI: 10.3390/cancers13246175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Despite access to a vast arsenal of anticancer agents, many fail to realise their full therapeutic potential in clinical practice. One key determinant of this is the evolution of multifaceted resistance mechanisms within the tumour that may either pre-exist or develop during the course of therapy. This is particularly evident in pancreatic cancer, where limited responses to treatment underlie dismal survival rates, highlighting the urgent need for new therapeutic approaches. Here, we discuss the major features of pancreatic tumours that contribute to therapy resistance, and how they may be alleviated through exploitation of the mounting and exciting promise of nanomedicines; a unique collection of nanoscale platforms with tunable and multifunctional capabilities that have already elicited a widespread impact on cancer management. Abstract The development of drug resistance remains one of the greatest clinical oncology challenges that can radically dampen the prospect of achieving complete and durable tumour control. Efforts to mitigate drug resistance are therefore of utmost importance, and nanotechnology is rapidly emerging for its potential to overcome such issues. Studies have showcased the ability of nanomedicines to bypass drug efflux pumps, counteract immune suppression, serve as radioenhancers, correct metabolic disturbances and elicit numerous other effects that collectively alleviate various mechanisms of tumour resistance. Much of this progress can be attributed to the remarkable benefits that nanoparticles offer as drug delivery vehicles, such as improvements in pharmacokinetics, protection against degradation and spatiotemporally controlled release kinetics. These attributes provide scope for precision targeting of drugs to tumours that can enhance sensitivity to treatment and have formed the basis for the successful clinical translation of multiple nanoformulations to date. In this review, we focus on the longstanding reputation of pancreatic cancer as one of the most difficult-to-treat malignancies where resistance plays a dominant role in therapy failure. We outline the mechanisms that contribute to the treatment-refractory nature of these tumours, and how they may be effectively addressed by harnessing the unique capabilities of nanomedicines. Moreover, we include a brief perspective on the likely future direction of nanotechnology in pancreatic cancer, discussing how efforts to develop multidrug formulations will guide the field further towards a therapeutic solution for these highly intractable tumours.
Collapse
|
28
|
Liao X, Qian X, Zhang Z, Tao Y, Li Z, Zhang Q, Liang H, Li X, Xie Y, Zhuo R, Chen Y, Jiang Y, Cao H, Niu J, Xue C, Ni J, Pan J, Cui D. ARV-825 Demonstrates Antitumor Activity in Gastric Cancer via MYC-Targets and G2M-Checkpoint Signaling Pathways. Front Oncol 2021; 11:753119. [PMID: 34733788 PMCID: PMC8559897 DOI: 10.3389/fonc.2021.753119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/27/2021] [Indexed: 01/20/2023] Open
Abstract
Objective Suppression of bromodomain and extra terminal (BET) proteins has a bright prospect to treat MYC-driven tumors. Bromodomain containing 4 (BRD4) is one of the BET proteins. ARV-825, consisting of a BRD4 inhibitor conjugated with a cereblon ligand using proteolysis-targeting chimera (PROTAC) technology, was proven to decrease the tumor growth effectively and continuously. Nevertheless, the efficacy and mechanisms of ARV-825 in gastric cancer are still poorly understood. Methods Cell counting kit 8 assay, lentivirus infection, Western blotting analysis, Annexin V/propidium iodide (PI) staining, RNA sequencing, a xenograft model, and immunohistochemistry were used to assess the efficacy of ARV-825 in cell level and animal model. Results The messenger RNA (mRNA) expression of BRD4 in gastric cancer raised significantly than those in normal tissues, which suggested poor outcome of patients with gastric cancer. ARV-825 displayed higher anticancer efficiency in gastric cancer cells than OTX015 and JQ1. ARV-825 could inhibit cell growth, inducing cell cycle block and apoptosis in vitro. ARV-825 induced degradation of BRD4, BRD2, BRD3, c-MYC, and polo-like kinase 1 (PLK1) proteins in four gastric cancer cell lines. In addition, cleavage of caspase 3 and poly-ADP-ribose polymerase (PARP) was elevated. Knockdown or overexpression CRBN could increase or decrease, respectively, the ARV-825 IC50 of gastric cancer cells. ARV-825 reduced MYC and PLK1 expression in gastric cancer cells. ARV-825 treatment significantly reduced tumor growth without toxic side effects and downregulated the expression of BRD4 in vivo. Conclusions High mRNA expression of BRD4 in gastric cancer indicated poor prognosis. ARV-825, a BRD4 inhibitor, could effectively suppress the growth and elevate the apoptosis of gastric cancer cells via transcription downregulation of c-MYC and PLK1. These results implied that ARV-825 could be a good therapeutic strategy to treat gastric cancer.
Collapse
Affiliation(s)
- Xinmei Liao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqing Qian
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Liang
- Institute of Nanomedicine, National Engineering Research Centre for Nanotechnology, Shanghai, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yi Xie
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Ran Zhuo
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yanling Chen
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - You Jiang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Haibo Cao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Cuili Xue
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Ni
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Institute of Nanomedicine, National Engineering Research Centre for Nanotechnology, Shanghai, China
| |
Collapse
|
29
|
Feng L, Wang G, Chen Y, He G, Liu B, Liu J, Chiang CM, Ouyang L. Dual-target inhibitors of bromodomain and extra-terminal proteins in cancer: A review from medicinal chemistry perspectives. Med Res Rev 2021; 42:710-743. [PMID: 34633088 DOI: 10.1002/med.21859] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/14/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023]
Abstract
Bromodomain-containing protein 4 (BRD4), as the most studied member of the bromodomain and extra-terminal (BET) family, is a chromatin reader protein interpreting epigenetic codes through binding to acetylated histones and non-histone proteins, thereby regulating diverse cellular processes including cell cycle, cell differentiation, and cell proliferation. As a promising drug target, BRD4 function is closely related to cancer, inflammation, cardiovascular disease, and liver fibrosis. Currently, clinical resistance to BET inhibitors has limited their applications but synergistic antitumor effects have been observed when used in combination with other tumor inhibitors targeting additional cellular components such as PLK1, HDAC, CDK, and PARP1. Therefore, designing dual-target inhibitors of BET bromodomains is a rational strategy in cancer treatment to increase potency and reduce drug resistance. This review summarizes the protein structures and biological functions of BRD4 and discusses recent advances of dual BET inhibitors from a medicinal chemistry perspective. We also discuss the current design and discovery strategies for dual BET inhibitors, providing insight into potential discovery of additional dual-target BET inhibitors.
Collapse
Affiliation(s)
- Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Huang CS, Xu QC, Dai C, Wang L, Tien YC, Li F, Su Q, Huang XT, Wu J, Zhao W, Yin XY. Nanomaterial-Facilitated Cyclin-Dependent Kinase 7 Inhibition Suppresses Gallbladder Cancer Progression via Targeting Transcriptional Addiction. ACS NANO 2021; 15:14744-14755. [PMID: 34405985 DOI: 10.1021/acsnano.1c04570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gallbladder cancer (GBC) is the most aggressive malignancy of the biliary tract cancer, and there is a lack of effective treatment. Here, we developed a nanoparticle platform (8P4 NP) that can deliver THZ1, a cyclin-dependent kinase 7 (CDK7) inhibitor, to treat GBC. Analysis of datasets demonstrated that CDK7 was positively correlated with poor prognosis. CDK7 inhibition suppressed cell proliferation, induced apoptosis, and caused cell cycle block in GBC cells. THZ1 downregulated CDK7-mediated phosphorylation of RNA polymerase II (RNAPII), resulting in a significant downregulation of transcriptional programs, with a preferential repression of oncogenic transcription factors. To improve the tumor targeting efficiency of THZ1, 8P4 NPs were prepared and assembled with THZ1 to form THZ1@8P4 NPs. Compared with free THZ1, THZ1@8P4 NPs showed more advantages in prolonging blood circulation, escaping from lysosomes and increasing cellular uptake. Importantly, THZ1@8P4 NPs demonstrated a more significant inhibition effect on GBC cells than free THZ1 in vitro. In addition, THZ1@8P4 NPs could efficiently deliver THZ1 to tumor sites in a patient-derived xenograft model of early recurrence, leading to tumor regression and transcriptional inhibition with minimal toxicity. In summary, we conclude that THZ1@8P4 NPs provide a potent therapeutic strategy that targets CDK7-mediated transcriptional addiction in GBC.
Collapse
Affiliation(s)
- Chen-Song Huang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong-Cong Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Chunlei Dai
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Liying Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi-Chih Tien
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Fuxi Li
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Qiao Su
- Department of Animal Experiment Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xi-Tai Huang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Zhao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
31
|
Zhou J, Wang S, Nie D, Lai P, Li Y, Li Y, Jin Y, Pan J. Super-enhancer landscape reveals leukemia stem cell reliance on X-box binding protein 1 as a therapeutic vulnerability. Sci Transl Med 2021; 13:eabh3462. [PMID: 34550724 DOI: 10.1126/scitranslmed.abh3462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jingfeng Zhou
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shubo Wang
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Danian Nie
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Peilong Lai
- Department of Hematology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yiqing Li
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yanli Jin
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
32
|
Heinrich MA, Mostafa AMRH, Morton JP, Hawinkels LJAC, Prakash J. Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models. Adv Drug Deliv Rev 2021; 174:265-293. [PMID: 33895214 DOI: 10.1016/j.addr.2021.04.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive type of cancer with an overall survival rate of less than 7-8%, emphasizing the need for novel effective therapeutics against PDAC. However only a fraction of therapeutics which seemed promising in the laboratory environment will eventually reach the clinic. One of the main reasons behind this low success rate is the complex tumor microenvironment (TME) of PDAC, a highly fibrotic and dense stroma surrounding tumor cells, which supports tumor progression as well as increases the resistance against the treatment. In particular, the growing understanding of the PDAC TME points out a different challenge in the development of efficient therapeutics - a lack of biologically relevant in vitro and in vivo models that resemble the complexity and heterogeneity of PDAC observed in patients. The purpose and scope of this review is to provide an overview of the recent developments in different in vitro and in vivo models, which aim to recapitulate the complexity of PDAC in a laboratory environment, as well to describe how 3D in vitro models can be integrated into drug development pipelines that are already including sophisticated in vivo models. Hereby a special focus will be given on the complexity of in vivo models and the challenges in vitro models face to reach the same levels of complexity in a controllable manner. First, a brief introduction of novel developments in two dimensional (2D) models and ex vivo models is provided. Next, recent developments in three dimensional (3D) in vitro models are described ranging from spheroids, organoids, scaffold models, bioprinted models to organ-on-chip models including a discussion on advantages and limitations for each model. Furthermore, we will provide a detailed overview on the current PDAC in vivo models including chemically-induced models, syngeneic and xenogeneic models, highlighting hetero- and orthotopic, patient-derived tissues (PDX) models, and genetically engineered mouse models. Finally, we will provide a discussion on overall limitations of both, in vitro and in vivo models, and discuss necessary steps to overcome these limitations to reach an efficient drug development pipeline, as well as discuss possibilities to include novel in silico models in the process.
Collapse
Affiliation(s)
- Marcel A Heinrich
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Ahmed M R H Mostafa
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Jennifer P Morton
- Cancer Research UK, Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Rd, Glasgow G61 1QH, UK
| | - Lukas J A C Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Centre, PO-box 9600, 2300 RC Leiden, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands.
| |
Collapse
|
33
|
Xu Y, Liu J, Liu Z, Chen G, Li X, Ren H. Damaging Tumor Vessels with an Ultrasound-Triggered NO Release Nanosystem to Enhance Drug Accumulation and T Cells Infiltration. Int J Nanomedicine 2021; 16:2597-2613. [PMID: 33833514 PMCID: PMC8021257 DOI: 10.2147/ijn.s295445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Limited by tumor vascular barriers, restricted intratumoural T cell infiltration and nanoparticles accumulation remain major bottlenecks for anticancer therapy. Platelets are now known to maintain tumor vascular integrity. Therefore, inhibition of tumor-associated platelets may be an effective method to increase T cell infiltration and drug accumulation at tumor sites. Herein, we designed an ultrasound-responsive nitric oxide (NO) release nanosystem, SNO-HSA-PTX, which can release NO in response to ultrasound (US) irradiation, thereby inhibiting platelet function and opening the tumor vascular barrier, promoting drug accumulation and T cell infiltration. METHODS We evaluated the ability of SNO-HSA-PTX to release NO in response to US irradiation. We also tested the effect of SNO-HSA-PTX on platelet function. Plenty of studies including cytotoxicity, pharmacokinetics study, biodistribution, blood perfusion, T cell infiltration, in vivo antitumor efficacy and safety assessment were conducted to investigate the antitumor effect of SNO-HSA-PTX. RESULTS SNO-HSA-PTX with US irradiation inhibited tumor-associated platelets activation and induced openings in the tumor vascular barriers, which promoted the accumulation of SNO-HSA-PTX nanoparticles to the tumor sites. Meanwhile, the damaged vascular barriers allowed oxygen-carrying hemoglobin to infiltrate tumor regions, alleviating hypoxia of the tumor microenvironment. In addition, the intratumoral T cell infiltration was augmented, together with chemotherapy and NO therapy, which greatly inhibited tumor growth. DISCUSSION Our research designed a simple strategy to open the vascular barrier by inhibiting the tumor-associated platelets, which provide new ideas for anti-tumor treatment.
Collapse
Affiliation(s)
- Yan Xu
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| | - Jiwei Liu
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhangya Liu
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| | - Guoguang Chen
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
34
|
Zhou Q, Chen X, He H, Peng S, Zhang Y, Zhang J, Cheng L, Liu S, Huang M, Xie R, Lin T, Huang J. WD repeat domain 5 promotes chemoresistance and Programmed Death-Ligand 1 expression in prostate cancer. Theranostics 2021; 11:4809-4824. [PMID: 33754029 PMCID: PMC7978315 DOI: 10.7150/thno.55814] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
Purpose: Advanced prostate cancer (PCa) has limited treatment regimens and shows low response to chemotherapy and immunotherapy, leading to poor prognosis. Histone modification is a vital mechanism of gene expression and a promising therapy target. In this study, we characterized WD repeat domain 5 (WDR5), a regulator of histone modification, and explored its potential therapeutic value in PCa. Experimental Design: We characterized specific regulators of histone modification, based on TCGA data. The expression and clinical features of WDR5 were analyzed in two dependent cohorts. The functional role of WDR5 was further investigated with siRNA and OICR-9429, a small molecular antagonist of WDR5, in vitro and in vivo. The mechanism of WDR5 was explored by RNA-sequencing and chromatin immunoprecipitation (ChIP). Results: WDR5 was overexpressed in PCa and associated with advanced clinicopathological features, and predicted poor prognosis. Both inhibition of WDR5 by siRNA and OICR-9429 could reduce proliferation, and increase apoptosis and chemosensitivity to cisplatin in vitro and in vivo. Interestingly, targeting WDR5 by siRNA and OICR-9429 could block IFN-γ-induced PD-L1 expression in PCa cells. Mechanistically, we clarified that some cell cycle, anti-apoptosis, DNA repair and immune related genes, including AURKA, CCNB1, E2F1, PLK1, BIRC5, XRCC2 and PD-L1, were directly regulated by WDR5 and OICR-9429 in H3K4me3 and c-Myc dependent manner. Conclusions: These data revealed that targeting WDR5 suppressed proliferation, enhanced apoptosis, chemosensitivity to cisplatin and immunotherapy in PCa. Therefore, our findings provide insight into OICR-9429 is a multi-potency and promising therapy drug, which improves the antitumor effect of cisplatin or immunotherapy in PCa.
Collapse
Affiliation(s)
- Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Haixia He
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yangjie Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingtong Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Liang Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Sen Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ming Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
35
|
Gao L, Xia S, Zhang K, Lin C, He X, Zhang Y. Gene expression profile of THZ1-treated nasopharyngeal carcinoma cell lines indicates its involvement in the inhibition of the cell cycle. Transl Cancer Res 2021; 10:445-460. [PMID: 35116274 PMCID: PMC8799269 DOI: 10.21037/tcr-19-2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The aim of this study was to identify downstream target genes and pathways regulated by THZ1 in nasopharyngeal carcinoma (NPC). METHODS The gene expression profile of GSE95750 in two NPC cell lines, untreated group and treated with THZ1 group, was analyzed. Differentially expressed genes (DEGs) were compared using the R-software. Then Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) was analyzed using Database for Annotation, Visualization, and Integrated Discovery (DAVID). Cytoscape was used for protein-protein interaction (PPI) analysis. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to verified the gene expression. RESULTS We identified 25 genes with increased expression and 567 genes with decreased expression in THZ1-treated NPC cells. The top 10 significantly DEGs between untreated group and THZ1 treated group were identified by qRT-PCR and the results were in agreement with RNA-seq. The total 592 DEGs were found enriched in 1,148 GO terms and 38 KEGG pathways. The most important enriched pathways identified were cell cycle related, and several related node genes were identified, such as CDC6, CDC34, CDK7, CDK9, CCNA2, CCNB1, CDT1, KIF11, LIN9, PLK1, and POLR family, which consistent with RNA-seq. CONCLUSIONS Our results emphasize the differential genes and pathways occurring in THZ1-treated NPC cells, which increases our understanding of the anti-tumor mechanisms of THZ1.
Collapse
Affiliation(s)
- Lijuan Gao
- Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Radiation Oncology, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Shuang Xia
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kunyi Zhang
- Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Radiation Oncology, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Chengguang Lin
- Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Radiation Oncology, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Xuyu He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ying Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
36
|
Joshy KS, Augustine R, Mayeen A, Alex SM, Hasan A, Thomas S, Chi H. NiFe2O4/poly(ethylene glycol)/lipid–polymer hybrid nanoparticles for anti-cancer drug delivery. NEW J CHEM 2020. [DOI: 10.1039/d0nj01163k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present study reports the fabrication of hybrid nanoparticles consisting of nickel ferrite (NFO) for anti cancer drug delivery.
Collapse
Affiliation(s)
- K. S. Joshy
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Chemical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- China
| | - Robin Augustine
- Department of Mechanical and Industrial Engineering
- College of Engineering
- Qatar University
- Doha
- Qatar
| | - Anshida Mayeen
- Department of Physics
- Thangal Kunju Musliar College of Engineering
- Kollam – 691005
- India
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering
- College of Engineering
- Qatar University
- Doha
- Qatar
| | - Sabu Thomas
- Mahatma Gandhi University
- Kottayam – 686 560
- India
| | - Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Chemical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- China
| |
Collapse
|