1
|
Wang W, Gao T, Wang Y, Wang R, He M, Wang L, Zhou W, Ding M, Song Y, Ji X, Li X, Song Y, Zhu Y, Zhang Y, Xie Y, Chen Y, Jin Q, Xie M, Zhang L. Macrophage-Tased Dual-Phase T Cell Immunomodulation to Combat Transplant Rejection. Adv Healthc Mater 2025; 14:e2403591. [PMID: 40264278 DOI: 10.1002/adhm.202403591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Transplant rejection remains a major challenge, driven primarily by the activation of alloreactive T cells. While enhancement of PD-L1 checkpoint molecules has exhibited potential in inhibiting T cell activity, its efficacy is often hindered by limited specificity and inadequate efficiency. Herein, a novel dual-phase immune modulation strategy is developed in which CTLA4-Ig and PD-L1 provide distinct, non-redundant inhibitory signals during the initial activation phase and the post-activation phase of T cells. PD-L1 is stably expressed on macrophages (sPD-L1 M) through lentiviral transduction, allowing them to leverage their chemotactic and antigen-presenting functions to target and deliver PD-L1 to transplant rejection sites. Notably, sPD-L1 M exhibited adaptive targeting capabilities, increasing their migration to grafts in response to heightened rejection. In an allograft skin model, the combined intravenous administration of sPD-L1 M and subcutaneous administration of CTLA4-Ig demonstrated synergistic efficacy, significantly suppressing alloreactive T cell activation, enhancing the recruitment of regulatory T cells (Tregs), downregulating pro-inflammatory cytokines, and prolonging allograft survival compared to either treatment alone. This study presents a promising strategy to effectively suppress T cell activity and prevent allogeneic immune responses without systemic immunosuppression.
Collapse
Affiliation(s)
- Wenyuan Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yihui Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Rui Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mengrong He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lufang Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wuqi Zhou
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mengdan Ding
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yuan Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiang Ji
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xueke Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yishu Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Ye Zhu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yiwei Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yuji Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| |
Collapse
|
2
|
Campa‐Carranza JN, Capuani S, Joubert AL, Hernandez N, Bo T, Sauceda‐Villanueva OI, Conte M, Franco L, Farina M, Rome GE, Xu Y, Zheng J, Argueta LB, Niles JA, Nikolos F, Chua CYX, Chen S, Nichols JE, Kenyon NS, Grattoni A. Immune and Angiogenic Profiling of Mesenchymal Stem Cell Functions in a Subcutaneous Microenvironment for Allogeneic Islet Transplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411574. [PMID: 40344470 PMCID: PMC12120776 DOI: 10.1002/advs.202411574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/08/2025] [Indexed: 05/11/2025]
Abstract
Islet transplantation offers a promising treatment for type 1 diabetes (T1D), by aiming to restore insulin production and improve glycemic control. However, T1D is compounded by impaired angiogenesis and immune dysregulation, which hinder the therapeutic potential of cell replacement strategies. To address this, this work evaluates the proangiogenic and immunomodulatory properties of mesenchymal stem cells (MSCs) to enhance vascularization and modulate early-stage immune rejection pathways in the context of islet allotransplantation. This work employs the Neovascularized Implantable Cell Homing and Encapsulation (NICHE) platform, a subcutaneous vascularized implant with localized immunomodulation developed by the group. This study assesses vascularization and immune regulation provided by MSCs, aiming to improve islet survival and integration in diabetic rats while considering sex as a biological variable. These findings demonstrate that MSCs significantly enhance vascularization and modulate the local microenvironment during the peri-transplant period. Importantly, this work discovers sex-specific differences in both processes, which influence islet engraftment and long-term function.
Collapse
Affiliation(s)
- Jocelyn Nikita Campa‐Carranza
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- School of Medicine and Health SciencesTecnologico de MonterreyMonterreyNL64710Mexico
| | - Simone Capuani
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | - Ashley L. Joubert
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | - Nathanael Hernandez
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | - Tommaso Bo
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | - Octavio I. Sauceda‐Villanueva
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- School of Medicine and Health SciencesTecnologico de MonterreyMonterreyNL64710Mexico
| | - Marzia Conte
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- Department of Applied Science and TechnologyPolitecnico di TorinoTorinoItaly10129
| | - Letizia Franco
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- Department of Applied Science and TechnologyPolitecnico di TorinoTorinoItaly10129
| | - Marco Farina
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | - Gabrielle E. Rome
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | - Yitian Xu
- Center for Immunotherapy ResearchHouston Methodist Research InstituteHoustonTX77030USA
- Immunomonitoring CoreHouston Methodist Research InstituteHoustonTX77030USA
| | - Junjun Zheng
- Center for Immunotherapy ResearchHouston Methodist Research InstituteHoustonTX77030USA
- Immunomonitoring CoreHouston Methodist Research InstituteHoustonTX77030USA
| | - Lissenya B. Argueta
- Center for Tissue EngineeringHouston Methodist Research InstituteHoustonTX77030USA
| | - Jean A. Niles
- Center for Tissue EngineeringHouston Methodist Research InstituteHoustonTX77030USA
| | - Fotis Nikolos
- Department of UrologyHouston Methodist Research InstituteHoustonTX77030USA
| | | | - Shu‐Hsia Chen
- Center for Immunotherapy ResearchHouston Methodist Research InstituteHoustonTX77030USA
- Immunomonitoring CoreHouston Methodist Research InstituteHoustonTX77030USA
| | - Joan E. Nichols
- Center for Tissue EngineeringHouston Methodist Research InstituteHoustonTX77030USA
- Department of SurgeryHouston Methodist HospitalHoustonTX77030USA
| | - Norma S. Kenyon
- Diabetes Research InstituteUniversity of MiamiMiamiFL33136USA
- Department of SurgeryMiller School of MedicineUniversity of MiamiMiamiFL33136USA
- Department of Microbiology and ImmunologyMiller School of MedicineUniversity of MiamiMiamiFL33136USA
- Department of Biomedical EngineeringUniversity of MiamiMiamiFL33136USA
| | - Alessandro Grattoni
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- Department of SurgeryHouston Methodist HospitalHoustonTX77030USA
- Department of Radiation OncologyHouston Methodist HospitalHoustonTX77030USA
| |
Collapse
|
3
|
Mbaye EHA, Scott EA, Burke JA. From Edmonton to Lantidra and beyond: immunoengineering islet transplantation to cure type 1 diabetes. FRONTIERS IN TRANSPLANTATION 2025; 4:1514956. [PMID: 40182604 PMCID: PMC11965681 DOI: 10.3389/frtra.2025.1514956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
Type 1 diabetes (T1D) is characterized by the autoimmune destruction of insulin-producing β cells within pancreatic islets, the specialized endocrine cell clusters of the pancreas. Islet transplantation has emerged as a β cell replacement therapy, involving the infusion of cadaveric islets into a patient's liver through the portal vein. This procedure offers individuals with T1D the potential to restore glucose control, reducing or even eliminating the need for exogenous insulin therapy. However, it does not address the underlying autoimmune condition responsible for T1D. The need for systemic immunosuppression remains the primary barrier to making islet transplantation a more widespread therapy for patients with T1D. Here, we review recent progress in addressing the key limitations of islet transplantation as a viable treatment for T1D. Concerns over systemic immunosuppression arise from its potential to cause severe side effects, including opportunistic infections, malignancies, and toxicity to transplanted islets. Recognizing the risks, the Edmonton protocol (2000) marked a shift away from glucocorticoids to prevent β cell damage specifically. This transition led to the development of combination immunosuppressive therapies and the emergence of less toxic immunosuppressive and anti-inflammatory drugs. More recent advances in islet transplantation derive from islet encapsulation devices, biomaterial platforms releasing immunomodulatory compounds or surface-modified with immune regulating ligands, islet engineering and co-transplantation with accessory cells. While most of the highlighted studies in this review remain at the preclinical stage using mouse and non-human primate models, they hold significant potential for clinical translation if a transdisciplinary research approach is prioritized.
Collapse
Affiliation(s)
- El Hadji Arona Mbaye
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Evan A. Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
- Department of Biomedical Engineering, NanoSTAR Institute, University of Virginia School of Medicine, Charlottesville, VA, United States
| | | |
Collapse
|
4
|
Ma K, Han H, Bao Y, Chen R, Yang Y, Shao W. The Function of B and T Lymphocyte Attenuator and Its Role in Transplantation. APMIS 2025; 133:e70012. [PMID: 40040475 DOI: 10.1111/apm.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
Immune checkpoints are important molecules that regulate the immune response, preventing its overactivation from causing tissue damage and autoimmune diseases. B and T lymphocyte attenuator (BTLA) plays an important role in regulating the activation and suppression of the immune response as part of a bidirectional signaling complex. The BTLA and its ligand herpesvirus entry mediator (HVEM) interaction transmits inhibitory signals that suppress the biological activity of T cells, B cells, and DCs. In addition, BTLA-HVEM can affect the induction of Treg cells, further suggesting its important role in immune regulation. Organ transplantation is the ultimate treatment option for many patients with end-stage organ failure. Transplant rejection can cause damage to the transplanted organ, which seriously affects the prognosis of patients. Therefore, we would like to explore the potential application value of the BTLA-HVEM interaction to exert an immunosuppressive function and thus attenuate transplant rejection. We first reviewed the structure and function of BTLA and HVEM, then summarized their research progress in organ transplantation, and further explored the directions of potential future applications and the challenges of current BTLA-HVEM applications.
Collapse
MESH Headings
- Humans
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/immunology
- Receptors, Tumor Necrosis Factor, Member 14/chemistry
- Organ Transplantation
- Graft Rejection/immunology
- Graft Rejection/prevention & control
- Animals
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Kai Ma
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Heqiao Han
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Yuchen Bao
- Medical School of Tianjin University, Tianjin, China
| | - Rongtao Chen
- Medical School of Tianjin University, Tianjin, China
| | - Yixuan Yang
- Medical School of Tianjin University, Tianjin, China
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
- Medical School of Tianjin University, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Wang X, Zeng Z, Li D, Wang K, Zhang W, Yu Y, Wang X. Advancements and Challenges in Immune Protection Strategies for Islet Transplantation. J Diabetes 2025; 17:e70048. [PMID: 39829227 PMCID: PMC11744047 DOI: 10.1111/1753-0407.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025] Open
Abstract
Pancreatic islet transplantation is a crucial treatment for managing type 1 diabetes (T1D) in clinical settings. However, the limited availability of human cadaveric islet donors and the need for ongoing administration of immunosuppressive agents post-transplantation hinder the widespread use of this treatment. Stem cell-derived islet organoids have emerged as an effective alternative to primary human islets. Nevertheless, implementing this cell replacement therapy still requires chronic immune suppression, which may result in life-long side effects. To address these challenges, innovations such as encapsulation devices, universal stem cells, and immunomodulatory strategies are being developed to mitigate immune rejection and prolong the function of the transplant. This review outlines the contemporary challenges in pancreatic β cell therapy, particularly immune rejection, and recent progress in immune-isolation devices, hypoimmunogenic stem cells, and immune regulation of transplants. A comprehensive evaluation of the advantages and limitations of these approaches will contribute to improved future clinical investigations. With these promising advancements, the application of pancreatic β cell therapy holds the potential to effectively treat T1D and benefit a larger population of T1D patients.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Clinical Stem Cell Research CenterPeking University Third HospitalBeijingChina
| | - Ziyuan Zeng
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Clinical Stem Cell Research CenterPeking University Third HospitalBeijingChina
| | - Dayan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and RemodelingClinical Stem Cell Research Center, Peking University Third Hospital, Peking UniversityBeijingChina
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and RemodelingClinical Stem Cell Research Center, Peking University Third Hospital, Peking UniversityBeijingChina
- Beijing Advanced Center of Cellular Homeostasis and Aging‐Related DiseasesPeking UniversityBeijingChina
| | - Wei Zhang
- TianXinFu (Beijing) Medical Appliance co. Ltd.BeijingChina
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Clinical Stem Cell Research CenterPeking University Third HospitalBeijingChina
- Beijing Advanced Center of Cellular Homeostasis and Aging‐Related DiseasesPeking UniversityBeijingChina
| | - Xi Wang
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Clinical Stem Cell Research CenterPeking University Third HospitalBeijingChina
- Beijing Advanced Center of Cellular Homeostasis and Aging‐Related DiseasesPeking UniversityBeijingChina
- Institute of Advanced Clinical Medicine, Peking UniversityBeijingChina
| |
Collapse
|
6
|
Wong JM, Pepper AR. Status of islet transplantation and innovations to sustainable outcomes: novel sites, cell sources, and drug delivery strategies. FRONTIERS IN TRANSPLANTATION 2024; 3:1485444. [PMID: 39553396 PMCID: PMC11565603 DOI: 10.3389/frtra.2024.1485444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
Islet transplantation (ITx) is an effective means to restore physiologic glycemic regulation in those living with type 1 diabetes; however, there are a handful of barriers that prevent the broad application of this functionally curative procedure. The restricted cell supply, requisite for life-long toxic immunosuppression, and significant immediate and gradual graft attrition limits the procedure to only those living with brittle diabetes. While intraportal ITx is the primary clinical site, portal vein-specific factors including low oxygen tension and the instant blood-mediated inflammatory reaction are detrimental to initial engraftment and long-term function. These factors among others prevent the procedure from granting recipients long-term insulin independence. Herein, we provide an overview of the status and limitations of ITx, and novel innovations that address the shortcomings presented. Despite the marked progress highlighted in the review from as early as the initial islet tissue transplantation in 1893, ongoing efforts to improve the procedure efficacy and success are also explored. Progress in identifying unlimited cell sources, more favourable transplant sites, and novel drug delivery strategies all work to broaden ITx application and reduce adverse outcomes. Exploring combination of these approaches may uncover synergies that can further advance the field of ITx in providing sustainable functional cures. Finally, the potential of biomaterial strategies to facilitate immune evasion and local immune modulation are featured and may underpin successful application in alternative transplant sites.
Collapse
Affiliation(s)
| | - Andrew R. Pepper
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Pu Z, Chen S, Lu Y, Wu Z, Cai Z, Mou L. Exploring the molecular mechanisms of macrophages in islet transplantation using single-cell analysis. Front Immunol 2024; 15:1407118. [PMID: 39267737 PMCID: PMC11391485 DOI: 10.3389/fimmu.2024.1407118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Background Islet transplantation is a promising treatment for type 1 diabetes that aims to restore insulin production and improve glucose control, but long-term graft survival remains a challenge due to immune rejection. Methods ScRNA-seq data from syngeneic and allogeneic islet transplantation grafts were obtained from GSE198865. Seurat was used for filtering and clustering, and UMAP was used for dimension reduction. Differentially expressed genes were analyzed between syngeneic and allogeneic islet transplantation grafts. Gene set variation analysis (GSVA) was performed on the HALLMARK gene sets from MSigDB. Monocle 2 was used to reconstruct differentiation trajectories, and cytokine signature enrichment analysis was used to compare cytokine responses between syngeneic and allogeneic grafts. Results Three distinct macrophage clusters (Mø-C1, Mø-C2, and Mø-C3) were identified, revealing complex interactions and regulatory mechanisms within macrophage populations. The significant activation of macrophages in allogeneic transplants was marked by the upregulation of allograft rejection-related genes and pathways involved in inflammatory and interferon responses. GSVA revealed eight pathways significantly upregulated in the Mø-C2 cluster. Trajectory analysis revealed that Mø-C3 serves as a common progenitor, branching into Mø-C1 and Mø-C2. Cytokine signature enrichment analysis revealed significant differences in cytokine responses, highlighting the distinct immunological environments created by syngeneic and allogeneic grafts. Conclusion This study significantly advances the understanding of macrophage roles within the context of islet transplantation by revealing the interactions between immune pathways and cellular fate processes. The findings highlight potential therapeutic targets for enhancing graft survival and function, emphasizing the importance of understanding the immunological aspects of transplant acceptance and longevity.
Collapse
Affiliation(s)
- Zuhui Pu
- Imaging Department, Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Shujuan Chen
- Department of Endocrinology, Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Ying Lu
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Zijing Wu
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Zhiming Cai
- BGI Medical Group, Shenzhen, Guangdong, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Lisha Mou
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
- Department of Endocrinology, Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Grimus S, Sarangova V, Welzel PB, Ludwig B, Seissler J, Kemter E, Wolf E, Ali A. Immunoprotection Strategies in β-Cell Replacement Therapy: A Closer Look at Porcine Islet Xenotransplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401385. [PMID: 38884159 PMCID: PMC11336975 DOI: 10.1002/advs.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by absolute insulin deficiency primarily due to autoimmune destruction of pancreatic β-cells. The prevailing treatment for T1DM involves daily subcutaneous insulin injections, but a substantial proportion of patients face challenges such as severe hypoglycemic episodes and poorly controlled hyperglycemia. For T1DM patients, a more effective therapeutic option involves the replacement of β-cells through allogeneic transplantation of either the entire pancreas or isolated pancreatic islets. Unfortunately, the scarcity of transplantable human organs has led to a growing list of patients waiting for an islet transplant. One potential alternative is xenotransplantation of porcine pancreatic islets. However, due to inter-species molecular incompatibilities, porcine tissues trigger a robust immune response in humans, leading to xenograft rejection. Several promising strategies aim to overcome this challenge and enhance the long-term survival and functionality of xenogeneic islet grafts. These strategies include the use of islets derived from genetically modified pigs, immunoisolation of islets by encapsulation in biocompatible materials, and the creation of an immunomodulatory microenvironment by co-transplanting islets with accessory cells or utilizing immunomodulatory biomaterials. This review concentrates on delineating the primary obstacles in islet xenotransplantation and elucidates the fundamental principles and recent breakthroughs aimed at addressing these challenges.
Collapse
Affiliation(s)
- Sarah Grimus
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| | - Victoria Sarangova
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Petra B. Welzel
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Barbara Ludwig
- Department of Medicine IIIUniversity Hospital Carl Gustav CarusTechnische Universität DresdenD‐01307DresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the Technische Universität DresdenD‐01307DresdenGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
- DFG‐Center for Regenerative Therapies DresdenTechnische Universität DresdenD‐01307DresdenGermany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IVDiabetes Zentrum – Campus InnenstadtKlinikum der Ludwig‐Maximilians‐Universität MünchenD‐80336MunichGermany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Asghar Ali
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| |
Collapse
|
9
|
Lansberry TR, Stabler CL. Immunoprotection of cellular transplants for autoimmune type 1 diabetes through local drug delivery. Adv Drug Deliv Rev 2024; 206:115179. [PMID: 38286164 PMCID: PMC11140763 DOI: 10.1016/j.addr.2024.115179] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune condition that results in the destruction of insulin-secreting β cells of the islets of Langerhans. Allogeneic islet transplantation could be a successful treatment for T1DM; however, it is limited by the need for effective, permanent immunosuppression to prevent graft rejection. Upon transplantation, islets are rejected through non-specific, alloantigen specific, and recurring autoimmune pathways. Immunosuppressive agents used for islet transplantation are generally successful in inhibiting alloantigen rejection, but they are suboptimal in hindering non-specific and autoimmune pathways. In this review, we summarize the challenges with cellular immunological rejection and therapeutics used for islet transplantation. We highlight agents that target these three immune rejection pathways and how to package them for controlled, local delivery via biomaterials. Exploring macro-, micro-, and nano-scale immunomodulatory biomaterial platforms, we summarize their advantages, challenges, and future directions. We hypothesize that understanding their key features will help identify effective platforms to prevent islet graft rejection. Outcomes can further be translated to other cellular therapies beyond T1DM.
Collapse
Affiliation(s)
- T R Lansberry
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - C L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Immunology and Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
10
|
Wang Y, Wang K, Wang X, Luo Y, Chen H. Hydrogel-Composited Laminate for Islet Immune-Isolation to Treat Type 1 Diabetes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3042-3055. [PMID: 38215348 DOI: 10.1021/acsami.3c12359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Challenges remain to be solved for the clinical translation of β-cell encapsulation technology in the treatment of type 1 diabetes (T1D). Successful delivery of β cells urgently needs the development of an encapsulation device with a thin dimension and rapid mass transport that offers stable immune isolation and complete retrieval. In this study, we focus on a laminate in which an islet-embedding alginate hydrogel layer (Alg) is sandwiched between two polymer layers (polyether sulfone, PES). Mechanical support by the PES layer protects the alginate from disintegrating after implantation and allows complete retrieval. The multilayered device has a thin membrane configuration (∼1 mm), and the edge of the laminate and the gaps between Alg and PES offer a semiopen structure that could be more permeable to molecules compared with the closed pocket of conventional macroencapsulation. Islets are suspended in the alginate solution and then encapsulated in the hydrogel layer in the middle of the laminate after gelation. Encapsulating syngeneic or xenogeneic islets in the laminate device corrected chemically induced T1D in mice for over 90 days in both the intraperitoneal space and the epididymal fat pad. The multilayered membrane system may therefore provide a translatable solution in β cell-transplantation therapy in T1D.
Collapse
Affiliation(s)
- Yi Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Haidian District, Beijing 100871, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Xi Wang
- State key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Ying Luo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Haifeng Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Haidian District, Beijing 100871, China
| |
Collapse
|
11
|
Li H, He W, Feng Q, Chen J, Xu X, Lv C, Zhu C, Dong H. Engineering superstable islets-laden chitosan microgels with carboxymethyl cellulose coating for long-term blood glucose regulation in vivo. Carbohydr Polym 2024; 323:121425. [PMID: 37940297 DOI: 10.1016/j.carbpol.2023.121425] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Islet transplantation to restore endogenous insulin secretion is a promising therapy for type 1 diabetes in clinic. However, host immune rejection seriously limits the survival of transplanted islets. Despite of the various encapsulation strategies and materials developed so far to provide immune isolation for transplanted islets, long-term blood glucose regulation is still difficult due to the inherent defects of the encapsulation materials. Herein, a novel islet-encapsulation composite material with low immunogenicity, good biocompatibility and excellent stability is reported. Specifically, chitosan (CS) microgels (diameter: ∼302 μm) are prepared via Michael addition reaction between maleimide grafted chitosan (CS-Mal) and thiol grafted chitosan (CS-NAC) in droplet-based microfluidic device, and then zwitterionic surface layer is constructed on CS microgel surface by covalent binding between maleimide groups on CS and thiol groups on thiol modified carboxymethyl cellulose (CMC-SH). The as-formed carboxymethyl cellulose coated chitosan (CS@CMC) microgels show not only long-term stability in vivo owing to the non-biodegradability of CMC, but also fantastic anti-adsorption and antifibrosis because of the stable zwitterionic surface layer. As a result, islets encapsulated in the CS@CMC microgels exhibit high viability and good insulin secretion function in vivo, and long-term blood glucose regulation is achieved for 180 days in diabetic mice post-transplantation.
Collapse
Affiliation(s)
- Haofei Li
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Weijun He
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Qi Feng
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Junlin Chen
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Xinbin Xu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Chuhan Lv
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Changchun Zhu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Hua Dong
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
12
|
Abbaszadeh S, Nosrati-Siahmazgi V, Musaie K, Rezaei S, Qahremani M, Xiao B, Santos HA, Shahbazi MA. Emerging strategies to bypass transplant rejection via biomaterial-assisted immunoengineering: Insights from islets and beyond. Adv Drug Deliv Rev 2023; 200:115050. [PMID: 37549847 DOI: 10.1016/j.addr.2023.115050] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/14/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Novel transplantation techniques are currently under development to preserve the function of impaired tissues or organs. While current technologies can enhance the survival of recipients, they have remained elusive to date due to graft rejection by undesired in vivo immune responses despite systemic prescription of immunosuppressants. The need for life-long immunomodulation and serious adverse effects of current medicines, the development of novel biomaterial-based immunoengineering strategies has attracted much attention lately. Immunomodulatory 3D platforms can alter immune responses locally and/or prevent transplant rejection through the protection of the graft from the attack of immune system. These new approaches aim to overcome the complexity of the long-term administration of systemic immunosuppressants, including the risks of infection, cancer incidence, and systemic toxicity. In addition, they can decrease the effective dose of the delivered drugs via direct delivery at the transplantation site. In this review, we comprehensively address the immune rejection mechanisms, followed by recent developments in biomaterial-based immunoengineering strategies to prolong transplant survival. We also compare the efficacy and safety of these new platforms with conventional agents. Finally, challenges and barriers for the clinical translation of the biomaterial-based immunoengineering transplants and prospects are discussed.
Collapse
Affiliation(s)
- Samin Abbaszadeh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Vahideh Nosrati-Siahmazgi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Kiyan Musaie
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Saman Rezaei
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Mostafa Qahremani
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715 China.
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
13
|
Kuppan P, Wong J, Kelly S, Lin J, Worton J, Castro C, Paramor J, Seeberger K, Cuesta-Gomez N, Anderson CC, Korbutt GS, Pepper AR. Long-Term Survival and Induction of Operational Tolerance to Murine Islet Allografts by Co-Transplanting Cyclosporine A Microparticles and CTLA4-Ig. Pharmaceutics 2023; 15:2201. [PMID: 37765170 PMCID: PMC10537425 DOI: 10.3390/pharmaceutics15092201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
One strategy to prevent islet rejection is to create a favorable immune-protective local environment at the transplant site. Herein, we utilize localized cyclosporine A (CsA) delivery to islet grafts via poly(lactic-co-glycolic acid) (PLGA) microparticles to attenuate allograft rejection. CsA-eluting PLGA microparticles were prepared using a single emulsion (oil-in-water) solvent evaporation technique. CsA microparticles alone significantly delayed islet allograft rejection compared to islets alone (p < 0.05). Over 50% (6/11) of recipients receiving CsA microparticles and short-term cytotoxic T lymphocyte-associated antigen 4-Ig (CTLA4-Ig) therapy displayed prolonged allograft survival for 214 days, compared to 25% (2/8) receiving CTLA4-Ig alone. CsA microparticles alone and CsA microparticles + CTLA4-Ig islet allografts exhibited reduced T-cell (CD4+ and CD8+ cells, p < 0.001) and macrophage (CD68+ cells, p < 0.001) infiltration compared to islets alone. We observed the reduced mRNA expression of proinflammatory cytokines (IL-6, IL-10, INF-γ, and TNF-α; p < 0.05) and chemokines (CCL2, CCL5, CCL22, and CXCL10; p < 0.05) in CsA microparticles + CTLA4-Ig allografts compared to islets alone. Long-term islet allografts contained insulin+ and intra-graft FoxP3+ T regulatory cells. The rapid rejection of third-party skin grafts (C3H) in islet allograft recipients suggests that CsA microparticles + CTLA4-Ig therapy induced operational tolerance. This study demonstrates that localized CsA drug delivery plus short-course systemic immunosuppression promotes an immune protective transplant niche for allogeneic islets.
Collapse
Affiliation(s)
- Purushothaman Kuppan
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Jordan Wong
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Sandra Kelly
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Jiaxin Lin
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Jessica Worton
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Chelsea Castro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Joy Paramor
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Karen Seeberger
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Nerea Cuesta-Gomez
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Colin C. Anderson
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Gregory S. Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AL T6G 2E1, Canada; (P.K.); (J.W.); (S.K.); (J.L.); (J.W.); (C.C.); (J.P.); (K.S.); (N.C.-G.); (C.C.A.)
- Department of Surgery, University of Alberta, Edmonton, AL T6G 2E1, Canada
| |
Collapse
|
14
|
Qin T, Smink AM, de Vos P. Enhancing longevity of immunoisolated pancreatic islet grafts by modifying both the intracapsular and extracapsular environment. Acta Biomater 2023:S1742-7061(23)00362-8. [PMID: 37392934 DOI: 10.1016/j.actbio.2023.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease characterized by autoimmune destruction of pancreatic β cells. Transplantation of immunoisolated pancreatic islets might treat T1DM in the absence of chronic immunosuppression. Important advances have been made in the past decade as capsules can be produced that provoke minimal to no foreign body response after implantation. However, graft survival is still limited as islet dysfunction may occur due to chronic damage to islets during islet isolation, immune responses induced by inflammatory cells, and nutritional issues for encapsulated cells. This review summarizes the current challenges for promoting longevity of grafts. Possible strategies for improving islet graft longevity are also discussed, including supplementation of the intracapsular milieu with essential survival factors, promotion of vascularization and oxygenation near capsules, modulation of biomaterials, and co-transplantation of accessory cells. Current insight is that both the intracapsular as well as the extracapsular properties should be improved to achieve long-term survival of islet-tissue. Some of these approaches reproducibly induce normoglycemia for more than a year in rodents. Further development of the technology requires collective research efforts in material science, immunology, and endocrinology. STATEMENT OF SIGNIFICANCE: Islet immunoisolation allows for transplantation of insulin producing cells in absence of immunosuppression and might facilitate the use of xenogeneic cell sources or grafting of cells obtained from replenishable cell sources. However, a major challenge to date is to create a microenvironment that supports long-term graft survival. This review provides a comprehensive overview of the currently identified factors that have been demonstrated to be involved in either stimulating or reducing islet graft survival in immunoisolating devices and discussed current strategies to enhance the longevity of encapsulated islet grafts as treatment for type 1 diabetes. Although significant challenges remain, interdisciplinary collaboration across fields may overcome obstacles and facilitate the translation of encapsulated cell therapy from the laboratory to clinical application.
Collapse
Affiliation(s)
- Tian Qin
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands.
| | - Alexandra M Smink
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
15
|
Kabakchieva P, Assyov Y, Gerasoudis S, Vasilev G, Peshevska-Sekulovska M, Sekulovski M, Lazova S, Miteva DG, Gulinac M, Tomov L, Velikova T. Islet transplantation-immunological challenges and current perspectives. World J Transplant 2023; 13:107-121. [PMID: 37388389 PMCID: PMC10303418 DOI: 10.5500/wjt.v13.i4.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Pancreatic islet transplantation is a minimally invasive procedure aiming to reverse the effects of insulin deficiency in patients with type 1 diabetes (T1D) by transplanting pancreatic beta cells. Overall, pancreatic islet transplantation has improved to a great extent, and cellular replacement will likely become the mainstay treatment. We review pancreatic islet transplantation as a treatment for T1D and the immunological challenges faced. Published data demonstrated that the time for islet cell transfusion varied between 2 and 10 h. Approximately 54% of the patients gained insulin independence at the end of the first year, while only 20% remained insulin-free at the end of the second year. Eventually, most transplanted patients return to using some form of exogenous insulin within a few years after the transplantation, which imposed the need to improve immunological factors before transplantation. We also discuss the immunosuppressive regimens, apoptotic donor lymphocytes, anti-TIM-1 antibodies, mixed chimerism-based tolerance induction, induction of antigen-specific tolerance utilizing ethylene carbodiimide-fixed splenocytes, pretransplant infusions of donor apoptotic cells, B cell depletion, preconditioning of isolated islets, inducing local immunotolerance, cell encapsulation and immunoisolation, using of biomaterials, immunomodulatory cells, etc.
Collapse
Affiliation(s)
- Plamena Kabakchieva
- Clinic of Internal Diseases, Naval Hospital-Varna, Military Medical Academy, Varna 9010, Bulgaria
| | - Yavor Assyov
- Clinic of Endocrinology, Department of Internal Diseases, University Hospital "Alexandrovska", Medical University-Sofia, Sofia 1434, Bulgaria
| | | | - Georgi Vasilev
- Department of Neurology, Faculty of Medicine, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Monika Peshevska-Sekulovska
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Metodija Sekulovski
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Anesthesiology and Intensive Care, University hospital Lozenetz, Sofia 1407, Bulgaria
| | - Snezhina Lazova
- Department of Pediatric, University Hospital "N. I. Pirogov", Sofia 1606, Bulgaria
- Department of Healthcare, Faculty of Public Health "Prof. Tsekomir Vodenicharov, MD, DSc", Medical University of Sofia, Sofia 1527, Bulgaria
| | | | - Milena Gulinac
- Department of General and Clinical Pathology, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Latchezar Tomov
- Department of Informatics, New Bulgarian University, Sofia 1618, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
16
|
Wang Y, Wang K, Luo Y, Chen H. Hydrogel-Bondable Asymmetric Planar Membranes with Hierarchical Pore Structures for Cell Scaffolding and Encapsulation. ACS Biomater Sci Eng 2023; 9:1706-1719. [PMID: 36795620 DOI: 10.1021/acsbiomaterials.2c01415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Biomaterials for cell replacement therapy could facilitate the delivery, function, and retrieval of transplanted therapeutic cells. However, the limited capacity to accommodate a sufficient quantity of cells in biomedical devices has hindered the success of clinical application, resulting from the suboptimal spatial organization of cells and insufficient permeation of nutrients in the materials. Herein, through the immersion-precipitation phase transfer (IPPT) process from polyether sulfone (PES), we develop planar asymmetric membranes with a hierarchical pore architecture spanning from nanopores (∼20 nm) in the dense skin and open-ended microchannel arrays with gradient pore size increasing vertically from microns to ∼100 μm. The nanoporous skin would be an ultrathin diffusion barrier, while the microchannels could support high-density cell loading by acting as separate chambers allowing uniform distribution of cells in the scaffold. Alginate hydrogel could permeate into the channels and form a sealing layer after gelation, which could slow down the invasion of host immune cells into the scaffold. The hybrid thin-sheet encapsulation system (∼400 μm thick) could protect allogeneic cells over half-year after intraperitoneal (IP) implantation in immune-competent mice. Such structural membranes and plastic-hydrogel hybrids of thin dimensions could find important applications in cell delivery therapy.
Collapse
Affiliation(s)
- Yi Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Haidian District, Beijing 100871, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Ying Luo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Haifeng Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Haidian District, Beijing 100871, China
| |
Collapse
|
17
|
Paez-Mayorga J, Campa-Carranza JN, Capuani S, Hernandez N, Liu HC, Chua CYX, Pons-Faudoa FP, Malgir G, Alvarez B, Niles JA, Argueta LB, Shelton KA, Kezar S, Nehete PN, Berman DM, Willman MA, Li XC, Ricordi C, Nichols JE, Gaber AO, Kenyon NS, Grattoni A. Implantable niche with local immunosuppression for islet allotransplantation achieves type 1 diabetes reversal in rats. Nat Commun 2022; 13:7951. [PMID: 36572684 PMCID: PMC9792517 DOI: 10.1038/s41467-022-35629-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
Pancreatic islet transplantation efficacy for type 1 diabetes (T1D) management is limited by hypoxia-related graft attrition and need for systemic immunosuppression. To overcome these challenges, we developed the Neovascularized Implantable Cell Homing and Encapsulation (NICHE) device, which integrates direct vascularization for facile mass transfer and localized immunosuppressant delivery for islet rejection prophylaxis. Here, we investigated NICHE efficacy for allogeneic islet transplantation and long-term diabetes reversal in an immunocompetent, male rat model. We demonstrated that allogeneic islets transplanted within pre-vascularized NICHE were engrafted, revascularized, and functional, reverting diabetes in rats for over 150 days. Notably, we confirmed that localized immunosuppression prevented islet rejection without inducing toxicity or systemic immunosuppression. Moreover, for translatability efforts, we showed NICHE biocompatibility and feasibility of deployment as well as short-term allogeneic islet engraftment in an MHC-mismatched nonhuman primate model. In sum, the NICHE holds promise as a viable approach for safe and effective islet transplantation and long-term T1D management.
Collapse
Affiliation(s)
- Jesus Paez-Mayorga
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Jocelyn Nikita Campa-Carranza
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Simone Capuani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- University of the Chinese Academy of Sciences (UCAS), Shijingshan, Beijing, China
| | - Nathanael Hernandez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Hsuan-Chen Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | | | | | - Gulsah Malgir
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Bella Alvarez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Jean A Niles
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA
| | - Lissenya B Argueta
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA
| | - Kathryn A Shelton
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX, USA
| | - Sarah Kezar
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX, USA
| | - Pramod N Nehete
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Dora M Berman
- Diabetes Research Institute, University of Miami, Miami, FL, USA
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Xian C Li
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Joan E Nichols
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - A Osama Gaber
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Norma S Kenyon
- Diabetes Research Institute, University of Miami, Miami, FL, USA
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
18
|
Diabetes immunity-modulated multifunctional hydrogel with cascade enzyme catalytic activity for bacterial wound treatment. Biomaterials 2022; 289:121790. [PMID: 36088678 DOI: 10.1016/j.biomaterials.2022.121790] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Diabetes immunity-modulated wound treatment in response to the varied microenvironments at different stages remains an urgent challenge. Herein, glucose oxidase (GOx) and quasi-amorphous Fe2O3 are co-incorporated into Zn-MOF nanoparticle (F-GZ) for cascade enzyme catalytic activities, where not only the high blood glucose in the wound is consumed via the GOx catalysis, but also the effective anti-bacteria is achieved via the degradedly released Zn2+ synergistically with the catalytically produced ·OH during the bacterial infection period with the low pH microenvironment. Simultaneously, the reactive oxygen species scavenging and hypoxia relief is realized via catalyzing H2O2 to produce O2 at the relatively elevated pH environment during the wound recovery period. Subsequently, a multifunctional hydrogel with injectable, self-healing and hemostasis abilities, as well as uniformed F-GZ loading is prepared via the copolymerization reaction. This hydrogel behaves as F-GZ but reduces the toxic effects, which thus accelerates the diabetic wound healing. More importantly, this hydrogel is found to modulate the diabetes immunity possibly mediated via the released Zn2+, which thus contributes to the recovered pancreatic islet functions with improved glucose tolerance and increased insulin secretion for enhanced diabetic wound treatments. This work initiates a new strategy for simultaneous diabetic wound management and also suggests a potential way for diabetic immunity modulation.
Collapse
|
19
|
Wang X, Wang K, Yu M, Velluto D, Hong X, Wang B, Chiu A, Melero-Martin JM, Tomei AA, Ma M. Engineered immunomodulatory accessory cells improve experimental allogeneic islet transplantation without immunosuppression. SCIENCE ADVANCES 2022; 8:eabn0071. [PMID: 35867788 PMCID: PMC9307254 DOI: 10.1126/sciadv.abn0071] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/08/2022] [Indexed: 05/05/2023]
Abstract
Islet transplantation has been established as a viable treatment modality for type 1 diabetes. However, the side effects of the systemic immunosuppression required for patients often outweigh its benefits. Here, we engineer programmed death ligand-1 and cytotoxic T lymphocyte antigen 4 immunoglobulin fusion protein-modified mesenchymal stromal cells (MSCs) as accessory cells for islet cotransplantation. The engineered MSCs (eMSCs) improved the outcome of both syngeneic and allogeneic islet transplantation in diabetic mice and resulted in allograft survival for up to 100 days without any systemic immunosuppression. Immunophenotyping revealed reduced infiltration of CD4+ or CD8+ T effector cells and increased infiltration of T regulatory cells within the allografts cotransplanted with eMSCs compared to controls. The results suggest that the eMSCs can induce local immunomodulation and may be applicable in clinical islet transplantation to reduce or minimize the need of systemic immunosuppression and ameliorate its negative impact.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kai Wang
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Ming Yu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diana Velluto
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xuechong Hong
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Bo Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Alan Chiu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Juan M. Melero-Martin
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Alice A. Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
20
|
Shi Y, Zhao YZ, Jiang Z, Wang Z, Wang Q, Kou L, Yao Q. Immune-Protective Formulations and Process Strategies for Improved Survival and Function of Transplanted Islets. Front Immunol 2022; 13:923241. [PMID: 35903090 PMCID: PMC9315421 DOI: 10.3389/fimmu.2022.923241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the immune system attacking and destroying insulin-producing β cells in the pancreas. Islet transplantation is becoming one of the most promising therapies for T1D patients. However, its clinical use is limited by substantial cell loss after islet infusion, closely related to immune reactions, including instant blood-mediated inflammatory responses, oxidative stress, and direct autoimmune attack. Especially the grafted islets are not only exposed to allogeneic immune rejection after transplantation but are also subjected to an autoimmune process that caused the original disease. Due to the development and convergence of expertise in biomaterials, nanotechnology, and immunology, protective strategies are being investigated to address this issue, including exploring novel immune protective agents, encapsulating islets with biomaterials, and searching for alternative implantation sites, or co-transplantation with functional cells. These methods have significantly increased the survival rate and function of the transplanted islets. However, most studies are still limited to animal experiments and need further studies. In this review, we introduced the immunological challenges for islet graft and summarized the recent developments in immune-protective strategies to improve the outcomes of islet transplantation.
Collapse
Affiliation(s)
- Yannan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhikai Jiang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| |
Collapse
|
21
|
Xiao Z, Wei T, Ge R, Li Q, Liu B, Ji Z, Chen L, Zhu J, Shen J, Liu Z, Huang Y, Yang Y, Chen Q. Microfluidic Production of Zwitterion Coating Microcapsules with Low Foreign Body Reactions for Improved Islet Transplantation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202596. [PMID: 35733079 DOI: 10.1002/smll.202202596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Islet transplantation is a promising strategy for type 1 diabetes mellitus (T1DM) treatment, whereas implanted-associated foreign body reaction (FBR) usually induces the necrosis of transplanted islets and leads to the failure of glycemic control. Benefiting from the excellent anti-biofouling property of zwitterionic materials and their successful application in macroscopic implanted devices, microcapsules with zwitterionic coatings may be promising candidates for islet encapsulation. Herein, a series of zwitterion-coated core-shell microcapsules is fabricated (including carboxybetaine methacrylate [CBMA]-coated gelatin methacrylate [GelMA] [CBMA-GelMA], sulfobetaine methacrylate [SBMA]-coated GelMA [SBMA-GelMA], and phosphorylcholine methacrylate [MPC]-coated GelMA [MPC-GelMA]) by one-step photopolymerization of inner GelMA and outer zwitterionic monomers via a handmade two-fluid microfluidic device and it is demonstrated that they can effectively prevent protein adsorption, cell adhesion, and inflammation in vitro. Interestingly, the zwitterionic microcapsules successfully resist FBR in C57BL/6 mice after intraperitoneal implantation for up to 4 months. After successfully encapsulating xenogeneic rat islets in the SBMA-GelMA microcapsules, sustained normoglycemia is further validated in streptozotocin (STZ)-induced mice for up to 3 months. The zwitterion-modified microcapsule using a microfluidic device may represent a platform for cell encapsulation treatment for T1DM and other hormone-deficient diseases.
Collapse
Affiliation(s)
- Zhisheng Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Ting Wei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Ruiliang Ge
- Department of Biliary Surgery I, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qiaofeng Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Bo Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhaoxin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Linfu Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jingjing Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yueye Huang
- Shanghai Center of Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
22
|
Campa-Carranza JN, Paez-Mayorga J, Chua CYX, Nichols JE, Grattoni A. Emerging local immunomodulatory strategies to circumvent systemic immunosuppression in cell transplantation. Expert Opin Drug Deliv 2022; 19:595-610. [PMID: 35588058 DOI: 10.1080/17425247.2022.2076834] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cell transplantation is a promising curative therapeutic strategy whereby impaired organ functions can be restored without the need for whole organ transplantation. A key challenge in allotransplantation is the requirement for life-long systemic immunosuppression to prevent rejection, which is associated with serious adverse effects such as increased risk of opportunistic infections and the development of neoplasms. This challenge underscores the urgent need for novel strategies to prevent graft rejection while abrogating toxicity-associated adverse events. AREAS COVERED We review recent advances in immunoengineering strategies for localized immunomodulation that aim to support allograft function and provide immune tolerance in a safe and effective manner. EXPERT OPINION Immunoengineering strategies are tailored approaches for achieving immunomodulation of the transplant microenvironment. Biomaterials can be adapted for localized and controlled release of immunomodulatory agents, decreasing the effective dose threshold and frequency of administration. The future of transplant rejection management lies in the shift from systemic to local immunomodulation with suppression of effector and activation of regulatory T cells, to promote immune tolerance.
Collapse
Affiliation(s)
- Jocelyn Nikita Campa-Carranza
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.,School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Jesus Paez-Mayorga
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.,School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Joan E Nichols
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.,Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
23
|
Soltani S, Mansouri K, Emami Aleagha MS, Moasefi N, Yavari N, Shakouri SK, Notararigo S, Shojaeian A, Pociot F, Yarani R. Extracellular Vesicle Therapy for Type 1 Diabetes. Front Immunol 2022; 13:865782. [PMID: 35464488 PMCID: PMC9024141 DOI: 10.3389/fimmu.2022.865782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/17/2022] [Indexed: 01/02/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic disorder characterized by immune-mediated destruction of pancreatic insulin-producing β-cells. The primary treatment for T1D is multiple daily insulin injections to control blood sugar levels. Cell-free delivery packets with therapeutic properties, extracellular vesicles (EVs), mainly from stem cells, have recently gained considerable attention for disease treatments. EVs provide a great potential to treat T1D ascribed to their regenerative, anti-inflammatory, and immunomodulatory effects. Here, we summarize the latest EV applications for T1D treatment and highlight opportunities for further investigation.
Collapse
Affiliation(s)
- Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Sajad Emami Aleagha
- Medical Technology Research Center (MTRC), School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Moasefi
- Medical Technology Research Center (MTRC), School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Notararigo
- Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
- *Correspondence: Reza Yarani, ;
| |
Collapse
|