1
|
Salerno I, Benabdallah N, Fears A, Unnerstall R, Hauck L, Komarov S, Cox L, Zhang H, Poenicke K, Aromando J, Tai YC, Wencewicz T, Veis DJ, Thorek DLJ. Impact of biocontainment on small animal PET performance adapted for BSL-2/3 infectious disease imaging research. EJNMMI Res 2025; 15:14. [PMID: 39984776 PMCID: PMC11845635 DOI: 10.1186/s13550-025-01202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/24/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Biocontainment protocols are critical for conducting infectious disease (ID) research, particularly when using small animal models in biosafety level (BSL) 2/3 environments. This study evaluates the impact of poly-methyl methacrylate (PMMA) containment vessels on the performance of preclinical positron emission tomography (PET) systems. We tested containment vessels designed with varying wall thicknesses (3, 6, and 9 mm) to simulate ID imaging facility equipment and protocols. Through the use of multicomponent phantoms and in vivo mouse models of Staphylococcus aureus infection, we assessed key performance metrics including count rate, image quality, activity recovery, and spatial resolution. RESULTS The results indicate that the use of PMMA containment causes only minor reductions in imaging performance. The thickest PMMA (9 mm) led to a maximum 6.8% decrease in count rate, which remains well within the acceptable range of variation. Effects on spatial resolution were most noticeable for smaller structures within the phantom study, with a 19.65% difference in full width at half maximum (FWHM) for the thickest walled vessel. In vivo, using infected mice, the containment devices had modest effects on the task of activity concentration to be detected at the infection site, even with the thickest PMMA tube. CONCLUSION These findings suggest that PMMA biocontainment vessels have small but measurable impact on preclinical PET system performance, making them a viable and cost-effective solution for conducting infectious disease imaging under BSL-2/3 conditions. Specifically, the thinnest containment (3 mm) had only minor effects on all tested parameters, suggesting it is well-suited for use in ID enclosures while maintaining accurate qualitative and quantitative assessments. This approach may reduce the burden for fully separate and specialized modifications for BSL-3 imaging facilities, and can be broadly applied to preclinical research involving pathogenic organisms.
Collapse
Affiliation(s)
- Isabella Salerno
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Nadia Benabdallah
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Amanda Fears
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ryan Unnerstall
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Lindsey Hauck
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Sergey Komarov
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Linda Cox
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Hanwen Zhang
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kevin Poenicke
- Operations and Facilities Management, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Joseph Aromando
- Operations and Facilities Management, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Yuan-Chun Tai
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - Deborah J Veis
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Daniel L J Thorek
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Radiology, Washington University in St. Louis School of Medicine, 510 S. Kingshighway Boulevard, Barnard Hospital 6604, St. Louis, MO, 63110, USA.
| |
Collapse
|
2
|
Wang J, Beyer D, Vaccarin C, He Y, Tanriver M, Benoit R, Deupi X, Mu L, Bode JW, Schibli R, Müller C. Development of radiofluorinated MLN-4760 derivatives for PET imaging of the SARS-CoV-2 entry receptor ACE2. Eur J Nucl Med Mol Imaging 2024; 52:9-21. [PMID: 39066808 PMCID: PMC11599313 DOI: 10.1007/s00259-024-06831-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE The angiotensin converting enzyme 2 (ACE2) plays a regulatory role in the cardiovascular system and serves SARS-CoV-2 as an entry receptor. The aim of this study was to synthesize and evaluate radiofluorinated derivatives of the ACE2 inhibitor MLN-4760. [18F]F-MLN-4760 and [18F]F-Aza-MLN-4760 were demonstrated to be suitable for non-invasive imaging of ACE2, potentially enabling a better understanding of its expression dynamics. METHODS Computational molecular modeling, based on the structures of human ACE2 (hACE2) and mouse ACE2 (mACE2), revealed that the ACE2-binding modes of F-MLN-4760 and F-Aza-MLN-4760 were similar to that of MLN-4760. Co-crystallization of the hACE2/F-MLN-4760 protein complex was performed for confirmation. Displacement experiments using [3H]MLN-4760 enabled the determination of the binding affinities of the synthesized F-MLN-4760 and F-Aza-MLN-4760 to hACE2 expressed in HEK-ACE2 cells. Aryl trimethylstannane-based and pyridine-based radiofluorination precursors were synthesized and used for the preparation of the respective radiotracers. [18F]F-MLN-4760 and [18F]F-Aza-MLN-4760 were evaluated with regard to the uptake in HEK-ACE2 and HEK-ACE cells and in vitro binding to tissue sections of HEK-ACE2 xenografts and normal organs of mice. Biodistribution and PET/CT imaging studies of [18F]F-MLN-4760 and [18F]F-Aza-MLN-4760 were performed using HEK-ACE2 and HEK-ACE xenografted nude mice. RESULTS Crystallography data revealed an equal hACE2-binding mode for F-MLN-4760 as previously found for MLN-4760. Moreover, computer-based modeling indicated that similar binding to hACE2 and mACE2 holds true for both, F-MLN-4760 and F-Aza-MLN-4760, as is the case for MLN-4760. The IC50 values were three-fold and seven-fold higher for F-MLN-4760 and F-Aza-MLN-4760, respectively, than for MLN-4760. [18F]F-MLN-4760 and [18F]F-Aza-MLN-4760 were obtained in 1.4 ± 0.3 GBq and 0.5 ± 0.1 GBq activity with > 99% radiochemical purity in a 5.3% and 1.2% radiochemical yield, respectively. Uptake in HEK-ACE2 cells was higher for [18F]F-MLN-4760 (67 ± 9%) than for [18F]F-Aza-MLN-4760 (37 ± 8%) after 3-h incubation while negligible uptake was seen in HEK-ACE cells (< 0.3%). [18F]F-MLN-4760 and [18F]F-Aza-MLN-4760 accumulated specifically in HEK-ACE2 xenografts of mice (13 ± 2% IA/g and 15 ± 2% IA/g at 1 h p.i.) with almost no uptake observed in HEK-ACE xenografts (< 0.3% IA/g). This was confirmed by PET/CT imaging, which also visualized unspecific accumulation in the gall bladder and intestinal tract. CONCLUSION Both radiotracers showed specific and selective binding to ACE2 in vitro and in vivo. [18F]F-MLN-4760 was, however, obtained in higher yields and the ACE2-binding affinity was superior over that of [18F]F-Aza-MLN-4760. [18F]F-MLN-4760 would, thus, be the candidate of choice for further development in view of its use for PET imaging of ACE2.
Collapse
Affiliation(s)
- Jinling Wang
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Darja Beyer
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Villigen-PSI, 5232, Switzerland
| | - Christian Vaccarin
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Villigen-PSI, 5232, Switzerland
| | - Yingfang He
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Matthias Tanriver
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Roger Benoit
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen-PSI, 5232, Switzerland
| | - Xavier Deupi
- Condensed Matter Theory Group, Division of Scientific Computing, Theory, and Data, Paul Scherrer Institute, Villigen-PSI, 5232, Switzerland
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen-PSI, 5232, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Linjing Mu
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Villigen-PSI, 5232, Switzerland
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Villigen-PSI, 5232, Switzerland.
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland.
| |
Collapse
|
3
|
Li L, Wang R, He L, Guo H, Fu L, Wang G, Wang J, Chen Z, Peng X, Lu X, Sui H, Jiang Y, Zang J, Gao L, Zhu Z. Evaluation of Angiotensin-Converting Enzyme 2 Expression In Vivo with Novel 68Ga-Labeled Peptides Originated from the Coronavirus Receptor-Binding Domain. ACS Pharmacol Transl Sci 2024; 7:3119-3130. [PMID: 39416971 PMCID: PMC11475584 DOI: 10.1021/acsptsci.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is not only a key to the renin-angiotensin-aldosterone system and related diseases, but also the main entry point on cell surfaces for certain coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. By analyzing the different key binding sites from the receptor-binding domain (RBD) of SARS-CoV and SARS-CoV-2, nine new ACE2-targeting peptides (A1 to A9) were designed, synthesized and connected with a chelator, 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA). NOTA-A1, NOTA-A2, NOTA-A4, NOTA-A5, and NOTA-A8 were successfully labeled with [68Ga]Ga3+ and were used for biological evaluation. [68Ga]Ga-NOTA-A2, [68Ga]Ga-NOTA-A5, and [68Ga]Ga-NOTA-A8 showed specific binding to ACE2 via cell assays, and their binding sites and binding capacity were calculated by molecular docking and molecular dynamics simulations. In tumor-bearing mice, A549 tumors were visualized 60 min postinjection of [68Ga]Ga-NOTA-A2, [68Ga]Ga-NOTA-A5, or [68Ga]Ga-NOTA-A8. These peptides also accumulated in the organs with high-level ACE2 expression, confirmed by immunohistochemical stain. Among them, [68Ga]Ga-NOTA-A5 exhibited the highest tumor uptake and tumor/background ratio, and it successfully tracked the increased ACE2 levels in mice tissues after excessive Losartan treatment. In a first-in-human study, the distribution of [68Ga]Ga-NOTA-A5 was evaluated with positron emission tomography/computed tomography (PET/CT) in three participants without adverse events. 68Ga-labeled peptides originated from the coronavirus RBD, with [68Ga]Ga-NOTA-A5 as a typical representative, seem to be safe and effective for the evaluation of ACE2 expression in vivo with PET/CT, facilitating further mechanism investigation and clinical evaluation of ACE2-related diseases.
Collapse
Affiliation(s)
- Linlin Li
- Department
of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare
Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and
Therapy in Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences, Peking
Union Medical College, Beijing 100730, China
| | - Rongxi Wang
- Department
of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare
Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and
Therapy in Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences, Peking
Union Medical College, Beijing 100730, China
| | - Li He
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing
Normal University, Beijing 100875, China
| | - Hua Guo
- State
Key Laboratory of Molecular Oncology, National Cancer Center/National
Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lei Fu
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing
Normal University, Beijing 100875, China
| | - Guochang Wang
- Department
of Nuclear Medicine, The First Affiliated
Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Jiarou Wang
- Department
of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare
Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and
Therapy in Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences, Peking
Union Medical College, Beijing 100730, China
| | - Ziying Chen
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing
Normal University, Beijing 100875, China
| | - Xingtong Peng
- Eight-Year
Program of Clinical Medicine, Peking Union Medical College Hospital
(PUMCH), Chinese Academy of Medical Sciences
(CAMS) and Peking Union Medical College (PUMC), Beijing 100730, China
| | - Xinyu Lu
- Eight-Year
Program of Clinical Medicine, Peking Union Medical College Hospital
(PUMCH), Chinese Academy of Medical Sciences
(CAMS) and Peking Union Medical College (PUMC), Beijing 100730, China
| | - Huimin Sui
- Department
of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare
Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and
Therapy in Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences, Peking
Union Medical College, Beijing 100730, China
| | - Yuanyuan Jiang
- Department
of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare
Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and
Therapy in Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences, Peking
Union Medical College, Beijing 100730, China
| | - Jie Zang
- Department
of Nuclear Medicine, The First Affiliated
Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Lianghui Gao
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing
Normal University, Beijing 100875, China
| | - Zhaohui Zhu
- Department
of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare
Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and
Therapy in Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences, Peking
Union Medical College, Beijing 100730, China
| |
Collapse
|
4
|
Xu W, Langhans SA, Johnson DK, Stauff E, Kandula VVR, Kecskemethy HH, Averill LW, Yue X. Radiotracers for Molecular Imaging of Angiotensin-Converting Enzyme 2. Int J Mol Sci 2024; 25:9419. [PMID: 39273366 PMCID: PMC11395405 DOI: 10.3390/ijms25179419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzymes (ACE) are well-known for their roles in both blood pressure regulation via the renin-angiotensin system as well as functions in fertility, immunity, hematopoiesis, and many others. The two main isoforms of ACE include ACE and ACE-2 (ACE2). Both isoforms have similar structures and mediate numerous effects on the cardiovascular system. Most remarkably, ACE2 serves as an entry receptor for SARS-CoV-2. Understanding the interaction between the virus and ACE2 is vital to combating the disease and preventing a similar pandemic in the future. Noninvasive imaging techniques such as positron emission tomography and single photon emission computed tomography could noninvasively and quantitatively assess in vivo ACE2 expression levels. ACE2-targeted imaging can be used as a valuable tool to better understand the mechanism of the infection process and the potential roles of ACE2 in homeostasis and related diseases. Together, this information can aid in the identification of potential therapeutic drugs for infectious diseases, cancer, and many ACE2-related diseases. The present review summarized the state-of-the-art radiotracers for ACE2 imaging, including their chemical design, pharmacological properties, radiochemistry, as well as preclinical and human molecular imaging findings. We also discussed the advantages and limitations of the currently developed ACE2-specific radiotracers.
Collapse
Affiliation(s)
- Wenqi Xu
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Sigrid A. Langhans
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
- Division of Neurology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA
| | - David K. Johnson
- Computational Chemical Biology Core, Molecular Graphics and Modeling Laboratory, University of Kansas, Lawrence, KS 66047, USA;
| | - Erik Stauff
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Vinay V. R. Kandula
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
| | - Heidi H. Kecskemethy
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Lauren W. Averill
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Xuyi Yue
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (W.X.); (E.S.); (V.V.R.K.); (H.H.K.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| |
Collapse
|
5
|
Ding J, Zhang Q, Jiang J, Zhou N, Yu Z, Wang Z, Meng X, Daggumati L, Liu T, Wang F, Lu Z, Yang X, Yang Z, Zhang H, Thorek DLJ, Du P, Zhu H. Preclinical Evaluation and Pilot Clinical Study of 18F-Labeled Inhibitor Peptide for Noninvasive Positron Emission Tomography Mapping of Angiotensin Converting Enzyme 2. ACS Pharmacol Transl Sci 2024; 7:1758-1769. [PMID: 38898955 PMCID: PMC11184604 DOI: 10.1021/acsptsci.3c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the main molecular target for coronavirus SARS-CoV-2 to enter cells. Molecularly specific tracers that bind to ACE2 with high affinity can be used to determine the tissue distribution of this important receptor, noninvasively. A novel targeting PET imaging probe, [18F]AlF-DX600-BCH, was developed to detect the in vivo expression of ACE2 and monitor response to therapy. Preclinical experiments, including biodistribution, PET imaging, and tissue section analysis, were conducted after tests of in vitro and in vivo stability and pharmacokinetics. The agent was advanced to clinical evaluation in 10 volunteers who received [18F]AlF-DX600-BCH PET/CT at 1 and 2 h after injection (NCT04542863). Preclinical results of both biodistribution and PET demonstrated [18F]AlF-DX600-BCH accumulation in rat kidney (standardized uptake value; SUVkidney/normal > 50), along with specific uptake in testes (SUVtestis/normal > 10) tissues. Kidney, gastrointestinal, and bronchial cell labeling were correlated to ACE2 positive by immunohistochemistry (IHC) staining. In clinical imaging, significant tracer accumulation was predominantly observed in the urinary and reproductive system (SUVrenal cortex = 32.00, SUVtestis = 4.56), and the conjunctiva and nasal mucosa saw elevated uptake in several cases. This work is the first report of a radioisotope probe, [18F]AlF-DX600-BCH, targeting ACE2 with promising preliminary preclinical and translational outlook, thereby demonstrating the potential of noninvasive mapping of ACE2.
Collapse
Affiliation(s)
- Jin Ding
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
| | - Qian Zhang
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
- Guizhou
University School of Medicine, Guiyang, 550025 Guizhou, China
| | - Jinquan Jiang
- Department
of Radiology, People’s Hospital of
Deyang City, Deyang, 618000 Sichuan, China
| | - Nina Zhou
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
| | - Ziyu Yu
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, 100142 Beijing, China
| | - Zilei Wang
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
| | - Xiangxi Meng
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
| | - Lasya Daggumati
- Department
of Radiology, Washington University in St.
Louis School of Medicine, St. Louis, Missouri 63110, United States
| | - Teli Liu
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
| | - Feng Wang
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
| | - Zhihao Lu
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), Department of Gastro-intestinal oncology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, 100142 Beijing, China
| | - Xing Yang
- Department
of Nuclear Medicine, Peking University First
Hospital, No. 8 Xishiku Street, 100034 Beijing, China
| | - Zhi Yang
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
| | - Hanwen Zhang
- Department
of Radiology, Washington University in St.
Louis School of Medicine, St. Louis, Missouri 63110, United States
| | - Daniel L. J. Thorek
- Department
of Radiology, Washington University in St.
Louis School of Medicine, St. Louis, Missouri 63110, United States
| | - Peng Du
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, 100142 Beijing, China
| | - Hua Zhu
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing 100142, China
| |
Collapse
|
6
|
Zhou P, Li Z, Li D, Xue S, Li R, Zhang L, Bai Q, Li X. [ 99mTc]Tc-labeled cyc-DX600-HYNIC as a SPECT probe for ACE2-specific pancreatic cancer imaging. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:122-133. [PMID: 38737645 PMCID: PMC11087297 DOI: 10.62347/vfht4078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
As a regulator in renin-angiotensin-aldosterone system, angiotensin-converting enzyme 2 (ACE2) closely correlated with tumor progression of pancreatic cancer, meantime, was easily affected by a variety of factors. [99mTc]Tc-cyc-DX600 SPECT was established as an ACE2-specific imaging protocol to figure out the ACE2 status in pancreatic tumor. BALB/C-NU mice were used to prepare the subcutaneous cell derived xenograft (CDX) models with HEK-293T or HEK-293T/hACE2 cells to validate ACE2 specificity of [99mTc]Tc-cyc-DX600 SPECT and establish SPECT imaging protocol. On the basis of [99mTc]Tc-cyc-DX600 SPECT and [18F]F-FDG PET/CT, ACE2-dependence on tumor size and tumor metabolism were further verified on orthotopic pancreatic cancer model with KPC cells. Immunohistochemical analysis was used to demonstrate the findings on ACE2 SPECT. [99mTc]Tc-cyc-DX600 was of superior tumor uptake in HEK-293T/hACE2 CDX than wild type (6.74 ± 0.31 %ID/mL vs 1.83 ± 0.26 %ID/mL at 1.5 h post injection (p.i.); 3.14 ± 0.31 %ID/mL vs 1.16 ± 0.15 %ID/mL at 4.5 h p.i.). For the CDX models with PANC-1 cells, a significant negative correlation between the slope of tumor volume and tumor uptake was observed (r = -0.382 for the 1-4th day; r = -0.146 for the 1-5th day; r = -0.114 for the 1-6th day; r = -0.152 for the 1-7th day; but P > 0.05 for all). For orthotopic pancreatic cancer model, the linear correlation between FDG PET and ACE2 SPECT of the pancreatic lesions was negative (r = -0.878), the quantitative values of ACE2 SPCET was positively correlated with the volume of primary lesions (r = 0.752) and also positively correlated with the quantitative values of ACE2 immunohistochemical analysis (r = 0.991). Conclusively, [99mTc]Tc-cyc-DX600 SPECT is an ACE2-specific imaging protocol with clinical translational potential, adding multidimensional information on the disease progression of pancreatic cancer.
Collapse
Affiliation(s)
- Pan Zhou
- School of Chemistry and Bioengineering, Yichun UniversityYichun 336000, Jiangxi, China
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai 201800, China
| | - Zheng Li
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai 201800, China
| | - Danni Li
- Department of Nuclear Medicine, Shanghai Changhai HospitalShanghai 200433, China
| | - Shuai Xue
- School of Chemistry and Bioengineering, Yichun UniversityYichun 336000, Jiangxi, China
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai 201800, China
| | - Rou Li
- Department of Nuclear Medicine, Shanghai Changhai HospitalShanghai 200433, China
| | - Lan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai 201800, China
| | - Qingyun Bai
- School of Chemistry and Bioengineering, Yichun UniversityYichun 336000, Jiangxi, China
| | - Xiao Li
- Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghai 201800, China
- Department of Nuclear Medicine, Shanghai Changhai HospitalShanghai 200433, China
- Department of Nuclear Medicine, Pudong Hospital, Fudan UniversityShanghai 201399, China
| |
Collapse
|
7
|
Wang Z, Zhao C, Li C, Liu S, Ding J, He C, Liu J, Dong B, Yang Z, Liu Q, Zhu H, Liu Y. Molecular PET/CT mapping of rhACE2 distribution and quantification in organs to aid in SARS-CoV-2 targeted therapy. J Med Virol 2023; 95:e29221. [PMID: 38009705 DOI: 10.1002/jmv.29221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, poses a significant threat to public health. Angiotensin-converting enzyme 2 (ACE2) is a key receptor for SARS-CoV-2 infection. Recombinant human ACE2 (RhACE2), as a soluble supplement for human ACE2, can competitively block SARS-CoV-2 infection. In this study, a mouse organ in situ rhACE2 high aggregation model was constructed for the first time, and in vivo real-time positron emission tomography (PET) imaging of rhACE2 in the mouse model was performed using an ACE2-specific agent 68 Ga-HZ20. This radiotracer exhibits reliable radiochemical properties in vitro and maintains a high affinity for rhACE2 in vivo. In terms of probe uptake, 68 Ga-HZ20 showed a good target-to-nontarget ratio and was rapidly cleared from the circulatory system and excreted by the kidneys and urinary system. PET imaging with this radiotracer can noninvasively and accurately monitor the content and distribution of rhACE2 in the body, which clarifies that rhACE2 can aggregate in multiple organs, suggesting the preventive and therapeutic potential of rhACE2 for SARS-CoV-2 and COVID-19.
Collapse
Affiliation(s)
- Zilei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chuanke Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chuangui Li
- Department of Nuclear Medicine, First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Song Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Ding
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chengxue He
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiayue Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Qi Liu
- Department of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- International Cancer Center, Department of medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Youping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Lau CY, Martinez-Orengo N, Lyndaker A, Flavahan K, Johnson RF, Shah S, Hammoud DA. Advances and Challenges in Molecular Imaging of Viral Infections. J Infect Dis 2023; 228:S270-S280. [PMID: 37788495 PMCID: PMC10547465 DOI: 10.1093/infdis/jiad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Molecular imaging of viral infection, using a variety of advanced imaging techniques such as optical and nuclear imaging, can and has been used for direct visualization of the virus as well as assessment of virus-host interactions. Unlike imaging of other pathogens such as bacteria and fungi, challenging aspects of imaging viral infections include the small size of viruses, the complexity of viral infection animal models (eg, species dependence), and the high-level containment needs for many high-consequence pathogens, among others. In this review, using representative viral infections, we discuss how molecular imaging can reveal real-time infection dynamics, improve our understanding of disease pathogenesis, and guide optimization of treatment and prevention strategies. Key findings from human and animal studies are highlighted.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Neysha Martinez-Orengo
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Anna Lyndaker
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelly Flavahan
- Center for Infection and Inflammation Imaging Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Reed F Johnson
- SARS-CoV-2 Virology Core, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Swati Shah
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Dima A Hammoud
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Li Z, Hasson A, Daggumati L, Zhang H, Thorek DLJ. Molecular Imaging of ACE2 Expression in Infectious Disease and Cancer. Viruses 2023; 15:1982. [PMID: 37896761 PMCID: PMC10610869 DOI: 10.3390/v15101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a cell-surface receptor that plays a critical role in the pathogenesis of SARS-CoV-2 infection. Through the use of ligands engineered for the receptor, ACE2 imaging has emerged as a valuable tool for preclinical and clinical research. These can be used to visualize the expression and distribution of ACE2 in tissues and cells. A variety of techniques including optical, magnetic resonance, and nuclear medicine contrast agents have been developed and employed in the preclinical setting. Positron-emitting radiotracers for highly sensitive and quantitative tomography have also been translated in the context of SARS-CoV-2-infected and control patients. Together this information can be used to better understand the mechanisms of SARS-CoV-2 infection, the potential roles of ACE2 in homeostasis and disease, and to identify potential therapeutic modulators in infectious disease and cancer. This review summarizes the tools and techniques to detect and delineate ACE2 in this rapidly expanding field.
Collapse
Affiliation(s)
- Zhiyao Li
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (Z.L.); (A.H.); (H.Z.)
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
| | - Abbie Hasson
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (Z.L.); (A.H.); (H.Z.)
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - Lasya Daggumati
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- School of Medicine Missouri, University of Missouri-Kansas City, Kansas, MO 64108, USA
| | - Hanwen Zhang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (Z.L.); (A.H.); (H.Z.)
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Siteman Cancer Center, St. Louis, MO 63110, USA
| | - Daniel L. J. Thorek
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; (Z.L.); (A.H.); (H.Z.)
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
- Siteman Cancer Center, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun 2023; 14:3257. [PMID: 37277339 PMCID: PMC10241151 DOI: 10.1038/s41467-023-36377-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023] Open
Abstract
Positron emission tomography (PET) constitutes a functional imaging technique that is harnessed to probe biological processes in vivo. PET imaging has been used to diagnose and monitor the progression of diseases, as well as to facilitate drug development efforts at both preclinical and clinical stages. The wide applications and rapid development of PET have ultimately led to an increasing demand for new methods in radiochemistry, with the aim to expand the scope of synthons amenable for radiolabeling. In this work, we provide an overview of commonly used chemical transformations for the syntheses of PET tracers in all aspects of radiochemistry, thereby highlighting recent breakthrough discoveries and contemporary challenges in the field. We discuss the use of biologicals for PET imaging and highlight general examples of successful probe discoveries for molecular imaging with PET - with a particular focus on translational and scalable radiochemistry concepts that have been entered to clinical use.
Collapse
Affiliation(s)
- Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Achi Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Troels E Jeppesen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
11
|
Hanson EK, Whelan RJ. Application of the Nicoya OpenSPR to Studies of Biomolecular Binding: A Review of the Literature from 2016 to 2022. SENSORS (BASEL, SWITZERLAND) 2023; 23:4831. [PMID: 37430747 DOI: 10.3390/s23104831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023]
Abstract
The Nicoya OpenSPR is a benchtop surface plasmon resonance (SPR) instrument. As with other optical biosensor instruments, it is suitable for the label-free interaction analysis of a diverse set of biomolecules, including proteins, peptides, antibodies, nucleic acids, lipids, viruses, and hormones/cytokines. Supported assays include affinity/kinetics characterization, concentration analysis, yes/no assessment of binding, competition studies, and epitope mapping. OpenSPR exploits localized SPR detection in a benchtop platform and can be connected with an autosampler (XT) to perform automated analysis over an extended time period. In this review article, we provide a comprehensive survey of the 200 peer-reviewed papers published between 2016 and 2022 that use the OpenSPR platform. We highlight the range of biomolecular analytes and interactions that have been investigated using the platform, provide an overview on the most common applications for the instrument, and point out some representative research that highlights the flexibility and utility of the instrument.
Collapse
Affiliation(s)
- Eliza K Hanson
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Rebecca J Whelan
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
12
|
Beyer D, Vaccarin C, Deupi X, Mapanao AK, Cohrs S, Sozzi-Guo F, Grundler PV, van der Meulen NP, Wang J, Tanriver M, Bode JW, Schibli R, Müller C. A tool for nuclear imaging of the SARS-CoV-2 entry receptor: molecular model and preclinical development of ACE2-selective radiopeptides. EJNMMI Res 2023; 13:32. [PMID: 37074529 PMCID: PMC10113987 DOI: 10.1186/s13550-023-00979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/29/2023] [Indexed: 04/20/2023] Open
Abstract
PURPOSE The angiotensin converting enzyme-2 (ACE2)-entry receptor of SARS-CoV-2-and its homologue, the angiotensin-converting enzyme (ACE), play a pivotal role in maintaining cardiovascular homeostasis. Potential changes in ACE2 expression levels and dynamics after SARS-CoV-2 infection have been barely investigated. The aim of this study was to develop an ACE2-targeting imaging agent as a noninvasive imaging tool to determine ACE2 regulation. METHODS DOTA-DX600, NODAGA-DX600 and HBED-CC-DX600 were obtained through custom synthesis and labeled with gallium-67 (T1/2 = 3.26 d) as a surrogate radioisotope for gallium-68 (T1/2 = 68 min). ACE2- and ACE-transfected HEK cells were used for the in vitro evaluation of these radiopeptides. The in vivo tissue distribution profiles of the radiopeptides were assessed in HEK-ACE2 and HEK-ACE xenografted mice and imaging studies were performed using SPECT/CT. RESULTS The highest molar activity was obtained for [67Ga]Ga-HBED-CC-DX600 (60 MBq/nmol), whereas the labeling efficiency of the other peptides was considerably lower (20 MBq/nmol). The radiopeptides were stable over 24 h in saline (> 99% intact peptide). All radiopeptides showed uptake in HEK-ACE2 cells (36-43%) with moderate ACE2-binding affinity (KD value: 83-113 nM), but no uptake in HEK-ACE cells (< 0.1%) was observed. Accumulation of the radiopeptides was observed in HEK-ACE2 xenografts (11-16% IA/g) at 3 h after injection, but only background signals were seen in HEK-ACE xenografts (< 0.5% IA/g). Renal retention was still high 3 h after injection of [67Ga]Ga-DOTA-DX600 and [67Ga]Ga-NODAGA-DX600 (~ 24% IA/g), but much lower for [67Ga]Ga-HBED-CC-DX600 (7.2 ± 2.2% IA/g). SPECT/CT imaging studies confirmed the most favorable target-to-nontarget ratio for [67Ga]Ga-HBED-CC-DX600. CONCLUSIONS This study demonstrated ACE2 selectivity for all radiopeptides. [67Ga]Ga-HBED-CC-DX600 was revealed as the most promising candidate due to its favorable tissue distribution profile. Importantly, the HBED-CC chelator enabled 67Ga-labeling at high molar activity, which would be essential to obtain images with high signal-to-background contrast to detect (patho)physiological ACE2 expression levels in patients.
Collapse
Affiliation(s)
- Darja Beyer
- Center for Radiopharmaceutical Sciences, ETH-PSI, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - Christian Vaccarin
- Center for Radiopharmaceutical Sciences, ETH-PSI, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - Xavier Deupi
- Condensed Matter Theory Group, Division of Scientific Computing, Theory, and Data, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Ana Katrina Mapanao
- Center for Radiopharmaceutical Sciences, ETH-PSI, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - Susan Cohrs
- Center for Radiopharmaceutical Sciences, ETH-PSI, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - Fan Sozzi-Guo
- Center for Radiopharmaceutical Sciences, ETH-PSI, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - Pascal V Grundler
- Center for Radiopharmaceutical Sciences, ETH-PSI, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences, ETH-PSI, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
- Laboratory of Radiochemistry, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - Jinling Wang
- Institute of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Matthias Tanriver
- Institute of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Jeffrey W Bode
- Institute of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, ETH-PSI, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences, ETH-PSI, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland.
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
13
|
Li X, Li J, Zhou P, Li D, Wang M, Tong Q, Chen J, Zuo C, Zhang L, Li R. The functional views on response of host rabbit post coronavirus vaccination via ACE2 PET. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2023; 13:43-50. [PMID: 36923599 PMCID: PMC10009468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
Molecular imaging can dynamically and quantitatively record the biochemical changes in a systemic view. In this research, SARS-CoV-2 pseudovirus was intramuscularly injected to simulate the vaccination with inactivated virus. New Zealand white rabbits were evaluated with 18F-FDG PET for inflammation and 68Ga-cyc-DX600 PET for ACE2 fluctuation, which were performed before and at 3, 7 and 14 days post injection (d P.I.); furthermore, one rabbit was vaccinated with two cycles with interval of 14 days for a longer period evaluation. Different with the vaccination-induced inflammatory response that was random and individual, ACE2 regulation was systemic and organ-specific: the liver and spleen were of a moderate decrease post injection but rebound at 14 d P.I., while there were a downward trend in heart, testis and bone marrow; besides, similar pattern of ACE2 regulation were recorded after the second injection with a relatively greater volatility. In conclusion, ACE2 PET gave a more comprehensive view on host response post vaccination, hold substantial promise in continuous monitoring of coronavirus vaccine administration and effectiveness.
Collapse
Affiliation(s)
- Xiao Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800, China.,University of Chinese Academy of Sciences Beijing 100049, China.,Department of Nuclear Medicine, Shanghai Changhai Hospital Shanghai 200433, China
| | - Jie Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800, China.,University of Chinese Academy of Sciences Beijing 100049, China
| | - Pan Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800, China
| | - Danni Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital Shanghai 200433, China
| | - Mingxin Wang
- Department of Nuclear Medicine, Shanghai Changhai Hospital Shanghai 200433, China
| | - Qianqian Tong
- Department of Nuclear Medicine, Shanghai Changhai Hospital Shanghai 200433, China
| | - Jian Chen
- Department of Radiology, Shanghai Jiangong Hospital Shanghai 200083, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Shanghai Changhai Hospital Shanghai 200433, China
| | - Lan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800, China
| | - Rou Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital Shanghai 200433, China
| |
Collapse
|
14
|
Xian J, Huang H, Huang G, Zhou R, Yang M, Qiu Y, Bi L, Su Z, Xiao F, Shan H, Jin H. A Positron Emission Tomography Tracer Targeting the S2 Subunit of SARS-CoV-2 in Extrapulmonary Infections. Mol Pharm 2022; 19:4264-4274. [PMID: 36067000 PMCID: PMC9469952 DOI: 10.1021/acs.molpharmaceut.2c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022]
Abstract
Tracking the pathogen of coronavirus disease 2019 (COVID-19) in live subjects may help estimate the spatiotemporal distribution of SARS-CoV-2 infection in vivo. This study developed a positron emission tomography (PET) tracer of the S2 subunit of spike (S) protein for imaging SARS-CoV-2. A pan-coronavirus inhibitor, EK1 peptide, was synthesized and radiolabeled with copper-64 after being conjugated with 1,4,7-triazacyclononane-1,4,7-triyl-triacetic acid (NOTA). The in vitro stability tests indicated that [64Cu]Cu-NOTA-EK1 was stable up to 24 h both in saline and in human serum. The binding assay showed that [64Cu]Cu-NOTA-EK1 has a nanomolar affinity (Ki = 3.94 ± 0.51 nM) with the S-protein of SARS-CoV-2. The cell uptake evaluation used HEK293T/S+ and HEK293T/S- cell lines that showed that the tracer has a high affinity with the S-protein on the cellular level. For the in vivo study, we tested [64Cu]Cu-NOTA-EK1 in HEK293T/S+ cell xenograft-bearing mice (n = 3) and pseudovirus of SARS-CoV-2-infected HEK293T/ACE2 cell bearing mice (n = 3). The best radioactive xenograft-to-muscle ratio (X/Nxenograft 8.04 ± 0.99, X/Npseudovirus 6.47 ± 0.71) was most evident 4 h postinjection. Finally, PET imaging in the surrogate mouse model of beta-coronavirus, mouse hepatic virus-A59 infection in C57BL/6 J mice showed significantly enhanced accumulation in the liver than in the uninfected mice (1.626 ± 0.136 vs 0.871 ± 0.086 %ID/g, n = 3, P < 0.05) at 4 h postinjection. In conclusion, our experimental results demonstrate that [64Cu]Cu-NOTA-EK1 is a potential molecular imaging probe for tracking SARS-CoV-2 in extrapulmonary infections in living subjects.
Collapse
Affiliation(s)
- Jianzhong Xian
- Guangdong Provincial Key Laboratory of Biomedical
Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University,
Zhuhai, Guangdong Province519000, China
- Department of Ultrasound Medicine, The Fifth
Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong
Province519000, China
| | - Hongbin Huang
- Guangdong Provincial Key Laboratory of Biomedical
Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University,
Zhuhai, Guangdong Province519000, China
| | - Guolong Huang
- Guangdong Provincial Key Laboratory of Biomedical
Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University,
Zhuhai, Guangdong Province519000, China
| | - Renwei Zhou
- Guangdong Provincial Key Laboratory of Biomedical
Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University,
Zhuhai, Guangdong Province519000, China
| | - Min Yang
- Guangdong Provincial Key Laboratory of Biomedical
Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University,
Zhuhai, Guangdong Province519000, China
| | - Yifan Qiu
- Guangdong Provincial Key Laboratory of Biomedical
Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University,
Zhuhai, Guangdong Province519000, China
| | - Lei Bi
- Guangdong Provincial Key Laboratory of Biomedical
Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University,
Zhuhai, Guangdong Province519000, China
| | - Zhongzhen Su
- Guangdong Provincial Key Laboratory of Biomedical
Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University,
Zhuhai, Guangdong Province519000, China
- Department of Ultrasound Medicine, The Fifth
Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong
Province519000, China
| | - Fei Xiao
- Guangdong Provincial Key Laboratory of Biomedical
Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University,
Zhuhai, Guangdong Province519000, China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical
Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University,
Zhuhai, Guangdong Province519000, China
- Department of Interventional Medicine, The Fifth
Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong
Province519000, China
| | - Hongjun Jin
- Guangdong Provincial Key Laboratory of Biomedical
Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University,
Zhuhai, Guangdong Province519000, China
| |
Collapse
|
15
|
Minamimoto R. Oncology and cardiology positron emission tomography/computed tomography faced with COVID-19: A review of available literature data. Front Med (Lausanne) 2022; 9:1052921. [PMID: 36341267 PMCID: PMC9626818 DOI: 10.3389/fmed.2022.1052921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/07/2022] [Indexed: 09/07/2024] Open
Abstract
The COVID-19 pandemic has forced people to significantly change their lifestyles and attitudes, and has greatly burdened healthcare delivery systems worldwide. The redistribution of the medical delivery system to maintain normal medical care while responding generously to COVID-19 is a continuing challenge that weighs heavily on medical institutions. Among imaging modalities, chest X-rays and computed tomography (CT) examinations have clearly made a large contribution to treatment of COVID-19. In contrast, it is difficult to express the standpoint of nuclear medicine examinations in a straightforward manner, as the greatest emphasis in this modality has been on how necessary medical care can continue to be provided. Many clinical reports of nuclear medicine examinations related to COVID-19 have been published, and knowledge continues to accumulate. This review provides a summary of the current state of oncology and cardiology positron emission tomography (PET) examinations related to COVID-19, and includes preparation of the nuclear medicine department, trends in PET examinations, specific imaging findings on 18F-fluorodeoxyglucose (FDG) PET/CT, imaging of complications of COVID-19, PET tracers other than FDG, and the effects of vaccines on PET imaging findings.
Collapse
Affiliation(s)
- Ryogo Minamimoto
- Division of Nuclear Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Zhang Q, Liu T, Ding J, Zhou N, Yu Z, Ren Y, Qin X, Du P, Yang Z, Zhu H. Evaluation of 68Ga- and 177Lu-Labeled HZ20 Angiotensin-Converting Enzyme 2-Targeting Peptides for Tumor-Specific Imaging. Mol Pharm 2022; 19:4149-4156. [PMID: 36198565 DOI: 10.1021/acs.molpharmaceut.2c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is closely related to tumor formation. We developed the radiolabeled peptide pair 68Ga/177Lu-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated DX600 (68Ga/177Lu-HZ20), for the targeting and mapping of ACE2-overexpressing tumors. 68Ga/177Lu-HZ20 was prepared with a routine labeling method. HepG2ACE2+/HepG2WT cell lines were used to evaluate the specificity of 68Ga/177Lu-HZ20. Pharmacokinetics, biodistribution, and micro-PET/CT and -SPECT/CT imaging were performed, and radiation dosimetry was estimated. Immunohistochemistry (IHC) staining was performed to assess the expression of ACE2 in tumors. The radiolabeling yields of 68Ga/177Lu-HZ20 were 88.49 ± 8.57% (n > 10) and 84.71 ± 9.75% (n > 10), with specific activities of (18.74 ± 3.72) × 106 and (17.85 ± 1.62) × 106 GBq/mol, respectively. 68Ga/177Lu-HZ20 showed significant differences in the cellular uptake of HepG2ACE2+/HepG2WT cells and fast clearance in KM mice. Moreover, HepG2ACE2+ tumors were clearly visualized in 68Ga/177Lu-HZ20 micro-PET/SPECT images. Based on micro-PET/CT, the standard uptake value (SUVmax) of HepG2ACE2+ tumors was 0.66 ± 0.02 at 30 min postinjection, IHC confirmed the high expression of ACE2 in HepG2ACE2+ tumors. In PET/CT images, the SUVmean of volunteer 1 was higher than the 18F-FDG value in the same lesion. 68Ga/177Lu-HZ20 was successfully obtained and showed high and specific uptake in tumors overexpressing ACE2. They may serve as paired probes for ACE2-targeting theranostics.
Collapse
Affiliation(s)
- Qian Zhang
- Guizhou University Medicine College, Guiyang 550025, Guizhou Province, China.,Key Laboratory of Carcinogenesis and Translational Research (ministry of Education/Beijing), key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration) of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research (ministry of Education/Beijing), key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration) of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jin Ding
- Key Laboratory of Carcinogenesis and Translational Research (ministry of Education/Beijing), key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration) of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research (ministry of Education/Beijing), key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration) of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ziyi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of education/Beijing), Department of Urology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yanan Ren
- Guizhou University Medicine College, Guiyang 550025, Guizhou Province, China
| | - Xue Qin
- Guizhou University Medicine College, Guiyang 550025, Guizhou Province, China
| | - Peng Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of education/Beijing), Department of Urology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhi Yang
- Guizhou University Medicine College, Guiyang 550025, Guizhou Province, China.,Key Laboratory of Carcinogenesis and Translational Research (ministry of Education/Beijing), key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration) of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hua Zhu
- Guizhou University Medicine College, Guiyang 550025, Guizhou Province, China.,Key Laboratory of Carcinogenesis and Translational Research (ministry of Education/Beijing), key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration) of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
17
|
Liu S, Li G, Ding L, Ding J, Zhang Q, Li D, Hou X, Kong X, Zou J, Zhang S, Han H, Wan Y, Yang Z, Zhu H. Evaluation of SARS-CoV-2-Neutralizing Nanobody Using Virus Receptor Binding Domain-Administered Model Mice. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9864089. [PMID: 35958110 PMCID: PMC9343077 DOI: 10.34133/2022/9864089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/21/2022] [Indexed: 11/06/2022]
Abstract
Due to the rapid spread of coronavirus disease 2019 (COVID-19), there is an urgent requirement for the development of additional diagnostic tools for further analysis of the disease. The isolated nanobody Nb11-59 binds to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor-binding domain (RBD) with high affinity to neutralize the virus and block the angiotensin-converting enzyme 2- (ACE2-) RBD interaction. Here, we introduce a novel nanobody-based radiotracer named 68Ga-Nb1159. The radiotracer retained high affinity for the RBD and showed reliable radiochemical characteristics both in vitro and in vivo. Preclinical positron emission tomography (PET) studies of 68Ga-Nb1159 in mice revealed its rapid clearance from circulation and robust uptake into the renal and urinary systems. Fortunately, 68Ga-Nb1159 could specifically reveal the distribution of the RBD in mice. This study also helped to evaluate the pharmacodynamic effects of the neutralizing nanobody. Moreover, 68Ga-Nb1159 may be a promising tool to explore the distribution of the RBD and improve the understanding of the virus. In particular, this study identified a novel molecular radioagent and established a reliable evaluation method for specifically investigating the RBD through noninvasive and visual PET technology.
Collapse
Affiliation(s)
- Song Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Guanghui Li
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Lei Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Anesthesiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jin Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Dan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xingguo Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiangxing Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jing Zou
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing 100191, China
| | - Shiming Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing 100191, China
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing 100191, China
- Department of Radiology, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
18
|
Noninvasive Mapping of Angiotensin Converting Enzyme-2 in Pigeons Using Micro Positron Emission Tomography. Life (Basel) 2022; 12:life12060793. [PMID: 35743823 PMCID: PMC9224634 DOI: 10.3390/life12060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
The ACE2 receptor, as the potential entrance site of SARS-CoV-2-affected cells, plays a crucial role in spreading infection. The DX600 peptide is a competitive inhibitor of ACE2. We previously constructed the 68Ga-labeled DOTA-DX600 (also known as 68Ga-HZ20) peptide and confirmed its ACE2 binding ability both in vitro and in vivo. In this research, we aimed to investigate the noninvasive mapping of ACE2 expression in fowl using 68Ga-HZ20 micro-PET. We chose pigeons as an animal model and first studied the administration method of 68Ga-HZ20 by direct site injection or intravenous injection. Then, the dynamic micro-PET scan of 68Ga-HZ20 was conducted at 0–40 min. Additionally, 18F-FDG was used for comparison. Finally, the pigeons were sacrificed, and the main organs were collected for further immunoPET and IHC staining. Micro PET/CT imaging results showed that 68Ga-HZ20 uptake was distributed from the heart at the preliminary injection to the kidneys, liver, stomach, and lungs over time, where the highest uptake was observed in the kidneys (SUVmax = 6.95, 20 min) and lung (SUVmax = 1.11, 20 min). Immunohistochemical experiments were carried out on its main organs. Compared to the SUVmax data, the IHC results showed that ACE2 was highly expressed in both kidneys and intestines, and the optimal imaging time was determined to be 20 min after injection through correlation analysis. These results indicated that 68Ga-HZ20 is a potential target molecule for SARS-CoV-2 in fowl, which is worthy of promotion and further study.
Collapse
|
19
|
China’s radiopharmaceuticals on expressway: 2014–2021. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2021-1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This review provides an essential overview on the progress of rapidly-developing China’s radiopharmaceuticals in recent years (2014–2021). Our discussion reflects on efforts to develop potential, preclinical, and in-clinical radiopharmaceuticals including the following areas: (1) brain imaging agents, (2) cardiovascular imaging agents, (3) infection and inflammation imaging agents, (4) tumor radiopharmaceuticals, and (5) boron delivery agents (a class of radiopharmaceutical prodrug) for neutron capture therapy. Especially, the progress in basic research, including new radiolabeling methodology, is highlighted from a standpoint of radiopharmaceutical chemistry. Meanwhile, we briefly reflect on the recent major events related to radiopharmaceuticals along with the distribution of major R&D forces (universities, institutions, facilities, and companies), clinical study status, and national regulatory supports. We conclude with a brief commentary on remaining limitations and emerging opportunities for China’s radiopharmaceuticals.
Collapse
|
20
|
Stammes MA, Lee JH, Meijer L, Naninck T, Doyle-Meyers LA, White AG, Borish HJ, Hartman AL, Alvarez X, Ganatra S, Kaushal D, Bohm RP, le Grand R, Scanga CA, Langermans JAM, Bontrop RE, Finch CL, Flynn JL, Calcagno C, Crozier I, Kuhn JH. Medical imaging of pulmonary disease in SARS-CoV-2-exposed non-human primates. Trends Mol Med 2022; 28:123-142. [PMID: 34955425 PMCID: PMC8648672 DOI: 10.1016/j.molmed.2021.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Chest X-ray (CXR), computed tomography (CT), and positron emission tomography-computed tomography (PET-CT) are noninvasive imaging techniques widely used in human and veterinary pulmonary research and medicine. These techniques have recently been applied in studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-exposed non-human primates (NHPs) to complement virological assessments with meaningful translational readouts of lung disease. Our review of the literature indicates that medical imaging of SARS-CoV-2-exposed NHPs enables high-resolution qualitative and quantitative characterization of disease otherwise clinically invisible and potentially provides user-independent and unbiased evaluation of medical countermeasures (MCMs). However, we also found high variability in image acquisition and analysis protocols among studies. These findings uncover an urgent need to improve standardization and ensure direct comparability across studies.
Collapse
Affiliation(s)
- Marieke A Stammes
- Biomedical Primate Research Centre (BPRC), 2288 GJ, Rijswijk, The Netherlands.
| | - Ji Hyun Lee
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA
| | - Lisette Meijer
- Biomedical Primate Research Centre (BPRC), 2288 GJ, Rijswijk, The Netherlands
| | - Thibaut Naninck
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Lara A Doyle-Meyers
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - H Jacob Borish
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Amy L Hartman
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pitt Public Health, Pittsburgh, PA 15261, USA
| | - Xavier Alvarez
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | | | - Deepak Kaushal
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Rudolf P Bohm
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Roger le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jan A M Langermans
- Biomedical Primate Research Centre (BPRC), 2288 GJ, Rijswijk, The Netherlands; Department Population Health Sciences, Division of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Ronald E Bontrop
- Biomedical Primate Research Centre (BPRC), 2288 GJ, Rijswijk, The Netherlands; Department of Biology, Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Courtney L Finch
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Claudia Calcagno
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA
| | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
21
|
Zanganeh S, Goodarzi N, Doroudian M, Movahed E. Potential COVID-19 therapeutic approaches targeting angiotensin-converting enzyme 2; An updated review. Rev Med Virol 2021; 32:e2321. [PMID: 34958163 DOI: 10.1002/rmv.2321] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
COVID-19 has spread swiftly throughout the world posing a global health emergency. The significant numbers of deaths attributed to this pandemic have researchers battling to understand this new, dangerous virus. Researchers are looking to find possible treatment regimens and develop effective therapies. This study aims to provide an overview of published scientific information on potential treatments, emphasizing angiotensin-converting enzyme II (ACE2) inhibitors as one of the most important drug targets. SARS-CoV-2 receptor-binding domain (RBD); as a viral attachment or entry inhibitor against SARS-CoV-2, human recombinant soluble ACE2; as a genetically modified soluble form of ACE2 to compete with membrane-bound ACE2, and microRNAs (miRNAs); as a negative regulator of the expression of ACE2/TMPRSS2 to inhibit SARS-CoV2 entry into cells, are the potential therapeutic approaches discussed thoroughly in this article. This review provides the groundwork for the ongoing development of therapeutic agents and effective treatments against SARS-COV-2.
Collapse
Affiliation(s)
- Saba Zanganeh
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nima Goodarzi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, New Year, USA
| |
Collapse
|
22
|
Current status and future perspective of radiopharmaceuticals in China. Eur J Nucl Med Mol Imaging 2021; 49:2514-2530. [PMID: 34767047 PMCID: PMC8586637 DOI: 10.1007/s00259-021-05615-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022]
Abstract
Radiopharmaceuticals are essential components of nuclear medicine and serve as one of the cornerstones of molecular imaging and precision medicine. They provide new means and approaches for early diagnosis and treatment of diseases. After decades of development and hard efforts, a relatively matured radiopharmaceutical production and management system has been established in China with high-quality facilities. This review provides an overview of the current status of radiopharmaceuticals on production and distribution, clinical application, and regulatory supervision and also describes some important advances in research and development and clinical translation of radiopharmaceuticals in the past 10 years. Moreover, some prospects of research and development of radiopharmaceuticals in the near future are discussed.
Collapse
|