1
|
Lu Y, Sun Y, Wang L, Zhang Y, Wang S. Efficiently Electrocatalytic Overall Water Splitting over Ni 0.85Se-Ni Foam Electrode Modified with Nanoneedle-Like Ni 3Fe Alloy. Chemistry 2025; 31:e202500632. [PMID: 40200391 DOI: 10.1002/chem.202500632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/10/2025]
Abstract
Electrocatalytic splitting of H2O into H2 and O2 is one of the potential ways to develop clean and storable energy. In this study, the self-supported Ni0.85Se-Ni foam (Ni0.85Se-NF) hybrid electrode was modified with Ni3Fe (Ni3Fe/Ni0.85Se-NF) via a facile selenization and electrochemical deposition method. The Ni3Fe/Ni0.85Se-NF hybrid electrode exhibited excellent performance of electrocatalytic overall water splitting in an alkaline solution (1 m KOH, pH = 13.9), which is much more active than the individual Ni0.85Se-NF and Ni3Fe/NF. In particular, the Ni3Fe/Ni0.85Se-NF hybrid electrode generated 10 mA cm-2 cathodic current at an overpotential of 81 mV, and 10 mA cm-2 anodic current at an overpotential of 209 mV in KOH solution (1 m, pH = 13.9), respectively. In addition, only 1.68 V potential was required to generate 12 mA cm-2 current in a two-electrode system for overall water splitting in an alkaline aqueous solution using the Ni3Fe/Ni0.85Se-NF working as the anode and cathode, respectively. The TEM images and Raman spectra results indicated that the microstructure reconstruction happened on the surface of the Ni3Fe/Ni0.85Se-NF electrode after the HER or OER test. Some Ni and Fe species were found to convert to the NixFe1-xOOH during water electrocatalysis.
Collapse
Affiliation(s)
- Yang Lu
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloys, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, China
| | - Yanyan Sun
- Key Laboratory of Materials Physics Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Liuen Wang
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloys, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, China
| | - Yingjiu Zhang
- Key Laboratory of Materials Physics Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Shuying Wang
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloys, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, China
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
2
|
Tu M, Zhu Z, He Y, Mathi S, Deng J, Naushad M, Huang Y, Wen Hu Y, Balogun MS. Layered-Hierarchical Dual-Lattice Strain Suppresses Ni xSe Surface Reconstruction for Stable OER in Alkaline Fresh/Seawater Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500687. [PMID: 40079069 DOI: 10.1002/smll.202500687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Transition metal selenides (TMSe) are promising oxygen evolution reaction (OER) electrocatalysts but act as precursors rather than the actual active phase, transforming into amorphous oxyhydroxides during OER. This transformation, along with the formation of selenium oxyanions and unstable heterointerfaces, complicates the structure-activity relationship and reduces stability. This work introduces novel "layered-hierarchical dual lattice strain engineering" to inhibit the surface reconstruction of NixSe by modulating both the nickel foam (NF) substrate with Mo2N nanosheets (NM) and the NixSe nanorods-nanosheets catalytic layer (NiSe-Ni0.85Se-NiO, NSN) with ultrafast interfacial bimetallic amorphous NiFeOOH coating, achieving the optimized NM/NSN/NiFeOOH configuration. The NM substrate induces lattice strain, enhancing OER activity by improving electron transport and adhesion, while the NiFeOOH coating induces additional lattice strain, mitigating the surface reconstruction and oxidative degradation, reinforcing structural integrity. The NM/NSN/NiFeOOH catalyst demonstrates exceptional OER performance with low overpotentials of 208 mV@10 mA cm-2 and outstanding stability over 100 h at 100 mA cm-2 in alkaline freshwater and seawater. Theoretical analysis shows that NiFeOOH effectively prevents surface reconstruction and oxidative degradation by preserving Ni sites for optimal OER intermediate interactions while stabilizing the electronic environment. This work provides a novel strategy for enhancing the OER stability of TMSe and beyond.
Collapse
Affiliation(s)
- Meilian Tu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Zhixiao Zhu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Yanxiang He
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Selvam Mathi
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Jianqiu Deng
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yongchao Huang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Yu Wen Hu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - M-Sadeeq Balogun
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
- Guangxi Academy of Sciences, Nanning, Guangxi, 530007, P. R. China
| |
Collapse
|
3
|
Zhong L, Wang N, Sun L, Xie X, He L, Xiang M, Hu W. Sustainable oxygen evolution catalysis: Water-based fabrication of FeNi-MIL-100 on recycled stainless steel substrates. J Colloid Interface Sci 2025; 683:489-498. [PMID: 39700558 DOI: 10.1016/j.jcis.2024.12.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
The anodic oxygen evolution reaction (OER) process is essential in new technologies such as water electrolysis and metal-air batteries. However, it often exhibits suboptimal efficiency and delayed kinetics. This study presents a novel and new design for the fabrication of homogeneous FeNiBTC/SSM (SSM = stainless steel material) with tunable crystalline properties by a self-sacrificial and in situ synthesis from a recycled stainless steel substrate. The modified stainless steel template enhances the material's properties compared to the original mesh substrate and its structure can be attributed to the typical MIL-100 (Material of Institute Lavoisier) structure, which is a hierarchically structured, highly chemically stable material formed by FeO6 octahedral clusters around a single shared oxygen anion. The as-synthesized FeNiBTC/SSM4 catalyst exhibited excellent electrocatalytic performance for OER, as indicated by its small Tafel slope (74.5 mV dec-1), low overpotential (η10 223.7 mV), and high current retention (95.4 %) after a stability test lasting 45 h. The study demonstrates the development of water-based and self-sustaining MOF electrocatalysts for the oxygen evolution reaction in a simple process, along with a novel method for reusing renewable resources.
Collapse
Affiliation(s)
- Li Zhong
- School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, China
| | - Ni Wang
- School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, China
| | - Liangkui Sun
- School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, China.
| | - Xingchen Xie
- School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, China
| | - Lixiang He
- School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, China
| | - Mingliang Xiang
- School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, China
| | - Wencheng Hu
- School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, China.
| |
Collapse
|
4
|
Cheng J, Nie J, Li X, Huang J, Zhang Z, Feng Z, Zhang G, Wu R, Shen S, Wei G, Zhang J. Phosphorus and Cobalt Codoped Transition-Metal Oxides with Accelerated Surface Reconstruction for Efficient Alkaline Oxygen Evolution Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6872-6881. [PMID: 40036730 DOI: 10.1021/acs.langmuir.4c05122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Developing highly efficient nonprecious metal catalysts for oxygen evolution reactions (OERs) is crucial for the development of water electrolysis; however, these catalysts face challenges such as high overpotential and insufficient durability at high current densities. In this study, we successfully prepared ordered needlelike structured Co-Fe hydroxide with F-ion immersion (Fe/Co(OH)F) on the surface of nickel foam and explored the synergistic strengthening effects of Mo cation doping and P anion doping. The ordered needlelike structure of Fe/Co(OH)F was destroyed during the phosphating calcination process, while Mo doping transformed it into a rough surface platelike structure. By combining Mo doping with phosphating treatment, the obtained Fe/F-MoCo-POx catalyst presented a crystalline-amorphous heterostructure and platelike morphology with enhanced OER performance. At a high current density of 200 mA cm-2, the Fe/F-MoCo-POx catalyst exhibited an overpotential of 300 mV without i-R compensation and maintained a potential decay rate of only 0.16 mV h-1 after a 560 h durability test. Electrochemical testing combined with phase structure and composition analysis revealed that P doping induced the formation of an amorphous surface layer of hypophosphite Fe(PO3)3, which was found to undergo anion exchange with *OH during electrochemical testing. This surface reconstruction thus formed a rich -OH catalytic layer on the surface of Fe/F-MoCo-POx, which then exhibited a remarkably lowered overpotential and boosted OER kinetics, surpassing most state-of-the-art OER electrocatalysts. This finding underscores the synergistic effect of Mo and P doping in forming a crystalline-amorphous heterostructure, which boosts alkaline OER performance, aiding in cost reduction and improvement of the hydrogen production efficiency through water electrolysis at high current densities.
Collapse
Affiliation(s)
- Junfang Cheng
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junyu Nie
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Li
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiawei Huang
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zuyu Zhang
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziye Feng
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guozhu Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Wu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanghua Wei
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Wang K, Xu Y, Daneshvariesfahlan V, Rafique M, Fu Q, Wei H, Zhang Y, Zhang J, Zhang B, Song B. Insight into the structural reconstruction of alkaline water oxidation electrocatalysts. NANOSCALE 2025; 17:6287-6307. [PMID: 39957262 DOI: 10.1039/d4nr05426a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The oxygen-evolution reaction (OER) is an indispensable component of various energy storage and conversion electrocatalytic systems. However, the slow reaction kinetics have forced the development of advanced, efficient, and inexpensive OER electrocatalysts to break through the bottleneck of its application. Recently, the structural reconstruction of precatalysts has provided a promising avenue to boost the catalytic activity of electrocatalysts. Structural reconstruction implies atomic rearrangement and composition change of the pristine catalytic materials, which is a very complex process. Therefore, it is very crucial to have a deep understanding of the reconstruction chemical process and then modulate the reconstruction by deliberate design of electrochemical conditions and precatalysts. However, a systematic review of the structural reconstruction process, research methods, influencing factors and structure-performance relationship remains elusive, significantly impeding the further developments of efficient electrocatalysts based on structural reconstruction chemistry. This critical review is dedicated to providing a deep insight into the structural reconstruction during alkaline water oxidation, comprehensively summarizing the basic research methods to understand the structural evolution process and various factors affecting the structural reconstruction process, and providing a reference and basis for regulating the dynamic reconstruction. Moreover, the impact of reconstruction on the structure and performance is also covered. Finally, challenges and perspectives for the future study on structural reconstruction are discussed. This review will offer future guidelines for the rational development of state-of-the-art OER electrocatalysts.
Collapse
Affiliation(s)
- Kaixi Wang
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China
| | - Yifei Xu
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
| | | | - Moniba Rafique
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China.
| | - Qiang Fu
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Wei
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot, 010021, China
| | - Yumin Zhang
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiheng Zhang
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China
| | - Bing Zhang
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China
| | - Bo Song
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China.
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences; Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
6
|
Du Y, Lu H, Wu J, Zou Y, Huang ZF, Zou JJ, Mu T, Gao J, Zhu XD, Zhang YC. Selenium-Deficient FeSe 2/Fe 3O 4 Electrocatalyst for Nitrate Reduction to Ammonia. Angew Chem Int Ed Engl 2025; 64:e202420903. [PMID: 39718508 DOI: 10.1002/anie.202420903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 12/25/2024]
Abstract
Electrocatalytic reduction of NO3 - is a green and sustainable method that not only helps to treat industrial pollutants in wastewater, but also produces valuable chemicals. However, the slow dynamics of the proton-coupled electron transfer process results in a high barrier and low conversion efficiency. In this work, the Se-deficient FeSe2/Fe3O4 heterojunction was synthesized, which showed excellent electrochemical performance in 0.1 M nitrate reduction reaction, superior to most currently reported catalysts. The high activity of Se-deficient FeSe2/Fe3O4 is due to the synergistic effect between FeSe2 and Fe3O4 to achieve relay catalytic NO3 - reduction. Among them, the Se-deficient FeSe2 contributes to NO3 - deoxygenation and subsequent hydrogenation, and Fe3O4 promotes H2O decomposition to provide H proton, jointly promote NO3RR. Finally, the online differential electrochemical mass spectra (DEMS), in situ Raman and DFT calculation confirmed the optimal pathway for NO3RR to NH3 on Se-deficient FeSe2/Fe3O4(100). This strategy of relay catalysis provides a potential way to treat wastewater with high concentration nitrate.
Collapse
Affiliation(s)
- Yue Du
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Haijiao Lu
- Nanomaterials Centre, School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Jinting Wu
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yalong Zou
- Nanomaterials Centre, School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Zhen-Feng Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tiansheng Mu
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Jian Gao
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiao-Dong Zhu
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yong-Chao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| |
Collapse
|
7
|
Mehravaran M, Asadpour-Zeynali K. Bifunctional electrocatalytic performance of MgAlCe-LDH/β-Ni(OH) 2/Ni foam in total natural seawater splitting. Heliyon 2025; 11:e42072. [PMID: 39911445 PMCID: PMC11795069 DOI: 10.1016/j.heliyon.2025.e42072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
Electrocatalytic seawater splitting is a potential solution to environmental problems, as seawater is a plentiful supply of hydrogen sources in nature. Hence, the development of bifunctional electrodes exhibiting outstanding performance in both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) is essential for the efficacy of total seawater splitting. Herein, we employed a straightforward method for in situ creation of β-Ni(OH)2 on Ni foam, followed by a hydrothermal approach to manufacture MgAlCe-LDH on β-Ni(OH)2/Ni foam. The linear sweep voltammetry (LSV) experiments demonstrate that the MgAlCe-LDH/β-Ni(OH)2/Ni foam exhibits superior performance for both the OER and the HER in a natural seawater electrolyte compared to the MgAlCe-LDH/Ni foam, β-Ni(OH)2/Ni foam, and Ni foam. Consequently, the MgAlCe-LDH/β-Ni(OH)2/Ni foam requires an 80 mV overpotential for OER and 337 mV for HER to attain a current density of 10 mA cm-2. The enhanced electrocatalytic activity of MgAlCe-LDH/β-Ni(OH)2/Ni foam can be attributed to boosting exposed active sites, improving electronic interaction, and increasing charge transfer capacity resulting from the synthesis of MgAlCe-LDH on β-Ni(OH)2/Ni foam. Implementing a two-electrode configuration for the MgAlCe-LDH/β-Ni(OH)2/Ni foam, the total seawater splitting investigation exhibits 1.42 V cell voltage at a current density of 10 mA cm-2 and 25 h long-term stability.
Collapse
Affiliation(s)
- Mahsa Mehravaran
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Karim Asadpour-Zeynali
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran
| |
Collapse
|
8
|
Bai Y, Liu Z, Wang X, Zhang Z, Liu K, Gao C. Tailoring Ni-Fe-B Electronic Effects in Layered Double Hydroxides for Enhanced Oxygen Evolution Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407564. [PMID: 39350443 DOI: 10.1002/smll.202407564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Indexed: 12/13/2024]
Abstract
NiFe layered double hydroxides (LDHs) are state-of-the-art catalysts for the oxygen evolution reaction (OER) in alkaline media, yet they still face significant overpotentials. Here, quantitative boron (B) doping is introduced in NiFe LDHs (ranging from 0% to 20.3%) to effectively tailor the Ni-Fe-B electronic interactions for enhanced OER performance. The co-hydrolysis synthesis approach synchronizes the hydrolysis rates of Ni and Fe precursors with the formation rate of B─O─M (M: Ni, Fe) bonds, ensuring precise B doping into the NiFe LDHs. It is demonstrated that B, as an electron-deficient element, acts as an "electron sink" at doping levels from 0% to 13.5%, facilitating the transition of Ni2+ to the active Ni3+δ, thereby accelerating OER kinetics. However, excessive B doping (13.5-20.3%) effectively generates oxygen vacancies in the LDHs, which increases electron density at Ni2+ sites and hinders their transition to Ni3+δ, thereby reducing OER activity. Optimal OER performance is achieved at a B doping level of 13.5%, with an overpotential of only 208 mV to reach a current density of 500 mA cm-2, placing it among the most effective OER catalysts to date. This Ni-Fe-B electronic engineering opens new avenues for developing highly efficient anode catalysts for water-splitting hydrogen production.
Collapse
Affiliation(s)
- Yuke Bai
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaojun Liu
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoxiao Wang
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhixue Zhang
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kai Liu
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chuanbo Gao
- State Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
9
|
Ngo QP, Prabhakaran S, Kim DH, Kim BS. Rational Design of Ultrahigh-Loading Ir Single Atoms on Reconstructed Mn─NiOOH for Enhanced Catalytic Performance in Urea-Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406786. [PMID: 39467020 DOI: 10.1002/smll.202406786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Indexed: 10/30/2024]
Abstract
Investigating advanced electrocatalysts is crucial for improving the efficacy of water splitting to generate environmentally friendly fuel. The discovery of highly effective electrocatalysts, capable of driving oxygen evolution reaction (OER) and urea oxidation reaction (UOR) in urea-alkaline environments, is pivotal for advancing large-scale hydrogen production. This study aims to introduce a new method that involves creating nanosheets of high-loading iridium single atoms embedded in a manganese-containing nickel oxyhydroxide matrix (Ir@Mn─NiOOH). These nanostructures are derived from self-supported hydrate pre-catalyst nanosheets grown on nickel foam and then activated through electrochemical etching pretreatment. The Ir@Mn─NiOOH nanoarchitecture displays outstanding electrocatalytic activity, having a low overpotential of just 258 mV and a potential of 1.319 V (at 10 mA cm-2) for OER and UOR, respectively. Such extraordinary catalytic characteristics of Ir@Mn─NiOOH is mainly owing to the strong synthetic electronic interaction between Ir single atoms and Mn─NiOOH, which can change its electronic characteristics and boost electrochemical catalytic sites. This research presents a new way to produce exceptionally efficient catalysts by adding a synergistic effect to complex multi-electron processes.
Collapse
Affiliation(s)
- Quynh Phuong Ngo
- Department of Organic Materials and Textile Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Sampath Prabhakaran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Do Hwan Kim
- Division of Science Education, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Byoung-Suhk Kim
- Department of Organic Materials and Textile Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
10
|
Huang Y, Wang Z, Xiao H, Liu Q, Wang X. Activating and Stabilizing Lattice Oxygen via Self-Adaptive Zn-NiOOH Sub-Nanowires for Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:29006-29016. [PMID: 39382096 DOI: 10.1021/jacs.4c09931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Efficient and durable catalysts for the oxygen evolution reaction are essential for realizing the large-scale application of water electrolysis technologies. Here, we report a novel Zn-doped NiOOH subnanowires (Zn-NiOOH SNWs) catalyst synthesized via the electrochemical reconstruction of Zn-NiMoO4 SNWs. The inclusion of Zn triggers a transition in the oxygen evolution reaction mechanism of NiOOH from the adsorbate evolution mechanism to the lattice oxygen mechanism, resulted from Zn's adaptive adjustment of coordination types, which also improves the reaction energetics, thereby enhancing the stability and activity. Furthermore, the subnanowire structure provides further stabilization of the lattice oxygen in Zn-NiOOH, preventing its destructive dissolution. Remarkably, Zn-NiOOH SNWs display a current density of 10 mA cm-2 with an overpotential of only 179 mV and maintain stable operation at 200 mA cm-2 for 800 h with minimal changes in overpotential, establishing them as one of the most effective catalysts involving lattice oxygen for the alkaline oxygen evolution reaction. When utilized as the anode in an alkaline water electrolyzer, our Zn-NiOOH SNWs catalyst demonstrates stability exceeding 500 h under a water-splitting current of 200 mA cm-2, indicating promising potential for practical applications.
Collapse
Affiliation(s)
- Yuan Huang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zeyu Wang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Hai Xiao
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Peng X, Yuan Y, Gu D, Zheng X, Li D, Wu L, Huang G, Wang J, Pan F. Unlocking the Power of Magnesium Batteries: Synergistic Effect of InSb-C Composites to Achieve Superior Electrochemical Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400967. [PMID: 38751056 DOI: 10.1002/smll.202400967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/27/2024] [Indexed: 10/04/2024]
Abstract
Pure magnesium anode used in rechargeable magnesium batteries (RMB) exhibits high theoretical capacity but has been challenged by the passivation issue with conventional electrolytes. Alloy-type anodes have the potential to surpass this issue and have attracted increasing attention. However, the kinetic performance and stabilities of conventional alloy anodes are still constrained. In this study, the InSb-10%C anode is synthesized by a two-step high-energy ball milling process. The InSb-10%C anode exhibits a remarkably high capacity of up to 448 mA h g-1, significantly improved cycle performance (234 mA h g-1 at 100 cycles) and rate performance (168 mA h g-1 at 500 mA g-1). The above-mentioned superior performance of the InSb-10%C anode for RMBs is attributed to the cellular graphitized amorphous carbon composite structure (CGA) which effectively refines the particle size and restricts the volume expansion. Additionally, the reduced surface electron density of InSb combined with the high conductivity resulting from graphitization enhances the Mg2+ diffusion performance. Notably, the InSb-10%C anode demonstrates good compatibility with conventional halogen-free salt ether-based electrolytes in the full battery configuration.
Collapse
Affiliation(s)
- Xianhao Peng
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China
| | - Yuan Yuan
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China
| | - Dachong Gu
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China
| | - Xingwang Zheng
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China
| | - Dajian Li
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China
| | - Liang Wu
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China
| | - Guangsheng Huang
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China
| | - Jingfeng Wang
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China
| | - Fusheng Pan
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China
| |
Collapse
|
12
|
Xu HM, Huang CJ, Zhu HR, Zhang ZJ, Shuai TY, Zhan QN, Fominski VY, Li GR. Amorphous P-CoO X Promotes the Formation of Hypervalent Ni Species in NiFe LDHs by Amorphous/Crystalline Interfaces for Excellent Catalytic Performance of Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400201. [PMID: 39031757 DOI: 10.1002/smll.202400201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/23/2024] [Indexed: 07/22/2024]
Abstract
Water electrolysis has become an attractive hydrogen production method. Oxygen evolution reaction (OER) is a bottleneck of water splitting as its four-electron transfer procedure presents sluggish reaction kinetics. Designing composite catalysts with high performance for efficient OER still remains a huge challenge. Here, the P-doped cobalt oxide/NiFe layered double hydroxides (P-CoOX/NiFe LDHs) composite catalysts with amorphous/crystalline interfaces are successfully prepared for OER by hydrothermal-electrodeposition combined method. The results of electrochemical characterizations, operando Raman spectra, and DFT theoretical calculations have demonstrated the electrons in the P-CoOX/NiFe LDHs heterointerfaces are easily transferred from Ni2+ to Co3+ because that the amorphous configuration of P-CoOX can well induce Ni-O-Co orbital coupling. The electron transfer of Ni2+ to the surrounding Fe3+ and Co3+ will lead to the unoccupied eg orbitals of Ni3+ that can promote water dissociation and accelerate *OOH migration to improve OER catalytic performance. The optimized P-CoOX/NiFe LDHs exhibit superior catalytic performance for OER with a very low overpotential of 265 mV at 300 mA cm-2 and excellent long-term stability of 500 h with almost no attenuation at 100 mA cm-2. This work will provide a new method to design high-performance NiFe LDHs-based catalysts for OER.
Collapse
Affiliation(s)
- Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hong-Rui Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Vyacheslav Yu Fominski
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow, 115409, Russia
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
13
|
Zheng Y, Cui Y, Ruan Q, Zhao Y, Hou H, Zhou Y, Ling C, Wang J, Chen Z, Guo X. Heavily Doped Carbon Nitride Nanocrystal Promotes Visible-Near-Infrared Photosynthesis of Hydrogen Peroxide with Near-Unit Photon Utilization. ACS NANO 2024; 18:14583-14594. [PMID: 38722840 DOI: 10.1021/acsnano.4c02387] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Direct photosynthesis of hydrogen peroxide (H2O2) from water and oxygen represents an intriguing alternative to the current indirect process involving the reduction and oxidation of quinones. However, limited light utilization and sluggish charge transfer largely impede overall photocatalytic efficiency. Herein, we present a heavily doped carbon nitride (CNKLi) nanocrystal for efficient and selective photoproduction of H2O2 via a two-electron oxygen reduction reaction (ORR) pathway. CNKLi induces metal-to-ligand charge transfer (MLCT) and electron trapping, which broadens the light absorption to the visible-near-infrared (vis-NIR) spectrum and prolongs the photoelectron lifetime to the microsecond time scale with an exceptional charge diffusion length of ∼1200 nm. Near-unit photoutilization with an apparent quantum yield (AQY) of 100% for H2O2 generation is achieved below 420 nm. Impressively, CNKLi exhibits an appreciable AQY of 16% at 700 nm, which reaches the absorption capacity (∼16%), thus suggesting a near-unit photon utilization <700 nm. In situ characterization and theoretical calculations reveal the facilitated charge transfer from K+ to the heptazine ring skeleton. These findings provide an approach to improve the photosynthetic efficiency of direct H2O2 preparation in the vis-NIR region and expand applications for driving kinetically slow and technologically desirable oxidations or high-value chemical generation.
Collapse
Affiliation(s)
- Yanmei Zheng
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Cui
- School of Physics, Southeast University, Nanjing 211189, China
| | - Qiushi Ruan
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Yuhong Zhao
- Collaborative Innovation Center of Ministry of Education and Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Hua Hou
- School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yong Zhou
- School of Physics, Nanjing University, Nanjing 210046, China
| | - Chongyi Ling
- School of Physics, Southeast University, Nanjing 211189, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Zupeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinli Guo
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
14
|
Wang K, Liu X, Yu Q, Wang X, Zhu J, Li Y, Chi J, Lin H, Wang L. Mn Doping and P Vacancy Induced Fast Phase Reconstruction of FeP for Enhanced Electrocatalytic Oxygen Evolution Reaction in Alkaline Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308613. [PMID: 38072783 DOI: 10.1002/smll.202308613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/28/2023] [Indexed: 05/18/2024]
Abstract
Due to the shortage of pure water resources, seawater electrolysis is a promising strategy to produce green hydrogen energy. To avoid chlorine oxidation reactions (ClOR) and the production of more corrosive hypochlorite, enhancing OER electrocatalyst activity is the key to solving the above problem. Considering that transition metal phosphides (TMPs) are promising OER eletrocatalysts for seawater splitting, a method to regulate the electronic structure of FeP by introducing Mn heteroatoms and phosphorus vacancy on it (Mn-FePV) is developed. As an OER electrocatalyst in seawater solution, the synthesized Mn-FePV achieves extremely low overpotentials (η500 = 376, η1000 = 395 mV). In addition, the Pt/C||Mn-FePV couple only requires the voltage of 1.81 V to drive the current density of 1000 mA cm-2 for overall seawater splitting. The density functional theory (DFT) calculation shows that Mn-FePV (0.21 e-) has more charge transfer number compared with FeP (0.17 e-). In-situ Raman analysis shows that phosphorus vacancy and Mn doping can synergistically regulate the electronic structure of FeP to induce rapid phase reconstruction, further improving the OER performance of Mn-FePV. The new phase species of FeOOH is confirmed to can enhance the adsorption kinetics of OER intermediates.
Collapse
Affiliation(s)
- Ketao Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiaobin Liu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qingping Yu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xuanyi Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jiawei Zhu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yanyan Li
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jingqi Chi
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Haifeng Lin
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
15
|
Feng J, Chu C, Liu J, Wei L, Li H, Shen J. NiFe codoping-regulated amorphous/crystalline heterostructured Co-based hydroxides/tungstate with rich oxygen vacancies for efficient water oxidation catalysis. J Colloid Interface Sci 2024; 659:330-338. [PMID: 38176242 DOI: 10.1016/j.jcis.2023.12.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Oxygen evolution reaction (OER) is a crucial half-reaction in water splitting, generating hydrogen for sustainable development, but it is often subject to sluggish kinetics. Abundant transition metal-based OER electrocatalysts have been utilized to expedite the process. However, traditional amorphous catalysts suffer from low conductivity, while the activity of crystalline catalysts is also unsatisfactory. Herein, an amorphous/crystalline heterostructured Co-based hydroxide/tungstate was meticulously constructed and further tailored using a NiFe codoping method (NiFeCoW). Following NiFe codoping, the electronic structure had been modulated, subsequently altering the adsorption toward intermediates. From the electrochemical measurements, the NiFeCoW catalyst demonstrated superior electrocatalytic activity for OER in alkaline media, with a minimal overpotential of 297 mV at 10 mA cm-2 and a cell voltage of 1.57 V for water splitting. This study provides valuable guidance for regulating the amorphous/crystalline heterophase in catalysts through bimetallic modulating engineering.
Collapse
Affiliation(s)
- Jiejie Feng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changshun Chu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianting Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liling Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| | - Huayi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| | - Jianquan Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| |
Collapse
|
16
|
Yin ZH, Huang Y, Song K, Li TT, Cui JY, Meng C, Zhang H, Wang JJ. Ir Single Atoms Boost Metal-Oxygen Covalency on Selenide-Derived NiOOH for Direct Intramolecular Oxygen Coupling. J Am Chem Soc 2024; 146:6846-6855. [PMID: 38424010 DOI: 10.1021/jacs.3c13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This investigation probes the intricate interplay of catalyst dynamics and reaction pathways during the oxygen evolution reaction (OER), highlighting the significance of atomic-level and local ligand structure insights in crafting highly active electrocatalysts. Leveraging a tailored ion exchange reaction followed by electrochemical dynamic reconstruction, we engineered a novel catalytic structure featuring single Ir atoms anchored to NiOOH (Ir1@NiOOH). This novel approach involved the strategic replacement of Fe with Ir, facilitating the transition of selenide precatalysts into active (oxy)hydroxides. This elemental substitution promoted an upward shift in the O 2p band and intensified the metal-oxygen covalency, thereby altering the OER mechanism toward enhanced activity. The shift from a single-metal site mechanism (SMSM) in NiOOH to a dual-metal-site mechanism (DMSM) in Ir1@NiOOH was substantiated by in situ differential electrochemical mass spectrometry (DEMS) and supported by theoretical insights. Remarkably, the Ir1@NiOOH electrode exhibited exceptional electrocatalytic performance, achieving overpotentials as low as 142 and 308 mV at current densities of 10 and 1000 mA cm-2, respectively, setting a new benchmark for the electrocatalysis of OER.
Collapse
Affiliation(s)
- Zhao-Hua Yin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuan Huang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kepeng Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Tian Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Jun-Yuan Cui
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Chao Meng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Huigang Zhang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
17
|
Khan MA, Li C, Mei S, Chishti AN, Lu F, Zhou M. Ce Hydroxide-Interfaced NiFe Sulfide Electrocatalyst with Improved Performance for the Oxygen Evolution Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:696-703. [PMID: 38103257 DOI: 10.1021/acs.langmuir.3c02913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The development of electrochemically inexpensive, durable, and active electrocatalysts for the oxygen evolution reaction (OER) is attracting considerable attention. The heterogeneous interfacing might regulate the electronic structure and further improve the electrochemical activity. Herein, a Ce(OH)3 nanoparticle-interfaced Fe-doped nickel sulfide (Ce(OH)3@Fe-Ni3S2) electrocatalyst was prepared to improve the OER performance. The fabricated electrocatalyst displayed excellent intrinsic activity and long-term stability in 1 M KOH for the OER. The catalyst shows an ultralow overpotential of 195 mV at a current density of 10 mA cm-2 and a Tafel slope of 52 mV dec-1, which are remarkably smaller than those of the control samples. This excellent electrocatalytic activity is attributed to the incorporation of Ce(OH)3 nanoparticles on the surface of the Fe-Ni3S2 nanosheet, which increases the electrochemical activity and enlarges the active surface area of the catalyst. In comparison to previous nonprecious OER electrocatalysts, the prepared Ce(OH)3@Fe-Ni3S2 exhibits greater electrocatalytic activity and longer durability, allowing for the selection of new electrocatalysts for practical applications.
Collapse
Affiliation(s)
- Muhammad Afsar Khan
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Chongzhi Li
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Shaowei Mei
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Aadil Nabi Chishti
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Fei Lu
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
- Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Min Zhou
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
- Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, People's Republic of China
| |
Collapse
|
18
|
Zhang J, Fang Y, Chen Y, Gao Y, Zhang X, Tang T, Tian B, Xiao H, Zhao M, Luo E, Hu T, Jia J, Wu H. Fe-induced crystalline-amorphous interface engineering of a NiMo-based heterostructure for enhanced water oxidation. Dalton Trans 2024; 53:619-627. [PMID: 38063673 DOI: 10.1039/d3dt02899b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Engineering heterostructures with a unique surface/interface structure is one of the effective strategies to develop highly active noble-metal-free catalysts for the oxygen evolution reaction (OER), because the surface/interface of catalysts is the main site for the OER. Herein, we design a coralloid NiMo(Fe)-20 catalyst with a crystalline-amorphous interface through combining a hydrothermal method and an Fe-induced surface reconfiguration strategy. That is, after Fe3+ impregnation treatment, the Ni(OH)2-NiMoO4 pre-catalyst with a complete crystalline surface is restructured into a trimetallic heterostructure with a crystalline-amorphous interface, which facilitates mass diffusion and charge transfer during the OER. As expected, self-supported NiMo(Fe)-20 exhibits excellent electrocatalytic water oxidation performance (overpotential: η-10 = 220 mV, η-100 = 239 mV) in the alkaline electrolyte, and its electrocatalytic performance hardly changes after maintaining the current density of 50 mA cm-2 for 10 hours. Furthermore, nickel foam (NF) supported commercial Pt/C and self-supported NiMo(Fe)-20 served as the cathode and anode of the Pt/C‖NiMo(Fe)-20 electrolyzer, respectively, which exhibits a lower cell voltage (E-100 = 1.53 V) than that of the Pt/C‖RuO2 electrolyzer (E-100 = 1.58 V) assembled with noble metal-based catalysts. The enhanced electrocatalytic performance of the NiMo(Fe)-20 catalyst is mainly attributed to the synergistic effect between the crystalline-amorphous interface and the coralloid trimetallic heterostructure.
Collapse
Affiliation(s)
- Junming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Yingjian Fang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Yao Chen
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Yang Gao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Xiaojie Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Tao Tang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Baoqiang Tian
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - He Xiao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Man Zhao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Ergui Luo
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Tianjun Hu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Haishun Wu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| |
Collapse
|
19
|
Zhang J, Fang Y, Chen Y, Zhang X, Xiao H, Zhao M, Zhao C, Ma X, Hu T, Luo E, Jia J, Wu H. In-situ fabrication of bimetallic FeCo 2O 4-FeCo 2S 4 heterostructure for high-efficient alkaline freshwater/seawater electrolysis. J Colloid Interface Sci 2024; 653:821-832. [PMID: 37769361 DOI: 10.1016/j.jcis.2023.09.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023]
Abstract
Rational construction of bifunctional electrocatalysts with long-term stability and high electrocatalytic activity is of great importance, but it is challenging to obtain highly efficient non-precious metal-based catalysts for overall seawater electrolysis. Herein, a nickel foam (NF) self-supporting CoFe-layered double hydroxide (CoFe-LDH/NF) was directly converted into FeCo2O4-FeCo2S4 heterostructure via hydrothermal method in 50 mM Na2S solution, instead of FeCo2O4@FeCo2S4 core-shell structure. The FeCo2O4-FeCo2S4 heterojunction shows nanosheets structure with rough surface (the thickness of ∼ 198.9 nm), which provides rich oxide/sulfide interfaces, high electrochemical active area, a large number of active sites, as well as fast charge and mass transfer. In 1.0 M KOH solution, 1.0 M KOH + 0.5 M NaCl, and alkaline natural seawater, the FeCo2O4-FeCo2S4 heterojunction exhibits eminently electrocatalytic performance, with overpotentials of η-100 = 225 mV, η-100 = 233 mV, and η-100 = 238 mV for OER, as well as η-100 = 271 mV, η-100 = 273 mV, and η-100 = 277 mV for HER, respectively. Furthermore, self-supporting FeCo2O4-FeCo2S4 electrode (FeCo2O4-FeCo2S4/NF) as the cathode and anode of an electrolyzer exhibits a lower cell voltage of E-100 = 1.75 V in alkaline seawater than those of FeCo2S4/NF (1.77 V), CoFe-LDH/NF (1.87 V), and FeCo2O4/NF (1.91 V). Specifically, FeCo2O4-FeCo2S4 electrolyzer can stably produce hydrogen for over 48 h in alkaline freshwater/seawater electrolyte. These outstanding electrocatalytic performances and corrosion resistance to salty-water can be attributed to the surface reconstruction behavior of the FeCo2O4-FeCo2S4/NF catalyst during OER, which leads to the in-situ formation of metal oxyhydroxides. In particular, the FeCo2O4-FeCo2S4 heterojunction is also very competitive among most state-of-the-art non-noble metal-based catalysts, whether in KOH or alkaline salty-water electrolytes.
Collapse
Affiliation(s)
- Junming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Yingjian Fang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Yao Chen
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Xiaojie Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - He Xiao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Man Zhao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Chaoyue Zhao
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiongfeng Ma
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Tianjun Hu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Ergui Luo
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Haishun Wu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| |
Collapse
|
20
|
Venkateswarlu S, Umer M, Son Y, Govindaraju S, Chellasamy G, Panda A, Park J, Umer S, Kim J, Choi SI, Yun K, Yoon M, Lee G, Kim MJ. An Amiable Design of Cobalt Single Atoms as the Active Sites for Oxygen Evolution Reaction in Desalinated Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305289. [PMID: 37649146 DOI: 10.1002/smll.202305289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Indexed: 09/01/2023]
Abstract
Green fuel from water splitting is hardcore for future generations, and the limited source of fresh water (<1%) is a bottleneck. Seawater cannot be used directly as a feedstock in current electrolyzer techniques. Until now single atom catalysts were reported by many synthetic strategies using notorious chemicals and harsh conditions. A cobalt single-atom (CoSA) intruding cobalt oxide ultrasmall nanoparticle (Co3 O4 USNP)-intercalated porous carbon (PC) (CoSA-Co3 O4 @PC) electrocatalyst was synthesized from the waste orange peel as a single feedstock (solvent/template). The extended X-ray absorption fine structure spectroscopy (EXAFS) and theoretical fitting reveal a clear picture of the coordination environment of the CoSA sites (CoSA-Co3 O4 and CoSA-N4 in PC). To impede the direct seawater corrosion and chlorine evolution the seawater has been desalinated (Dseawater) with minimal cost and the obtained PC is used as an adsorbent in this process. CoSA-Co3 O4 @PC shows high oxygen evolution reaction (OER) activity in transitional metal impurity-free (TMIF) 1 M KOH and alkaline Dseawater. CoSA-Co3 O4 @PC exhibits mass activity that is 15 times higher than the commercial RuO2 . Theoretical interpretations suggest that the optimized CoSA sites in Co3 O4 USNPs reduce the energy barrier for alkaline water dissociation and simultaneously trigger an excellent OER followed by an adsorbate evolution mechanism (AEM).
Collapse
Affiliation(s)
- Sada Venkateswarlu
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Muhammad Umer
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Younghu Son
- Department of Chemistry, Kyungpook National University (KNU), Daegu, 41566, Republic of Korea
| | - Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Atanu Panda
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Material Science, Namiki-1, Tsukuba, 3050044, Japan
| | - Juseong Park
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Sohaib Umer
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jeonghyeon Kim
- Department of Chemistry, Kyungpook National University (KNU), Daegu, 41566, Republic of Korea
| | - Sang-Il Choi
- Department of Chemistry, Kyungpook National University (KNU), Daegu, 41566, Republic of Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Minyoung Yoon
- Department of Chemistry, Kyungpook National University (KNU), Daegu, 41566, Republic of Korea
| | - Geunsik Lee
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Myung Jong Kim
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| |
Collapse
|
21
|
Huang H, Liu K, Yang F, Cai J, Wang S, Chen W, Wang Q, Fu L, Xie Z, Xie S. Breaking Surface Atomic Monogeneity of Rh 2 P Nanocatalysts by Defect-Derived Phosphorus Vacancies for Efficient Alkaline Hydrogen Oxidation. Angew Chem Int Ed Engl 2023; 62:e202315752. [PMID: 37957134 DOI: 10.1002/anie.202315752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Breaking atomic monogeneity of catalyst surfaces is promising for constructing synergistic active centers to cope with complex multi-step catalytic reactions. Here, we report a defect-derived strategy for creating surface phosphorous vacancies (P-vacancies) on nanometric Rh2 P electrocatalysts toward drastically boosted electrocatalysis for alkaline hydrogen oxidation reaction (HOR). This strategy disrupts the monogeneity and atomic regularity of the thermodynamically stable P-terminated surfaces. Density functional theory calculations initially verify that the competitive adsorption behavior of Had and OHad on perfect P-terminated Rh2 P{200} facets (p-Rh2 P) can be bypassed on defective Rh2 P{200} surfaces (d-Rh2 P). The P-vacancies enable the exposure of sub-surface Rh atoms to act as exclusive H adsorption sites. Therein, the Had cooperates with the OHad on the peripheral P-sites to effectively accelerate the alkaline HOR. Defective Rh2 P nanowires (d-Rh2 P NWs) and perfect Rh2 P nanocubes (p-Rh2 P NCs) are then elaborately synthesized to experimentally represent the d-Rh2 P and p-Rh2 P catalytic surfaces. As expected, the P-vacancy-enriched d-Rh2 P NWs catalyst exhibits extremely high catalytic activity and outstanding CO tolerance for alkaline HOR electrocatalysis, attaining 5.7 and 14.3 times mass activity that of p-Rh2 P NCs and commercial Pt/C, respectively. This work sheds light on breaking the surface atomic monogeneity for the development of efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Hongpu Huang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Kai Liu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Junlin Cai
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Shupeng Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Weizhen Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Qiuxiang Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Luhong Fu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shuifen Xie
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
22
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
23
|
Huang Y, Zhang L, Jiang LW, Liu XL, Tan T, Liu H, Wang JJ. Electronic Structure Regulation and Surface Reconstruction of Iron Diselenide for Enhanced Oxygen Evolution Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302970. [PMID: 37594726 DOI: 10.1002/smll.202302970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Regulating the electronic structure of active sites and monitoring the evolution of the active component is essential to improve the intrinsic activity of catalysts for electrochemical reactions. Herein, a highly efficient pre-electrocatalyst of iron diselenide with rich Se vacancies achieved by phosphorus doping (denoted as P-FeSe2 ) for oxygen evolution reaction (OER) is reported. Systematically experimental and theoretical results show that the formed Se vacancies with phosphorus doping can synergistically modulate the electronic structure of FeSe2 and facilitate OER kinetics with the resulting enhanced electrical conductivity and electrochemical surface area. Importantly, the in situ formed FeOOH species on the surface of the P-FeSe2 nanorods (denoted as P-FeOOH(Se)) during the OER process acts as an active component to efficiently catalyze OER and exhibits a low overpotential of 217 mV to reach 10 mA cm-2 with good durability. Promisingly, an alkaline electrolyzer assembled with P-FeOOH(Se) and Pt/C electrodes requires an ultra-low cell voltage of 1.50 V at 10 mA cm-2 for overall water splitting, which is superior to the RuO2 || Pt/C counterpart and most of the state-of-the-art electrolyzers, demonstrating the high potential of the fabricated electrocatalyst by P doping strategy to explore more highly efficient selenide-based catalysts for various reactions.
Collapse
Affiliation(s)
- Yuan Huang
- State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057, China
| | - Li Zhang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Wen Jiang
- State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057, China
| | - Xiao-Long Liu
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Tan
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, Shandong, 250022, China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
24
|
Yu H, Ke J, Shao Q. Two Dimensional Ir-Based Catalysts for Acidic OER. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304307. [PMID: 37534380 DOI: 10.1002/smll.202304307] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Electrochemical water splitting in acidic media is one of the most promising hydrogen production technologies, yet its practical applications in proton exchange membrane (PEM) water electrolyzers are limited by the anodic oxygen evolution reaction (OER). Iridium (Ir)-based materials are considered as the state-of-the-art catalysts for acidic OER due to their good stability under harsh acidic conditions. However, their activities still have much room for improvement. Two-dimensional (2D) materials are full of the advantages of high-surface area, unique electrical properties, facile surface modification, and good stability, making the development of 2D Ir-based catalysts more attractive for achieving high catalytic performance. In this review, first, the unique advantages of 2D catalysts for electrocatalysis are reviewed. Thereafter, the classification, synthesis methods, and recent OER achievements of 2D Ir-based materials, including pure metals, alloys, oxides, and perovskites are introduced. Finally, the prospects and challenges of developing 2D Ir-based catalysts for future acidic OER are discussed.
Collapse
Affiliation(s)
- Hao Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Jia Ke
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
25
|
Zhao J, Xiao D, Wan Q, Wei X, Tao G, Liu Y, Xiang Y, Davey K, Liu Z, Guo Z, Song Y. Molybdenum Atom Engineered Vanadium Disulfide for Boosted High-Capacity Li-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301738. [PMID: 37140103 DOI: 10.1002/smll.202301738] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/12/2023] [Indexed: 05/05/2023]
Abstract
A drawback with lithium-ion batteries (LIBs) lies in the unstable lithium storage which results in poor electrochemical performance. Therefore, it's of importance to improve the electrochemical functionality and Li-ion transport kinetics of electrode materials for high-performance lithium storage. Here, a subtle atom engineering via injecting molybdenum (Mo) atoms into vanadium disulfide (VS2 ) to boost high capacity Li-ion storage is reported. By combining operando, ex situ monitoring and theoretical simulation, it is confirmed that the 5.0%Mo atoms impart flower-like VS2 with expanded interplanar spacing, lowered Li-ion diffusion energy barrier, and increased Li-ion adsorption property, together with enhanced e- conductivity, to boost Li-ion migration. A "speculatively" optimized 5.0% Mo-VS2 cathode that exhibits a specific capacity of 260.8 mA h g-1 at 1.0 A g-1 together with a low decay of 0.009% per cycle over 500 cycles is demonstrated. It is shown that this value is ≈1.5 times compared with that for bare VS2 cathode. This investigation has substantiated the Mo atom doping can effectively guide the Li-ion storage and open new frontiers for exploiting high-performance transition metal dichalcogenides for LIBs.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Dongdong Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qi Wan
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Xijun Wei
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Gang Tao
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Yu Liu
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Yuefei Xiang
- Key Laboratory of LCR Materials and Devices, Yunnan University, Kunming, Yunnan, 650091, China
| | - Kenneth Davey
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Zhiwei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zaiping Guo
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Yingze Song
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| |
Collapse
|
26
|
Jiao H, Wang C, Zhang ZY, Song YF, Feng BQ, Na P, Wang ZL. Ultrafine NiFe-Based (Oxy)Hydroxide Nanosheet Arrays with Rich Edge Planes and Superhydrophilic-Superaerophobic Characteristics for Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301609. [PMID: 37116125 DOI: 10.1002/smll.202301609] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
NiFe-based (oxy)hydroxides are the benchmark catalysts for the oxygen evolution reaction (OER) in alkaline medium, however, it is still challenging to control their structures and compositions. Herein, molybdates (NiFe(MoO4 )x ) are applied as unique precursors to synthesize ultrafine Mo modified NiFeOx Hy (oxy)hydroxide nanosheet arrays. The electrochemical activation process enables the molybdate ions (MoO4 2- ) in the precursors gradually dissolve, and at the same time, hydroxide ions (OH- ) in the electrolyte diffuse into the precursor and react with Ni2+ and Fe3+ ions in confined space to produce ultrafine NiFeOx Hy (oxy)hydroxides nanosheets (<10 nm), which are densely arranged into microporous arrays and maintain the rod-like morphology of the precursor. Such dense ultrafine nanosheet arrays produce rich edge planes on the surface of NiFeOx Hy (oxy)hydroxides to expose more active sites. More importantly, the capillary phenomenon of microporous structures and hydrophilic hydroxyl groups induce the superhydrophilicity and the rough surface produces the superaerophobic characteristic for bubbles. With these advantages, the optimized catalyst exhibits excellent performance for OER, with a small overpotential of 182 mV at 10 mA cm-2 and long-term stability (200 h) at 200 mA cm-2 . Theoretical calculations show that the modification of Mo enhances the electron delocalization and optimizes the adsorption of intermediates.
Collapse
Affiliation(s)
- Han Jiao
- Tianjin Laboratory of Mass Transfer & Separation Process, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Chun Wang
- Tianjin Laboratory of Mass Transfer & Separation Process, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Zi-Yang Zhang
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Yi-Fu Song
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Bai-Qi Feng
- Tianjin Laboratory of Mass Transfer & Separation Process, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Ping Na
- Tianjin Laboratory of Mass Transfer & Separation Process, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Zhong-Li Wang
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| |
Collapse
|
27
|
Ramulu B, Arbaz SJ, Nagaraju M, Yu JS. Multifunctional metal selenide-based materials synthesized via a one-pot solvothermal approach for electrochemical energy storage and conversion applications. NANOSCALE 2023; 15:13049-13061. [PMID: 37493392 DOI: 10.1039/d3nr02103c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Highly-efficient electroactive materials with distinctive electrochemical features, along with suitable strategies to prepare hetero-nanoarchitectures incorporating two or more transition metal selenides, are currently required to increase charge storage ability. Herein, a one-pot solvothermal approach is used to develop iron-nickel selenide spring-lawn-like architectures (FeNiSe SLAs) on nickel (Ni) foam. The porous Ni foam scaffold not only enables the uniform growth of FeNiSe SLAs but also serves as an Ni source. The effect of reaction time on their morphological and electrochemical properties is investigated. The FeNiSe-15 h electrode shows high areal capacity (493.2 μA h cm-2) and superior cycling constancy. The as-assembled aqueous hybrid cell (AHC) demonstrates high areal capacity and a decent rate capability of 59.4% (50 mA cm-2). The AHC exhibits good energy and power densities, along with excellent cycling stability. Furthermore, to confirm its practicability, the AHC is employed to drive portable electronic appliances by charging it with wind energy. The electrocatalytic activity of FeNiSe-based materials to complete the oxygen evolution reaction (OER) is explored. Among them, the FeNiSe-15 h catalyst shows good OER performance at a current density of 50 mA cm-2. This general synthesis approach may initiate a strategy of advanced metal selenide-based materials for multifunctional applications.
Collapse
Affiliation(s)
- Bhimanaboina Ramulu
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Shaik Junied Arbaz
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Manchi Nagaraju
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Jae Su Yu
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
28
|
Wang Y, Meng C, Zhao L, Zhang J, Chen X, Zhou Y. Surface and near-surface engineering design of transition metal catalysts for promoting water splitting. Chem Commun (Camb) 2023. [PMID: 37334928 DOI: 10.1039/d3cc01593a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Transition metal catalysts are widely used in the field of hydrogen production via water electrolysis. The surface state and near-surface environment of the catalysts greatly affect the efficiency of hydrogen production. Therefore, the rational design of surface engineering and near-surface engineering of transition metal catalysts can significantly improve the performance of water electrolysis. This review systematically introduces surface engineering strategies, including heteroatom doping, vacancy engineering, strain regulation, heterojunction effect, and surface reconstruction. These strategies optimize the surface electronic structure of the catalysts, expose more active sites, and promote the formation of highly active species, ultimately enhancing water electrolysis performance. Furthermore, near-surface engineering strategies, such as surface wettability, three-dimensional structure, high-curvature structure, external field assistance, and extra ion addition, are thoroughly discussed. These strategies expedite the mass transfer of reactants and gas products, improve the local chemical environment near the catalyst surface, and contribute toward achieving an industrial-level current density for overall water splitting. Finally, the key challenges faced by surface engineering and near-surface engineering of transition metal catalysts are highlighted and potential solutions are proposed. This review offers essential guidelines for the design and development of efficient transition metal catalysts for water electrolysis.
Collapse
Affiliation(s)
- Yanmin Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Chao Meng
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Lei Zhao
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jialin Zhang
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Xuemin Chen
- College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yue Zhou
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
29
|
Sun M, Ye Q, Lin L, Wang Y, Zheng Z, Chen F, Cheng Y. NiMo solid-solution alloy porous nanofiber as outstanding hydrogen evolution electrocatalyst. J Colloid Interface Sci 2023; 637:262-270. [PMID: 36706722 DOI: 10.1016/j.jcis.2023.01.094] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Developing a high-efficiency hydrogen evolution reaction (HER) electrocatalyst for the large-scale production of hydrogen is essential but challenging. In this study, we used NiMo solid-solution alloy porous nanofibers to develop a robust HER electrocatalyst through electrospinning, oxidization, and high-temperature reduction treatment. In 1 M KOH electrolyte, the fabricated NiMo solid-solution alloy porous nanofibers exhibited higher HER activity than Ni nanofibers, which required a low overpotential of 69, 208, and 300 mV at 100, 500, and 1000 mA cm-2, respectively, and had outstanding durability at 100 mA cm-2 over 60 h. We developed a promising candidate for a high-efficiency HER electrocatalyst, and our findings provided valuable information for fabricating highly robust alloy-based electrocatalysts.
Collapse
Affiliation(s)
- Min Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Qing Ye
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Lu Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yufeng Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Zongmin Zheng
- National Engineering Research Center for Intelligent Electrical Vehicle Power System, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Fangfang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| | - Yongliang Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an 710127, China.
| |
Collapse
|
30
|
Guo Y, Jia K, Dai F, Liu Y, Zhang C, Su J, Wang K. Hierarchical Porous Tri-metallic NiCoFe-Se/CFP Derived from Ni-Co-Fe Prussian Blue Analogues as Efficient Electrocatalyst for Oxygen Evolution Reaction. J Colloid Interface Sci 2023; 642:638-647. [PMID: 37030200 DOI: 10.1016/j.jcis.2023.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
The progress of inexpensive, high-efficiency, and steady oxygen evolution reaction (OER) electrocatalysts is of great importance to promoting water splitting for green hydrogen production. Herein, tri-metallic NiCoFe selenide catalyst backed up by carbon fiber paper (CFP) was synthesized by a facile selenization of NiCoFe Prussian blue analogues (PBAs) for OER in alkaline solutions. The NiCoFe-Se/CFP inherited the porous nanostructure of the metal-organic frameworks (MOFs) precursors prepared by rapid cyclic voltammetry electrodeposition. Benefiting from the 3D hierarchical porous structure, optimized electronic structure of NiCoFe selenides and high conductivity, the synthesized electrocatalyst exhibits outstanding catalytic activity to the corresponding mono-metallic or bi-metallic selenides. Specifically, the NiCoFe-Se/CFP electrode demands an overpotential of 221 mV to attain the 10 mA cm-2 current density in 1.0 M KOH solution and a low Tafel slope of 38.6 mV dec-1. The prepared catalyst also displays good stability and durability. These findings prove a feasible strategy to further improve the catalytic activities of non-precious metal based OER electrocatalysts by the cooperation of structure design and chemical component modification.
Collapse
|
31
|
Yuan SY, Jiang LW, Hu JS, Liu H, Wang JJ. Fully Dispersed IrO x Atomic Clusters Enable Record Photoelectrochemical Water Oxidation of Hematite in Acidic Media. NANO LETTERS 2023; 23:2354-2361. [PMID: 36853807 DOI: 10.1021/acs.nanolett.3c00245] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ir-based materials are still the benchmark catalysts for various reactions in acidic environment, but the high loading and low atom utilization limit their large-scale deployment. Herein, we report an effective strategy for implanting fully dispersed iridium-oxide atomic clusters onto hematite for boosting photoelectrochemical water oxidation in acidic solution. The resulting photoanode achieves a record-high photocurrent of 1.35 mA cm-2 at 1.23 V, corresponding to a mass activity of 172.70 A g-1 (3 times higher than electrodeposited control sample) and demonstrating the merits from the high atomic utilization of Ir. The systematically experimental and theoretical results reveal that the performance improvement correlates with the modulated electronic structure including the adjusted Fermi level and d-band center, which significantly enhances charge separation efficiency and promotes the conversion from intermediate *O into *OOH.
Collapse
Affiliation(s)
- Shao-Yu Yuan
- State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, P. R. China
| | - Li-Wen Jiang
- State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, P. R. China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Science Beijing 100190, P. R. China
- Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, P. R. China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan 250022, P. R. China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, P. R. China
| |
Collapse
|
32
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
33
|
Zheng Y, Yu D, Xu W, Zhang K, Ma K, Guo X, Lou Y, Hu M. Robust FeCoP nanoparticles grown on a rGO-coated Ni foam as an efficient oxygen evolution catalyst for excellent alkaline and seawater electrolysis. Dalton Trans 2023; 52:3493-3500. [PMID: 36846870 DOI: 10.1039/d2dt03857a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Electrochemical water splitting is a potential green hydrogen energy generation technique. With the shortage of fresh water, abundant seawater resources should be developed as the main raw material for water electrolysis. However, since the precipitation reaction of chloride ions in seawater will compete with the oxygen evolution reaction (OER) and corrode the catalyst, seawater electrolysis is restricted by the decrease in activity, low stability, and selectivity. Rational design and development of efficient and stable catalysts is the key to seawater electrolysis. Herein, a high-activity bimetallic phosphide FeCoP, grown on a reduced graphene oxide (rGO)-protected Ni Foam (NF) substrate using FeCo Prussian Blue Analogue (PBA) as a template, was designed for application in alkaline natural seawater electrolysis. The OER activity confirmed that the formed FeCoP@rGO/NF has high electrocatalytic performance. In 1 M KOH and natural alkaline seawater, the overpotential was only 257 mV and 282 mV under 200 mA cm-2, respectively. It also demonstrated long-term stability up to 200 h. Therefore, this study provides new insight into the application of PBA as a precursor of bimetallic phosphide in the electrolysis of seawater at high current density.
Collapse
Affiliation(s)
- Yingping Zheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China. .,Analysis and Testing Center, Southeast University, Nanjing 211189, P. R. China
| | - Dehua Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Wei Xu
- Analysis and Testing Center, Southeast University, Nanjing 211189, P. R. China
| | - Ke Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Kaili Ma
- Analysis and Testing Center, Southeast University, Nanjing 211189, P. R. China
| | - Xinyu Guo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Mulin Hu
- Hefei Technology College, Hefei 238000, P. R. China
| |
Collapse
|
34
|
Wang YL, Yang TH, Yue S, Zheng HB, Liu XP, Gao PZ, Qin H, Xiao HN. Effects of Alternating Magnetic Fields on the OER of Heterogeneous Core-Shell Structured NiFe 2O 4@(Ni, Fe)S/P. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11631-11641. [PMID: 36852882 DOI: 10.1021/acsami.2c16656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Composition optimization, structural design, and introduction of external magnetic fields into the catalytic process can remarkably improve the oxygen evolution reaction (OER) performance of a catalyst. NiFe2O4@(Ni, Fe)S/P materials with a heterogeneous core-shell structure were prepared by the sulfide/phosphorus method based on spinel-structured NiFe2O4 nanomicrospheres. After the sulfide/phosphorus treatment, not only the intrinsic activity of the material and the active surface area were increased but also the charge transfer resistance was reduced due to the internal electric field. The overpotential of NiFe2O4@(Ni, Fe)P at 10 mA cm-2 (iR correction), Tafel slope, and charge transfer resistance were 261 mV, 42 mV dec-1, and 3.163 Ω, respectively. With an alternating magnetic field, the overpotential of NiFe2O4@(Ni, Fe)P at 10 mA cm-2 (without iR correction) declined by 45.5% from 323 mV (0 mT) to 176 mV (4.320 mT). Such enhancement of performance is primarily accounted for the enrichment of the reactive ion OH- on the electrode surface induced by the inductive electric potential derived from the Faraday induction effect of the AMF. This condition increased the electrode potential and thus the charge transfer rate on the one hand and weakened the diffusion of the active substance from the electrolyte to the electrode surface on the other hand. The OER process was dominantly controlled by the charge transfer process under low current conditions. A fast charge transfer rate boosted the OER performance of the catalyst. At high currents, diffusion exerted a significant effect on the OER process and low OH- diffusion rates would lead to a decrease in the OER performance of the catalyst.
Collapse
Affiliation(s)
- Yuan-Li Wang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Tong-Hui Yang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Song Yue
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Hang-Bo Zheng
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiao-Pan Liu
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Peng-Zhao Gao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Hang Qin
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Han-Ning Xiao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
35
|
Wu YZ, Huang Y, Jiang LW, Meng C, Yin ZH, Liu H, Wang JJ. Modulating the electronic structure of CoS2 by Sn doping boosting urea oxidation for efficient alkaline hydrogen production. J Colloid Interface Sci 2023; 642:574-583. [PMID: 37028164 DOI: 10.1016/j.jcis.2023.03.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
Urea electrocatalytic oxidation afforded by renewable energies is highly promising to replace the sluggish oxygen evolution reaction in water splitting for hydrogen production while realizing the treatment of urea-rich waste water. Therefore, the development of efficient and cost-effective catalysts for water splitting assisted by urea is highly desirable. Herein, Sn-doped CoS2 electrocatalysts were reported with the engineered electronic structure and the formation of Co-Sn dual active sites for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER), respectively. Consequently, the number of active sites and the intrinsic activity were enhanced simultaneously and the resultant electrodes exhibited outstanding electrocatalytic activity with a very low potential of 1.301 V at 10 mA·cm-2 for UOR and an overpotential of 132 mV at 10 mA·cm-2 for HER. Therefore, a two-electrode device was assembled by employing Sn(2)-CoS2/CC and Sn(5)-CoS2/CC and the constructed cell required only 1.45 V to approach a current density of 10 mA·cm-2 along with good durability for at least 95 h assisted by urea. More importantly, the assembled electrolyzer can be powered by commercial dry battery to generate numerous gas bubbles on the surface of the electrodes, demonstrating the high potential of the as-fabricated electrodes for applications in hydrogen production and pollutant treatment at a low-voltage electrical energy input.
Collapse
|
36
|
Wang C, Zhang Q, Yan B, You B, Zheng J, Feng L, Zhang C, Jiang S, Chen W, He S. Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions. NANO-MICRO LETTERS 2023; 15:52. [PMID: 36795218 PMCID: PMC9935811 DOI: 10.1007/s40820-023-01024-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 05/19/2023]
Abstract
The crystal facets featured with facet-dependent physical and chemical properties can exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) attributed to their anisotropy. The highly active exposed crystal facets enable increased mass activity of active sites, lower reaction energy barriers, and enhanced catalytic reaction rates for HER and OER. The formation mechanism and control strategy of the crystal facet, significant contributions as well as challenges and perspectives of facet-engineered catalysts for HER and OER are provided. The electrocatalytic water splitting technology can generate high-purity hydrogen without emitting carbon dioxide, which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality. Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency. Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface. Owing to the anisotropy, crystal planes with different orientations usually feature facet-dependent physical and chemical properties, leading to differences in the adsorption energies of oxygen or hydrogen intermediates, and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this review, a brief introduction of the basic concepts, fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided. The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes. Subsequently, three strategies of selective capping agent, selective etching agent, and coordination modulation to tune crystal planes are comprehensively summarized. Then, we present an overview of significant contributions of facet-engineered catalysts toward HER, OER, and overall water splitting. In particular, we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity. Finally, the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed.
Collapse
Affiliation(s)
- Changshui Wang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Qian Zhang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Bing Yan
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
| | - Jiaojiao Zheng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Li Feng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 2150009, People's Republic of China
| | - Shaohua Jiang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
- University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Shuijian He
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
37
|
Hayat A, Sohail M, Ali H, Taha TA, Qazi HIA, Ur Rahman N, Ajmal Z, Kalam A, Al-Sehemi AG, Wageh S, Amin MA, Palamanit A, Nawawi WI, Newair EF, Orooji Y. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting. CHEM REC 2023; 23:e202200149. [PMID: 36408911 DOI: 10.1002/tcr.202200149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/15/2022] [Indexed: 11/22/2022]
Abstract
Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, Zhejiang, P. R. China.,College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, P. R. China
| | - Hamid Ali
- Multiscale Computational Materials Facility, Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, 350100, Fuzhou, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, PO Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - H I A Qazi
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China
| | - Naveed Ur Rahman
- Department of Physics, Bacha Khan University Charsadda, KP, Pakistan
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, P. R. China
| | - Abul Kalam
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Arkom Palamanit
- Energy Technology Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., 90110, Hat Yai, Songkhla, Thailand
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 02600, Cawangan Perlis, Arau Perlis, Malaysia
| | - Emad F Newair
- Chemistry Department, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| |
Collapse
|
38
|
Liu Y, Wan Q, Gong J, Liu Z, Tao G, Zhao J, Chen L, Li W, Wei X, Ni L, Song Y. Confine, Defect, and Interface Manipulation of Fe 3 Se 4 /3D Graphene Targeting Fast and Stable Potassium-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206400. [PMID: 36504297 DOI: 10.1002/smll.202206400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The fast electrochemical kinetics behavior and long cycling life have been the goals in developing anode materials for potassium ion batteries (PIBs). On account of high electron conductivity and theoretical capacity, transition metal selenides have been deemed as one of the promising anode materials for PIBs. Herein, a systematic structural manipulation strategy, pertaining to the confine of Fe3 Se4 particles by 3D graphene and the dual phosphorus (P) doping to the Fe3 Se4 /3DG (DP-Fe3 Se4 /3DG), has been proposed to fulfill the efficient potassium-ion (K-ion) evolution kinetics and thus boost the K-ion storage performance. The theoretical calculation results demonstrate that the well-designed dual P doping interface can effectively promote K-ion adsorption behavior and provide a low energy barrier for K-ion diffusion. The insertion-conversion and adsorption mechanism for multi potassium storage behavior in DP-Fe3 Se4 /3DG composite has been also deciphered by combining the in situ/ex situ X-ray diffraction and operando Raman spectra evidences. As expected, the DP-Fe3 Se4 /3DG anode exhibits superior rate capability (120.2 mA h g-1 at 10 A g-1 ) and outstanding cycling performance (157.9 mA h g-1 after 1000 cycles at 5 A g-1 ).
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Environment-Friendly Energy Materials, Tianfu Institute of Research and Innovation, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Qi Wan
- State Key Laboratory of Environment-Friendly Energy Materials, Tianfu Institute of Research and Innovation, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Juan Gong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 621010, P. R. China
| | - Zhiwei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gang Tao
- State Key Laboratory of Environment-Friendly Energy Materials, Tianfu Institute of Research and Innovation, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Jie Zhao
- State Key Laboratory of Environment-Friendly Energy Materials, Tianfu Institute of Research and Innovation, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Le Chen
- State Key Laboratory of Environment-Friendly Energy Materials, Tianfu Institute of Research and Innovation, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Wenshu Li
- State Key Laboratory of Environment-Friendly Energy Materials, Tianfu Institute of Research and Innovation, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Xijun Wei
- State Key Laboratory of Environment-Friendly Energy Materials, Tianfu Institute of Research and Innovation, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Ling Ni
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Yingze Song
- State Key Laboratory of Environment-Friendly Energy Materials, Tianfu Institute of Research and Innovation, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| |
Collapse
|
39
|
Zhou Y, Jin N, Ma Y, Cui Y, Wang L, Kwon Y, Lee WK, Zhang W, Ge H, Zhang J. Tube-Sponge-Inspired Hierarchical Electrocatalysts with Boosted Mass and Electron Transfer for Efficient Oxygen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209500. [PMID: 36462219 DOI: 10.1002/adma.202209500] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Hindered gas bubble release and limited electron conducting process represent the major bottlenecks for large-scale electrochemical water splitting. Both the desorption of bubbles and continuous electron transport are achievable on the surfaces of biomimetic catalytic materials by designing multiscale structural hierarchy. Inspired by the tubular structures of the deep-sea sponges, an exceptionally active and binder-free porous nickel tube arrays (PNTA) decorated with NiFe-Zn2+ -pore nanosheets (NiFe-PZn ) are fabricated. The PNTA facilitate removal of bubbles and electron transfer in the oxygen evolution reaction by reproducing trunks of the sponges, and simultaneously, the NiFe-PZn increase the number of catalytic active sites by simulating the sponge epidermis. With improved external mass transfer and interior electron transfer, the hierarchical NiFe-PZn @PNTA electrode exhibits superior oxygen evolution reaction performance with an overpotential of 172 mV at 10 mA cm-2 (with a Tafel slope of 50 mV dec-1 ). Furthermore, this electrocatalytic system recorded excellent reaction stability over 360 h with a constant current density of 100 mA cm-2 at the potential of 1.52 V (versus RHE). This work provides a new strategy of designing hierarchical electrocatalysts for highly efficient water splitting.
Collapse
Affiliation(s)
- Yaya Zhou
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- National Laboratory of Solid State Microstructures, Nanjing, 210093, China
| | - Ningxuan Jin
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- National Laboratory of Solid State Microstructures, Nanjing, 210093, China
| | - Yibing Ma
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- National Laboratory of Solid State Microstructures, Nanjing, 210093, China
| | - Yushuang Cui
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- National Laboratory of Solid State Microstructures, Nanjing, 210093, China
| | - Lina Wang
- International Research Center for EM Metamaterials and Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yongwoo Kwon
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Won-Kyu Lee
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Wei Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Haixiong Ge
- Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- National Laboratory of Solid State Microstructures, Nanjing, 210093, China
| | - Jian Zhang
- International Research Center for EM Metamaterials and Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| |
Collapse
|
40
|
Xu H, Jin Z, Zhang Y, Lin X, Xie G, Liu X, Qiu HJ. Designing strategies and enhancing mechanism for multicomponent high-entropy catalysts. Chem Sci 2023; 14:771-790. [PMID: 36755717 PMCID: PMC9890551 DOI: 10.1039/d2sc06403k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
High-entropy materials (HEMs) are new-fashioned functional materials in the field of catalysis owing to their large designing space, tunable electronic structure, interesting "cocktail effect", and entropy stabilization effect. Many effective strategies have been developed to design advanced catalysts for various important reactions. Herein, we firstly review effective strategies developed so far for optimizing HEM-based catalysts and the underlying mechanism revealed by both theoretical simulations and experimental aspects. In light of this overview, we subsequently present some perspectives about the development of HEM-based catalysts and provide some serviceable guidelines and/or inspiration for further studying multicomponent catalysts.
Collapse
Affiliation(s)
- Haitao Xu
- School of Materials Science and Engineering, Dongguan University of TechnologyDongguan 523808China
| | - Zeyu Jin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Yinghe Zhang
- School of Science, Harbin Institute of Technology (Shenzhen)Shenzhen 518055China
| | - Xi Lin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Guoqiang Xie
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Xingjun Liu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Hua-Jun Qiu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| |
Collapse
|
41
|
Raveendran A, Chandran M, Dhanusuraman R. A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC Adv 2023; 13:3843-3876. [PMID: 36756592 PMCID: PMC9890951 DOI: 10.1039/d2ra07642j] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Electrochemical splitting of water is an appealing solution for energy storage and conversion to overcome the reliance on depleting fossil fuel reserves and prevent severe deterioration of the global climate. Though there are several fuel cells, hydrogen (H2) and oxygen (O2) fuel cells have zero carbon emissions, and water is the only by-product. Countless researchers worldwide are working on the fundamentals, i.e. the parameters affecting the electrocatalysis of water splitting and electrocatalysts that could improve the performance of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) and overall simplify the water electrolysis process. Noble metals like platinum for HER and ruthenium and iridium for OER were used earlier; however, being expensive, there are more feasible options than employing these metals for all commercialization. The review discusses the recent developments in metal and metalloid HER and OER electrocatalysts from the s, p and d block elements. The evaluation perspectives for electrocatalysts of electrochemical water splitting are also highlighted.
Collapse
Affiliation(s)
- Asha Raveendran
- Nano Electrochemistry Lab (NEL), Department of Chemistry, National Institute of Technology Puducherry Karaikal - 609609 India
| | - Mijun Chandran
- Department of Chemistry, Central University of Tamil Nadu Thiruvarur - 610005 India
| | - Ragupathy Dhanusuraman
- Nano Electrochemistry Lab (NEL), Department of Chemistry, National Institute of Technology Puducherry Karaikal - 609609 India
| |
Collapse
|
42
|
Coupling Dual-phased nickel selenides with N-doped carbon enables efficient urea electrocatalytic oxidation. J Colloid Interface Sci 2023; 629:33-43. [DOI: 10.1016/j.jcis.2022.08.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
|
43
|
Wang W, Wang X, Ma Z, Wang Y, Yang Z, Zhu J, Lv L, Ning H, Tsubaki N, Wu M. Carburized In 2O 3 Nanorods Endow CO 2 Electroreduction to Formate at 1 A cm –2. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Wenhang Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Xiaoshan Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhengguang Ma
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Yang Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhongxue Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Lei Lv
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Hui Ning
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
44
|
Chen Z, Xu C, Zhao F, Xi S, Li W, Huang M, Cai B, Gu M, Wang HL, Xiang XD. High-Performance Oxygen Evolution Reaction Electrocatalysts Discovered via High-Throughput Aerogel Synthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhuyang Chen
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Chen Xu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Fu Zhao
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Weixuan Li
- School of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Mingcheng Huang
- School of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Bijun Cai
- School of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Meng Gu
- School of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Hsing-Lin Wang
- School of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - X.-D. Xiang
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| |
Collapse
|
45
|
Gan Y, Li Z, Ye Y, Dai X, Nie F, Yin X, Ren Z, Wu B, Cao Y, Cai R, Zhang X, Song W. Doping Mo into NiFe LDH/NiSe Heterostructure to Enhance Oxygen Evolution Activity by Synergistically Facilitating Electronic Modulation and Surface Reconstruction. CHEMSUSCHEM 2022; 15:e202201205. [PMID: 36043340 DOI: 10.1002/cssc.202201205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/04/2022] [Indexed: 06/15/2023]
Abstract
It is of great significance to design highly efficient electrocatalysts with abundant earth elements instead of precious metals for water splitting. Herein, Mo-doped NiFe-layered double hydroxides/NiSe heterostructure (Mo-NiFe LDH/NiSe) was fabricated by coupling Mo-doped NiFe LDH and NiSe on nickel foam (NF). The heterostructure electrocatalyst showed ultra-low overpotential (250 mV) and remarkable durability for oxygen evolution reaction (OER) at 150 mA cm-2 . Both theoretical and experimental results confirmed that Mo doping and interfacial synergism induced the interfacial charge redistribution and the lifted d-band center to weaken the energy barrier (EB) of the formation of OOH* . Mo doping also facilitated the surface reconstruction of NiFe LDH into Ni(Fe)OOH as the active sites under electro-oxidation process. This work provides a facile strategy for electronic modulation and surface reconstruction of OER electrocatalyst by transition metal doping and heterostructure generation.
Collapse
Affiliation(s)
- Yonghao Gan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Zhi Li
- College of Science, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China
| | - Ying Ye
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Xiaoping Dai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Fei Nie
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Xueli Yin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Ziteng Ren
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Baoqiang Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Yihua Cao
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Run Cai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Weiyu Song
- College of Science, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China
| |
Collapse
|
46
|
Yang Y, Zhu B, Guo PF, Ding TY, Yang QN, Feng WX, Jia Y, Wang K, Wang WT, He ZH, Liu ZT. In Situ Anodic Oxidation Tuning of NiFeV Diselenide to the Core-Shell Heterojunction for Boosting Oxygen Evolution. Inorg Chem 2022; 61:16805-16813. [PMID: 36223409 DOI: 10.1021/acs.inorgchem.2c02706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developing non-noble metal-based core-shell heterojunction electrocatalysts with high catalytic activity and long-lasting stability is crucial for the oxygen evolution reaction (OER). Here, we prepared novel core-shell Fe,V-NiSe2@NiFe(OH)x heterostructured nanoparticles on hydrophilic-treated carbon paper with high electronic transport and large surface area for accelerating the oxygen evolution rate via high-temperature selenization and electrochemical anodic oxidation procedures. Performance testing shows that Fe,V-NiSe2@NiFe(OH)x possesses the highest performance for OER compared to as-prepared diselenide core-derived heterojunctions, which only require an overpotential of 243 mV at 10 mA cm-2 and a low Tafel slope of 91.6 mV decade-1 under basic conditions. Furthermore, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) confirm the morphology and elementary stabilities of Fe,V-NiSe2@NiFe(OH)x after long-term chronopotentiometric testing. These advantages are largely because of the strong synergistic effect between the Fe,V-NiSe2 core with high conductivity and the amorphous NiFe(OH)x shell with enriched defects and vacancies. This study also presents a general approach to designing and synthesizing more active core-shell heterojunction electrocatalysts for OER.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bing Zhu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Peng-Fei Guo
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tian-Yi Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qian-Nan Yang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wan-Xin Feng
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan Jia
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Kuan Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wei-Tao Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhen-Hong He
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhao-Tie Liu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
47
|
Peng Q, Zhuang X, Wei L, Shi L, Isimjan TT, Hou R, Yang X. Niobium-Incorporated CoSe 2 Nanothorns with Electronic Structural Alterations for Efficient Alkaline Oxygen Evolution Reaction at High Current Density. CHEMSUSCHEM 2022; 15:e202200827. [PMID: 35704336 DOI: 10.1002/cssc.202200827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Developing cost-effective, highly active, and robust electrocatalysts for oxygen evolution reaction (OER) at high current density is a critical challenge in water electrolysis since the sluggish kinetics of the OER significantly impedes the energy conversion efficiency of overall water splitting. Here, a 1D nanothorn-like Nb-CoSe2 /CC (CC=carbon cloth) structure was developed as an efficient OER catalyst. The optimized Nb-CoSe2 /CC catalyst exhibited remarkable OER performance with the low overpotentials of 220 mV at 10 mA cm-2 and 297 mV 200 mA cm-2 and a small Tafel slope (54.1 mV dec-1 ) in 1.0 m KOH electrolyte. More importantly, the Nb-CoSe2 /CC electrode displayed superior stability after 60 h of continuous operation. In addition, cell voltages of 1.52 and 1.93 V were required to achieve 10 and 500 mA cm-2 for the electrolyzer made of Nb-CoSe2 /CC (anode) and the Pt/C (cathode). Density functional theory (DFT) calculations combined with experimental results revealed that incorporating niobium into the CoSe2 could optimize the adsorption free energy of the reaction intermediates and enhance the conductivity to improve the catalytic activity further. Additionally, the super-hydrophilicity of Nb-CoSe2 /CC resulting from the surface defects increased the surface wettability and facilitated reaction kinetics. These results indicate that Nb-CoSe2 /CC intrinsically enhances OER performance and possesses potential practical water electrolysis applications.
Collapse
Affiliation(s)
- Qimin Peng
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xiaoling Zhuang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Longgui Wei
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Luyan Shi
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ruobing Hou
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
48
|
Electrochemical Characteristics of Nanosized Cu, Ni, and Zn Cobaltite Spinel Materials. Catalysts 2022. [DOI: 10.3390/catal12080893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
For a long time, transition metal oxide systems have been considered well explored materials in heterogeneous catalysis. Amongst, the spinel-type oxides, materials such as cobaltites (Co3O4) received significant attention, owing to their use in many industrial applications. In the present study, nanosized Cu, Ni, and Zn cobaltite spinel oxides were synthesized by a simple hydrothermal method. Physicochemical characterization of the synthesized materials was performed utilizing XRD, HRTEM, CO2-TPD, and XPS techniques. The textural characteristics (BET-surface area, pore size, etc.) of samples were determined from N2 physisorption measurements at −196 °C. The CO2-electrocatalytic reduction was selected as a model reaction to evaluate the electrochemical performance of the synthesized spinel cobaltites. For Ni, Cu, and Zn spinel materials, hydrogen was produced as the main product at the whole potential, along with other products, such as CO and HCOOH. Despite the advantages, the catalytic electrochemical CO2 reduction performance of spinel cobaltite catalysts is still far from adequate, which is principally ascribed to the low number of active sites combined with poor electrical conductivity.
Collapse
|
49
|
Yu Y, Xue D, Xia H, Zhang X, Zhao S, Wei Y, Du Y, Zhou Y, Yan W, Zhang J. Electron spin modulation engineering in oxygen-involved electrocatalysis. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:364002. [PMID: 35709712 DOI: 10.1088/1361-648x/ac7995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reduction (OER) are regarded as the key reactions via the sustainable system (fuel cell and water splitting), respectively. In OER, the transition from singlet oxygen species to triplet oxygen molecules is involved, meanwhile the ORR involves the transition from triplet oxygen molecules to singlet oxygen species. However, in these processes, the number of unpaired electrons is not conserved, which is not thermodynamically favorable and creates an additional energy barrier. Fortunately, regulating the electrocatalysis by spin-state modulation enables a unique effect on the catalytic performance, but the current understanding on spin-state engineering for electro-catalyzing ORR and OER is still insufficient. Herein, this review summarized the in-spin engineering for the state-of-the-art ORR and OER electrocatalysts. It began by introducing engineering of spin-state to egfilling for ORR and OER process, and then moved to spin polarization and spin-pinning effect for OER process. Various designed strategies focusing on how to regulate the spin-state of the active center have been summarized up. The connectivity of the structures of typical ORR (e.g. metal-nitrogen-carbon) and OER (e.g. design strategies oxides, metal organic frameworks) catalysts depending on the spin level is also discussed. Finally, we present the outlook from the aspects of template catalysts, characterization methods, regulation strategies, theoretical calculations, which will further expand the possibility of better electrocatalytic performance through spin-state modulation. This review concluded some open suggestions and prospects, which are worthy of the community's future work.
Collapse
Affiliation(s)
- Yue Yu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou 450012, People's Republic of China
| | - Dongping Xue
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou 450012, People's Republic of China
| | - Huicong Xia
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou 450012, People's Republic of China
| | - Xiaoyu Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou 450012, People's Republic of China
| | - Shuyan Zhao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou 450012, People's Republic of China
| | - Yifan Wei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou 450012, People's Republic of China
| | - Yu Du
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou 450012, People's Republic of China
| | - Ying Zhou
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Jianan Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou 450012, People's Republic of China
| |
Collapse
|
50
|
Wang K, Hou M, Huang W, Cao Q, Zhao Y, Sun X, Ding R, Lin W, Liu E, Gao P. F-decoration-induced partially amorphization of nickel iron layered double hydroxides for high efficiency urea oxidation reaction. J Colloid Interface Sci 2022; 615:309-317. [DOI: 10.1016/j.jcis.2022.01.151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/26/2022]
|