1
|
Guo Y, Zhang X, Zhou S, Liang Q, Zeng H, Xu Y, Awati A, Liang K, Zhu D, Liu M, Jiang L, Kong B. Super-Assembled Lamellar Conductive Heterochannels with Optical-Electrical Coupling Sensitivity for Smart Ion Transport. Angew Chem Int Ed Engl 2025; 64:e202500116. [PMID: 39985322 DOI: 10.1002/anie.202500116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
Artificial nanofluidic devices inspired bylight-driven ion transport in biological systems, leveraging the photoelectric effect, have attracted extensive attention for their potential in signal transduction and smart ion transport applications. However, effective separation of photogenerated carriers in traditional p-n junction interface can be hindered by energy band structure of different semiconductor materials. Here, we present a novel approach using conductive polypyrrole (PPy) to modify graphene oxide (GO), creating polypyrrole-graphene oxide (PyGO) functional lamellar conductive nanochannels with tailored channel-sized gradients and inherent optical-electrical coupling sensitivity via a facile super-assembly strategy. This design facilitates the PyGO own conductive lamellar channels and efficient separation of photogenerated carriers, resulting in significantly enhanced selective ion transport behavior. Coupling the conductivity and photosensitivity of PPy contributes to a peak power density of 14.1 W m-2 under a salinity differential of 0.5/0.01 M NaCl, which is 35.6 % higher than that under dark conditions. Additionally, combing the salinity gradients with optical-electrical coupling sensitivity of the nanofludic devices, we demonstrate the application of PyGO in a real-time detection device for monitoring ion concentrations in nutrient solutions, paving the way for smart irrigation systems in agriculture. This work presents a novel and effective strategy for light-driven ion transport with potential applications in energy conversion and beyond.
Collapse
Affiliation(s)
- Yaxin Guo
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Xin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Shan Zhou
- College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Qirui Liang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, P. R. China
| | - Hui Zeng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yeqing Xu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Abuduheiremu Awati
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Dazhang Zhu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
2
|
Kang X, Yu M, Xu Y, Cao Z, Balme S, Ma T. Nanochannel functionalization using POFs: Progress and prospects. Adv Colloid Interface Sci 2025; 342:103533. [PMID: 40318384 DOI: 10.1016/j.cis.2025.103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Biomimetic nanochannels, inspired by natural ion channels found in living organisms, are synthetic systems designed to replicate the highly selective and efficient ion/molecule transport processes essential for various biological functions. These artificial channels mimic the structural and functional properties of their biological counterparts, offering precise control over ion and molecular transport. Porous organic framework materials (POFs), including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have emerged as promising materials for functionalizing nanochannels due to their unique structures and exceptional properties. This functionalization strategy not only enhances the performance of synthetic nanochannels but also broadens their application potential across various fields. This review comprehensively examines the recent progress in the preparation and application of POFs stereoscopic-functionalized solid nanochannels. Special emphasis is placed on their practical applications, including proton conduction, ion-selective membranes, photo-responsive materials, sensing and detection, chiral separation, and catalysis. Finally, the future development prospects and challenges in this research area are discussed, highlighting opportunities for advancing the design and application of biomimetic nanochannels.
Collapse
Affiliation(s)
- Xuan Kang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Mingyi Yu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yuan Xu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS, Place Eugène Bataillon, 34095 Montpellier, Cedex 5, France
| | - Tianji Ma
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| |
Collapse
|
3
|
Awati A, Yang R, Shi T, Zhou S, Zhang X, Zeng H, Lv Y, Liang K, Xie L, Zhu D, Liu M, Kong B. Interfacial Super-Assembly of Vacancy Engineered Ultrathin-Nanosheets Toward Nanochannels for Smart Ion Transport and Salinity Gradient Power Conversion. Angew Chem Int Ed Engl 2024; 63:e202407491. [PMID: 38735853 DOI: 10.1002/anie.202407491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Ion-selective nanochannel membranes assembled from two-dimensional (2D) nanosheets hold immense promise for power conversion using salinity gradient. However, they face challenges stemming from insufficient surface charge density, which impairs both permselectivity and durability. Herein, we present a novel vacancy-engineered, oxygen-deficient NiCo layered double hydroxide (NiCoLDH)/cellulose nanofibers-wrapped carbon nanotubes (VOLDH/CNF-CNT) composite membrane. This membrane, featuring abundant angstrom-scale, cation-selective nanochannels, is designed and fabricated through a synergistic combination of vacancy engineering and interfacial super-assembly. The composite membrane shows interlayer free-spacing of ~3.62 Å, which validates the membrane size exclusion selectivity. This strategy, validated by DFT calculations and experimental data, improves hydrophilicity and surface charge density, leading to the strong interaction with K+ ions to benefit the low ion transport resistance and exceptional charge selectivity. When employed in an artificial river water|seawater salinity gradient power generator, it delivers a high-power density of 5.35 W/m2 with long-term durability (20,000s), which is almost 400 % higher than that of the pristine NiCoLDH membrane. Furthermore, it displays both pH- and temperature-sensitive ion transport behavior, offering additional opportunities for optimization. This work establishes a basis for high-performance salinity gradient power conversion and underscores the potential of vacancy engineering and super-assembly in customizing 2D nanomaterials for diverse advanced nanofluidic energy devices.
Collapse
Affiliation(s)
- Abuduheiremu Awati
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ran Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ting Shi
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Shan Zhou
- College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xin Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Hui Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kang Liang
- School of Chemical Engineering, Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Lei Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Dazhang Zhu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
- Yiwu Research Institute, Fudan University, Yiwu, Zhejiang, 322000, P. R. China
- Shandong Research Institute, Fudan University, Jinan, Shandong, 250103, P. R. China
| |
Collapse
|
4
|
Zavala‐Galindo Y, Yang G, Zang H, Lei W, Liu D. Optimizing Nanofluidic Energy Harvesting in Synthetic Clay-based Membranes by Annealing Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400233. [PMID: 38885420 PMCID: PMC11336939 DOI: 10.1002/advs.202400233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/09/2024] [Indexed: 06/20/2024]
Abstract
Nanofluidic energy harvesting from salinity gradients is studied in 2D nanomaterials-based membranes with promising performance as high ion selectivity and fast ion transport. In addition, moving forward to scalable, feasible systems requires environmentally friendly materials to make the application sustainable. Clay-based membranes are attractive for being environmentally friendly, non-hazardous, and easy to manipulate materials. However, achieving underwater stability for clay-based membranes remains challenging. In this work, the synthetic clay Laponite is used to prepare clay-based membranes with high stability and excellent performance for osmotic energy harvesting. The Laponite membranes (Lap-membranes) are stabilized by low-temperature annealing treatment to effectively reduce the interlayer space, achieving a continuous operation under salinity gradients. Furthermore, the Lap-membranes conserve integrity while soaking in water for more than one month. The output power density improves from ≈4.97 W m-2 on the pristine membrane to ≈9.89 W m-2 in the membrane treated 12 h at 300 °C from a 30-fold concentration gradient. Especially, It is found that the presence of interlayer water to be favorable for ion transport. Different mechanisms are proposed in the Lap-membranes involved for efficient ion selectivity and the states found with varying annealing temperatures. This work demonstrates the potential application of Laponite based nanomaterials for nanofluidic energy harvesting.
Collapse
Affiliation(s)
- Yozelin Zavala‐Galindo
- Institute for Frontier MaterialsDeakin UniversityLocked Bag 20000GeelongVIC3220Australia
| | - Guoliang Yang
- Institute for Frontier MaterialsDeakin UniversityLocked Bag 20000GeelongVIC3220Australia
| | - Hanwen Zang
- Institute for Frontier MaterialsDeakin UniversityLocked Bag 20000GeelongVIC3220Australia
| | - Weiwei Lei
- Institute for Frontier MaterialsDeakin UniversityLocked Bag 20000GeelongVIC3220Australia
| | - Dan Liu
- Institute for Frontier MaterialsDeakin UniversityLocked Bag 20000GeelongVIC3220Australia
| |
Collapse
|
5
|
Qin S, Yang G, Wang S, Ma Y, Wang Z, Wang L, Liu D, Lei W. Tunable Surface Charge of Layered Double Hydroxide Membranes Enabling Osmotic Energy Harvesting from Anion Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400850. [PMID: 38616735 DOI: 10.1002/smll.202400850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/24/2024] [Indexed: 04/16/2024]
Abstract
Membrane-based osmotic energy harvesting is a promising technology with zero carbon footprint. High-performance ion-selective membranes (ISMs) are the core components in such applications. Recent advancement in 2D nanomaterials opens new avenues for building highly efficient ISMs. However, the majority of the explored 2D nanomaterials have a negative surface charge, which selectively enhances cation transport, resulting in the underutilization of half of the available ions. In this study, ISMs based on layered double hydroxide (LDH) with tunable positive surface charge are studied. The membranes preferentially facilitate anion transport with high selectivity. Osmotic energy harvesting device based on these membranes reached a power density of 2.31 W m-2 under simulated river/sea water, about eight times versus that of a commercial membrane tested under the same conditions, and up to 7.05 W m-2 under elevated temperature and simulated brine/sea water, and long-term stability with consistent performance over a 40-day period. A prototype reverse electrodialysis energy harvesting device, comprising a pair of LDH membranes and commercial cation-selective membranes, is able to simultaneously harvest energy from both cations and anions achieving a power density of 6.38 W m-2 in simulated river/sea water, demonstrating its potential as building blocks for future energy harvesting systems.
Collapse
Affiliation(s)
- Si Qin
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Waurn Ponds, Victoria, 3216, Australia
| | - Guoliang Yang
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Waurn Ponds, Victoria, 3216, Australia
| | - Shana Wang
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Waurn Ponds, Victoria, 3216, Australia
| | - Yuxi Ma
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Waurn Ponds, Victoria, 3216, Australia
| | - Zhiyu Wang
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Waurn Ponds, Victoria, 3216, Australia
| | - Lifeng Wang
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Waurn Ponds, Victoria, 3216, Australia
| | - Dan Liu
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Waurn Ponds, Victoria, 3216, Australia
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Waurn Ponds, Victoria, 3216, Australia
| |
Collapse
|
6
|
Liu P, Kong XY, Jiang L, Wen L. Ion transport in nanofluidics under external fields. Chem Soc Rev 2024; 53:2972-3001. [PMID: 38345093 DOI: 10.1039/d3cs00367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Nanofluidic channels with tailored ion transport dynamics are usually used as channels for ion transport, to enable high-performance ion regulation behaviors. The rational construction of nanofluidics and the introduction of external fields are of vital significance to the advancement and development of these ion transport properties. Focusing on the recent advances of nanofluidics, in this review, various dimensional nanomaterials and their derived homogeneous/heterogeneous nanofluidics are first briefly introduced. Then we discuss the basic principles and properties of ion transport in nanofluidics. As the major part of this review, we focus on recent progress in ion transport in nanofluidics regulated by external physical fields (electric field, light, heat, pressure, etc.) and chemical fields (pH, concentration gradient, chemical reaction, etc.), and reveal the advantages and ion regulation mechanisms of each type. Moreover, the representative applications of these nanofluidic channels in sensing, ionic devices, energy conversion, and other areas are summarized. Finally, the major challenges that need to be addressed in this research field and the future perspective of nanofluidics development and practical applications are briefly illustrated.
Collapse
Affiliation(s)
- Pei Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| |
Collapse
|
7
|
Rastgar M, Moradi K, Burroughs C, Hemmati A, Hoek E, Sadrzadeh M. Harvesting Blue Energy Based on Salinity and Temperature Gradient: Challenges, Solutions, and Opportunities. Chem Rev 2023; 123:10156-10205. [PMID: 37523591 DOI: 10.1021/acs.chemrev.3c00168] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Greenhouse gas emissions associated with power generation from fossil fuel combustion account for 25% of global emissions and, thus, contribute greatly to climate change. Renewable energy sources, like wind and solar, have reached a mature stage, with costs aligning with those of fossil fuel-derived power but suffer from the challenge of intermittency due to the variability of wind and sunlight. This study aims to explore the viability of salinity gradient power, or "blue energy", as a clean, renewable source of uninterrupted, base-load power generation. Harnessing the salinity gradient energy from river estuaries worldwide could meet a substantial portion of the global electricity demand (approximately 7%). Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are more prominent technologies for blue energy harvesting, whereas thermo-osmotic energy conversion (TOEC) is emerging with new promise. This review scrutinizes the obstacles encountered in developing osmotic power generation using membrane-based methods and presents potential solutions to overcome challenges in practical applications. While certain strategies have shown promise in addressing some of these obstacles, further research is still required to enhance the energy efficiency and feasibility of membrane-based processes, enabling their large-scale implementation in osmotic energy harvesting.
Collapse
Affiliation(s)
- Masoud Rastgar
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Kazem Moradi
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Cassie Burroughs
- Department of Chemical & Materials Engineering, University of Alberta, 12-263 Donadeo Innovation Centre for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Arman Hemmati
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Eric Hoek
- Department of Civil & Environmental Engineering, University of California Los Angeles (UCLA), Los Angeles, California 90095-1593, United States
- Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
8
|
Wang J, Zhou H, Li S, Wang L. Selective Ion Transport in Two-Dimensional Lamellar Nanochannel Membranes. Angew Chem Int Ed Engl 2023; 62:e202218321. [PMID: 36718075 DOI: 10.1002/anie.202218321] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Precise and ultrafast ion sieving is highly desirable for many applications in environment-, energy-, and resource-related fields. The development of a permselective lamellar membrane constructed from parallel stacked two-dimensional (2D) nanosheets opened a new avenue for the development of next-generation separation technology because of the unprecedented diversity of the designable interior nanochannels. In this Review, we first discuss the construction of homo- and heterolaminar nanoarchitectures from the starting materials to the emerging preparation strategies. We then explore the property-performance relationships, with a particular emphasis on the effects of physical structural features, chemical properties, and external environment stimuli on ion transport behavior under nanoconfinement. We also present existing and potential applications of 2D membranes in desalination, ion recovery, and energy conversion. Finally, we discuss the challenges and outline research directions in this promising field.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Huijiao Zhou
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Shangzhen Li
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Lei Wang
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| |
Collapse
|
9
|
Polydopamine functionalized graphene oxide membrane with the sandwich structure for osmotic energy conversion. J Colloid Interface Sci 2023; 630:795-803. [DOI: 10.1016/j.jcis.2022.10.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
|