1
|
Louie S, Jiang Q, Wisniewski DJ, Bao ST, Zhang H, Chivukula K, Fang Q, Garudapalli A, Docherty SR, Ng F, Steigerwald M, Zhong Y, Khodagholy D, Nuckolls C. Contorted acene ribbons for stable and ultrasensitive neural probes. SCIENCE ADVANCES 2025; 11:eadu2356. [PMID: 40173228 PMCID: PMC11963965 DOI: 10.1126/sciadv.adu2356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Organic materials that conduct both electrons and ions are integral to implantable bioelectronics because of their conformable nature. There is a dearth of these materials that are highly sensitive to cations, which are the majority ions on the surface of neurons. This manuscript offers a solution using an extended ribbon structure that is defect-free, providing high electronic mobility along its fused backbone, while the edge structure of these ribbons promotes high ionic conductivity. We incorporated these mixed ion/electron conductors into neural probes and implanted them in a rodent brain where they offer a suite of useful properties: high cation sensitivity, stability over several weeks after implantation, and biocompatibility. These materials represent an innovative class of implantable biosensors.
Collapse
Affiliation(s)
- Shayan Louie
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Qifeng Jiang
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Duncan J. Wisniewski
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Si Tong Bao
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Honghu Zhang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kaushik Chivukula
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Qiyi Fang
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ashutosh Garudapalli
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Scott R. Docherty
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Fay Ng
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | - Yu Zhong
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Dion Khodagholy
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
2
|
Jung T, Zeng N, Fabbri JD, Eichler G, Li Z, Zabeh E, Das A, Willeke K, Wingel KE, Dubey A, Huq R, Sharma M, Hu Y, Ramakrishnan G, Tien K, Mantovani P, Parihar A, Yin H, Oswalt D, Misdorp A, Uguz I, Shinn T, Rodriguez GJ, Nealley C, Sanborn S, Gonzales I, Roukes M, Knecht J, Yoshor D, Canoll P, Spinazzi E, Carloni LP, Pesaran B, Patel S, Jacobs J, Youngerman B, Cotton RJ, Tolias A, Shepard KL. Stable, chronic in-vivo recordings from a fully wireless subdural-contained 65,536-electrode brain-computer interface device. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.17.594333. [PMID: 38798494 PMCID: PMC11118429 DOI: 10.1101/2024.05.17.594333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Minimally invasive, high-bandwidth brain-computer-interface (BCI) devices can revolutionize human applications. With orders-of-magnitude improvements in volumetric efficiency over other BCI technologies, we developed a 50-μm-thick, mechanically flexible micro-electrocorticography (μECoG) BCI, integrating a 256×256 array of electrodes, signal processing, data telemetry, and wireless powering on a single complementary metal-oxide-semiconductor (CMOS) substrate containing 65,536 recording channels, from which we can simultaneously record a selectable subset of up to 1024 channels at a given time. Fully implanted below the dura, our chip is wirelessly powered, communicating bi-directionally with an external relay station outside the body. We demonstrated chronic, reliable recordings for up to two weeks in pigs and up to two months in behaving non-human primates from somatosensory, motor, and visual cortices, decoding brain signals at high spatiotemporal resolution.
Collapse
Affiliation(s)
- Taesung Jung
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Nanyu Zeng
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Jason D. Fabbri
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Guy Eichler
- Department of Computer Science, Columbia University; New York, NY 10027, USA
| | - Zhe Li
- Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
| | - Erfan Zabeh
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
| | - Anup Das
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
| | - Konstantin Willeke
- Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
- Institute of Computer Science and Campus Institute Data Science, University of Göttingen; Germany
| | - Katie E. Wingel
- Center for Neural Science, New York University; New York, NY 10003, USA
- Department of Neurosurgery, University of Pennsylvania; Philadelphia PA 19118, USA
| | - Agrita Dubey
- Center for Neural Science, New York University; New York, NY 10003, USA
- Department of Neurosurgery, University of Pennsylvania; Philadelphia PA 19118, USA
| | - Rizwan Huq
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Mohit Sharma
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Yaoxing Hu
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Girish Ramakrishnan
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Kevin Tien
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Paolo Mantovani
- Department of Computer Science, Columbia University; New York, NY 10027, USA
| | - Abhinav Parihar
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Heyu Yin
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Denise Oswalt
- Department of Neurosurgery, University of Pennsylvania; Philadelphia PA 19118, USA
- Department of Neuroscience, University of Pennsylvania; Philadelphia, PA 19118, USA
- Department of Bioengineering, University of Pennsylvania; Philadelphia, PA 19118, USA
| | - Alexander Misdorp
- Department of Computer Science, Columbia University; New York, NY 10027, USA
| | - Ilke Uguz
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Tori Shinn
- Department of Bioengineering, University of Pennsylvania; Philadelphia, PA 19118, USA
| | - Gabrielle J. Rodriguez
- Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
| | - Cate Nealley
- Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
| | - Sophia Sanborn
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
| | - Ian Gonzales
- Department of Neurological Surgery, Columbia University; New York, NY 10032, USA
| | - Michael Roukes
- Departments of Physics, Applied Physics, and Bioengineering, Caltech; Pasadena, CA 91125, USA
| | - Jeffrey Knecht
- Lincoln Laboratory, Massachusetts Institute of Technology; Lexington, MA 02421, USA
| | - Daniel Yoshor
- Department of Neurosurgery, University of Pennsylvania; Philadelphia PA 19118, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University; New York, NY 10032, USA
| | - Eleonora Spinazzi
- Department of Neurological Surgery, Columbia University; New York, NY 10032, USA
| | - Luca P. Carloni
- Department of Computer Science, Columbia University; New York, NY 10027, USA
| | - Bijan Pesaran
- Center for Neural Science, New York University; New York, NY 10003, USA
- Department of Neurosurgery, University of Pennsylvania; Philadelphia PA 19118, USA
- Department of Neuroscience, University of Pennsylvania; Philadelphia, PA 19118, USA
- Department of Bioengineering, University of Pennsylvania; Philadelphia, PA 19118, USA
| | - Saumil Patel
- Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
- Department of Neurological Surgery, Columbia University; New York, NY 10032, USA
| | - Brett Youngerman
- Department of Neurological Surgery, Columbia University; New York, NY 10032, USA
| | - R. James Cotton
- Shirley Ryan Ability Labs; Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University; Chicago, IL, USA
| | - Andreas Tolias
- Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
- Center for Neuroscience and Artificial Intelligence, Department of Neuroscience, Baylor College of Medicine; Houston, TX 77030, USA
- Department of Electrical Engineering, Stanford University; Stanford, CA 94304, USA
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
- Department of Neurological Surgery, Columbia University; New York, NY 10032, USA
| |
Collapse
|
3
|
Wisniewski DJ, Ma L, Rauhala OJ, Cea C, Zhao Z, Ranschaert A, Gelinas JN, Khodagholy D. Spatial control of doping in conducting polymers enables complementary, conformable, implantable internal ion-gated organic electrochemical transistors. Nat Commun 2025; 16:517. [PMID: 39788930 PMCID: PMC11717955 DOI: 10.1038/s41467-024-55284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Complementary transistors are critical for circuits with compatible input/output signal dynamic range and polarity. Organic electronics offer biocompatibility and conformability; however, generation of complementary organic transistors requires introduction of separate materials with inadequate stability and potential for tissue toxicity, limiting their use in biomedical applications. Here, we discovered that introduction of source/drain contact asymmetry enables spatial control of de/doping and creation of single-material complementary organic transistors from a variety of conducting polymers of both carrier types. When integrated with the vertical channel design and internal ion reservoirs of internal ion-gated organic electrochemical transistors, we produced matched complementary IGTs (cIGTs) that formed high-performance conformable amplifiers with 200 V/V uniform gain and 2 MHz bandwidth. These amplifiers showed long-term in vivo stability, and their miniaturized biocompatible design allowed implantation in developing rodents to monitor network maturation. cIGTs expand the use of organic electronics in standard circuit designs and enhance their biomedical potential.
Collapse
Affiliation(s)
- Duncan J Wisniewski
- Department of Electrical Engineering, University of California, Irvine, CA, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Liang Ma
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Onni J Rauhala
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Claudia Cea
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | | | - Jennifer N Gelinas
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Pediatrics, University of California, Irvine, CA, USA.
- Children's Hospital of Orange County, Orange, CA, USA.
| | - Dion Khodagholy
- Department of Electrical Engineering, University of California, Irvine, CA, USA.
- Department of Electrical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Rauhala OJ, Ma L, Wisniewski DJ, Shao S, Schumacher B, Lopez JF, Kaspers M, Zhao Z, Gelinas JN, Khodagholy D. E-Suture: Mixed-Conducting Suture for Medical Devices. Adv Healthc Mater 2024; 13:e2302613. [PMID: 38150402 PMCID: PMC11338356 DOI: 10.1002/adhm.202302613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Modern implantable bioelectronics demand soft, biocompatible components that make robust, low-impedance connections with the body and circuit elements. Concurrently, such technologies must demonstrate high efficiency, with the ability to interface between the body's ionic and external electronic charge carriers. Here, a mixed-conducting suture, the e-suture, is presented. Composed of silk, the conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), and insulating jacketing polymers,the resulting e-suture has mixed-conducting properties at the interface with biological tissue as well as effective insulation along its length. The e-suture can be mechanically integrated into electronics, enabling the acquisition of biopotentials such as electrocardiograms, electromyograms, and local field potentials (LFP). Chronic, in vivo acquisition of LFP with e-sutures remains stable for months with robust brain activity patterns. Furthermore, e-sutures can establish electrophoretic-based local drug delivery, potentially offering enhanced anatomical targeting and decreased side effects associated with systemic administration, while maintaining an electrically conducting interface for biopotential monitoring. E-sutures expand on the conventional role of sutures and wires by providing a soft, biocompatible, and mechanically sound structure that additionally has multifunctional capacity for sensing, stimulation, and drug delivery.
Collapse
Affiliation(s)
- Onni J Rauhala
- Department of Electrical Engineering, Columbia University, New York, 10027, USA
| | - Liang Ma
- Department of Biomedical Engineering, Columbia University, New York, 10027, USA
| | - Duncan J Wisniewski
- Department of Electrical Engineering, Columbia University, New York, 10027, USA
| | - Shan Shao
- Department of Neurology, Columbia University Irving Medical Center, New York, 10032, USA
| | - Brandon Schumacher
- Department of Neurology, Columbia University Irving Medical Center, New York, 10032, USA
| | - Jose Ferrero Lopez
- Department of Neurology, Columbia University Irving Medical Center, New York, 10032, USA
| | - Mara Kaspers
- Department of Biomedical Engineering, Columbia University, New York, 10027, USA
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, 10027, USA
| | - Jennifer N Gelinas
- Department of Biomedical Engineering, Columbia University, New York, 10027, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, 10032, USA
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, 10027, USA
| |
Collapse
|
5
|
Cuttaz EA, Bailey ZK, Chapman CAR, Goding JA, Green RA. Polymer Bioelectronics: A Solution for Both Stimulating and Recording Electrodes. Adv Healthc Mater 2024; 13:e2304447. [PMID: 38775757 DOI: 10.1002/adhm.202304447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/31/2024] [Indexed: 06/01/2024]
Abstract
The advent of closed-loop bionics has created a demand for electrode materials that are ideal for both stimulating and recording applications. The growing complexity and diminishing size of implantable devices for neural interfaces have moved beyond what can be achieved with conventional metallic electrode materials. Polymeric electrode materials are a recent development based on polymer composites of organic conductors such as conductive polymers. These materials present exciting new opportunities in the design and fabrication of next-generation electrode arrays which can overcome the electrochemical and mechanical limitations of conventional electrode materials. This review will examine the recent developments in polymeric electrode materials, their application as stimulating and recording electrodes in bionic devices, and their impact on the development of soft, conformal, and high-density neural interfaces.
Collapse
Affiliation(s)
- Estelle A Cuttaz
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK
| | - Zachary K Bailey
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK
| | - Christopher A R Chapman
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Josef A Goding
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK
| | - Rylie A Green
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK
| |
Collapse
|
6
|
Ma L, Wisniewski DJ, Cea C, Khodagholy D, Gelinas JN. High-Density, Conformable Conducting Polymer-Based Implantable Neural Probes for the Developing Brain. Adv Healthc Mater 2024; 13:e2304164. [PMID: 38591809 PMCID: PMC11421980 DOI: 10.1002/adhm.202304164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Neurologic and neuropsychiatric disorders substantially impact the pediatric population, but there is a lack of dedicated devices for monitoring the developing brain in animal models, leading to gaps in mechanistic understanding of how brain functions emerge and their disruption in disease states. Due to the small size, fragility, and high water content of immature neural tissue, as well as the absence of a hardened skull to mechanically support rigid devices, conventional neural interface devices are poorly suited to acquire brain signals without inducing damage. Here, the authors design conformable, implantable, conducting polymer-based probes (NeuroShanks) for precise targeting in the developing mouse brain without the need for skull-attached, rigid mechanical support structures. These probes enable the acquisition of high spatiotemporal resolution neurophysiologic activity from superficial and deep brain regions across unanesthetized behavioral states without causing tissue disruption or device failure. Once implanted, probes are mechanically stable and permit precise, stable signal monitoring at the level of the local field potential and individual action potentials. These results support the translational potential of such devices for clinically indicated neurophysiologic recording in pediatric patients. Additionally, the role of organic bioelectronics as an enabling technology to address questions in developmental neuroscience is revealed.
Collapse
Affiliation(s)
- Liang Ma
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Duncan J Wisniewski
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Claudia Cea
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jennifer N Gelinas
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
7
|
Gou S, Yang S, Cheng Y, Yang S, Liu H, Li P, Du Z. Applications of 2D Nanomaterials in Neural Interface. Int J Mol Sci 2024; 25:8615. [PMID: 39201302 PMCID: PMC11354839 DOI: 10.3390/ijms25168615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Neural interfaces are crucial conduits between neural tissues and external devices, enabling the recording and modulation of neural activity. However, with increasing demand, simple neural interfaces are no longer adequate to meet the requirements for precision, functionality, and safety. There are three main challenges in fabricating advanced neural interfaces: sensitivity, heat management, and biocompatibility. The electrical, chemical, and optical properties of 2D nanomaterials enhance the sensitivity of various types of neural interfaces, while the newly developed interfaces do not exhibit adverse reactions in terms of heat management and biocompatibility. Additionally, 2D nanomaterials can further improve the functionality of these interfaces, including magnetic resonance imaging (MRI) compatibility, stretchability, and drug delivery. In this review, we examine the recent applications of 2D nanomaterials in neural interfaces, focusing on their contributions to enhancing performance and functionality. Finally, we summarize the advantages and disadvantages of these nanomaterials, analyze the importance of biocompatibility testing for 2D nanomaterials, and propose that improving and developing composite material structures to enhance interface performance will continue to lead the forefront of this field.
Collapse
Affiliation(s)
- Shuchun Gou
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Siyi Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Yuhang Cheng
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shu Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Hongli Liu
- Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou 510642, China;
| | - Peixuan Li
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Zhanhong Du
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.G.); (S.Y.); (Y.C.); (S.Y.); (P.L.)
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| |
Collapse
|
8
|
Lo YT, Jiang L, Woodington B, Middya S, Braendlein M, Lam JLW, Lim MJR, Ng VYP, Rao JP, Chan DWS, Ang BT. Recording of single-unit activities with flexible micro-electrocorticographic array in rats for decoding of whole-body navigation. J Neural Eng 2024; 21:046037. [PMID: 38986465 DOI: 10.1088/1741-2552/ad618c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Objective.Micro-electrocorticographic (μECoG) arrays are able to record neural activities from the cortical surface, without the need to penetrate the brain parenchyma. Owing in part to small electrode sizes, previous studies have demonstrated that single-unit spikes could be detected from the cortical surface, and likely from Layer I neurons of the neocortex. Here we tested the ability to useμECoG arrays to decode, in rats, body position during open field navigation, through isolated single-unit activities.Approach. μECoG arrays were chronically implanted onto primary motor cortex (M1) of Wistar rats, and neural recording was performed in awake, behaving rats in an open-field enclosure. The signals were band-pass filtered between 300-3000 Hz. Threshold-crossing spikes were identified and sorted into distinct units based on defined criteria including waveform morphology and refractory period. Body positions were derived from video recordings. We used gradient-boosting machine to predict body position based on previous 100 ms of spike data, and correlation analyses to elucidate the relationship between position and spike patterns.Main results.Single-unit spikes could be extracted during chronic recording fromμECoG, and spatial position could be decoded from these spikes with a mean absolute error of prediction of 0.135 and 0.090 in the x- and y- dimensions (of a normalized range from 0 to 1), and Pearson's r of 0.607 and 0.571, respectively.Significance. μECoG can detect single-unit activities that likely arise from superficial neurons in the cortex and is a promising alternative to intracortical arrays, with the added benefit of scalability to cover large cortical surface with minimal incremental risks. More studies should be performed in human related to its use as brain-machine interface.
Collapse
Affiliation(s)
- Yu Tung Lo
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Lei Jiang
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore, Singapore
| | | | | | | | | | - Mervyn Jun Rui Lim
- Department of Neurosurgery, National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vincent Yew Poh Ng
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Jai Prashanth Rao
- Duke-NUS Medical School, Singapore, Singapore
- Department of Neurosurgery, Singapore General Hospital, Singapore, Singapore
| | | | - Beng Ti Ang
- Department of Neurosurgery, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
9
|
Boys AJ. There and Back Again: Building Systems That Integrate, Interface, and Interact with the Human Body. Adv Biol (Weinh) 2024; 8:e2300366. [PMID: 38400703 DOI: 10.1002/adbi.202300366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Since Dr. Theodor Schwann posed the extension of Cell Theory to mammals in 1839, scientists have dreamt up ways to interface with and influence the cells. Recently, considerable ground in this area is gained, particularly in the scope of bioelectronics. New advances in this area have provided with a means to record electrical activity from cells, examining neural firing or epithelial barrier integrity, and stimulate cells through applied electrical fields. Many of these applications utilize invasive implantation systems to perform this interaction in close proximity to the cells in question. Traditionally, the body's immune system fights back against these systems through the foreign body response, limiting the efficacy of long-term interactions. New technologies in tissue engineering, biomaterials science, and bioelectronics offer the potential to circumvent the foreign body response and create stable long-term biological interfaces. Looking ahead, the next advancements in the biomedical sciences can truly integrate, interface, and interact with the human body.
Collapse
Affiliation(s)
- Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| |
Collapse
|
10
|
Ferrero JJ, Hassan AR, Yu Z, Zhao Z, Ma L, Wu C, Shao S, Kawano T, Engel J, Doyle W, Devinsky O, Khodagholy D, Gelinas JN. Closed-loop electrical stimulation to prevent focal epilepsy progression and long-term memory impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579660. [PMID: 38405990 PMCID: PMC10888806 DOI: 10.1101/2024.02.09.579660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Interictal epileptiform discharges (IEDs) are ubiquitously expressed in epileptic networks and disrupt cognitive functions. It is unclear whether addressing IED-induced dysfunction could improve epilepsy outcomes as most therapeutics target seizures. We show in a model of progressive hippocampal epilepsy that IEDs produce pathological oscillatory coupling which is associated with prolonged, hypersynchronous neural spiking in synaptically connected cortex and expands the brain territory capable of generating IEDs. A similar relationship between IED-mediated oscillatory coupling and temporal organization of IEDs across brain regions was identified in human subjects with refractory focal epilepsy. Spatiotemporally targeted closed-loop electrical stimulation triggered on hippocampal IED occurrence eliminated the abnormal cortical activity patterns, preventing spread of the epileptic network and ameliorating long-term spatial memory deficits in rodents. These findings suggest that stimulation-based network interventions that normalize interictal dynamics may be an effective treatment of epilepsy and its comorbidities, with a low barrier to clinical translation. One-Sentence Summary Targeted closed-loop electrical stimulation prevents spread of the epileptic network and ameliorates long-term spatial memory deficits.
Collapse
|
11
|
Coughlin B, Muñoz W, Kfir Y, Young MJ, Meszéna D, Jamali M, Caprara I, Hardstone R, Khanna A, Mustroph ML, Trautmann EM, Windolf C, Varol E, Soper DJ, Stavisky SD, Welkenhuysen M, Dutta B, Shenoy KV, Hochberg LR, Mark Richardson R, Williams ZM, Cash SS, Paulk AC. Modified Neuropixels probes for recording human neurophysiology in the operating room. Nat Protoc 2023; 18:2927-2953. [PMID: 37697108 DOI: 10.1038/s41596-023-00871-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/08/2023] [Indexed: 09/13/2023]
Abstract
Neuropixels are silicon-based electrophysiology-recording probes with high channel count and recording-site density. These probes offer a turnkey platform for measuring neural activity with single-cell resolution and at a scale that is beyond the capabilities of current clinically approved devices. Our team demonstrated the first-in-human use of these probes during resection surgery for epilepsy or tumors and deep brain stimulation electrode placement in patients with Parkinson's disease. Here, we provide a better understanding of the capabilities and challenges of using Neuropixels as a research tool to study human neurophysiology, with the hope that this information may inform future efforts toward regulatory approval of Neuropixels probes as research devices. In perioperative procedures, the major concerns are the initial sterility of the device, maintaining a sterile field during surgery, having multiple referencing and grounding schemes available to de-noise recordings (if necessary), protecting the silicon probe from accidental contact before insertion and obtaining high-quality action potential and local field potential recordings. The research team ensures that the device is fully operational while coordinating with the surgical team to remove sources of electrical noise that could otherwise substantially affect the signals recorded by the sensitive hardware. Prior preparation using the equipment and training in human clinical research and working in operating rooms maximize effective communication within and between the teams, ensuring high recording quality and minimizing the time added to the surgery. The perioperative procedure requires ~4 h, and the entire protocol requires multiple weeks.
Collapse
Affiliation(s)
- Brian Coughlin
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - William Muñoz
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Yoav Kfir
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Michael J Young
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Domokos Meszéna
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mohsen Jamali
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Irene Caprara
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Richard Hardstone
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Arjun Khanna
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Martina L Mustroph
- Department of Neurosurgery, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Eric M Trautmann
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University Medical Center, New York, NY, USA
| | - Charlie Windolf
- Department of Statistics, Zuckerman Institute, Columbia University, New York, NY, USA
| | - Erdem Varol
- Department of Statistics, Zuckerman Institute, Columbia University, New York, NY, USA
- Department of Computer Science and Engineering, Zuckerman Institute, Columbia University, New York, NY, USA
| | - Dan J Soper
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Sergey D Stavisky
- Department of Neurological Surgery, University of California Davis, Davis, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| | | | | | - Krishna V Shenoy
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Leigh R Hochberg
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- School of Engineering and Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - R Mark Richardson
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA.
| | - Sydney S Cash
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Angelique C Paulk
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Armada-Moreira A, Dar AM, Zhao Z, Cea C, Gelinas J, Berggren M, Costa A, Khodagholy D, Stavrinidou E. Plant electrophysiology with conformable organic electronics: Deciphering the propagation of Venus flytrap action potentials. SCIENCE ADVANCES 2023; 9:eadh4443. [PMID: 37494449 PMCID: PMC10371018 DOI: 10.1126/sciadv.adh4443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Electrical signals in plants are mediators of long-distance signaling and correlate with plant movements and responses to stress. These signals are studied with single surface electrodes that cannot resolve signal propagation and integration, thus impeding their decoding and link to function. Here, we developed a conformable multielectrode array based on organic electronics for large-scale and high-resolution plant electrophysiology. We performed precise spatiotemporal mapping of the action potential (AP) in Venus flytrap and found that the AP actively propagates through the tissue with constant speed and without strong directionality. We also found that spontaneously generated APs can originate from unstimulated hairs and that they correlate with trap movement. Last, we demonstrate that the Venus flytrap circuitry can be activated by cells other than the sensory hairs. Our work reveals key properties of the AP and establishes the capacity of organic bioelectronics for resolving electrical signaling in plants contributing to the mechanistic understanding of long-distance responses in plants.
Collapse
Affiliation(s)
- Adam Armada-Moreira
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
- Neuronal Dynamics Lab, International School for Advanced Studies, 34136 Trieste TS, Italy
| | - Abdul Manan Dar
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Claudia Cea
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Jennifer Gelinas
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milano, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), 20133 Milano, Italy
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| |
Collapse
|
13
|
Ohayon D, Druet V, Inal S. A guide for the characterization of organic electrochemical transistors and channel materials. Chem Soc Rev 2023; 52:1001-1023. [PMID: 36637165 DOI: 10.1039/d2cs00920j] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The organic electrochemical transistor (OECT) is one of the most versatile devices within the bioelectronics toolbox, with its compatibility with aqueous media and the ability to transduce and amplify ionic and biological signals into an electronic output. The OECT operation relies on the mixed (ionic and electronic charge) conduction properties of the material in its channel. With the increased popularity of OECTs in bioelectronics applications and to benchmark mixed conduction properties of channel materials, the characterization methods have broadened somewhat heterogeneously. We intend this review to be a guide for the characterization methods of the OECT and the channel materials used. Our review is composed of two main sections. First, we review techniques to fabricate the OECT, introduce different form factors and configurations, and describe the device operation principle. We then discuss the OECT performance figures of merit and detail the experimental procedures to obtain these characteristics. In the second section, we shed light on the characterization of mixed transport properties of channel materials and describe how to assess films' interactions with aqueous electrolytes. In particular, we introduce experimental methods to monitor ion motion and diffusion, charge carrier mobility, and water uptake in the films. We also discuss a few theoretical models describing ion-polymer interactions. We hope that the guidelines we bring together in this review will help researchers perform a more comprehensive and consistent comparison of new materials and device designs, and they will be used to identify advances and opportunities to improve the device performance, progressing the field of organic bioelectronics.
Collapse
Affiliation(s)
- David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
14
|
Khodagholy D, Ferrero JJ, Park J, Zhao Z, Gelinas JN. Large-scale, closed-loop interrogation of neural circuits underlying cognition. Trends Neurosci 2022; 45:968-983. [PMID: 36404457 PMCID: PMC10437206 DOI: 10.1016/j.tins.2022.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Cognitive functions are increasingly understood to involve coordinated activity patterns between multiple brain regions, and their disruption by neuropsychiatric disorders is similarly complex. Closed-loop neurostimulation can directly modulate neural signals with temporal and spatial precision. How to leverage such an approach to effectively identify and target distributed neural networks implicated in mediating cognition remains unclear. We review current conceptual and technical advances in this area, proposing that devices that enable large-scale acquisition, integrated processing, and multiregion, arbitrary waveform stimulation will be critical for mechanistically driven manipulation of cognitive processes in physiological and pathological brain networks.
Collapse
Affiliation(s)
- Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
| | - Jose J Ferrero
- Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA
| | - Jaehyo Park
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA; Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA
| | - Jennifer N Gelinas
- Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA; Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA..
| |
Collapse
|