1
|
Zhang K, Mi Y, Zhang B, Xue X, Ding Y, Ma J, Yuan E, Zhao X, Zheng P. Preclinical application of a CD155 targeting chimeric antigen receptor T cell therapy for digestive system cancers. Oncogene 2025; 44:1463-1474. [PMID: 40025231 DOI: 10.1038/s41388-025-03322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Despite intensive multimodal therapy, the prognosis for patients with digestive system cancers remains poor. Cancer cell heterogeneity and immunosuppressive microenvironments are the main barriers to the effective CAR-T cell therapy with solid malignancies. In parallel, tumor-associated macrophages (TAMs) are essential for tumor immunosuppressive microenvironment formation. The limited efficacy of CAR-T cell therapy with solid malignancies prompted us to test whether new therapeutic target could enhance the antitumor activity of CAR-T cells with several digestive system cancer types. We determined CD155 expression in multiple human digestive system cancers, including gastric cancer, esophagus cancer, pancreatic cancer, and colon cancer, normal tissue samples and patient-derived M2-like tumor-associated macrophages. We developed a CD155-based CAR comprising the extracellular domain of human TIGIT, 4-1BB, and CD3z signaling domains (BBz). Furthermore, we validated the killing efficacy and safety of CD155-BBz CAR-T cells in vitro and in vivo using in-house established preclinical tumor models. CD155 was strongly and homogenously expressed in digestive system cancers but mildly in normal tissues, indicating it could be an ideal target for CAR-T cell therapy, moreover, TAMs that express CD155 possess an immunosuppressive M2-like profile. We found that CD155-BBz CAR-T cells can mediate significant antitumor activity in vivo, which induces complete tumor regression and long-lasting immunologic memory of established solid tumors in xenograft models. Our study indicates that CD155 is a promising target for digestive system cancer therapy, and CD155-targeting CAR-T cells perform a detecting power in digestive system cancer clinical trials.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, 450052, Zhengzhou, Henan, China.
| | - Yang Mi
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bohao Zhang
- Department of Medicine Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xia Xue
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yangnan Ding
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, 450052, Zhengzhou, Henan, China
| | - Jun Ma
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, 450052, Zhengzhou, Henan, China
| | - Enwu Yuan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, 450052, Zhengzhou, Henan, China.
| | - Xin Zhao
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- The Radiology Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - PengYuan Zheng
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
2
|
Clements AN, Casillas AL, Flores CE, Liou H, Toth RK, Chauhan SS, Sutterby K, Deshmukh SK, Wu S, Xiu J, Farrell A, Radovich M, Nabhan C, Heath EI, McKay RR, Subah N, Centuori S, Weeler TJ, Cress AE, Rogers GC, Wilson JE, Recio-Boiles A, Warfel NA. Inhibition of PIM Kinase in Tumor-Associated Macrophages Suppresses Inflammasome Activation and Sensitizes Prostate Cancer to Immunotherapy. Cancer Immunol Res 2025; 13:633-645. [PMID: 39982419 PMCID: PMC12048269 DOI: 10.1158/2326-6066.cir-24-0591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/26/2024] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Immune checkpoint inhibitors (ICI) have changed the treatment paradigm for many cancers but have not shown benefit in prostate cancer. Chronic inflammation contributes to the immunosuppressive prostate tumor microenvironment and is associated with poor response to ICIs. The primary source of inflammatory cytokine production is the inflammasome. In this study, we identify the proviral integration site for Moloney murine leukemia virus (PIM) kinases as regulators of inflammasome activation in tumor-associated macrophages (TAM). The analysis of clinical data from a cohort of patients with treatment-naïve, hormone-responsive prostate cancer revealed that tumors from patients with high PIM1/2/3 displayed an immunosuppressive tumor microenvironment characterized by high inflammation and a high density of repressive immune cells, most notably TAMs. Macrophage-specific knockout of PIM reduced tumor growth in syngeneic models of prostate cancer. Transcriptional analyses indicated that eliminating PIM from macrophages enhanced the adaptive immune response and increased cytotoxic immune cells. Combined treatment with PIM inhibitors and ICIs synergistically reduced tumor growth. Immune profiling revealed that PIM inhibitors sensitized prostate cancer tumors to ICIs by increasing tumor suppressive TAMs and increasing the activation of cytotoxic T cells. Our data implicate macrophage PIM as a driver of inflammation that limits ICI potency and provide preclinical evidence that PIM inhibitors are an effective strategy to improve the ICI efficacy in prostate cancer.
Collapse
Affiliation(s)
| | | | | | - Hope Liou
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ
| | | | | | | | | | | | | | | | | | | | | | | | - Noor Subah
- University of Arizona Health Sciences, Tucson, AZ
| | | | | | - Anne E. Cress
- University of Arizona Cancer Center, Tucson, AZ
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Gregory C. Rogers
- University of Arizona Cancer Center, Tucson, AZ
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Justin E. Wilson
- University of Arizona Cancer Center, Tucson, AZ
- Department of Immunobiology, University of Arizona, Tucson, AZ
| | - Alejandro Recio-Boiles
- University of Arizona Cancer Center, Tucson, AZ
- Department of Medicine, University of Arizona, Tucson, AZ
| | - Noel A. Warfel
- University of Arizona Cancer Center, Tucson, AZ
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
3
|
Kellen S, Makovec A, Miller CD, Nazari SS, Elliott A, Deacon A, John E, Vobugari N, Agarwal N, McKay RR, Barata PC, Ryan CJ, Sharifi N, Hwang J, Antonarakis ES. The Influence of the Germline HSD3B1 Adrenal-Permissive Allele (c.1100 C) on the Somatic Alteration Landscape, the Transcriptome, and Immune Cell Infiltration in Prostate Cancer. Cancers (Basel) 2025; 17:1270. [PMID: 40282446 PMCID: PMC12025685 DOI: 10.3390/cancers17081270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The germline polymorphism in the HSD3B1 gene (c.1100 C) results in adrenal-permissive (CC) or adrenal-restrictive (AA) functions of the protein product by regulating the production of high-affinity ligands that activate androgen signaling. Prior studies have indicated that the CC genotype is associated with worse response to hormonal therapies in prostate cancer (PC) patients. Methods: To characterize the impact of germline HSD3B1 variants on somatic tumor features, we examined 6550 primary and metastatic PCs from the Caris Life Sciences database, in which the genomic and transcriptomic landscapes were acquired via paired whole-exome/whole-transcriptome sequencing. Results: The overall prevalence of the HSD3B1 AA genotype (restrictive-homozygous) was 48.8%, AC (permissive-heterozygous) was 32.8%, and CC (permissive-homozygous) was 14.9%. There was enrichment of the CC genotype in these PC patients as compared to prior reports that examined non-cancerous populations. However, the rates of the CC genotype varied between metastatic site and by race. Compared to the AA genotype, tumors harboring the CC genotype did not demonstrate increased AR alterations, nor higher expression of AR, FOXA1, HOXB13, or AR signaling signatures. We instead found significant changes in immune-associated hallmark pathways, immune cell fractions, and biomarkers that inform the use of immune therapies (TMB-high, MSI-high). Further, the CC and AA genotypes exhibited notable differences in the expression of immunoglobulins, MHC class I/II molecules, and cell surface targets. The differences in expression by HSD3B1 genotype were especially notable in lung and liver metastases. Conclusions: Our study indicates that in prostate cancers, HSD3B1 germline c.1100 allele status may not directly influence tumor-intrinsic genomics but is associated with novel functions beyond androgen signaling.
Collapse
Affiliation(s)
- Samuel Kellen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (S.K.); (A.M.); (A.D.); (E.J.)
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA;
| | - Allison Makovec
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (S.K.); (A.M.); (A.D.); (E.J.)
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA;
| | - Carly D. Miller
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (S.K.); (A.M.); (A.D.); (E.J.)
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA;
| | | | | | - Aiden Deacon
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (S.K.); (A.M.); (A.D.); (E.J.)
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA;
| | - Emily John
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (S.K.); (A.M.); (A.D.); (E.J.)
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA;
| | - Nikitha Vobugari
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA;
| | - Neeraj Agarwal
- Division of Hematology and Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake, UT 84112, USA;
| | - Rana R. McKay
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, CA 92093, USA;
| | - Pedro C. Barata
- University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Charles J. Ryan
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Nima Sharifi
- Desai Sethi Urology Institute and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Justin Hwang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (S.K.); (A.M.); (A.D.); (E.J.)
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA;
| | - Emmanuel S. Antonarakis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (S.K.); (A.M.); (A.D.); (E.J.)
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA;
| |
Collapse
|
4
|
Li D, Wang Z, Yu Q, Wang J, Wu R, Tuo Z, Yoo KH, Wusiman D, Ye L, Guo Y, Yang Y, Shao F, Shu Z, Okoli U, Cho WC, Wei W, Feng D. Tracing the Evolution of Sex Hormones and Receptor-Mediated Immune Microenvironmental Differences in Prostate and Bladder Cancers: From Embryonic Development to Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407715. [PMID: 40007149 PMCID: PMC11967776 DOI: 10.1002/advs.202407715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Indexed: 02/27/2025]
Abstract
The bladder and prostate originate from the urogenital sinus. However, bladder cancer (BC) is usually classified as an immune "hot" tumor, whereas prostate cancer (PCa) is deemed as an immune "cold" tumor according to the tumor microenvironment (TME) and clinical outcomes. To investigate the immune differences between BC and PCa, studies are compared focusing on immune regulation mediated by sex hormones and receptors to identify key genes and pathways responsible for the immune differences. From a developmental perspective, it is shown that PCa and BC activate genes and pathways similar to those in the developmental stage. During prostate development, the differential expression and function of the androgen receptor (AR) across cell types may contribute to its dual role in promoting and inhibiting immunity in different cells. Androgen deprivation therapy affects AR function in different cells within the TME, influencing immune cell infiltration and antitumor function. Additionally, estrogenα and estrogenβ exert contrasting effects in PCa and BC, which may hold the potential for modifying the "cold" and "hot" tumor phenotypes. Future research should target key genes and pathways involved in bladder development to clarify the immune regulatory similarities and differences between BC and PCa.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Zhipeng Wang
- Department of UrologySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610041China
| | - Qingxin Yu
- Department of pathologyNingbo Clinical Pathology Diagnosis CenterNingbo CityZhejiang Province315211China
| | - Jie Wang
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Ruicheng Wu
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Zhouting Tuo
- Department of Urological SurgeryDaping HospitalArmy Medical Center of PLAArmy Medical UniversityChongqing404100China
| | - Koo Han Yoo
- Department of UrologyKyung Hee UniversitySeoul04510South Korea
| | - Dilinaer Wusiman
- Department of Comparative PathobiologyCollege of Veterinary MedicinePurdue UniversityWest LafayetteIN47907USA
- Purdue Institute for Cancer ResearchPurdue UniversityWest LafayetteIN47907USA
| | - Luxia Ye
- Department of Public Research PlatformTaizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityLinhai317000China
| | - Yiqing Guo
- Department of Public Research PlatformTaizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityLinhai317000China
| | - Yubo Yang
- Department of UrologyThree Gorges HospitalChongqing UniversityWanzhouChongqing404000China
| | - Fanglin Shao
- Department of RehabilitationThe Affiliated Hospital of Southwest Medical UniversityLuzhou646000P. R. China
| | - Ziyu Shu
- Department of Earth Science and EngineeringImperial College LondonLondonSW7 2AZUK
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education)Chongqing UniversityChongqing400045China
| | - Uzoamaka Okoli
- Division of Surgery & Interventional ScienceUniversity College LondonLondonW1W 7TSUK
- Basic and Translational Cancer Research GroupDepartment of Pharmacology and TherapeuticsCollege of MedicineUniversity of NigeriaEnugu StateNsukka410001Eastern part of Nigeria
| | - William C. Cho
- Department of Clinical OncologyQueen Elizabeth HospitalHong KongSAR999077China
| | - Wuran Wei
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Dechao Feng
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
- Division of Surgery & Interventional ScienceUniversity College LondonLondonW1W 7TSUK
| |
Collapse
|
5
|
Li C, Cheng D, Li P. Androgen receptor dynamics in prostate cancer: from disease progression to treatment resistance. Front Oncol 2025; 15:1542811. [PMID: 40008000 PMCID: PMC11850250 DOI: 10.3389/fonc.2025.1542811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Prostate cancer is the most common cancer among men worldwide, especially in those over 65, and is a leading cause of cancer-related mortality. The disease typically advances from an androgen-dependent state to castration-resistant prostate cancer (CRPC), which poses significant treatment challenges. The androgen receptor (AR) on the X chromosome is a central driver in this process, activating genes that govern proliferation and survival. Mutations and amplifications of the AR are closely associated with disease progression and treatment resistance. While traditional therapies such as androgen deprivation therapy (ADT) and AR antagonists like enzalutamide have been effective, resistance persists due to reactivation of AR signaling through mechanisms like ligand-independent activation. Recent research highlights the role of epigenetic modifications in enhancing AR activity and drug resistance. The tumor microenvironment, particularly interactions with cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), further complicates treatment by promoting aggressive tumor behavior and immune evasion. Future directions include developing next-generation AR antagonists, identifying AR-related biomarkers for personalized therapy, and exploring combinations with immune checkpoint inhibitors. Additionally, basal cell-lumen-derived organoids provide innovative models that can enhance understanding and treatment strategies in prostate cancer.
Collapse
Affiliation(s)
| | | | - Peng Li
- Center for Reproductive Medicine, Shenyang Jinghua Hospital, Shenyang, China
| |
Collapse
|
6
|
Jumaniyazova E, Lokhonina A, Dzhalilova D, Miroshnichenko E, Kosyreva A, Fatkhudinov T. The Role of Macrophages in Various Types of Tumors and the Possibility of Their Use as Targets for Antitumor Therapy. Cancers (Basel) 2025; 17:342. [PMID: 39941714 PMCID: PMC11815841 DOI: 10.3390/cancers17030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
In solid tumors, tumor-associated macrophages (TAMs) are one of the most numerous populations and play an important role in the processes of tumor cell invasion, metastasis, and angiogenesis. Therefore, TAMs are considered promising diagnostic and prognostic biomarkers of tumors, and many attempts have been made to influence these cells as part of antitumor therapy. There are several key principles of action on ТАМs: the inhibition of monocyte/macrophage transition; the destruction of macrophages; the reprogramming of macrophage phenotypes (polarization of M2 macrophages to M1); the stimulation of phagocytic activity of macrophages and CAR-M therapy. Despite the large number of studies in this area, to date, there are no adequate approaches using antitumor therapy based on alterations in TAM functioning that would show high efficacy when administered in a mono-regimen for the treatment of malignant neoplasms. Studies devoted to the evaluation of the efficacy of drugs acting on TAMs are characterized by a small sample and the large heterogeneity of patient groups; in addition, in such studies, chemotherapy or immunotherapy is used, which significantly complicates the evaluation of the effectiveness of the agent acting on TAMs. In this review, we attempted to systematize the evidence on attempts to influence TAMs in malignancies such as lung cancer, breast cancer, colorectal cancer, cervical cancer, prostate cancer, gastric cancer, head and neck squamous cell cancer, and soft tissue sarcomas.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Dzhuliia Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Ekaterina Miroshnichenko
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| |
Collapse
|
7
|
He S, Zheng L, Qi C. Myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment and their targeting in cancer therapy. Mol Cancer 2025; 24:5. [PMID: 39780248 PMCID: PMC11707952 DOI: 10.1186/s12943-024-02208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
The advent of immunotherapy represents a significant breakthrough in cancer treatment, with immune checkpoint inhibitors (ICIs) targeting PD-1 and CTLA-4 demonstrating remarkable therapeutic efficacy. However, patient responses to immunotherapy vary significantly, with immunosuppression within the tumor microenvironment (TME) being a critical factor influencing this variability. Immunosuppression plays a pivotal role in regulating cancer progression, metastasis, and reducing the success rates of immunotherapy. Myeloid-derived suppressor cells (MDSCs), due to their potent immunosuppressive capabilities, emerged as major negative regulators within the TME, facilitating tumor immune evasion by modulating various immune cells. In addition to their immunosuppressive functions, MDSCs also promote tumor growth and metastasis through non-immunological mechanisms, such as angiogenesis and the formation of pre-metastatic niches. Consequently, MDSCs in the TME are key regulators of cancer immune responses and potential therapeutic targets in cancer treatment. This review describes the origins and phenotypes of MDSCs, their biological roles in tumor progression, and regulatory mechanisms, with a focus on current therapeutic approaches targeting tumor-associated MDSCs. Furthermore, the synergistic effects of targeting MDSCs in combination with immunotherapy are explored, aiming to provide new insights and directions for cancer therapy.
Collapse
Affiliation(s)
- Shuyan He
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
| | - Lu Zheng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Chunjian Qi
- Laboratory of Oncology, Basic Research Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
8
|
Clements AN, Casillas AL, Flores CE, Liou H, Toth RK, Chauhan SS, Sutterby K, Deshmukh SK, Wu S, Xiu J, Farrell A, Radovich M, Nabhan C, Heath EI, McKay RR, Subah N, Centuori S, Wheeler TJ, Cress AE, Rogers GC, Wilson JE, Recio-Boiles A, Warfel NA. Inhibition of PIM kinase in tumor associated macrophages suppresses inflammasome activation and sensitizes prostate cancer to immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.618756. [PMID: 39484473 PMCID: PMC11526960 DOI: 10.1101/2024.10.21.618756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Immunotherapy has changed the treatment paradigm for many types of cancer, but immune checkpoint inhibitors (ICIs) have not shown benefit in prostate cancer (PCa). Chronic inflammation contributes to the immunosuppressive prostate tumor microenvironment (TME) and is associated with poor response to ICIs. The primary source of inflammatory cytokine production is the inflammasome. Here, we identify PIM kinases as important regulators of inflammasome activation in tumor associated macrophages (TAMs). Analysis of clinical data from a cohort of treatment naïve, hormone responsive PCa patients revealed that tumors from patients with high PIM1/2/3 display an immunosuppressive TME characterized by high inflammation (IL-1β and TNFα) and a high density of repressive immune cells, most notably TAMs. Strikingly, macrophage-specific knockout of PIM reduced tumor growth in syngeneic models of prostate cancer. Transcriptional analyses indicate that eliminating PIM from macrophages enhanced the adaptive immune response and increased cytotoxic immune cells. Combined treatment with PIM inhibitors and ICIs synergistically reduced tumor growth. Immune profiling revealed that PIM inhibitors sensitized PCa tumors to ICIs by increasing tumor suppressive TAMs and increasing the activation of cytotoxic T cells. Collectively, our data implicate macrophage PIM as a driver of inflammation that limits the potency of ICIs and provides preclinical evidence that PIM inhibitors are an effective strategy to improve the efficacy of immunotherapy in prostate cancer.
Collapse
|
9
|
Guo J, Zhao J, Tian P, Xu Z, Wang R, Chen W, Wang X, Wan S, Yang Y, Zhang H. BaP/BPDE exposure causes human trophoblast cell dysfunctions and induces miscarriage by up-regulating lnc-HZ06-regulated IL1B. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134741. [PMID: 38991640 DOI: 10.1016/j.jhazmat.2024.134741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 07/13/2024]
Abstract
Exposure to environmental BaP or its metabolite BPDE causes trophoblast cell dysfunctions to induce miscarriage (abnormal early embryo loss), which might be generally regulated by lncRNAs. IL1B, a critical inflammatory cytokine, is closely associated with adverse pregnancy outcomes. However, whether IL1B might cause dysfunctions of BaP/BPDE-exposed trophoblast cells to induce miscarriage, as well as its specific epigenetic regulatory mechanisms, is completely unexplored. In this study, we find that BPDE-DNA adducts, trophoblast cell dysfunctions, and miscarriage are closely associated. Moreover, we also identify a novel lnc-HZ06 and IL1B, both of which are highly expressed in BPDE-exposed trophoblast cells, in villous tissues of recurrent miscarriage patients, and in placental tissues of BaP-exposed mice with miscarriage. Both lnc-HZ06 and IL1B suppress trophoblast cell migration/invasion and increase apoptosis. In mechanism, lnc-HZ06 promotes STAT4-mediated IL1B mRNA transcription, enhances IL1B mRNA stability by promoting the formation of METTL3/HuR/IL1B mRNA ternary complex, and finally up-regulates IL1B expression levels. BPDE exposure promotes TBP-mediated lnc-HZ06 transcription, and thus up-regulates IL1B levels. Knockdown of either murine lnc-hz06 (which down-regulates Il1b levels) or murine Il1b could alleviate miscarriage in BaP-exposed mice. Collectively, this study not only discovers novel biological mechanisms and pathogenesis of unexplained miscarriage but also provides novel potential targets for treatment against BaP/BPDE-induced miscarriage.
Collapse
Affiliation(s)
- Jiarong Guo
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Chengdu Qingyang District for Disease Control and Prevention, Chengdu 610031, China
| | - Jingsong Zhao
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Tian
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongyan Xu
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Rong Wang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Weina Chen
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Xiaoqing Wang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Shukun Wan
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Yang Yang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| |
Collapse
|
10
|
Chen S, Deng B, Zhao F, You H, Liu Y, Xie L, Song G, Zhou Z, Huang G, Shen W. Silencing SPP1 in M2 macrophages inhibits the progression of castration-resistant prostate cancer via the MMP9/TGFβ1 axis. Transl Androl Urol 2024; 13:1239-1255. [PMID: 39100821 PMCID: PMC11291415 DOI: 10.21037/tau-24-127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/30/2024] [Indexed: 08/06/2024] Open
Abstract
Background M2 macrophages can promote the progression of castration-resistant prostate cancer (CRPC), but the specific mechanism is still unclear. Therefore, we are preliminarily exploring the molecular mechanism by which M2 macrophages regulate the progression of CRPC. Methods The genes positively correlated with CRPC and with the most significant differences in the GEO32269 dataset were obtained. Database and immunofluorescence experiments were used to validate the localization of secreted phosphoprotein 1 (SPP1) in localized prostate cancer (PCa), hormone-sensitive prostate cancer (HSPC), and CRPC tumor tissues. The function of SPP1 in M2 macrophages was verified through cell scratch, Transwell, and an orthotopic PCa model. PCa database and Western blot were used to verify the relationship between SPP1 and matrix metallopeptidase 9 (MMP9), as well as the ability of MMP9 in M2 macrophages to promote epithelial-mesenchymal transition (EMT) in PCa cells. Results The primary localization of SPP1 in prostate and CRPC tissues is in macrophages. Silencing SPP1 expression in M2 macrophages promotes their polarization towards the M1 phenotype and significantly inhibits the malignant progression of PCa in vitro and in vivo. SPP1 promotes the expression of MMP9 through the PI3K/AKT signaling pathway in M2 macrophages. Furthermore, MMP9 enhances the EMT and migratory capabilities of PC3 cells by activating the TGFβ signaling pathway. Conclusions We have found that the high expression of SPP1 in M2 macrophages promotes the progression of CRPC through cell-cell interactions. These findings can contribute to the development of novel therapeutic approaches for combating this deadly disease.
Collapse
Affiliation(s)
- Saipeng Chen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bingqian Deng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fuhan Zhao
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hang You
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Youxin Liu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Langlang Xie
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guojing Song
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhansong Zhou
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
11
|
Xiong Z, Yu SL, Xie ZX, Zhuang RL, Peng SR, Wang Q, Gao Z, Li BH, Xie JJ, Huang H, Li KW. Cancer-associated fibroblasts promote enzalutamide resistance and PD-L1 expression in prostate cancer through CCL5-CCR5 paracrine axis. iScience 2024; 27:109674. [PMID: 38646169 PMCID: PMC11031830 DOI: 10.1016/j.isci.2024.109674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/31/2024] [Accepted: 04/03/2024] [Indexed: 04/23/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) have been shown to play a key role in prostate cancer treatment resistance, but the role of CAFs in the initial course of enzalutamide therapy for prostate cancer remains unclear. Our research revealed that CAFs secrete CCL5, which promotes the upregulation of androgen receptor (AR) expression in prostate cancer cells, leading to resistance to enzalutamide therapy. Furthermore, CCL5 also enhances the expression of tumor programmed death-ligand 1 (PD-L1), resulting in immune escape. Mechanistically, CCL5 binds to the receptor CCR5 on prostate cancer cells and activates the AKT signaling pathway, leading to the upregulation of AR and PD-L1. The CCR5 antagonist maraviroc to inhibit the CAFs mediated CCL5 signaling pathway can effectively reduce the expression of AR and PD-L1, and improve the efficacy of enzalutamide. This study highlights a promising therapeutic approach targeting the CCL5-CCR5 signaling pathway to improve the effectiveness of enzalutamide.
Collapse
Affiliation(s)
- Zhi Xiong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shun-Li Yu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhao-Xiang Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Rui-Lin Zhuang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shi-Rong Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qiong Wang
- Department of Urology, Southern Medical University Nanfang Hospital, Guangzhou 510120, China
| | - Ze Gao
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250063, China
| | - Bing-Heng Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jun-Jia Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511518, Guangdong, China
| | - Kai-Wen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
12
|
Lasser SA, Ozbay Kurt FG, Arkhypov I, Utikal J, Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat Rev Clin Oncol 2024; 21:147-164. [PMID: 38191922 DOI: 10.1038/s41571-023-00846-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Anticancer agents continue to dominate the list of newly approved drugs, approximately half of which are immunotherapies. This trend illustrates the considerable promise of cancer treatments that modulate the immune system. However, the immune system is complex and dynamic, and can have both tumour-suppressive and tumour-promoting effects. Understanding the full range of immune modulation in cancer is crucial to identifying more effective treatment strategies. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells that develop in association with chronic inflammation, which is a hallmark of cancer. Indeed, MDSCs accumulate in the tumour microenvironment, where they strongly inhibit anticancer functions of T cells and natural killer cells and exert a variety of other tumour-promoting effects. Emerging evidence indicates that MDSCs also contribute to resistance to cancer treatments, particularly immunotherapies. Conversely, treatment approaches designed to eliminate cancer cells can have important additional effects on MDSC function, which can be either positive or negative. In this Review, we discuss the interplay between MDSCs and various other cell types found in tumours as well as the mechanisms by which MDSCs promote tumour progression. We also discuss the relevance and implications of MDSCs for cancer therapy.
Collapse
Affiliation(s)
- Samantha A Lasser
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Feyza G Ozbay Kurt
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Ihor Arkhypov
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany.
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
13
|
Cheng B, Huang H. Expanding horizons in overcoming therapeutic resistance in castration-resistant prostate cancer: targeting the androgen receptor-regulated tumor immune microenvironment. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0256. [PMID: 37646236 PMCID: PMC10476470 DOI: 10.20892/j.issn.2095-3941.2023.0256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Affiliation(s)
- Bisheng Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|