1
|
Chen S, Luo Z, Zhou M, Xiao X, Cong Z, Xie J, Wu Y, Zhang H, Zhao X, Song G, Liu R. An effective approach to obtain functional poly-β-peptides for combating drug-resistant bacterial infections. J Mater Chem B 2025; 13:5315-5326. [PMID: 40227873 DOI: 10.1039/d5tb00184f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The high mortality of drug-resistant bacterial infections, especially those caused by multidrug-resistant Gram-negative pathogens, highlights an urgent demand for promising antimicrobial strategies. Host defense peptide (HDP)-mimicking poly-β-peptides have demonstrated significant potential in combating drug-resistant bacterial infections, with their antimicrobial activity closely dependent on their side-chain structures. However, the restricted structural diversity of poly-β-peptides necessitates efficient synthetic methods to expand their diversity, particularly positively charged side-chain structures. This study presents a water-tolerant approach that facilitates the controllable synthesis of poly-β-peptides with different chain lengths and structurally diverse side chains, including primary amines, tertiary amines, as well as alkyl, aryl, and methoxy groups. This approach serves as an HDP-mimicking discovery platform to obtain the optimal poly-β-peptide, AOc0.8HNL0.2, which exhibits broad-spectrum antibacterial activity and high selectivity against drug-resistant bacteria. The antibacterial mechanism studies reveal that AOc0.8HNL0.2 disrupts the membrane of Gram-negative bacteria. In vivo evaluations substantiate the therapeutic potential of AOc0.8HNL0.2 in treating drug-resistant bacterial infections with no observable toxicity. This study underscores the potential of this convenient synthetic strategy as a promising platform for developing antimicrobial poly-β-peptides to combat the growing threat of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Sheng Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Zhengjie Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ximian Xiao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zihao Cong
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiayang Xie
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology, East China University of Science and Technology, Shanghai 200237, P. R. China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Yueming Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haodong Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuebin Zhao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Gonghua Song
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology, East China University of Science and Technology, Shanghai 200237, P. R. China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
- Shanghai Shyndec Pharmaceutical Co., Ltd., 378 Jian-Lu Road, Shanghai 201203, P. R. China
| |
Collapse
|
2
|
Hu J, Yu Q, Wang L, Shi H, Luan S. Recent Progress in Antibacterial Surfaces for Implant Catheters. BME FRONTIERS 2025; 6:0063. [PMID: 39949607 PMCID: PMC11822169 DOI: 10.34133/bmef.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 02/16/2025] Open
Abstract
Catheter-related infections (CRIs) caused by hospital-acquired microbial infections lead to the failure of treatment and the increase of mortality and morbidity. Surface modifications of the implant catheters have been demonstrated to be effective approaches to improve and largely reduce the bacterial colonization and related complications. In this work, we focus on the last 5-year progress in the surface modifications of biomedical catheters to prevent CRIs. Their antibacterial strategies used for surface modifications are further divided into 5 classifications through the antimicrobial mechanisms, including active surfaces, passive surfaces, active and passive combination surfaces, stimulus-type response surfaces, and other types. Each feature and the latest advances in these abovementioned antibacterial surfaces of implant catheters are highlighted. Finally, these confronting challenges and future prospects are discussed for the antibacterial modifications of implant catheters.
Collapse
Affiliation(s)
- Jia Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Qing Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering,
University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering,
University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
3
|
Zhang L, Sun M, Song W, Wu R, Yu B, Duan S, Xu FJ. Natural Macromolecule-Based Lubricative Catheter Coatings with Sustained Adaptive Antibacterial Property for Encrustation and Infection Prevention. Adv Healthc Mater 2025; 14:e2402359. [PMID: 39696923 DOI: 10.1002/adhm.202402359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Catheter-associated urinary tract infection (CAUTI) are a global health burden. Moreover, the friction during urinary catheter placement also induces pain in patients. Therefore, there is a pressing need to develop effective antibacterial and lubricative coatings on the surface of urinary catheter. In this work, a facile volatilization film-forming method is used to construct coatings on catheter surfaces. Xanthan gum (SR), which has good lubricative and antifouling properties, is oxidized to cross-link with multi-amino compounds, gentamicin (GS), and gelatin, to fabricate uniform coatings on silicone catheters (SR-GXGs). The structures of SR-GXGs are regulated by the components of the film formation solutions. The bacterial metabolism can produce an acidic micro-environment that can regulate GS release to achieve on-demand administration. SR-GXG2 can eliminate 99.99% of common pathogenic bacteria and reduce the dynamic friction coefficient by 98.73%, and showed high stability in a 7-day flowing experiment. In addition, the universality of this method is demonstrated on various kinds of matrices with different shapes, including commercial urethral catheters. In vivo, SR-GXG2 can effectively avoid urinary tract injury and encrustation phenomenon because of its good anti-infection, antifouling, and lubricative properties. This work provides a promising strategy for developing multifunctional antibacterial coatings on medical catheters.
Collapse
Affiliation(s)
- Lujiao Zhang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing, 100029, China
- Biomaterials and Regenerative Engineering Alliance Laboratory, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Meizhou Sun
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing, 100029, China
| | - Weizhuo Song
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing, 100029, China
| | - Ruonan Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing, 100029, China
| | - Shun Duan
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing, 100029, China
| |
Collapse
|
4
|
Zheng J, Wang X, Du H, Zhang R, Huo X, Zhou T, Zhang G, Wang F, Zhou Q, Zhang Z. Multifunctional Ru(III)/Fe 3O 4/DNA nanoplatform for photothermal-enhanced photodynamic and chemodynamic cancer therapy. J Inorg Biochem 2025; 262:112771. [PMID: 39504917 DOI: 10.1016/j.jinorgbio.2024.112771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Among the many cancer treatment methods, there have been many reports on the use of nanoplatforms with single treatment methods such as photothermal, photodynamic or chemodynamic for cancer treatment. In this study, Ru(III) with photodynamic effect and Fe3O4 nanoparticles with photothermal and chemodynamic effects are connected through long DNA chains with efficient active targeting rolling circle amplification to construct Ru(III)/Fe3O4/DNA nano-platform realizes the combination of photothermal, photodynamic and chemodynamic treatment, which significantly improves the therapeutic effect of the nano-platform. Its multiple active targeting capabilities reduce the damage to normal cells. Ru(III) has excellent photodynamic effect and can catalyze the respiration product NADH (Nicotinamide adenine dinucleotide)to produce highly oxidizing H2O2. Fe3O4 NPs has weak absorption at 808 nm indicates that it can perform mild photothermal treatment, and the Fe2+ in it can react with H2O2 to produce ·OH and participate in chemodynamic treatment. Each repeating unit on the rolling circle amplified DNA long chain is connected to the AS1411 aptamer that can actively target cancer cells. Unlike the passive targeting of other nanomedicines, active and efficient targeting is achieved, and a small amount of drugs can achieve high efficacy. The therapeutic effect also reduces the damage to normal cells. The comprehensive killing effect of Ru(III)/Fe3O4/DNA can reach 85.1 %. Its high targeting of cancer cells can also be used for imaging detection of cancer cells. This new nanoplatform provides an idea for the synergy of multiple cancer treatments.
Collapse
Affiliation(s)
- Jinfeng Zheng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiufeng Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Huan Du
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ruyan Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaobing Huo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ting Zhou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guodong Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qianxiong Zhou
- Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhiqing Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
5
|
Yu J, Xu W, Chen H, Yuan H, Wang Y, Qian X, Zhang J, Ji Y, Zhao Q, Li S. Charge Engineering of Star-Shaped Organic Photosensitizers Enables Efficient Type-I Radicals for Photodynamic Therapy of Multidrug-Resistant Bacterial Infection. Adv Healthc Mater 2025; 14:e2402615. [PMID: 39648533 DOI: 10.1002/adhm.202402615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Indexed: 12/10/2024]
Abstract
Infection induced by multidrug-resistant bacteria is now the second most common cause of accidental death worldwide. However, identifying a high-performance strategy with good efficiency and low toxicity is still urgently needed. Antibacterial photodynamic therapy (PDT) is considered a non-invasive and efficient approach with minimal drug resistance. Whereas, the precise molecular design for highly efficient oxygen-independent type-I photosensitizers is still undefined. In this work, the regulation of the positive charge of star-shaped NIR-emissive organic photosensitizers can boost radical generation for the efficient treatment of wounds infected with multidrug-resistant bacteria. With positive charge engineering, TPAT-DNN, which has six positive charges, mainly produces hydroxyl radicals via the type-I pathway, while TPAT-DN, which has three positive charges, tends to generate singlet oxygen and superoxide radicals. For multidrug-resistant bacteria, TPAT-DNN exhibited specific killing effects on multidrug-resistant gram-positive bacteria at low concentrations, while TPAT-DN is similar antibacterial effects on both multidrug-resistant gram-negative and gram-positive bacteria. Furthermore, the efficiency and safety of TPAT-DNN for eradicating multidrug-resistant bacteria methicillin-resistant S. aureus (MRSA) infection and accelerating wound healing in an MRSA-infected mouse model are demonstrated. This work offers a new approach toward manipulating efficient type-I photosensitizers for MRSA treatment.
Collapse
Affiliation(s)
- Jie Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Wenchang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Huan Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Haitao Yuan
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery System Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yu Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Xiandie Qian
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Jie Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yu Ji
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
6
|
Cao J, Song Z, Du T, Du X. Antimicrobial materials based on photothermal action and their application in wound treatment. BURNS & TRAUMA 2024; 12:tkae046. [PMID: 39659560 PMCID: PMC11630079 DOI: 10.1093/burnst/tkae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 12/12/2024]
Abstract
Considering the increasing abundance of antibiotic-resistant bacteria, novel antimicrobial approaches need to be investigated. Photothermal therapy (PTT), an innovative noninvasive therapeutic technique, has demonstrated significant potential in addressing drug-resistant bacteria and bacterial biofilms. However, when used in isolation, PTT requires higher-temperature conditions to effectively eradicate bacteria, thereby potentially harming healthy tissues and inducing new inflammation. This study aims to present a comprehensive review of nanomaterials with intrinsic antimicrobial properties, antimicrobial materials relying on photothermal action, and nanomaterials using drug delivery antimicrobial action, along with their applications in antimicrobials. Additionally, the synergistic mechanisms of these antimicrobial approaches are elucidated. The review provides a reference for developing multifunctional photothermal nanoplatforms for treating bacterially infected wounds.
Collapse
Affiliation(s)
- Jiangli Cao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No.29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| | - Zhiyong Song
- College of Sicence, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Ting Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No.29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No.29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| |
Collapse
|
7
|
Mei L, Zhang Y, Wang K, Chen S, Song T. Nanomaterials at the forefront of antimicrobial therapy by photodynamic and photothermal strategies. Mater Today Bio 2024; 29:101354. [PMID: 39655165 PMCID: PMC11626539 DOI: 10.1016/j.mtbio.2024.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
In the face of the increasing resistance of microorganisms to traditional antibiotics, the development of innovative treatment methods is becoming increasingly urgent. Nanophototherapy technology can precisely target the infected area and achieve synergistic antibacterial effects in multiple modes. This phototherapy method has shown significant efficacy in treating diseases caused by drug-resistant bacteria, especially in the elimination of biofilms, where it has demonstrated strong dissolution capabilities. PTT utilizes photothermal agents to convert near-infrared light into heat, effectively killing bacteria and promoting tissue regeneration. Similarly, PDT utilizes photosensitizers, which produce reactive oxygen species (ROS) when activated by light, destroying the structure and function of bacterial cells. This review summarizes photothermal agents and photosensitizers used for antibacterial purposes. In conducting our literature review, we employed a systematic approach to ensure a comprehensive and representative selection of studies. Additionally, this article explores the potential of phototherapy in regulating wound microenvironments, promoting wound healing, and activating the immune system. Nanophototherapeutic materials show great potential for application in antibacterial treatment and are expected to provide innovative solutions for drug-resistant bacterial infections that traditional antibiotics are struggling to address.
Collapse
Affiliation(s)
- Ling Mei
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yifan Zhang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Kaixi Wang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Sijing Chen
- Sichuan Electric Power Hospital, Chengdu, Sichuan Province, China
| | - Tao Song
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
8
|
Peng Y, Hu C, Zhang L, Dong F, Li R, Liang H, Dai H, Jang WJ, Cheng HB, Zhou L, Wang Y, Yoon J. Harnessing Dual Phototherapy and Immune Activation for Cancer Treatment: The Development and Application of BODIPY@F127 Nanoparticles. Adv Healthc Mater 2024; 13:e2401981. [PMID: 39073014 DOI: 10.1002/adhm.202401981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Conventional phototherapeutic agents are typically used in either photodynamic therapy (PDT) or photothermal therapy (PTT). However, efficacy is often hindered by hypoxia and elevated levels of heat shock proteins in the tumor microenvironment (TME). To address these limitations, a formylated, near-infrared (NIR)-absorbing and heavy-atom-free Aza-BODIPY dye is presented that exhibits both type-I and type-II PDT actions with a high yield of reactive oxygen species (ROS) and manifests efficient photothermal conversion by precise adjustments to the conjugate structure and electron distribution, leading to a large amount of ROS production even under severe hypoxia. To improve biosafety and water solubility, the dye with an amphiphilic triblock copolymer (Pluronic F-127), yielding BDP-6@F127 nanoparticles (NPs) is coated. Furthermore, inspired by the fact that phototherapy triggers the release of tumor-associated antigens, a strategy that leverages potential immune activation by combining PDT/PTT with immune checkpoint blockade (ICB) therapy to amplify the systemic immune response and achieve the much-desired abscopal effect is developed. In conclusion, this study presents a promising molecular design strategy that integrates multimodal therapeutics for a precise and effective approach to cancer therapy.
Collapse
Affiliation(s)
- Yang Peng
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue Haidian District, Beijing, 100081, P. R. China
| | - Chenyan Hu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Ludan Zhang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue Haidian District, Beijing, 100081, P. R. China
| | - Fan Dong
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue Haidian District, Beijing, 100081, P. R. China
| | - Ruwan Li
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Huihui Liang
- Henan Provincial Key Laboratory of Surface & Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Hao Dai
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue Haidian District, Beijing, 100081, P. R. China
| | - Won Jun Jang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface & Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yuguang Wang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue Haidian District, Beijing, 100081, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
9
|
Wang J, Yang Y, Han P, Qin J, Huang D, Tang B, An M, Yao X, Zhang X. A chitosan-based hydrogel with ultrasound-driven immuno-sonodynamic therapeutic effect for accelerated bacterial infected wound healing. Int J Biol Macromol 2024; 279:135180. [PMID: 39214213 DOI: 10.1016/j.ijbiomac.2024.135180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Sonodynamic therapy has attracted much attention as a noninvasive treatment for deep infections. However, it is challenging to achieve high antibacterial activity for hydrogels under ultrasonic irradiation due to the relatively weak sono-catalysis capability of sonosensitizers. Herein, an ultrasound-responsive antibacterial hydrogel (Fe3O4/HA/Ber-LA) composed of Fe3O4-grafted-Berberine, chitosan molecules modified with L-arginine and poly (vinyl alcohol) is prepared for enhanced sonodynamic therapy and immunoregulation. The formation of heterojunction between berberine and Fe3O4 with different work function promotes the charge separation and electron flow and disrupts the conjugated structure of berberine, causing a significant decrease in the band gap, eventually enhancing the sonocatalytic activity. The combination of berberine with Fe3O4 also significantly improves the oxygen adsorption energy, enabling more O2 molecules to react with the electron-rich regions on the surface of Fe3O4 to generate more reactive oxygen species (ROS). L-arginine grafted in the hydrogel is catalyzed by the ROS to release nitric oxide, which not only possesses antibacterial activity, but also positively affects macrophage M1 polarization to display potent phagocytosis to Staphylococcus aureus, thus achieving immuno-sonodynamic therapy. Hence, Fe3O4/HA/Ber-LA hydrogel under ultrasound irradiation shows excellent antibacterial activity. Furthermore, the antioxidative activity and anti-inflammatory effect of berberine released from the hybrid hydrogel induces macrophages to polarize towards the anti-inflammatory M2 status as infection comes under control, thus accelerating the wound healing. The hybrid hydrogel based on the immuno-sonodynamic therapy may be an extraordinary candidate for the treatment of deep infections.
Collapse
Affiliation(s)
- Jiameng Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Key Laboratory of Biomedical Metal Materials, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongqiang Yang
- National Graphene Products Quality Inspection and Testing Center (Jiangsu), Special Equipment Safety Supervision Inspection Institute of Jiangsu Province, Wuxi 214174, China.
| | - Peide Han
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jien Qin
- Graphene Source Technology Wuxi Co., Ltd, Wuxi 214174, China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Bin Tang
- Shanxi Key Laboratory of Biomedical Metal Materials, Taiyuan University of Technology, Taiyuan 030024, China
| | - Meiwen An
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xiangyu Zhang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Key Laboratory of Biomedical Metal Materials, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
10
|
Yang S, Hu X, Yong Z, Dou Q, Quan C, Cheng HB, Zhang M, Wang J. GSH-responsive bithiophene Aza-BODIPY@HMON nanoplatform for achieving triple-synergistic photoimmunotherapy. Colloids Surf B Biointerfaces 2024; 242:114109. [PMID: 39047644 DOI: 10.1016/j.colsurfb.2024.114109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Photoimmunotherapy represents an innovative approach to enhancing the efficiency of immunotherapy in cancer treatment. This approach involves the fusion of immunotherapy and phototherapy (encompassing techniques like photodynamic therapy (PDT) and photothermal therapy (PTT)). Boron-dipyrromethene (BODIPY) has the potential to trigger immunotherapy owing to its excellent PD and PT efficiency. However, the improvements in water solubility, bioavailability, PD/PT combined efficiency, and tumor tissue targeting of BODIPY require introduction of suitable carriers for potential practical application. Herein, a disulfide bond-based hollow mesoporous organosilica (HMON) with excellent biocompatibility and GSH-responsive degradation properties was used as a carrier to load a bithiophene Aza-BODIPY dye (B5), constructing a sample chemotherapy reagent-free B5@HMON nanoplatform achieving triple-synergistic photoimmunotherapy. HMON, involving disulfide bond, is utilized to improve water solubility, tumor tissue targeting, and PD efficiency by depleting GSH and enhancing host-guest interaction between B5 and HMO. The study reveals that HMON's large specific surface area and porous properties significantly enhance the light collection and oxygen adsorption capacity. The HMON's rich mesoporous structure and internal cavity achieved a loading rate of B5 at 11 %. It was found that the triple-synergistic nanoplatform triggered a stronger anti-tumor immune response, including tumor invasion, cytokine production, calreticulin translocation, and dendritic cell maturation, eliciting specific tumor-specific immunological responses in vivo and in vitro. The BALB/c mouse model with 4T1 tumors was used to assess tumor suppression efficiency in vivo, showing that almost all tumors in the B5@HMON group disappeared after 14 days. Such a simple chemotherapy reagent-free B5@HMON nanoplatform achieved triple-synergistic photoimmunotherapy.
Collapse
Affiliation(s)
- Siao Yang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xiaoxiao Hu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zhengze Yong
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, PR China
| | - Qingqing Dou
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Cuilu Quan
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, PR China; Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Mo Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China.
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China.
| |
Collapse
|
11
|
Xu X, Zhao H, Ren S, He W, Zhang L, Cheng Z. Facile Surface Modification with Croconaine-Functionalized Polymer on Polypropylene for Antifouling and NIR-Light-Mediated Photothermal Sterilization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46947-46963. [PMID: 39225271 DOI: 10.1021/acsami.4c09963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Biomedical-device-associated infection (BAI) is undoubtedly a major concern and a serious challenge in modern medicine. Therefore, the development of biomedical materials that are capable of resisting or killing bacteria is of great importance. In this work, a croconaine-functionalized polymer with antifouling and near-infrared (NIR) photothermal bactericidal properties was prepared and facilely modified on polypropylene (PP) to combat medical device infections. Croconaine dye is elaborately modified as a "living" initiator, termed CR-4EBiB, for preparing amphiphilic block polymers by atom transfer radical polymerization (ATRP). In the formed polymer coating, the hydrophobic block can strongly adhere to the surface of the PP substrate, whereas the hydrophilic block is located on the outer layer by solvent-induced resistance to bacterial adhesion. Under the irradiation of an NIR laser (808 nm), the croconaine dye in the coating achieved maximum conversion of light to heat to effectively kill E. coli, S. aureus, and methicillin-resistant Staphylococcus aureus (MRSA). This work provides a facile and promising strategy for the development of implantable antibacterial biomedical materials.
Collapse
Affiliation(s)
- Xiang Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Haitao Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shusu Ren
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weiwei He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RADX), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Guo L, Tian Y, Zhou L, Kang S, Zhang C, Liu W, Diao H, Feng L. Tailored Phototherapy Agent by Infection Site In Situ Activated Against Methicillin-Resistant S. aureus. Adv Healthc Mater 2024; 13:e2400593. [PMID: 38728574 DOI: 10.1002/adhm.202400593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a promising treatment approach for multidrug resistant infections. PDT/PTT combination therapy can more efficiently eliminate pathogens without drug resistance. The key to improve the efficacy of photochemotherapy is the utilization efficiency of non-radiation energy of phototherapy agents. Herein, a facile phototherapy molecule (SCy-Le) with the enhancement of non-radiative energy transfer is designed by an acid stimulation under a single laser. Introduction of the protonated receptor into SCy-Le results in a distorted intramolecular charge in the infected acidic microenvironment, pH ≈ 5.5, which in turn, enhances light capture, reduces the singlet-triplet transition energies (ΔES1-T1), promotes electron system crossing, enhances capacity of reactive oxygen species generation, and causes a significant increase in temperature by improving vibrational relaxation. SCy-Le shows more than 99% bacterial killing rate against both methicillin-resistant Staphylococcus aureus and its biofilms in vitro and causes bacteria-induced wound healing in mice. This work will provide a new perspective for the design of phototherapy agents, and the emerging photochemotherapy will be a promising approach to combat the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Lixia Guo
- School of Pharmacy, Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Yafei Tian
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Liang Zhou
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Shiyue Kang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Wen Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Haipeng Diao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi (ICTFE-PKU), Taiyuan, 030012, China
| |
Collapse
|
13
|
Huang Y, Chen C, Tan H, Dong S, Ren Y, Chao M, Yan H, Yan X, Jiang G, Gao F. A Stimulus-Responsive Ternary Heterojunction Boosting Oxidative Stress, Cuproptosis for Melanoma Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401147. [PMID: 38770990 DOI: 10.1002/smll.202401147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Cuproptosis, a recently discovered copper-dependent cell death, presents significant potential for the development of copper-based nanoparticles to induce cuproptosis in cancer therapy. Herein, a unique ternary heterojunction, denoted as HACT, composed of core-shell Au@Cu2O nanocubes with surface-deposited Titanium Dioxide quantum dots and modified with hyaluronic acid is introduced. Compared to core-shell AC NCs, the TiO2/Au@Cu2O exhibits improved energy structure optimization, successfully separating electron-hole pairs for redox use. This optimization results in a more rapid generation of singlet oxygen and hydroxyl radicals triggering oxidative stress under ultrasound radiation. Furthermore, the HACT NCs initiate cuproptosis by Fenton-like reaction and acidic environment, leading to the sequential release of cupric and cuprous ions. This accumulation of copper induces the aggregation of lipoylated proteins and reduces iron-sulfur proteins, ultimately initiating cuproptosis. More importantly, HACT NCs show a tendency to selectively target cancer cells, thereby granting them a degree of biosecurity. This report introduces a ternary heterojunction capable of triggering both cuproptosis and oxidative stress-related combination therapy in a stimulus-responsive manner. It can energize efforts to develop effective melanoma treatment strategies using Cu-based nanoparticles through rational design.
Collapse
Affiliation(s)
- Yuqi Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Cheng Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Huarong Tan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Shuqing Dong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Yiping Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Minghao Chao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
| | - Xiang Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| |
Collapse
|
14
|
Ding N, Zhang B, Khan IM, Qin M, Qi S, Dong X, Wang Z, Yang J. Dual pH- and ATP-Responsive Antibacterial Nanospray: On-Demand Release of Antibacterial Factors, Imaging Monitoring, and Accelerated Healing of Bacteria-Infected Wounds under NIR Activation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30728-30741. [PMID: 38847598 DOI: 10.1021/acsami.4c03587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The prevalence of pathogenic bacterial infections with high morbidity and mortality poses a widespread challenge to the healthcare system. Therefore, it is imperative to develop nanoformulations capable of adaptively releasing antimicrobial factors and demonstrating multimodal synergistic antimicrobial activity. Herein, an NIR-activated multifunctional synergistic antimicrobial nanospray MXene/ZIF-90@ICG was prepared by incorporating ZIF-90@ICG nanoparticles onto MXene-NH2 nanosheets. MXene/ZIF-90@ICG can on-demand release the antimicrobial factors MXenes, ICG, and Zn2+ in response to variations in pH and ATP levels within the bacterial infection microenvironment. Under NIR radiation, the combination of MXenes, Zn2+, and ICG generated a significant amount of ROS and elevated heat, thereby enhancing the antimicrobial efficacy of PDT and PTT. Meanwhile, NIR excitation could accelerate the further release of ICG and Zn2+, realizing the multimodal synergistic antibacterial effect of PDT/PTT/Zn2+. Notably, introducing MXenes improved the dispersion of the synthesized antimicrobial nanoparticles in aqueous solution, rendering MXene/ZIF-90@ICG a candidate for application as a nanospray. Importantly, MXene/ZIF-90@ICG demonstrated antimicrobial activity and accelerated wound healing in the constructed in vivo subcutaneous Staphylococcus aureus infection model with NIR activation, maintaining a favorable biosafety level. Therefore, MXene/ZIF-90@ICG holds promise as an innovative nanospray for adaptive multimodal synergistic and efficient antibacterial applications with NIR activation.
Collapse
Affiliation(s)
- Ning Ding
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, P. R. China
| | - Bo Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, P. R. China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, P. R. China
| | - Mingwei Qin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, P. R. China
| | - Shuo Qi
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, P. R. China
- Teaching and Research Office of Food Safety, School of Public Course, Bengbu Medical University, Bengbu 233000, P. R. China
| | - Junsong Yang
- Teaching and Research Office of Food Safety, School of Public Course, Bengbu Medical University, Bengbu 233000, P. R. China
| |
Collapse
|
15
|
Fu H, Zhang Y, Wang C, Sun Z, Lv S, Xiao M, Wu K, Shi L, Zhu C. A universal strategy to enhance photothermal conversion efficiency by regulating the molecular aggregation states for safe photothermal therapy of bacterial infections. Biomater Sci 2024; 12:2914-2929. [PMID: 38639605 DOI: 10.1039/d4bm00412d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Photothermal therapy (PTT) has emerged as a promising approach for treating bacterial infections. However, achieving a high photothermal conversion efficiency (PCE) of photothermal agents (PTAs) remains a challenge. Such a problem is usually compensated by the use of a high-intensity laser, which inevitably causes tissue damage. Here, we present a universal strategy to enhance PCE by regulating the molecular aggregation states of PTAs within thermoresponsive nanogels. We demonstrate the effectiveness of this approach using aggregation-induced emission (AIE) and aggregation-caused quenching (ACQ) PTAs, showing significant enhancements in PCE without the need for intricate molecular modifications. Notably, the highest PCEs reach up to 80.9% and 64.4% for AIE-NG and ACQ-NG, respectively, which are nearly 2-fold of their self-aggregate counterparts. Moreover, we elucidate the mechanism underlying PCE enhancement, highlighting the role of strong intermolecular π-π interactions facilitated by nanogel-induced volume contraction. Furthermore, we validate the safety and efficacy of this strategy in in vitro and in vivo models of bacterial infections at safe laser power densities, demonstrating its potential for clinical translation. Our findings offer a straightforward, universal, and versatile method to improve PTT outcomes while minimizing cytotoxicity, paving the way for enhanced treatment of bacterial infections with safe PTT protocols.
Collapse
Affiliation(s)
- Hao Fu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongxin Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cheng Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhencheng Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kaiyu Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China.
| |
Collapse
|
16
|
Dong S, Huang Y, Yan H, Tan H, Fan L, Chao M, Ren Y, Guan M, Zhang J, Liu Z, Gao F. Ternary heterostructure-driven photoinduced electron-hole separation enhanced oxidative stress for triple-negative breast cancer therapy. J Nanobiotechnology 2024; 22:240. [PMID: 38735931 PMCID: PMC11089806 DOI: 10.1186/s12951-024-02530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/03/2024] [Indexed: 05/14/2024] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) stand as among the most significant metal oxide nanoparticles in trigger the formation of reactive oxygen species (ROS) and induce apoptosis. Nevertheless, the utilization of ZnO NPs has been limited by the shallowness of short-wavelength light and the constrained production of ROS. To overcome these limitations, a strategy involves achieving a red shift towards the near-infrared (NIR) light spectrum, promoting the separation and restraining the recombination of electron-hole (e--h+) pairs. Herein, the hybrid plasmonic system Au@ZnO (AZ) with graphene quantum dots (GQDs) doping (AZG) nano heterostructures is rationally designed for optimal NIR-driven cancer treatment. Significantly, a multifold increase in ROS generation can be achieved through the following creative initiatives: (i) plasmonic Au nanorods expands the photocatalytic capabilities of AZG into the NIR domain, offering a foundation for NIR-induced ROS generation for clinical utilization; (ii) elaborate design of mesoporous core-shell AZ structures facilitates the redistribution of electron-hole pairs; (iii) the incorporation GQDs in mesoporous structure could efficiently restrain the recombination of the e--h+ pairs; (iv) Modification of hyaluronic acid (HA) can enhance CD44 receptor mediated targeted triple-negative breast cancer (TNBC). In addition, the introduced Au NRs present as catalysts for enhancing photothermal therapy (PTT), effectively inducing apoptosis in tumor cells. The resulting HA-modified AZG (AZGH) exhibits efficient hot electron injection and e--h+ separation, affording unparalleled convenience for ROS production and enabling NIR-induced PDT for the cancer treanment. As a result, our well-designed mesoporous core-shell AZGH hybrid as photosensitizers can exhibit excellent PDT efficacy.
Collapse
Affiliation(s)
- Shuqing Dong
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Yuqi Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Huarong Tan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Liying Fan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Minghao Chao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yiping Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ming Guan
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jiaxin Zhang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| | - Fenglei Gao
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
17
|
Xu B, Yu D, Xu C, Gao Y, Sun H, Liu L, Yang Y, Qi D, Wu J. Study on synergistic mechanism of molybdenum disulfide/sodium carboxymethyl cellulose composite nanofiber mats for photothermal/photodynamic antibacterial treatment. Int J Biol Macromol 2024; 266:130838. [PMID: 38521322 DOI: 10.1016/j.ijbiomac.2024.130838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Innovative antibacterial therapies using nanomaterials, such as photothermal (PTT) and photodynamic (PDT) treatments, have been developed for treating wound infections. However, creating secure wound dressings with these therapies faces challenges. The primary focus of this study is to prepare an antibacterial nanofiber dressing that effectively incorporates stable loads of functional nanoparticles and demonstrates an efficient synergistic effect between PTT and PDT. Herein, a composite nanofiber mat was fabricated, integrating spherical molybdenum disulfide (MoS2) nanoparticles. MoS2 was deposited onto polylactic acid (PLA) nanofiber mats using vacuum filtration, which was further stabilized by sodium carboxymethyl cellulose (CMC) adhesion and glutaraldehyde (GA) cross-linking. The composite nanofibers demonstrated synergistic antibacterial effects under NIR light irradiation, and the underlying mechanism was explored. They induce bacterial membrane permeability, protein leakage, and intracellular reactive oxygen species (ROS) elevation, ultimately leading to >95 % antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which is higher than that of single thermotherapy (almost no antibacterial activity) or ROS therapy (about 80 %). In addition, the composite nanofiber mats exhibited promotion effects on infected wound healing in vivo. This study demonstrates the great prospects of composite nanofiber dressings in clinical treatment of bacterial-infected wounds.
Collapse
Affiliation(s)
- Bingjie Xu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Yu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chenlu Xu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yujie Gao
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hengqiu Sun
- Department of Pediatric Surgery, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou 318000, China.
| | - Lei Liu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Yang
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China.
| | - Jindan Wu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China.
| |
Collapse
|
18
|
Wang K, Tang Y, Yao K, Feng S, Wu B, Xiang L, Zhou X. Regulation of the upconversion effect to promote the removal of biofilms on a titanium surface via photoelectrons. J Mater Chem B 2024; 12:1798-1815. [PMID: 38230414 DOI: 10.1039/d3tb02542j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Biofilms on public devices and medical instruments are harmful. Hence, it is of great importance to fabricate antibacterial surfaces. In this work, we target the preparation of an antibacterial surface excited by near-infrared light via the coating of rare earth nanoparticles (RE NPs) on a titanium surface. The upconverted luminescence is absorbed by gold nanoparticles (Au NPs, absorber) to produce hot electrons and reactive oxygen species to eliminate the biofilms. The key parameters in tuning the upconversion effect to eliminate the biofilms are systematically investigated, which include the ratios of the sensitizer, activator, and matrix in the RE NPs, or the absorber Au NPs. The regulated RE NPs exhibit an upconversion quantum yield of 3.5%. Under illumination, photogenerated electrons flow through the surface to bacteria, such as E. coli, which disrupt the breath chain and eventually lead to the death of bacteria. The mild increase of the local temperature has an impact on the elimination of biofilms on the surface to a certain degree as well. Such a configuration on the surface of titanium exhibits a high reproducibility on the removal of biofilms and is functional after the penetration of light using soft tissue. This work thus provides a novel direction in the application of upconversion materials to be used in the fabrication of antibacterial surfaces.
Collapse
Affiliation(s)
- Kai Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yufei Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Keyi Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shuqi Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Bingfeng Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xuemei Zhou
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
19
|
Zhang Y, Li L, Liu H, Zhang H, Wei M, Zhang J, Yang Y, Wu M, Chen Z, Liu C, Wang F, Wu Q, Shi J. Copper(II)-infused porphyrin MOF: maximum scavenging GSH for enhanced photodynamic disruption of bacterial biofilm. J Mater Chem B 2024; 12:1317-1329. [PMID: 38229564 DOI: 10.1039/d3tb02577b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Bacterial biofilm infection is a serious obstacle to clinical therapeutics. Photodynamic therapy (PDT) plays a dynamic role in combating biofilm infection by utilizing reactive oxygen species (ROS)-induced bacterial oxidation injury, showing advantages of mild side effects, spatiotemporal controllability and little drug resistance. However, superfluous glutathione (GSH) present in biofilm and bacteria corporately reduces ROS levels and seriously affects PDT efficiency. Herein, we have constructed a Cu2+-infused porphyrin metal-organic framework (MOF@Cu2+) for the enhanced photodynamic combating of biofilm infection by the maximum depletion of GSH. Our results show that the released Cu2+ from porphyrin MOF@Cu2+ could not only oxidize GSH in biofilm but also consume GSH leaked from ROS-destroyed bacteria, thus greatly weakening the antioxidant system in biofilm and bacteria and dramatically improving the ROS levels. As expected, our dual-enhanced PDT nanoplatform exhibits a strong biofilm eradication ability both in vitro and in an in vivo biofilm-infected mouse model. In addition, Cu2+ can promote biofilm-infected wound closing by provoking cell immigration, collagen sediment and angiogenesis. Besides, no apparent toxicity was detected after treatment with MOF@Cu2+. Overall, our design offers a new paradigm for photodynamic combating biofilm infection.
Collapse
Affiliation(s)
- Yaoxin Zhang
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Linpei Li
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Hui Liu
- Department of Pharmacy, Shangqiu First People's Hospital, Shangqiu 476100, China
| | - Haixia Zhang
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Menghao Wei
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Junqing Zhang
- School of Pharmacy, Henan University, Kaifeng 475004, China.
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China.
| | - Yanwei Yang
- Department of Pharmacy, the First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Mengnan Wu
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhaowei Chen
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chaoqun Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China.
- Department of Pharmacy, the First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Faming Wang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong 226019, China.
| | - Qiang Wu
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China.
| |
Collapse
|
20
|
Li J, Zhang S, He C, Ling J. Electrospun fibers based anisotropic silk fibroin film with photodynamic antibacterial therapy for S. aureus infected wound healing. Int J Biol Macromol 2024; 254:127685. [PMID: 38287584 DOI: 10.1016/j.ijbiomac.2023.127685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 01/31/2024]
Abstract
Bacterial infection has been regarded as a life-threatening problem in clinic. In addition to screening of new antibiotics, it is important to develop highly effective antibacterial materials against antibiotic resistance with capacities on modulating chronic inflammation. Herein, aligned Chlorin e6 (Ce6) conjugated silk fibroin electrospun fibers were successfully fabricated on silk fibroin based film via electrospining to achieve effective photodynamic antibacterial activities under near infrared (NIR) irradiation. The aligned electrospun fiber based film composite (SFCF@Film) exhibited good mechanical properties and desirable hemocompatibility. SFCF@Film provided a promising guidance cue for directing cell orientation and promoting cell growth. Significantly, SFCF@Film effectively generated ROS under NIR irradiation to kill S. aureus for treating wound infections within 10 min and promoted M2 polarization of macrophages for wound healing at later stage. Therefore, we believed that this engineered bioscaffold can be a powerful strategy for handling wound infection.
Collapse
Affiliation(s)
- Jiaying Li
- Hospital-Acquired Infection Control Department, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Shuxuan Zhang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Chang He
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China.
| |
Collapse
|
21
|
Zeng W, Qian J, Wang Y, Shou M, Kai G. Bletilla Striata polysaccharides thermosensitive gel for photothermal treatment of bacterial infection. Int J Biol Macromol 2023; 253:127430. [PMID: 37838114 DOI: 10.1016/j.ijbiomac.2023.127430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Skin is the most important defense shield which touched external environment directly. Effectively clearing microbes in infected wound via non-antibiotic therapy is crucial for the promotion of recovery in complex biological environments, and the wound healing is a crucial process after sterilization to avoid superinfection. Herein, a kind of Prussian blue-based photothermal responsive gel, Bletilla striata polysaccharide-mingled, isatin-functionalized Prussian blue gel (PB-ISA/BSP gel) was reported for effective treatment of bacterial infection and wound healing. The introduction of effective components of traditional Chinese medicine (TCM), isatin (ISA), enhanced the efficiency of sterilization synergistically. Furthermore, the process of wound healing was promoted by Bletilla striata polysaccharides (BSP). PB-ISA@BSP had a considerable antibacterial rate with 98.5 % under an 808 nm laser for 10 min in vitro. Besides, PB-ISA/BSP gel showed an effective antibacterial efficacy in vivo and a fast wound healing rate as well. The as-prepared functional particles can invade and destroy bacteria membrane to kill microbes. This work highlights that PB-ISA/BSP gel is a promising antibacterial agent based on synergistically enhanced photothermal effect and wound healing promotion ability and provides inspiration for future therapy based on the synergy between photothermal agent and active components in TCM.
Collapse
Affiliation(s)
- Weihuan Zeng
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Jun Qian
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Yue Wang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Minyu Shou
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| |
Collapse
|
22
|
Yang S, Song Y, Dong H, Hu Y, Jiang J, Chang S, Shao J, Yang D. Stimuli-Actuated Turn-On Theranostic Nanoplatforms for Imaging-Guided Antibacterial Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304127. [PMID: 37649207 DOI: 10.1002/smll.202304127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Antibacterial theranostic nanoplatforms, which integrate diagnostic and therapeutic properties, exhibit gigantic application prospects in precision medicine. However, traditional theranostic nanoplatforms usually present an always-on signal output, which leads to poor specificity or selectivity in the treatment of bacterial infections. To address this challenge, stimuli-actuated turn-on nanoplatforms are developed for simultaneous activation of diagnostic signals (e.g., fluorescent, photoacoustic, magnetic signals) and initiation of antibacterial treatment. Specifically, by combining the infection microenvironment-responsive activation of visual signals and antibacterial activity, these theranostic nanoplatforms exert both higher accurate diagnosis rates and more effective treatment effects. In this review, the imaging and treatment strategies that are commonly used in the clinic are first briefly introduced. Next, the recent progress of stimuli-actuated turn-on theranostic nanoplatforms for treating bacterial infectious diseases is summarized in detail. Finally, current bottlenecks and future opportunities of antibacterial theranostic nanoplatforms are also outlined and discussed.
Collapse
Affiliation(s)
- Siyuan Yang
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
| | - Yingnan Song
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yanling Hu
- College of life and health, Nanjing Polytechnic Institute, Nanjing, 210048, China
| | - Jingai Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Siyuan Chang
- College of life and health, Nanjing Polytechnic Institute, Nanjing, 210048, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| |
Collapse
|
23
|
Mao S, Liu W, Xie Z, Zhang D, Zhou J, Xu Y, Fu B, Zheng SY, Zhang L, Yang J. In Situ Growth of Functional Hydrogel Coatings by a Reactive Polyurethane for Biomedical Devices. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38036509 DOI: 10.1021/acsami.3c10683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Surface modification of thermoplastic polyurethane (TPU) could significantly enhance its suitability for biomedical devices and public health products. Nevertheless, customized modification of polyurethane surfaces with robust interfacial bonding and diverse functions via a simple method remains an enormous challenge. Herein, a novel thermoplastic polyurethane with a photoinitiated benzophenone unit (BPTPU) is designed and synthesized, which can directly grow functional hydrogel coating on polyurethane (PU) in situ by initiating polymerization of diverse monomers under ultraviolet irradiation, without the involvement of organic solvent. The resulting coating not only exhibits tissue-like softness, controllable thickness, lubrication, and robust adhesion strength but also provides customized functions (i.e., antifouling, stimuli-responsive, antibacterial, and fluorescence emission) to the original passive polymer substrates. Importantly, BPTPU can be blended with commercial TPU to produce the BPTPU-based tube by an extruder. Only a trace amount of BPTPU can endow the tube with good photoinitiated capacity. As a proof of concept, the hydrophilic hydrogel-coated BPTPU is shown to mitigate foreign body response in vivo and prevent thrombus formation in rat blood circulation without anticoagulants in vitro. This work offers a new strategy to guide the design of functional polyurethane, an elastomer-hydrogel composite, and holds great prospects for clinical translation.
Collapse
Affiliation(s)
- Shihua Mao
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wei Liu
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, P. R. China
| | - Zeming Xie
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Jiahui Zhou
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Baiping Fu
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, P. R. China
| | - Si Yu Zheng
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ling Zhang
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, P. R. China
| | - Jintao Yang
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|