1
|
Kodous AS, Eldin ES, Mohamed HE, Ghobashy MM, El-Maghraby DF. Targeting cell signaling pathway ALKBH5/Beclin1/ULK1 in lung cancer by 5-flurouracil- loaded P (AAm/SA) nanogel in rats. Apoptosis 2025:10.1007/s10495-025-02102-3. [PMID: 40310576 DOI: 10.1007/s10495-025-02102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2025] [Indexed: 05/02/2025]
Abstract
PURPOSE Lung cancer is the second most common Cancer in the United States; however, it remains the leading cause of cancer-related death in the United States and worldwide. 5-fluorouracil (5-FU) is among the most administrated chemotherapeutic agents for various neoplasms. This study focused on synthesizing and characterizing P(AAm/SA)/5-Fu nanogels as a potential drug delivery system. METHODS The nanogels were prepared by combining sodium alginate (SA) and acrylamide (AAm) monomers, followed by gamma irradiation-induced polymerization at a dose of 5 kGy. Then, the obtained nanogel was loaded with 500 ppm of 5-Fu. Transmission electron microscopy (TEM) imaging was utilized to characterize the nanogels' morphology and monodispersity with a particle size of (50 nm). Rats were randomly assigned to four groups (six animals per group): Group 1: (Control): normal healthy. Group 2: Cancer-bearing animals (animals injected with diethylnitrosamine (DEN) 20 mg/kg body weight for 3 months. Group 3: Cancer+ 5-fluorouracil (12 mg/kg body weight). Group4: Cancer+ 5-Flurouracil- Loaded P (AAm/SA) Nanogel. RESULTS DEN markedly increased PTGS2, Cox2, PKB, PFKm, and ERK1 levels. Also, observed up-regulation in ALKBH5, Beclin1, ULK1, and P53 gene expressions in the cancer-bearing animal group compared with the control group. 5-fluorouracil nano gel significantly ameliorated the above-mentioned parameters and immunohistochemistry study. 5-fluorouracil nanogel significantly ameliorated the parameters mentioned above, as well as the immunohistochemistry study. CONCLUSION The 5-FU-loaded P(AAm/SA) nanogel could serve as a promising approach for targeting tumor cell proliferation, speeding up autophagic processes, and overcoming chemotherapy resistance in lung carcinoma.
Collapse
Affiliation(s)
- Ahmad S Kodous
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 13759, Cairo, Egypt.
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, P.O. Box 600036, Chennai, Tamilnadu, India.
| | - Eman S Eldin
- Department of Health Radiation Research, National Center for Radiation Research and Technology, (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 13759, Cairo, Egypt
| | - Hebatallah E Mohamed
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 13759, Cairo, Egypt
| | - Mohamed Mohamady Ghobashy
- Department of of Radiation Research of Polymer Chemistry, National Center for Radiation Research and Technology, (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 13759, Cairo, Egypt
| | - Dina F El-Maghraby
- Department of Health Radiation Research, National Center for Radiation Research and Technology, (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 13759, Cairo, Egypt
| |
Collapse
|
2
|
Fang H, Chi X, Wang M, Liu J, Sun M, Zhang J, Zhang W. M2 macrophage-derived exosomes promote cell proliferation, migration and EMT of non-small cell lung cancer by secreting miR-155-5p. Mol Cell Biochem 2025; 480:3019-3032. [PMID: 39612105 DOI: 10.1007/s11010-024-05161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/09/2024] [Indexed: 11/30/2024]
Abstract
Tumor-associated macrophages (TAMs) are a type of highly plastic immune cells in the tumor microenvironment (TME), which can be classified into two main phenotypes: classical activated M1 macrophages and alternatively activated M2 macrophages. As previously reported, M2-polarized TAMs play critical role in promoting the progression of non-small cell lung cancer (NSCLC) via secreting exosomes, but the detailed mechanisms are still largely unknown. In the present study, the THP-1 monocytes were sequentially induced into M0 and M2-polarized macrophages, and the exosomes were obtained from M0 (M0-exos) and M2 (M2-exos) polarized macrophages, respectively, and co-cultured with NSCLC cells (H1299 and A549) to establish the exosomes-cell co-culture system in vitro. As it was determined by MTT assay, RT-qPCR and Transwell assay, in contrast with the M0-exos, M2-exos significantly promoted cell proliferation, migration and epithelial-mesenchymal transition (EMT) process in NSCLC cells. Next, through screening the contents in the exosomes, it was verified that miR-155-5p was especially enriched in the M2-exos, and M2-exos enhanced cancer aggressiveness and tumorigenesis in in vitro NSCLC cells and in vivo xenograft tumor-bearing mice models via delivering miR-155-5p. The detailed molecular mechanisms were subsequently elucidated, and it was found that miR-155-5p bound with HuR to increase the stability and expression levels of VEGFR2, which further activated the tumor-promoting PI3K/Akt/mTOR signal pathway, and M2-exos-enhanced cancer progression in NSCLC cells were apparently suppressed by downregulating VEGFR2 and PI3K inhibitor LY294002 co-treatment. Taken together, M2-polarized TAMs secreted miR-155-5p-containing exosomes to enhanced cancer aggressiveness of NSCLC by activating the VEGFR2/PI3K/Akt/mTOR pathway in a HuR-dependent manner.
Collapse
Affiliation(s)
- Hua Fang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Xiaowen Chi
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Mengyao Wang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Jing Liu
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Meiqi Sun
- Respiratory and Critical Care Medicine, The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Jiashu Zhang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Wei Zhang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
3
|
Chen T, Wei Y, Kang J, Zhang D, Ye J, Sun X, Hong M, Zhang W, Wu H, Ding Z, Fei G. ADAR1-HNRNPL-Mediated CircCANX Decline Promotes Autophagy in Chronic Obstructive Pulmonary Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414211. [PMID: 40091520 PMCID: PMC12079403 DOI: 10.1002/advs.202414211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is a characteristic chronic airway inflammatory disease that worsens over time, however, there are currently limited clinical therapeutics to suspend its progression. Circular RNAs (circRNAs), which have emerged as functional regulators in various diseases, including COPD, may server as new pharmacological targets in COPD. Here, it is identified a nuclear circRNA, circCANX, that is preferentially decreased in COPD. The linear splicing of CANX pre-mRNA, enhanced by the ADAR1-HNRNPL interaction, is responsible for the circCANX decline. Clinically, the higher circCANX expression is associated with a worse lung function index of FEV1/FVC among patients with COPD. CircCANX suppresses autophagy and stress granule (SG) formation to strengthen inflammation of COPD in vivo and in vitro. Mechanistically, circCANX recruits the tumor suppressor protein P53 (P53) mRNA and RNA helicase upstream frameshift 1 (UPF1) to form a ternary complex, which mediates P53 mRNA degradation through nonsense-mediated mRNA decay (NMD) process. Together, this study reveals an important circCANX-mediated regulatory mechanism in COPD, and provides new insights into the potential of circRNA-based drug and biomarker development for COPD.
Collapse
Affiliation(s)
- Ting‐Ting Chen
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Yuan‐Yuan Wei
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Jia‐Ying Kang
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Da‐Wei Zhang
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Jing‐Jing Ye
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Xi‐Shi Sun
- Emergency Medicine CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdong Province524000China
| | - Mei Hong
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Wen‐Ting Zhang
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Hui‐Mei Wu
- Department of Geriatric Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
| | - Zhen‐Xing Ding
- Department of Emergency MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
| | - Guang‐He Fei
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| |
Collapse
|
4
|
Lan X, Zhang H, Chen ZY, Wang J, Zhang SC, Li Q, Ke JY, Wei W, Huang R, Tang X, Chen SP, Huang TT, Zhou YW. Suppressor of cytokine signaling 2 modulates regulatory T cell activity to suppress liver hepatocellular carcinoma growth and metastasis. World J Gastroenterol 2025; 31:100566. [PMID: 40248063 PMCID: PMC12001165 DOI: 10.3748/wjg.v31.i13.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/27/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) is a highly aggressive cancer with poor prognosis due to its complex tumor microenvironment (TME) and immune evasion. Regulatory T cells (Tregs) play a critical role in tumor progression. Suppressor of cytokine signaling 2 (SOCS2), a key immune regulator, may modulate Treg activity and impact LIHC growth and metastasis. AIM To explore how the SOCS2 affects Treg activity in LIHC and its impact on tumor growth and metastasis. METHODS LIHC transcriptome data from The Cancer Genome Atlas database were analyzed using Gene Set Enrichment Analysis, Estimation of Stromal and Immune Cells in Malignant Tumors Using Expression Data, and Cell-Type Identification by Estimating Relative Subsets of RNA Transcripts to evaluate immune pathways and Treg infiltration. Key prognostic genes were identified using Weighted Gene Co-expression Network Analysis and machine learning. In vitro, co-culture experiments, migration assays, apoptosis detection, and enzyme-linked immunosorbent assay were conducted. In vivo, tumor growth, metastasis, and apoptosis were assessed using subcutaneous and lung metastasis mouse models with hematoxylin and eosin staining, Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling, and immunohistochemistry analyses. RESULTS SOCS2 overexpression inhibited Treg cell activity, reducing LIHC cell migration and invasion while increasing apoptosis. In vivo, SOCS2 suppressed tumor growth and metastasis, confirming its therapeutic potential. CONCLUSION SOCS2 modulates CD4+ T function in the TME, contributing to LIHC progression. Targeting SOCS2 presents a potential therapeutic strategy for treating LIHC.
Collapse
Affiliation(s)
- Xi Lan
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Heng Zhang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Ze-Yan Chen
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Jing Wang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Shi-Chang Zhang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Qing Li
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Juan-Yu Ke
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Wei Wei
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Rong Huang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Xi Tang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Si-Ping Chen
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Ting-Ting Huang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Yi-Wen Zhou
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| |
Collapse
|
5
|
Zhao P, Zhu Z, Zheng X, Song Y, Chen C, Xu G, Ke X. Effects of circulating RNAs on tumor metabolism in lung cancer (Review). Oncol Lett 2025; 29:204. [PMID: 40070786 PMCID: PMC11894507 DOI: 10.3892/ol.2025.14950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
During the development and progression of lung cancer, cell metabolism function is altered. Thus, cells rely on aerobic glycolysis and abnormal lipid and amino acid metabolism to obtain energy and nutrients for growth, proliferation and drug resistance. Circular RNAs (circRNAs), a class of non-coding RNAs, serve important biological roles in the growth and development of tumors. Functionally, circRNAs act as molecular sponges that absorb microRNAs (miRNAs) and RNA-binding proteins and as protein scaffolds that regulate gene transcription and translation through the maintenance of mRNA stability. In addition, circRNAs are important regulators of tumor metabolism and promote tumor progression through mediating tumor cell proliferation, metastasis and the induction of chemoresistance. Results of previous studies reveal that circRNAs may serve a key role in regulating tumor metabolic processes in lung cancer, through miRNA sponging and alternative mechanisms. Thus, circRNAs demonstrate potential as therapeutic targets for lung cancer. The present study aimed to review the effects of circRNAs on lung cancer cell metabolism and provide novel insights into the clinical treatment of lung cancer. The present review may also provide a novel theoretical basis for the development of lung cancer drug targets.
Collapse
Affiliation(s)
- Pengfei Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhengfeng Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xinzhe Zheng
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Gang Xu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xixian Ke
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
6
|
Zhang C, Tian C, Zhu R, Chen C, Jin C, Wang X, Sun L, Peng W, Ji D, Zhang Y, Sun Y. CircSATB1 Promotes Colorectal Cancer Liver Metastasis through Facilitating FKBP8 Degradation via RNF25-Mediated Ubiquitination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406962. [PMID: 39921520 PMCID: PMC11967755 DOI: 10.1002/advs.202406962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/14/2024] [Indexed: 02/10/2025]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and liver metastasis is the leading reason for its mortality. Circular RNAs (circRNAs) are conclusively associated with the progression of various cancers, rendering the exploration of its specific mechanisms in colorectal cancer liver metastasis(CRLM) highly valuable. Combined with GEO (Gene Expression Omnibus) databases and clinical data in our center, we found that high expression of circSATB1 is closely related to the progression of CRLM. Functionally, circSATB1 could significantly promote the metastatic ability of CRC cells in vitro and in vivo. Mechanistically, circSATB1 facilitated the RNF25-mediated ubiquitylation and degradation of FKBP8, releasing its inhibitory effects on mTOR signaling. In this process, circSATB1 acted as a scaffold for RNF25-FKBP8 complexes. Additionally, circSATB1 could be packaged in exosomes and secreted from the CRC primary tumors into plasma. In conclusion, this study uncovered a new circSATB1 that acts as a potent promoter of CRLM and offers novel insights into the precision therapeutic strategies for CRLM.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| | - Chuanxin Tian
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| | - Renzhong Zhu
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhou225000China
| | - Chen Chen
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| | - Chi Jin
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| | - Xiaowei Wang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| | - Lejia Sun
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| | - Wen Peng
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| | - Dongjian Ji
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| | - Yue Zhang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| | - Yueming Sun
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| |
Collapse
|
7
|
PANG JIYUN, XIU WEIGANG, CHEN YUEYUN, LIAO WENJING, ZHANG QIN, SHI HUASHAN. A Nomogram for Predicting Survival for Patients with Brain Metastatic and EGFR Mutation Advanced Non-Small Cell Lung Cancer. Oncol Res 2025; 33:895-904. [PMID: 40191716 PMCID: PMC11964887 DOI: 10.32604/or.2024.053363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/05/2024] [Indexed: 04/09/2025] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is often accompanied by brain metastasis (BM), and the prognosis of patients with BM is poor. This study assesses the prognostic impact of BM in NSCLC patients with epidermal growth factor receptor (EGFR) mutations. Methods We retrospectively evaluated 692 advanced NSCLC patients with EGFR mutations treated with tyrosine kinase inhibitors (TKIs) at West China Hospital from 2015 to 2019. The overall survival rate (OS), progression-free survival rate (PFS), objective response rate (ORR), disease control rate (DCR), and clinical parameters of the BM and non-BM groups were compared. Univariable and multivariable regressions were performed to identify independent prognostic factors, followed by validation of a predictive nomogram using receiver operating characteristics and calibration curves. Immune infiltration in tumor tissues was assessed by immunostaining. Results NSCLC patients with BM exhibited a higher frequency of other-site and multi-organ metastases than those without BM. The BM group demonstrated significantly worse OS (26.2 vs. 39.1 months, p < 0.001) and PFS (12.3 vs. 18.8 months, p < 0.001), although the DCR (p = 0.831) and ORR (p = 0.653) were similar in both groups. BM was identified as an independent predictor of poor prognosis. The nomogram performed well, achieving a C index of 0.73, with consistent calibration curves for predicted and actual prognoses. Additionally, fewer peripheral lymphocytes were observed in the BM group. Conclusions BM is a significant risk factor for NSCLC patients, potentially linked to lymphocytopenia.
Collapse
Affiliation(s)
- JIYUN PANG
- Department of Thoracic Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - WEIGANG XIU
- Department of Thoracic Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - YUEYUN CHEN
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - WENJING LIAO
- Department of Thoracic Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - QIN ZHANG
- West China School of Medicine, Department of Postgraduate Students, Sichuan University, Chengdu, 610041, China
| | - HUASHAN SHI
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Cheng J, Kang W, Chen Y, Pan L, Han H, Lv T. Continuous immunotherapy beyond disease progression in patients with advanced non-small cell and small cell lung cancer. Cancer Immunol Immunother 2025; 74:124. [PMID: 39998635 PMCID: PMC11861770 DOI: 10.1007/s00262-025-03958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/26/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The benefits of continuing immunotherapy beyond disease progression in advanced non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) remain uncertain, along with the specific patient subgroups that may gain the most from this approach. This retrospective study aims to evaluate the efficacy of this approach and identify target patient populations likely to benefit. METHODS We collected data from patients with NSCLC and SCLC who experienced disease progression following initial immune checkpoint inhibitor (ICI) treatment from January 2020 to December 2023. Patients were categorized based on second-line treatment: those receiving immunotherapy beyond progression (IBP) and those receiving non-immunotherapy beyond progression (NIBP). Survival outcomes and treatment safety were compared between these two groups. RESULTS A total of 150 patients were included, with 111 NSCLC patients (IBP: n = 78, NIBP: n = 33) and 39 SCLC patients (IBP: n = 31, NIBP: n = 8). Significant differences in median progression-free survival (PFS) and overall survival (OS) were found in patients with driver gene-negative NSCLC (mPFS: 4.7 vs 1.3 months, HR = 0.29, P < 0.01; mOS: 11.03 vs 2.63 months, HR = 0.13, P < 0.001) and SCLC (mPFS: 3.9 vs 2.1 months, HR = 0.38, P = 0.02; mOS: 9.28 vs 2.27 months, HR = 0.23, P < 0.01). Additionally, among driver gene-negative NSCLC patients, achieving a partial response (PR) or stable disease (SD) during initial immunotherapy was associated with improved effectiveness of continued immunotherapy beyond progression. CONCLUSIONS Continued immunotherapy as a second-line treatment may benefit patients with driver gene-negative NSCLC and SCLC who have progressed after initial immunotherapy.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Wenwen Kang
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yueying Chen
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Luyun Pan
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Hedong Han
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Zhang L, Jing M, Song Q, Ouyang Y, Pang Y, Ye X, Fu Y, Yan W. Role of the m 6A demethylase ALKBH5 in gastrointestinal tract cancer (Review). Int J Mol Med 2025; 55:22. [PMID: 39611478 PMCID: PMC11637504 DOI: 10.3892/ijmm.2024.5463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
N6‑methyladenosine (m6A) is one of the most universal, abundant and conserved types of internal post‑transcriptional modifications in eukaryotic RNA, and is involved in nuclear RNA export, RNA splicing, mRNA stability, gene expression, microRNA biogenesis and long non‑coding RNA metabolism. AlkB homologue 5 (ALKBH5) acts as a m6A demethylase to regulate a wide variety of biological processes closely associated with tumour progression, tumour metastasis, tumour immunity and tumour drug resistance. ALKBH5 serves a crucial role in human digestive system tumours, mainly through post‑transcriptional regulation of m6A modification. The present review discusses progress in the study of the m6A demethylase ALKBH5 in gastrointestinal tract cancer, summarizes the potential molecular mechanisms of ALKBH5 dysregulation in gastrointestinal tract cancer, and discusses the significance of ALKBH5‑targeted therapy, which may provide novel ideas for future clinical prognosis prediction, biomarker identification and precise treatment.
Collapse
Affiliation(s)
- Lumiao Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mengjia Jing
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qianben Song
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yiming Ouyang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yingzhi Pang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xilin Ye
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
10
|
Ghoshal B, Jhunjhunwala S. A game of hide-and-seek: how extracellular vesicles evade the immune system. Drug Deliv Transl Res 2025:10.1007/s13346-025-01789-w. [PMID: 39843837 DOI: 10.1007/s13346-025-01789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneously sized, cell-derived nanoparticles operating as proficient mediators of intercellular communication. They are produced by normal as well as diseased cells and carry a variety of cargo. While the molecular details of EV biology have been worked out over the past two decades, one question that continues to intrigue many is how are EVs able to evade the phagocytic immune cells while also being effectively internalized by the target cell or tissue. While some of the components that facilitate this process have started to be identified, many mechanisms are yet to be dissected. This review summarises some of the key mechanisms that cancer cell-derived and viral infected cell-derived EVs utilize to evade the immune system. It will discuss the diverse cloaking mechanisms, in the form of membrane proteins and cargo content that these EVs utilize to enhance pathogenesis. Further, it will highlight the different strategies that have been used to design EVs to escape the immune system, thereby increasing their circulation time with no major toxic effects in vivo. An understanding of the potential EV components that allow better immune evasion can be used to bioengineer EVs with better circulation times for therapeutic purposes.
Collapse
Affiliation(s)
- Bartika Ghoshal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India.
| | | |
Collapse
|
11
|
Ma H, Hong Y, Xu Z, Weng Z, Yang Y, Jin D, Chen Z, Zhou X, Xu Z, Fei F, Song W, Li J. ALKBH5 acts a tumor-suppressive biomarker and is associated with immunotherapy response in hepatocellular carcinoma. Sci Rep 2025; 15:55. [PMID: 39747943 PMCID: PMC11696456 DOI: 10.1038/s41598-024-84050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
As immune-checkpoint inhibitors (ICIs) therapy has made great strides in hepatocellular carcinoma (HCC) treatment, improving patient response to this strategy has become the main focus of research. Accumulating evidence has shown that m6A methylation plays a crucial role in the tumorigenesis and progression of HCC, while the precise impact of the m6A demethylase ALKBH5 on the tumor immune microenvironment (TIME) of HCC remains poorly defined. The clinical significance of ALKBH5 and TIM3 were evaluated in human HCC tissues. The biological function of ALKBH5 was analyzed in vitro and in vivo. The HCC molecular subtypes were identified based on key ALKBH5-regulated methylation-related genes (MRGs). The differences in survival, clinical features, TIME and immunotherapy response between these two subtypes were then evaluated. The regulation of ALKBH5 on TIM3 was detected by qPCR, western blotting and MeRIP. ALKBH5 was downregulated in HCC and associated with worse prognosis. ALKBH5 inhibited the proliferation and migration activities of HCC cells in vitro and in vivo. The HCC subtype with high expression of key MRGs was characterized by immunosuppression phenotypes and a worse response to ICIs. Moreover, TIM3 was identified as a target of ALKBH5. Upregulated TIM3 level was negatively correlated with survival in HCC. The results of this study suggest that ALKBH5 is an important regulator in HCC progression. ALKBH5 exerts its influence on the TIME and immunotherapy response by targeting TIM3 in HCC. This work provides new insight into the correlation between m6A modification and ICI response, which may help provide therapeutic benefits to HCC patients.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- AlkB Homolog 5, RNA Demethylase/metabolism
- AlkB Homolog 5, RNA Demethylase/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Immunotherapy/methods
- Male
- Animals
- Female
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Mice
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Hepatitis A Virus Cellular Receptor 2/genetics
- Tumor Microenvironment/immunology
- Cell Proliferation
- Prognosis
- Middle Aged
- Cell Movement
Collapse
Affiliation(s)
- Hehua Ma
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuxin Hong
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenzhen Xu
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zuyi Weng
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanxun Yang
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Dandan Jin
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhiyou Chen
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuan Zhou
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhi Xu
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Fei Fei
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Wei Song
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Juan Li
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
12
|
Zhang Y, Li X, Chen H, Li J, Guo X, Fang Y, Chen L, Li K, Zhang Y, Kong F, Chen A, Lyu J, Zhang W, Wang Z. Cancer Cell-Derived Exosomal miR-500a-3p Modulates Hepatic Stellate Cell Activation and the Immunosuppressive Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404089. [PMID: 39574357 PMCID: PMC11727405 DOI: 10.1002/advs.202404089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/01/2024] [Indexed: 01/14/2025]
Abstract
Hepatocellular carcinoma (HCC) mainly depends on liver fibrosis/cirrhosis, which is regulated by tumor cells and the tumor microenvironment (TME), and is a crucial factor in tumor progression. This study aimed to identify abnormally expressed miR-500a-3p in the hepatitis-cirrhosis-HCC pathway and explored the roles of miR-500a-3p in HCC progression. A clinical cohort of patients with HCC is studied retrospectively. Subsequently, the role of miR-500a-3p transported by HCC exosomes in hepatic stellate cell (HSC) activation, hepatoma growth and invasion, and immune cell differentiation is determined by in vitro and in vivo experiments. In clinical tissues, miR-500a-3p is significantly enriched in HCC and cirrhosis tissues, and co-expression of the immune marker CD4 or PD-L1 significantly correlates with low survival rates in patients. Extracellular miR-500a-3p is taken up by HSC and PBMC, which promotes the secretion of the cytokines TGF-β1 and IL-10, increases PD-L1 expression in HSC, and stabilizes PD-1 expression in PBMC to affect the TME. Moreover, miR-500a-3p is associated with CD4+ T-cell exhaustion and Treg differentiation and is significantly associated with increased tumorigenicity in in situ mouse HCC models. Mechanistically, HCC-derived exosomal miR-500a-3p directly influences SOCS2 to regulate the JAK3/STAT5A/STAT5B signaling pathway. MiR-500a-3p promotes the growth and migration of HCC through the SOCS2/JAK3/STAT5A/STAT5B axis.
Collapse
Affiliation(s)
- Yu Zhang
- Cancer CenterDepartment of GastroenterologyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiang310014China
| | - Xin Li
- School of Ophthalmology and Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Huiyan Chen
- Laboratory Medicine CenterAllergy CenterDepartment of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Jiawei Li
- School of Ophthalmology and Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Xiaohuan Guo
- Laboratory Medicine CenterAllergy CenterDepartment of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Yilin Fang
- Laboratory Medicine CenterAllergy CenterDepartment of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Linjie Chen
- Laboratory Medicine CenterAllergy CenterDepartment of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Kaiqiang Li
- Laboratory Medicine CenterAllergy CenterDepartment of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Yi Zhang
- Laboratory Medicine CenterAllergy CenterDepartment of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Fei Kong
- Laboratory Medicine CenterAllergy CenterDepartment of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Aodong Chen
- School of Ophthalmology and Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Jianxin Lyu
- Laboratory Medicine CenterAllergy CenterDepartment of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Wei Zhang
- Department of General SurgeryThe second affiliated hospital of Zhejiang Chinese Medical UniversityHangzhou310015China
| | - Zhen Wang
- Laboratory Medicine CenterAllergy CenterDepartment of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| |
Collapse
|
13
|
Yu J, Sun W, Zhao X, Chen Y. The therapeutic potential of RNA m(6)A in lung cancer. Cell Commun Signal 2024; 22:617. [PMID: 39736743 DOI: 10.1186/s12964-024-01980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Lung cancer (LC) is a highly malignant and metastatic form of cancer. The global incidence of and mortality from LC is steadily increasing; the mean 5-year overall survival (OS) rate for LC is less than 20%. This frustrating situation may be attributed to the fact that the pathogenesis of LC remains poorly understood and there is still no cure for mid to advanced LC. Methylation at the N6-position of adenosine (N6mA) of RNA (m(6)A) is widely present in human tissues and organs, and has been found to be necessary for cell development and maintenance of homeostasis. However, numerous basic and clinical studies have demonstrated that RNA m(6)A is deregulated in many human malignancies including LC. This can drive LC malignant characteristics such as proliferation, stemness, invasion, epithelial-mesenchymal transition (EMT), metastasis, and therapeutic resistance. Intriguingly, an increasing number of studies have also shown that eliminating RNA m(6)A dysfunction can exert significant anti-cancer effects on LC such as suppression of cell proliferation and viability, induction of cell death, and reversal of treatment insensitivity. The current review comprehensively discusses the therapeutic potential of RNA m(6)A and its underlying molecular mechanisms in LC, providing useful information for the development of novel LC treatment strategies.
Collapse
Affiliation(s)
- Jingran Yu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Xiangxuan Zhao
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, No.79 Chongshandong Road, Shenyang, 110847, China.
- Health Sciences Institute, China Medical University, Puhe Road, Shenyang North New Area, Shenyang, 110022, China.
| | - Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China.
| |
Collapse
|
14
|
Zhang Y, Wang XY, Liu MH, Li W, Ren C, Li CC, Ma Y, Zhang CY. Assembly of Dandelion-Like Nanoprobe for Sensitive Detection of N6-Methyladenosine Demethylase by Single-Molecule Counting. Anal Chem 2024; 96:19519-19526. [PMID: 39601655 DOI: 10.1021/acs.analchem.4c04218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
N6-methyladenosine (m6A) demethylase is essential for enzymatically removing methyl groups from m6A modifications and is significantly implicated in the pathogenesis and advancement of various cancers, which makes it a promising biomarker for cancer detection and research. As a proof of concept, we select the fat mass and obesity-associated protein (FTO) as the target m6A demethylase and develop a dandelion-like nanoprobe-based sensing platform by employing biobar-code amplification (BCA) for signal amplification. We construct two meticulously designed three-dimensional structures: reporter-loaded gold nanoparticles (Reporter@Au NPs) and substrate-loaded magnetic microparticles (Substrate@MMPs), which can self-assemble to form dandelion-like nanoprobes via complementary base pairing. In the presence of FTO, the m6A-containing substrates are demethylated, triggering the MazF-assisted cleavage reaction and thereby releasing the Reporter@Au NPs. Furthermore, upon digestion by exonucleases, the Reporter@Au NPs may liberate a significant quantity of Cy3 signals. Remarkably, the combined effects of Au NPs' superior enrichment capacity, MMPs' exceptional magnetic separation efficiency, and the precision of the single-molecule detection platform endow the FTO sensor with exceptional sensitivity and specificity with a detection limit of 7.46 × 10-16 M. Additionally, this method offers a versatile platform for the detection of m6A demethylase and the screening of corresponding inhibitors, thereby advancing clinical diagnosis and drug development.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Xin-Yan Wang
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Ming-Hao Liu
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Wenfei Li
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Chaoyi Ren
- Department of Hepatobiliary Surgery, The Third Central Hospital of Tianjin, Tianjin 300070, China
| | - Chen-Chen Li
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yukui Ma
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
15
|
Cao Z, Zhao S, Wu T, Ding H, Tian Z, Sun F, Feng Z, Hu S, Shi L. The causal nexus between diverse smoking statuses, potential therapeutic targets, and NSCLC: insights from Mendelian randomization and mediation analysis. Front Oncol 2024; 14:1438851. [PMID: 39558952 PMCID: PMC11570405 DOI: 10.3389/fonc.2024.1438851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Objective Lung cancer, the most prevalent malignancy, is typically diagnosed at an advanced stage. Smoking is a pivotal risk factor for NSCLC, yet the impact of various smoking statuses on NSCLC remains unclear. Thus, this study aims to explore whether different smoking statuses can causally influence NSCLC through effects on predictive targets, offering a novel perspective for NSCLC treatment. Methods Employing dual-sample MR, MVMR, and TSMR approaches, we assessed the causal relationships between 13 distinct smoking statuses and NSCLC, using predicted potential therapeutic targets as mediators to further elucidate the causal interplay among them. Results Among the 13 smoking statuses, current tobacco smoking, exposure to tobacco smoke outside the home, past tobacco smoking, and never smoked demonstrated causal relationships with NSCLC. MVMR analysis reveals that Current tobacco smoking is an independent risk factor for NSCLC. Utilizing NCAPD2, IL11RA, and MLC1 as mediators, IL11RA (22.2%) was found to potentially mediate the relationship between past tobacco smoking and NSCLC. Conclusion This study, integrating bioinformatics and MR analysis, identified three potential predictive targets as mediators to investigate the causal relationships between different smoking statuses and NSCLC through potential therapeutic targets, providing new insights for the treatment and prevention of NSCLC.
Collapse
Affiliation(s)
- Zhenghua Cao
- Graduate School, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Shengkun Zhao
- Graduate School, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Tong Wu
- Geriatric Department, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, China
| | - Huan Ding
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhiyu Tian
- Graduate School, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Feng Sun
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhuo Feng
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Shaodan Hu
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Li Shi
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
16
|
Sun L, Sun J, Li C, Wu K, Gu Z, Guo L, Zhou Y, Han B, Chang J. STAT3-specific nanocarrier for shRNA/drug dual delivery and tumor synergistic therapy. Bioact Mater 2024; 41:137-157. [PMID: 39131627 PMCID: PMC11314445 DOI: 10.1016/j.bioactmat.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a major disease with high incidence, low survival rate and prone to develop drug resistance to chemotherapy. The mechanism of secondary drug resistance in NSCLC chemotherapy is very complex, and studies have shown that the abnormal activation of STAT3 (Signal Transducer and Activator of Transcription 3) plays an important role in it. In this study, the pGPU6/GFP/Neo STAT3-shRNA recombinant plasmid was constructed with STAT3 as the precise target. By modifying hydrophilic and hydrophobic blocks onto chitosan, a multifunctional vitamin E succinate-chitosan-polyethylene glycol monomethyl ether histidine (VES-CTS-mPEG-His) micelles were synthesized. The micelles could encapsulate hydrophobic drug doxorubicin through self-assembly, and load the recombinant pGPU6/GFP/Neo STAT3-shRNA (pDNA) through positive and negative charges to form dual-loaded nanoparticles DOX/VCPH/pDNA. The co-delivery and synergistic effect of DOX and pDNA could up-regulate the expression of PTEN (Phosphatase and Tensin Homolog), down-regulate the expression of CD31, and induce apoptosis of tumor cells. The results of precision targeted therapy showed that DOX/VCPH/pDNA could significantly down-regulate the expression level of STAT3 protein, further enhancing the efficacy of chemotherapy. Through this study, precision personalized treatment of NSCLC could be effectively achieved, reversing its resistance to chemotherapy drugs, and providing new strategies for the treatment of drug-resistant NSCLC.
Collapse
Affiliation(s)
- Le Sun
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Jishang Sun
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Cuiyao Li
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Keying Wu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Zhiyang Gu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Lan Guo
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Yi Zhou
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Baoqin Han
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| |
Collapse
|
17
|
Chen C, Chen S, Fu Y, Wei Y, Xie L, Chen M. Electrochemical sensing technology based on a ligation-initiated LAMP-assisted CRISPR/Cas12a system for high-specificity detection of EGFR E746-A750 deletion mutation. Biosens Bioelectron 2024; 263:116635. [PMID: 39116629 DOI: 10.1016/j.bios.2024.116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Epidermal growth factor receptor (EGFR) mutation status is pivotal in predicting the efficacy of tyrosine kinase inhibitor treatments against tumors. Among EGFR mutations, the E746-A750 deletion is particularly common and accurately quantifying it can guide targeted therapies. This study introduces a novel visual sensing technology using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system guided by ligation-initiated loop-mediated isothermal amplification (LAMP) to detect the del E746-A750 mutation in EGFR. Conventional LAMP primers were simplified by designing a pair of target-specific stem-loop DNA probes, enabling selective amplification of the target DNA. The CRISPR/Cas12a system was employed to identify the target nucleic acid and activate Cas12a trans-cleavage activity, thereby enhancing the specificity of the assay. Furthermore, the biosensor utilized high-performance nanomaterials such as triangular gold nanoparticles and graphdiyne, known for their large specific surface area, to enhance sensitivity effectively as a sensing platform. The proposed biosensor demonstrated outstanding specificity, achieving a low detection limit of 17 fM (S/N = 3). Consequently, this innovative strategy not only expands the application scope of CRISPR/Cas12a technology but also introduces a promising approach for clinical diagnostics in modern medicine.
Collapse
Affiliation(s)
- Cizhi Chen
- Clinical Laboratory, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Siyu Chen
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Yang Fu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Yuxin Wei
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Linzhi Xie
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Mei Chen
- Clinical Laboratory, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China.
| |
Collapse
|
18
|
Liu Z, Chen J, Ren Y, Liu S, Ba Y, Zuo A, Luo P, Cheng Q, Xu H, Han X. Multi-stage mechanisms of tumor metastasis and therapeutic strategies. Signal Transduct Target Ther 2024; 9:270. [PMID: 39389953 PMCID: PMC11467208 DOI: 10.1038/s41392-024-01955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024] Open
Abstract
The cascade of metastasis in tumor cells, exhibiting organ-specific tendencies, may occur at numerous phases of the disease and progress under intense evolutionary pressures. Organ-specific metastasis relies on the formation of pre-metastatic niche (PMN), with diverse cell types and complex cell interactions contributing to this concept, adding a new dimension to the traditional metastasis cascade. Prior to metastatic dissemination, as orchestrators of PMN formation, primary tumor-derived extracellular vesicles prepare a fertile microenvironment for the settlement and colonization of circulating tumor cells at distant secondary sites, significantly impacting cancer progression and outcomes. Obviously, solely intervening in cancer metastatic sites passively after macrometastasis is often insufficient. Early prediction of metastasis and holistic, macro-level control represent the future directions in cancer therapy. This review emphasizes the dynamic and intricate systematic alterations that occur as cancer progresses, illustrates the immunological landscape of organ-specific PMN creation, and deepens understanding of treatment modalities pertinent to metastasis, thereby identifying some prognostic and predictive biomarkers favorable to early predict the occurrence of metastasis and design appropriate treatment combinations.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingqi Chen
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China.
| |
Collapse
|
19
|
Wu Z, Wu M, Jiang X, Shang F, Li S, Mi Y, Geng C, Tian Y, Li Z, Zhao Z. The study on circRNA profiling uncovers the regulatory function of the hsa_circ_0059665/miR-602 pathway in breast cancer. Sci Rep 2024; 14:20555. [PMID: 39232183 PMCID: PMC11374783 DOI: 10.1038/s41598-024-71505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Abnormal expression of circRNAs has been observed in different types of carcinomas, and they play significant roles in the biology of these cancers. Nevertheless, the clinical relevance and functional mechanisms of the majority of circRNAs implicated in breast cancer progression remain unclear. The primary objective of our investigation is to uncover new circRNAs in breast cancer and elucidate the underlying mechanisms by which they exert their effects. The circRNA expression profile data for breast cancer and RNA-sequencing data were acquired from distinct public databases. Differentially expressed circRNAs and mRNA were identified through fold change filtering. The establishment of the competing endogenous RNAs (ceRNAs) network relied on the interplay between circular RNAs, miRNAs, and mRNAs. The hub genes were identified from the protein-protein interaction (PPI) regulatory network using the CytoHubba plugin in Cytoscape. Moreover, the expression levels and prognostic value of these hub genes in the PPI network were assessed using the GEPIA and Kaplan-Meier plotter databases. Fluorescence in situ hybridization (FISH) was used to identified the expression and intracellular localization of hsa_circ_0059665 by using the tissue microarray. Transwell analysis and CCK-8 analysis were performed to assess the invasion, migration, and proliferation abilities of breast cancer cells. Additionally, we investigated the interactions between hsa_circ_0059665 and miR-602 through various methods, including FISH, RNA-binding protein immunoprecipitation (RIP), and luciferase reporter assay. Rescue experiments were conducted to determine the potential regulatory role of hsa_circ_0059665 in breast cancer progression. A total of 252 differentially expressed circRNAs were identified. Among them, 246 circRNAs were up-regulated, while 6 circRNAs were down-regulated. Based on prediction and screening of circRNA-miRNA and miRNA-mRNA binding sites, we constructed a network consisting of circRNA-miRNA-mRNA interactions. In addition, we constructed a Protein-Protein Interaction (PPI) network and identified six hub genes. Moreover, the expression levels of these six hub genes in breast cancer tissues were found to be significantly lower. Furthermore, the survival analysis results revealed a significant correlation between low expression levels of KIT, FGF2, NTRK2, CAV1, LEP and poorer prognosis in breast cancer patients. The FISH experiment results indicated that hsa_circ_0059665 exhibits significant downregulation in breast cancer, and its decreased expression is linked to poor prognosis in breast cancer patients. Functional in vitro experiments revealed that overexpression of hsa_circ_0059665 can inhibit proliferation, migration and invasion abilities of breast cancer cells. Further molecular mechanism studies showed that hsa_circ_0059665 exerts its anticancer gene role by acting as a molecular sponge for miR-602. In our study, we constructed and analyzed a circRNA-related ceRNA regulatory network and found that hsa_circ_0059665 can act as a sponge for miR-602 and inhibit the proliferation, invasion and migration of breast cancer cells.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei, 050031, People's Republic of China
| | - Ming Wu
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Xia Jiang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei, 050031, People's Republic of China
| | - Fangjian Shang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei, 050031, People's Republic of China
| | - Sainan Li
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Yunzhe Mi
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Cuizhi Geng
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Yanfeng Tian
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei, 050031, People's Republic of China
| | - Zhongxin Li
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei, 050031, People's Republic of China.
| | - Zengren Zhao
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei, 050031, People's Republic of China.
| |
Collapse
|
20
|
Qu Y, Gao N, Zhang S, Gao L, He B, Wang C, Gong C, Shi Q, Li Z, Yang S, Xiao Y. Role of N6-methyladenosine RNA modification in cancer. MedComm (Beijing) 2024; 5:e715. [PMID: 39252821 PMCID: PMC11381670 DOI: 10.1002/mco2.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant modification of RNA in eukaryotic cells. Previous studies have shown that m6A is pivotal in diverse diseases especially cancer. m6A corelates with the initiation, progression, resistance, invasion, and metastasis of cancer. However, despite these insights, a comprehensive understanding of its specific roles and mechanisms within the complex landscape of cancer is still elusive. This review begins by outlining the key regulatory proteins of m6A modification and their posttranslational modifications (PTMs), as well as the role in chromatin accessibility and transcriptional activity within cancer cells. Additionally, it highlights that m6A modifications impact cancer progression by modulating programmed cell death mechanisms and affecting the tumor microenvironment through various cancer-associated immune cells. Furthermore, the review discusses how microorganisms can induce enduring epigenetic changes and oncogenic effect in microorganism-associated cancers by altering m6A modifications. Last, it delves into the role of m6A modification in cancer immunotherapy, encompassing RNA therapy, immune checkpoint blockade, cytokine therapy, adoptive cell transfer therapy, and direct targeting of m6A regulators. Overall, this review clarifies the multifaceted role of m6A modification in cancer and explores targeted therapies aimed at manipulating m6A modification, aiming to advance cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Yi Qu
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Nannan Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shengwei Zhang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Limin Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Bing He
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chao Wang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chunli Gong
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Qiuyue Shi
- Department of Gastroenterology the First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Zhibin Li
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shiming Yang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Yufeng Xiao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| |
Collapse
|
21
|
Gao Z, Zha X, Li M, Xia X, Wang S. Insights into the m 6A demethylases FTO and ALKBH5 : structural, biological function, and inhibitor development. Cell Biosci 2024; 14:108. [PMID: 39192357 DOI: 10.1186/s13578-024-01286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
N6-methyladenosine (m6A) is dynamically regulated by methyltransferases (termed "writers") and demethylases (referred to as "erasers"), facilitating a reversible modulation. Changes in m6A levels significantly influence cellular functions, such as RNA export from the nucleus, mRNA metabolism, protein synthesis, and RNA splicing. They are intricately associated with a spectrum of pathologies. Moreover, dysregulation of m6A modulation has emerged as a promising therapeutic target across many diseases. m6A plays a pivotal role in controlling vital downstream molecules and critical biological pathways, contributing to the pathogenesis and evolution of numerous conditions. This review provides an overview of m6A demethylases, explicitly detailing the structural and functional characteristics of FTO and ALKBH5. Additionally, we explore their distinct involvement in various diseases, examine factors regulating their expression, and discuss the progress in inhibitor development.
Collapse
Affiliation(s)
- Zewei Gao
- Department of Laboratory Medicine,Jiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xuan Zha
- Department of Laboratory Medicine,Jiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Li
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine,Jiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
22
|
Wu J, Chen Y. Unraveling the Connection: Extracellular Vesicles and Non-Small Cell Lung Cancer. Int J Nanomedicine 2024; 19:8139-8157. [PMID: 39139506 PMCID: PMC11321355 DOI: 10.2147/ijn.s477851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoscale lipid bilayer vesicles released during cell activation, cellular damage, or apoptosis. They carry nucleic acids, proteins, and lipids facilitating intercellular communication and activate signaling pathways in target cells. In non-small cell lung cancer (NSCLC), EVs may contribute to tumor growth and metastasis by modulating immune responses, facilitating epithelial-mesenchymal transition, and promoting angiogenesis, while potentially contributing to resistance to chemotherapy drugs. EVs in liquid biopsies serve as non-invasive biomarkers for early cancer detection and diagnosis. Due to their small size, inherent molecular transport properties, and excellent biocompatibility, EVs also act as natural drug delivery vehicles in NSCLC therapy.
Collapse
Affiliation(s)
- Jiankang Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine, Changsha, Hunan, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine, Changsha, Hunan, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
23
|
Deng P, Fan T, Gao P, Peng Y, Li M, Li J, Qin M, Hao R, Wang L, Li M, Zhang L, Chen C, He M, Lu Y, Ma Q, Luo Y, Tian L, Xie J, Chen M, Xu S, Zhou Z, Yu Z, Pi H. SIRT5-Mediated Desuccinylation of RAB7A Protects Against Cadmium-Induced Alzheimer's Disease-Like Pathology by Restoring Autophagic Flux. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402030. [PMID: 38837686 PMCID: PMC11321632 DOI: 10.1002/advs.202402030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Cadmium (Cd) is a neurotoxic contaminant that induces cognitive decline similar to that observed in Alzheimer's disease (AD). Autophagic flux dysfunction is attributed to the pathogenesis of AD, and this study aimed to investigate the effect of autophagy on environmental Cd-induced AD progression and the underlying mechanism. Here, Cd exposure inhibited autophagosome-lysosome fusion and impaired lysosomal function, leading to defects in autophagic clearance and then to APP accumulation and nerve cell death. Proteomic analysis coupled with Ingenuity Pathway Analysis (IPA) identified SIRT5 as an essential molecular target in Cd-impaired autophagic flux. Mechanistically, Cd exposure hampered the expression of SIRT5, thus increasing the succinylation of RAB7A at lysine 31 and inhibiting RAB7A activity, which contributed to autophagic flux blockade. Importantly, SIRT5 overexpression led to the restoration of autophagic flux blockade, the alleviation of Aβ deposition and memory deficits, and the desuccinylation of RAB7A in Cd-exposed FAD4T mice. Additionally, SIRT5 levels decrease mainly in neurons but not in other cell clusters in the brains of AD patients according to single-nucleus RNA sequencing data from the public dataset GSE188545. This study reveals that SIRT5-catalysed RAB7A desuccinylation is an essential adaptive mechanism for the amelioration of Cd-induced autophagic flux blockade and AD-like pathogenesis.
Collapse
Affiliation(s)
- Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Tengfei Fan
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410007China
| | - Peng Gao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Yongchun Peng
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410007China
| | - Min Li
- Basic Medical LaboratoryGeneral Hospital of Central Theater CommandWuhan430070China
- Hubei Key Laboratory of Central Nervous System Tumour and InterventionWuhan430070China
| | - Jingdian Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Mingke Qin
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Rongrong Hao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Liting Wang
- Biomedical Analysis CenterArmy Medical UniversityChongqing400038China
| | - Min Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Lei Zhang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Chunhai Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Mindi He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Yonghui Lu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Qinlong Ma
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Shangcheng Xu
- Center of Laboratory MedicineChongqing Prevention and Treatment Center for Occupational DiseasesChongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and PoisoningChongqing400060China
| | - Zhou Zhou
- Center for Neuro IntelligenceSchool of MedicineChongqing UniversityChongqing400030China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education)Army Medical University (Third Military Medical University)Chongqing400038China
- State Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqing400038China
| |
Collapse
|
24
|
Zhong T, Li Y, Jin M, Liu J, Wu Z, Zhu F, Zhao L, Fan Y, Xu L, Ji J. Downregulation of 4-HNE and FOXO4 collaboratively promotes NSCLC cell migration and tumor growth. Cell Death Dis 2024; 15:546. [PMID: 39085238 PMCID: PMC11291900 DOI: 10.1038/s41419-024-06948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Non-small cell lung cancer (NSCLC) is among the most prevalent cancers and a leading cause of cancer-related mortality globally. Extracellular vesicles (EVs) derived from NSCLC play a pivotal role in lung cancer progression. Our findings reveal a direct correlation between the abundance of EVs and the transfection efficiencies. Co-culturing two different lung cancer cell lines could enhance EVs formation, cell proliferation, migration and tumorigenicity. mRNA chip and metabolic analyses revealed significant alterations in the FOXO signaling pathway and unsaturated fatty acid metabolism within tumor tissues derived from co-cultured cells. Shotgun lipidomics studies and bioinformatics analyses guided our attention towards 4-Hydroxynonenal (4-HNE) and FOXO4. Elevating 4-HNE or FOXO4 levels could reduce the formation of EVs and impede cell growth and migration. While silencing FOXO4 expression lead to an increase in cell cloning rate and enhanced migration. These findings suggest that regulating the production of 4-HNE and FOXO4 might provide an effective therapeutic approach for the treatment of NSCLC.
Collapse
Affiliation(s)
- Tianfei Zhong
- College of Basic Medical, Zhejiang Chinese Medical University, Hangzhou, China
- Logistic Affairs Department, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Li
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng Jin
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingqun Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenyu Wu
- College of Basic Medical, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laborat Laboratory of Chinese Medicine Rtheumatology of Zhejiang Province, Hangzhou, China
| | - Feiye Zhu
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lisha Zhao
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Yongsheng Fan
- Key Laborat Laboratory of Chinese Medicine Rtheumatology of Zhejiang Province, Hangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Xu
- College of Basic Medical, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laborat Laboratory of Chinese Medicine Rtheumatology of Zhejiang Province, Hangzhou, China.
| | - Jinjun Ji
- College of Basic Medical, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laborat Laboratory of Chinese Medicine Rtheumatology of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
25
|
Liu F, Gu W, Shao Y. Cross-talk between circRNAs and m6A modifications in solid tumors. J Transl Med 2024; 22:694. [PMID: 39075555 PMCID: PMC11288061 DOI: 10.1186/s12967-024-05500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
Circular RNAs (circRNAs) possess unique biological properties and distribution characteristics that enable a variety of biological functions. N6-methyladenosine (m6A), a prevalent epigenetic modification in organisms, is regulated by factors including methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers). These factors play critical roles in various pathophysiological processes. There is growing evidence that m6A modifications are common within circRNAs, affecting their synthesis, translation, translocation, degradation, and stability. Additionally, circRNAs regulate biological processes that influence m6A modifications. This review explores the metabolism and functions of m6A modifications and circRNAs, their interactions, and their specific regulatory mechanisms in different tumors, offering insights into m6A-circRNA interaction in cancer.
Collapse
Affiliation(s)
- Fenfang Liu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
26
|
Yang N, Jiao M, Zhang Y, Mo S, Wang L, Liang J. Roles and mechanisms of circular RNA in respiratory system cancers. Front Oncol 2024; 14:1430051. [PMID: 39077467 PMCID: PMC11284073 DOI: 10.3389/fonc.2024.1430051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Circular RNAs (circRNAs) constitute a class of endogenous non-coding RNAs (ncRNAs) that lack a 5'-ended cap and 3'-ended poly (A) tail and form a closed ring structure with covalent bonds. Due to its special structure, circRNA is resistant to Exonuclease R (RNaseR), making its distribution in the cytoplasm quite rich. Advanced high-throughput sequencing and bioinformatics methods have revealed that circRNA is highly conserved, stable, and disease- and tissue-specific. Furthermore, increasing research has confirmed that circRNA, as a driver or suppressor, regulates cancer onset and progression by modulating a series of pathophysiological mechanisms. As a result, circRNA has emerged as a clinical biomarker and therapeutic intervention target. This article reviews the biological functions and regulatory mechanisms of circRNA in the context of respiratory cancer onset and progression.
Collapse
Affiliation(s)
- Nan Yang
- School of Basic Medical, Gansu University of Chinese Medicine, Lanzhou, China
| | - Mengwen Jiao
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuewen Zhang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shaokang Mo
- Department of Obstetrics and Gynecology, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Ling Wang
- Department of Obstetrics and Gynecology, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Jianqing Liang
- School of Basic Medical, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
27
|
Shao G, Cui X, Wang Y, Luo S, Li C, Jiang Y, Cai D, Li N, Li X. Targeting MS4A4A: A novel pathway to improve immunotherapy responses in glioblastoma. CNS Neurosci Ther 2024; 30:e14791. [PMID: 38997808 PMCID: PMC11245405 DOI: 10.1111/cns.14791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 07/14/2024] Open
Abstract
INTRODUCTION Glioblastoma (GBM) remains a challenging brain tumor to treat, with limited response to PD-1 immunotherapy due to tumor-associated macrophages (TAMs), specifically the M2 phenotype. This study explores the potential of MS4A4A (membrane spanning four domains, subfamily A, member 4A) inhibition in driving M2 macrophage polarization toward the M1 phenotype via the ferroptosis pathway to enhance the effectiveness of immunotherapy in GBM. METHODS Single-cell RNA sequencing and spatial transcriptomic analyses were employed to characterize M2 macrophages and MS4A4A expression in GBM. In vitro studies utilizing TAM cultures, flow cytometry, and western blot validations were conducted to assess the impact of MS4A4A on the tumor immune microenvironment and M2 macrophage polarization. In vivo models, including subcutaneous and orthotopic transplantation in mice, were utilized to evaluate the effects of MS4A4A knockout and combined immune checkpoint blockade (ICB) therapy on tumor growth and response to PD-1 immunotherapy. RESULTS Distinct subsets of GBM-associated macrophages were identified, with spatial distribution in tumor tissue elucidated. In vivo experiments demonstrated that inhibiting MS4A4A and combining ICB therapy effectively inhibited tumor growth, reshaped the tumor immune microenvironment by reducing M2 TAM infiltration and enhancing CD8+ T-cell infiltration, ultimately leading to complete tumor eradication. CONCLUSION MS4A4A inhibition shows promise in converting M2 macrophages to M1 phenotype via ferroptosis, decreasing M2-TAM infiltration, and enhancing GBM response to PD-1 immunotherapy. These findings offer a novel approach to developing more effective immunotherapeutic strategies for GBM.
Collapse
Affiliation(s)
- Guangcai Shao
- Department of Neurosurgery, Shengjing HospitalChina Medical UniversityShenyangChina
- Department of NeurosurgeryAnshan Central HospitalAnshanChina
| | - Xiangguo Cui
- Department of Otolaryngology Head and Neck Surgery, Shengjing HospitalChina Medical UniversityShenyangChina
| | - Yiliang Wang
- Department of AnesthesiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Shuyan Luo
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Chuanyu Li
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Yu Jiang
- Department of NeurosurgeryAnshan Central HospitalAnshanChina
| | - Dasheng Cai
- Department of AnesthesiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Nu Li
- Department of Breast SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Xiang Li
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
28
|
Shen H, Zheng R, Du M, Christiani DC. Environmental pollutants exposure-derived extracellular vesicles: crucial players in respiratory disorders. Thorax 2024; 79:680-691. [PMID: 38631896 DOI: 10.1136/thorax-2023-221302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Individual exposure to environmental pollutants, as one of the most influential drivers of respiratory disorders, has received considerable attention due to its preventability and controllability. Considering that the extracellular vesicle (EV) was an emerging intercellular communication medium, recent studies have highlighted the crucial role of environmental pollutants derived EVs (EPE-EVs) in respiratory disorders. METHODS PubMed and Web of Science were searched from January 2018 to December 2023 for publications with key words of environmental pollutants, respiratory disorders and EVs. RESULTS Environmental pollutants could disrupt airway intercellular communication by indirectly stimulating airway barrier cells to secrete endogenous EVs, or directly transmitting exogenous EVs, mainly by biological pollutants. Mechanistically, EPE-EVs transferred specific contents to modulate biological functions of recipient cells, to induce respiratory inflammation and impair tissue and immune function, which consequently contributed to the development of respiratory diseases, such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, pulmonary hypertension, lung cancer and infectious lung diseases. Clinically, EVs could emerged as promising biomarkers and biological agents for respiratory diseases attributed by their specificity, convenience, sensibility and stability. CONCLUSIONS Further studies of EPE-EVs are helpful to understand the aetiology and pathology of respiratory diseases, and facilitate the precision respiratory medicine in risk screening, early diagnosis, clinical management and biotherapy.
Collapse
Affiliation(s)
- Haoran Shen
- School of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Departments of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - David C Christiani
- Departments of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Ma S, Wang L. Prognostic factors and predictive model construction in patients with non-small cell lung cancer: a retrospective study. Front Oncol 2024; 14:1378135. [PMID: 38854735 PMCID: PMC11157049 DOI: 10.3389/fonc.2024.1378135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Objective The purpose of this study was to construct a nomogram model based on the general characteristics, histological features, pathological and immunohistochemical results, and inflammatory and nutritional indicators of patients so as to effectively predict the overall survival (OS) and progression-free survival (PFS) of patients with non-small cell lung cancer (NSCLC) after surgery. Methods Patients with NSCLC who received surgical treatment in our hospital from January 2017 to June 2021 were selected as the study subjects. The predictors of OS and PFS were evaluated by univariate and multivariable Cox regression analysis using the Cox proportional risk model. Based on the results of multi-factor Cox proportional risk regression analysis, a nomogram model was established using the R survival package. The bootstrap method (repeated sampling for 1 000 times) was used to internally verify the nomogram model, and C-index was used to represent the prediction performance of the nomogram model. The calibration graph method was used to visually represent its prediction compliance, and decision curve analysis (DCA) was used to evaluate the application value of the model. Results Univariate and multivariate analyses were used to identify independent prognostic factors and to construct a nomogram of postoperative survival and disease progression in operable NSCLC patients, with C-index values of 0.927 (907-0.947) and 0.944 (0.922-0.966), respectively. The results showed that the model had high predictive performance. Calibration curves for 1-year, 2-year, and 3-year OS and PFS show a high degree of agreement between the predicted probability and the actual observed probability. In addition, the results of the DCA curve show that the model has good clinical application value. Conclusion We established a predictive model of survival prognosis and disease progression in patients with non-small cell lung cancer after surgery, which has good predictive performance and can guide clinicians to make the best clinical decision.
Collapse
Affiliation(s)
- Shixin Ma
- Dalian Medical University, Dalian, Liaoning, China
- Department of Thoracic Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Lunqing Wang
- Department of Thoracic Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| |
Collapse
|
30
|
Gao FF, Chen DQ, Jiang YT, Han CF, Lin BY, Yang Z, Quan JH, Xiong YH, Chen XT. Functional roles of circular RNAs in lung injury. Front Pharmacol 2024; 15:1354806. [PMID: 38601461 PMCID: PMC11004487 DOI: 10.3389/fphar.2024.1354806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 04/12/2024] Open
Abstract
Lung injury leads to respiratory dysfunction, low quality of life, and even life-threatening conditions. Circular RNAs (circRNAs) are endogenous RNAs produced by selective RNA splicing. Studies have reported their involvement in the progression of lung injury. Understanding the roles of circRNAs in lung injury may aid in elucidating the underlying mechanisms and provide new therapeutic targets. Thus, in this review, we aimed to summarize and discuss the characteristics and biological functions of circRNAs, and their roles in lung injury from existing research, to provide a theoretical basis for the use of circRNAs as a diagnostic and therapeutic target for lung injury.
Collapse
Affiliation(s)
- Fei-Fei Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Dian-Qing Chen
- Department of Hand and Foot Surgery, Armed Police Corps Hospital of Hebei, Shijiazhuang, Hebei, China
| | - Yue-Tong Jiang
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cui-Fei Han
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Bi-Yun Lin
- Biotissue Repository, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhan Yang
- Biotissue Repository, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Juan-Hua Quan
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ying-Huan Xiong
- Biotissue Repository, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xin-Tian Chen
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
31
|
Yang M, Hu X, Tang B, Deng F. Exploring the interplay between methylation patterns and non-coding RNAs in non-small cell lung cancer: Implications for pathogenesis and therapeutic targets. Heliyon 2024; 10:e24811. [PMID: 38312618 PMCID: PMC10835372 DOI: 10.1016/j.heliyon.2024.e24811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Lung cancer is a global public health issue, with non-small cell lung cancer (NSCLC) accounting for 80-85 % of cases. With over two million new diagnoses annually, understanding the complex evolution of this disease is crucial. The development of lung cancer involves a complex interplay of genetic, epigenetic, and environmental factors, leading the key oncogenes and tumor suppressor genes to disorder, and activating the cancer related signaling pathway. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNA (circRNAs) are unique RNA transcripts with diverse biological functions. These ncRNAs are generated through genome transcription and play essential roles in cellular processes. Epigenetic modifications such as DNA methylation, N6-methyladenosine (m6A) modification, and histone methylation have gained significant attention in NSCLC research. The complexity of the interactions among these methylation modifications and ncRNAs contribute to the precise regulation of NSCLC development. This review comprehensively summarizes the associations between ncRNAs and different methylation modifications and discusses their effects on NSCLC. By elucidating these relationships, we aim to advance our understanding of NSCLC pathogenesis and identify potential therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Mei Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Xue Hu
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| | - Bin Tang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Fengmei Deng
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
32
|
Wei Y, Guo X, Li L, Xue W, Wang L, Chen C, Sun S, Yang Y, Yao W, Wang W, Zhao J, Duan X. The role of N6-methyladenosine methylation in PAHs-induced cancers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118078-118101. [PMID: 37924411 DOI: 10.1007/s11356-023-30710-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), which are a wide range of environmental toxicants, may act on humans through inhalation, ingestion, and skin contact, resulting in a range of toxic reactions. Epidemiological studies showed that long-term exposure to PAHs in the occupational and living environment results in a substantial rise in the incidence rate of many cancers in the population, so the prevention and treatment of these diseases have become a major worldwide public health problem. N6-methyladenosine (m6A) modification greatly affects the metabolism of RNA and is implicated in the etiopathogenesis of many kinds of diseases. In addition, m6A-binding proteins have an important role in disease development. The abnormal expression of these can cause the malignant proliferation, migration, invasion, and metastasis of cancers. Furthermore, a growing number of studies revealed that environmental toxicants are one of the cancer risk factors and are related to m6A modifications. Exposure to environmental toxicants can alter the methylation level of m6A and the expression of the m6A-binding protein, thus promoting the occurrence and development of cancers through diverse mechanisms. m6A may serve as a biomarker for early environmental exposure. Through the study of m6A, we can find the health injury early, thus providing a new sight for preventing and curing environmental health-related diseases.
Collapse
Affiliation(s)
- Yujie Wei
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaona Guo
- Medical School, Huanghe Science and Technology University, Zhengzhou, Henan, China
| | - Lifeng Li
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Longhao Wang
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Chengxin Chen
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shilong Sun
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaqi Yang
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Zhao
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoran Duan
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China.
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Medical School, Huanghe Science and Technology University, Zhengzhou, Henan, China.
| |
Collapse
|
33
|
Wu Z, Zuo X, Zhang W, Li Y, Gui R, Leng J, Shen H, Pan B, Fan L, Li J, Jin H. m6A-Modified circTET2 Interacting with HNRNPC Regulates Fatty Acid Oxidation to Promote the Proliferation of Chronic Lymphocytic Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304895. [PMID: 37821382 PMCID: PMC10700176 DOI: 10.1002/advs.202304895] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/01/2023] [Indexed: 10/13/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a hematological malignancy with high metabolic heterogeneity. N6-methyladenosine (m6A) modification plays an important role in metabolism through regulating circular RNAs (circRNAs). However, the underlying mechanism is not yet fully understood in CLL. Herein, an m6A scoring system and an m6A-related circRNA prognostic signature are established, and circTET2 as a potential prognostic biomarker for CLL is identified. The level of m6A modification is found to affect the transport of circTET2 out of the nucleus. By interacting with the RNA-binding protein (RBP) heterogeneous nuclear ribonucleoprotein C (HNRNPC), circTET2 regulates the stability of CPT1A and participates in the lipid metabolism and proliferation of CLL cells through mTORC1 signaling pathway. The mTOR inhibitor dactolisib and FAO inhibitor perhexiline exert a synergistic effect on CLL cells. In addition, the biogenesis of circTET2 can be affected by the splicing process and the RBPs RBMX and YTHDC1. CP028, a splicing inhibitor, modulates the expression of circTET2 and shows pronounced inhibitory effects. In summary, circTET2 plays an important role in the modulation of lipid metabolism and cell proliferation in CLL. This study demonstrates the clinical value of circTET2 as a prognostic indicator as well as provides novel insights in targeting treatment for CLL.
Collapse
Affiliation(s)
- Zijuan Wu
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Xiaoling Zuo
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
- Anqing First People's Hospital of Anhui Medical UniversityAnqing First People's Hospital of Anhui ProvinceAnqing246004China
| | - Wei Zhang
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Yongle Li
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Renfu Gui
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Jiayan Leng
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiang212002China
| | - Haorui Shen
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Bihui Pan
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Lei Fan
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Jianyong Li
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhou215000China
| | - Hui Jin
- Department of Hematologythe First Affiliated Hospital of Nanjing Medical UniversityJiangsu Province HospitalNanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| |
Collapse
|
34
|
Wang S, Zhang G, Cui Q, Yang Y, Wang D, Liu A, Xia Y, Li W, Liu Y, Yu J. The DC-T cell axis is an effective target for the treatment of non-small cell lung cancer. Immun Inflamm Dis 2023; 11:e1099. [PMID: 38018578 PMCID: PMC10681037 DOI: 10.1002/iid3.1099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
The dendritic cell (DC)-T cell axis is a bridge that connects innate and adaptive immunities. The initial immune response against tumors is mainly induced by mature antigen-presenting DCs. Enhancing the crosstalk between DCs and T cells may be an effective approach to improve the immune response to non-small cell lung cancer (NSCLC). In this article, a review was made of the interaction between DCs and T cells in the treatment of NSCLC and how this interaction affects the treatment outcome.
Collapse
Affiliation(s)
- Shuangcui Wang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Guan Zhang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Qian Cui
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yanjie Yang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Dong Wang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Aqing Liu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ying Xia
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Wentao Li
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yunhe Liu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Jianchun Yu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|