1
|
Jia B, Shi Y, Yan Y, Shi H, Zheng J, Liu J. Engineering of Erythrocytes as Drug Carriers for Therapeutic Applications. Adv Biol (Weinh) 2025; 9:e2400242. [PMID: 39037400 DOI: 10.1002/adbi.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/18/2024] [Indexed: 07/23/2024]
Abstract
Erythrocytes, also known as red blood cells (RBCs), have garnered considerable attention as potential carriers for drug delivery, owing to their inherent properties such as biocompatibility, biodegradability, and prolonged circulation half-life. This paper presents a comprehensive overview of the role of erythrocytes in drug delivery, elucidating recent advancements in delivering a diverse array of therapeutic agents, including small molecules, nucleic acids, antibodies, protein enzymes, and nanoparticles. Two primary strategies for encapsulating drugs within erythrocytes are systematically discussed: internal loading and surface loading. Each strategy offers distinct advantages in terms of drug stability and release kinetics. Notably, the utilization of erythrocyte membrane camouflaged nanocarriers holds promise for enhancing the biocompatibility of conventional nanoparticles and facilitating targeted drug delivery. Furthermore, the broad spectrum of biomedical applications of erythrocyte-based drug delivery systems are examined, ranging from cancer treatment to diabetes management, thrombosis prevention, and immunotherapy. This review provides a comprehensive evaluation of current technologies in erythrocyte-loaded drug delivery, highlighting the strengths, weaknesses, and future directions for advancing therapeutic interventions in various disease contexts.
Collapse
Affiliation(s)
- Baoshuo Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Yujie Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Yuling Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
2
|
Zhou H, Yin X, Zhang G, Yang Z, Zhou R. Advancing Nanomaterial-Based Strategies for Alzheimer's Disease: A Perspective. JACS AU 2025; 5:1519-1537. [PMID: 40313833 PMCID: PMC12041962 DOI: 10.1021/jacsau.5c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 05/03/2025]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder and the most common cause of dementia. By 2050, the number of AD cases is projected to exceed 131 million, placing significant strain on healthcare systems and economies worldwide. The pathogenesis of AD is multifactorial, involving hypotheses/mechanisms, such as amyloid-β (Aβ) plaques, tau protein hyperphosphorylation, cholinergic neuron damage, oxidative stress, and inflammation. Despite extensive research, the complexity of these potentially entangled mechanisms has hindered the development of treatments that can reverse disease progression. Nanotechnology, leveraging the unique physical, electrical, magnetic, and optical properties of nanomaterials, has emerged as a promising approach for AD treatment. In this Perspective, we first outlined the major current pathogenic hypotheses of AD and then reviewed recent advances in nanomaterials in addressing these hypotheses. We have also discussed the challenges in translating nanomaterials into clinical applications and proposed future directions, particularly the development of multifunctional and multitarget nanomaterials, to enhance their therapeutic efficacy and clinical applicability in AD treatment.
Collapse
Affiliation(s)
- Hong Zhou
- Institute
of Quantitative Biology, College of Life Sciences, College of Physics, Zhejiang University, Hangzhou 310027, China
- Department
of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing 312000, China
| | - Xiuhua Yin
- Center
of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Medical Center
of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Guanqiao Zhang
- Institute
of Quantitative Biology, College of Life Sciences, College of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zaixing Yang
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- Institute
of Quantitative Biology, College of Life Sciences, College of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Wang C, Zhang X, Zhuang Y, Song X, Sun S, Chen Y, Qi G, Yang Y, Li P, Wei W. Natural Bioactive Compounds Solanesol and Chlorogenic Acid Assembled Nanomicelles for Alzheimer's Disease Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14591-14603. [PMID: 39995296 DOI: 10.1021/acsami.4c22621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Solanesol (Sol) and chlorogenic acid (CHA) are naturally active compounds. Sol exhibits a significant free radical absorption ability and strong antioxidant activity. CHA, a typical phenolic acid, exhibits excellent anticancer, anti-inflammation, and antibacterial properties. Herein, bifunctional nanomicelles (CI@SPK) were skillfully designed to take advantage of the unique properties of Sol and CHA to treat Alzheimer's disease (AD). Hydrophobic Sol was modified with poly(ethylene glycol) to self-assemble into stable nanomicelles (SP). CHA could be encapsulated into the hydrophobic core of these nanomicelles, which increased its bioavailability greatly. Short peptide K (CKLVFFAED) was incorporated (CI@SPK) to facilitate their crossing the blood-brain barrier. Then, CI@SPK targeted the AD lesion area, and CHA was released in greater quantities with the help of IR780 under irradiation with an 808 nm laser, resulting in synergistically scavenging reactive oxygen species (ROS) with Sol. Consequently, the nanomicelles CI@SPK demonstrated capabilities in scavenging ROS, inhibiting β-amyloid (Aβ) aggregation, and eventually modulating microglia phenotype from M1 to M2 to promote Aβ phagocytosis and clearance. In vivo studies indicated that nanomicelles CI@SPK improved the learning and cognitive impairments of APP/PS1 mice by reducing Aβ plaque and inflammation, signifying the potential value of CI@SPK in clinical application for AD treatment.
Collapse
Affiliation(s)
- Chenchen Wang
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xiaowan Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yurong Zhuang
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xiaolei Song
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Shihao Sun
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
| | - Yong Chen
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
| | - Guihong Qi
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
| | - Yinan Yang
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
| | - Peng Li
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
| | - Wei Wei
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
4
|
Song X, Wang C, Ding Q, Li P, Sun S, Wei W, Zhang J, Sun R, Yin L, Liu S, Pu Y. Modulation of β secretase and neuroinflammation by biomimetic nanodelivery system for Alzheimer's disease therapy. J Control Release 2025; 378:735-749. [PMID: 39724945 DOI: 10.1016/j.jconrel.2024.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder. The vicious circle between amyloid-β peptide (Aβ) overgeneration and microglial dysfunction is an important pathological event that promotes AD progression. However, therapeutic strategies toward only Aβ or microglial modulation still have many problems. Herein, inspired by the Aβ transportation, an Aβ-derived peptide (CKLVFFAED) engineered biomimetic nanodelivery system (MK@PC-R NPs) is reported for realizing BBB penetration and reprogram neuron and microglia in AD lesion sites. This hollow mesoporous Prussian blue-based MK@PC-R NPs carrying curcumin and miRNA-124 can down-regulate β secretase expression, thereby inhibiting Aβ production and reducing Aβ-induced neurotoxicity. Meanwhile, MK@PC-R NPs with excellent antioxidant and anti-inflammatory properties could normalize the microglial phenotype and promote Aβ degradation, providing neuroprotection. As expected, after treatment with MK@PC-R NPs, the Aβ burdens, neuron damages, neuroinflammation, and memory deficits of transgenic AD mice (APP/PS1 mice) are significantly attenuated. Overall, this biomimetic nanodelivery system with anti-Aβ and anti-inflammatory properties provides a promising strategy for the multi-target therapy of early AD.
Collapse
Affiliation(s)
- Xiaolei Song
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Public Health, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, PR China
| | - Chenchen Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Public Health, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, PR China
| | - Qin Ding
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Public Health, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, PR China
| | - Peng Li
- Beijing Life Science Academy, Beijing 102200, PR China
| | - Shihao Sun
- Beijing Life Science Academy, Beijing 102200, PR China
| | - Wei Wei
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Public Health, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, PR China.
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Public Health, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, PR China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Public Health, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, PR China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Public Health, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, PR China
| | - Songqin Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Public Health, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, PR China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Public Health, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
5
|
Quan Z, Wang S, Xie H, Zhang J, Duan R, Li M, Zhang J. ROS Regulation in CNS Disorder Therapy: Unveiling the Dual Roles of Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410031. [PMID: 39676433 DOI: 10.1002/smll.202410031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/01/2024] [Indexed: 12/17/2024]
Abstract
The treatment of brain diseases has always been the focus of attention. Due to the presence of the blood-brain barrier (BBB), most small molecule drugs are difficult to reach the brain, leading to undesirable therapeutic outcomes. Recently, nanomedicines that can cross the BBB and precisely target lesion sites have emerged as thrilling tools to enhance the early diagnosis and treat various intractable brain disorders. Extensive research has shown that reactive oxygen species (ROS) play a crucial role in the occurrence and progression of brain diseases, including brain tumors and neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, stroke, or traumatic brain injury, making ROS a potential therapeutic target. In this review, on the structure and function of BBB as well as the mechanisms are first elaborated through which nanomedicine traverses it. Then, recent studies on ROS production are summarized through photodynamic therapy (PDT), chemodynamic therapy (CDT), and sonodynamic therapy (SDT) for treating brain tumors, and ROS depletion for treating NDDs. This provides valuable guidance for the future design of ROS-targeted nanomedicines for brain disease treatment. The ongoing challenges and future perspectives in developing nanomedicine-based ROS management for brain diseases are also discussed and outlined.
Collapse
Affiliation(s)
- Zhengyang Quan
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Sa Wang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huanhuan Xie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jiayi Zhang
- International department, Beijing 101 Middle School, Beijing, 100091, P. R. China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Menglin Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jinfeng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
6
|
Mohd Murshid N, Mohd Sahardi NFN, Makpol S. Advancing Alzheimer's Disease Modelling by Developing a Refined Biomimetic Brain Microenvironment for Facilitating High-Throughput Screening of Pharmacological Treatment Strategies. Int J Mol Sci 2024; 26:241. [PMID: 39796097 PMCID: PMC11719782 DOI: 10.3390/ijms26010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/13/2025] Open
Abstract
Alzheimer's disease (AD) poses a significant worldwide health challenge, requiring novel approaches for improved models and treatment development. This comprehensive review emphasises the systematic development and improvement of a biomimetic brain environment to address the shortcomings of existing AD models and enhance the efficiency of screening potential drug treatments. We identify drawbacks in traditional models and emphasise the necessity for more physiologically accurate systems through an in-depth analysis of current literature. This review aims to study the development of an advanced AD model that accurately replicates key AD pathophysiological aspects using cutting-edge biomaterials and microenvironment design. Incorporating biomolecular elements like Tau proteins and beta-amyloid (Aβ) plaques improve the accuracy of illustrating disease mechanisms. The expected results involve creating a solid foundation for high-throughput screening with enhanced scalability, translational significance, and the possibility of speeding up drug discovery. Thus, this review fills the gaps in AD modelling and shows potential for creating precise and efficient drug treatments for AD.
Collapse
Affiliation(s)
- Nuraqila Mohd Murshid
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Nur Fatin Nabilah Mohd Sahardi
- Secretariat of Research and Innovation, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
7
|
Yang H, Tan H, Wen H, Xin P, Liu Y, Deng Z, Xu Y, Gao F, Zhang L, Ye Z, Zhang Z, Chen Y, Wang Y, Sun J, Lam JWY, Zhao Z, Kwok RTK, Qiu Z, Tang BZ. Recent Progress in Nanomedicine for the Diagnosis and Treatment of Alzheimer's Diseases. ACS NANO 2024; 18:33792-33826. [PMID: 39625718 DOI: 10.1021/acsnano.4c11966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory loss and progressive and permanent deterioration of cognitive function. The most challenging issue in combating AD is its complicated pathogenesis, which includes the deposition of amyloid β (Aβ) plaques, intracellular hyperphosphorylated tau protein, neurofibrillary tangles (NFT), etc. Despite rapid advancements in mechanistic research and drug development for AD, the currently developed drugs only improve cognitive ability and temporarily relieve symptoms but cannot prevent the development of AD. Moreover, the blood-brain barrier (BBB) creates a huge barrier to drug delivery in the brain. Therefore, effective diagnostic tools and treatments are urgently needed. In recent years, nanomedicine has provided opportunities to overcome the challenges and limitations associated with traditional diagnostics or treatments. Various types of nanoparticles (NPs) play an essential role in nanomedicine for the diagnosis and treatment of AD, acting as drug carriers to improve targeting and bioavailability across/bypass the BBB or acting as drugs directly on AD lesions. This review categorizes different types of NPs and summarizes their applications in nanomedicine for the diagnosis and treatment of AD. It also discusses the challenges associated with clinical applications and explores the latest developments and prospects of nanomedicine for AD.
Collapse
Affiliation(s)
- Han Yang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Haozhe Tan
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Haifei Wen
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Peikun Xin
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yanling Liu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ziwei Deng
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yanning Xu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Feng Gao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Liping Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ziyue Ye
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Zicong Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yunhao Chen
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yueze Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Jianwei Sun
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ryan T K Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| |
Collapse
|
8
|
Tian H, Yao J, Ba Q, Meng Y, Cui Y, Quan L, Gong W, Wang Y, Yang Y, Yang M, Gao C. Cerebral biomimetic nano-drug delivery systems: A frontier strategy for immunotherapy. J Control Release 2024; 376:1039-1067. [PMID: 39505218 DOI: 10.1016/j.jconrel.2024.10.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/19/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Brain diseases are a significant threat to human health, especially in the elderly, and this problem is growing as the aging population increases. Efficient brain-targeted drug delivery has been the greatest challenge in treating brain disorders due to the unique immune environment of the brain, including the blood-brain barrier (BBB). Recently, cerebral biomimetic nano-drug delivery systems (CBNDSs) have provided a promising strategy for brain targeting by mimicking natural biological materials. Herein, this review explores the latest understanding of the immune microenvironment of the brain, emphasizing the immune mechanisms of the occurrence and progression of brain disease. Several brain targeting systems are summarized, including cell-based, exosome-based, protein-based, and microbe-based CBNDSs, and their immunological mechanisms are highlighted. Moreover, given the rise of immunotherapy, the latest applications of CBNDSs in immunotherapy are also discussed. This review provides a comprehensive understanding of CBNDSs and serves as a guideline for immunotherapy in treating brain diseases. In addition, it provides inspiration for the future of CBNDSs.
Collapse
Affiliation(s)
- Hao Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Jiaxin Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Qi Ba
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yuanyuan Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanan Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Liangzhu Quan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuli Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
9
|
Song Q, Li J, Li T, Li H. Nanomaterials that Aid in the Diagnosis and Treatment of Alzheimer's Disease, Resolving Blood-Brain Barrier Crossing Ability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403473. [PMID: 39101248 PMCID: PMC11481234 DOI: 10.1002/advs.202403473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Indexed: 08/06/2024]
Abstract
As a form of dementia, Alzheimer's disease (AD) suffers from no efficacious cure, yet AD treatment is still imperative, as it ameliorates the symptoms or prevents it from deteriorating or maintains the current status to the longest extent. The human brain is the most sensitive and complex organ in the body, which is protected by the blood-brain barrier (BBB). This yet induces the difficulty in curing AD as the drugs or nanomaterials that are much inhibited from reaching the lesion site. Thus, BBB crossing capability of drug delivery system remains a significant challenge in the development of neurological therapeutics. Fortunately, nano-enabled delivery systems possess promising potential to achieve multifunctional diagnostics/therapeutics against various targets of AD owing to their intriguing advantages of nanocarriers, including easy multifunctionalization on surfaces, high surface-to-volume ratio with large payloads, and potential ability to cross the BBB, making them capable of conquering the limitations of conventional drug candidates. This review, which focuses on the BBB crossing ability of the multifunctional nanomaterials in AD diagnosis and treatment, will provide an insightful vision that is conducive to the development of AD-related nanomaterials.
Collapse
Affiliation(s)
- Qingting Song
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| | - Junyou Li
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| | - Ting Li
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| | - Hung‐Wing Li
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
10
|
Fu Y, Xie GM, Liu RQ, Xie JL, Zhang J, Zhang J. From aberrant neurodevelopment to neurodegeneration: Insights into the hub gene associated with autism and alzheimer's disease. Brain Res 2024; 1838:148992. [PMID: 38729333 DOI: 10.1016/j.brainres.2024.148992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/31/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Affiliation(s)
- Yu Fu
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China
| | - Guang-Ming Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China
| | - Rong-Qi Liu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200010, China
| | - Jun-Ling Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China
| | - Jing Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200010, China.
| | - Jun Zhang
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200092, China.
| |
Collapse
|
11
|
Nabipour H, Rohani S. Metal-Organic Frameworks for Overcoming the Blood-Brain Barrier in the Treatment of Brain Diseases: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1379. [PMID: 39269041 PMCID: PMC11397546 DOI: 10.3390/nano14171379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The blood-brain barrier (BBB) plays a vital role in safeguarding the central nervous system by selectively controlling the movement of substances between the bloodstream and the brain, presenting a substantial obstacle for the administration of therapeutic agents to the brain. Recent breakthroughs in nanoparticle-based delivery systems, particularly metal-organic frameworks (MOFs), provide promising solutions for addressing the BBB. MOFs have become valuable tools in delivering medications to the brain with their ability to efficiently load drugs, release them over time, and modify their surface properties. This review focuses on the recent advancements in molecular-based approaches for treating brain disorders, such as glioblastoma multiforme, stroke, Parkinson's disease, and Alzheimer's disease. This paper highlights the significant impact of MOFs in overcoming the shortcomings of conventional brain drug delivery techniques and provides valuable insights for future research in the field of neurotherapeutics.
Collapse
Affiliation(s)
- Hafezeh Nabipour
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
12
|
Lin R, Jin L, Xue Y, Zhang Z, Huang H, Chen D, Liu Q, Mao Z, Wu Z, Tao Q. Hybrid Membrane-Coated Nanoparticles for Precise Targeting and Synergistic Therapy in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306675. [PMID: 38647399 PMCID: PMC11200089 DOI: 10.1002/advs.202306675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/01/2024] [Indexed: 04/25/2024]
Abstract
The blood brain barrier (BBB) limits the application of most therapeutic drugs for neurological diseases (NDs). Hybrid cell membrane-coated nanoparticles derived from different cell types can mimic the surface properties and functionalities of the source cells, further enhancing their targeting precision and therapeutic efficacy. Neuroinflammation has been increasingly recognized as a critical factor in the pathogenesis of various NDs, especially Alzheimer's disease (AD). In this study, a novel cell membrane coating is designed by hybridizing the membrane from platelets and chemokine (C-C motif) receptor 2 (CCR2) cells are overexpressed to cross the BBB and target neuroinflammatory lesions. Past unsuccessful endeavors in AD drug development underscore the challenge of achieving favorable outcomes when utilizing single-mechanism drugs.Two drugs with different mechanisms of actions into liposomes are successfully loaded to realize multitargeting treatment. In a transgenic mouse model for familial AD (5xFAD), the administration of these drug-loaded hybrid cell membrane liposomes results in a significant reduction in amyloid plaque deposition, neuroinflammation, and cognitive impairments. Collectively, the hybrid cell membrane-coated nanomaterials offer new opportunities for precise drug delivery and disease-specific targeting, which represent a versatile platform for targeted therapy in AD.
Collapse
Affiliation(s)
- Rong‐Rong Lin
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Lu‐Lu Jin
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Yan‐Yan Xue
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Zhe‐Sheng Zhang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Hui‐Feng Huang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Dian‐Fu Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Qian Liu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| | - Zheng‐Wei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Zhi‐Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
- MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhou310058China
- CAS Center for Excellence in Brain Science and Intelligence TechnologyShanghai200031China
| | - Qing‐Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310009China
| |
Collapse
|
13
|
Liu J, Chi M, Li L, Zhang Y, Xie M. Erythrocyte membrane coated with nitrogen-doped quantum dots and polydopamine composite nano-system combined with photothermal treatment of Alzheimer's disease. J Colloid Interface Sci 2024; 663:856-868. [PMID: 38447400 DOI: 10.1016/j.jcis.2024.02.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Mitochondrial dysfunction and metal ion imbalance are recognized as pathological hallmarks of Alzheimer's Disease (AD), leading to deposition of β-amyloid (Aβ) thereby and inducing neurotoxicity, activating apoptosis, eliciting oxidative stress, and ultimately leading to cognitive impairment. In this study, the red blood cell membrane (RBC) was used as a vehicle for encapsulating carbon quantum dots (CQD) and polydopamine (PDA), creating a nanocomposite (PDA-CQD/RBC). This nanocomposite was combined with near-infrared light (NIR) for AD treatment. The RBC offers anti-immunorecognition properties to evade immune clearance, PDA exhibits enzyme-mimicking activity to mitigate oxidative stress damage, and CQD acts as a chelating agent for metal ions (Cu2+), effectively preventing Cu2+-mediated aggregation of Aβ. Furthermore, the local heating induced by near-infrared laser irradiation can dismantle the formed Aβ fibers and enhance the blood-brain barrier's permeability. Both in vitro and animal experiments have shown that PDA-CQD/RBC, in combination with NIR, mitigates neuroinflammation, and ameliorates behavioral deficits in mice. This approach targets multiple pathological pathways, surpassing the limitations of single-target treatments and enhancing therapeutic efficacy while decelerating disease progression.
Collapse
Affiliation(s)
- Jichun Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Mingyuan Chi
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Lianxin Li
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yuewen Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Meng Xie
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
14
|
Wei Y, Guo J, Meng T, Gao T, Mai Y, Zuo W, Yang J. The potential application of complement inhibitors-loaded nanosystem for autoimmune diseases via regulation immune balance. J Drug Target 2024; 32:485-498. [PMID: 38491993 DOI: 10.1080/1061186x.2024.2332730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The complement is an important arm of the innate immune system, once activated, the complement system rapidly generates large quantities of protein fragments that are potent mediators of inflammation. Recent studies have shown that over-activated complement is the main proinflammatory system of autoimmune diseases (ADs). In addition, activated complements interact with autoantibodies, immune cells exacerbate inflammation, further worsening ADs. With the increasing threat of ADs to human health, complement-based immunotherapy has attracted wide attention. Nevertheless, efficient and targeted delivery of complement inhibitors remains a significant challenge owing to their inherent poor targeting, degradability, and low bioavailability. Nanosystems offer innovative solutions to surmount these obstacles and amplify the potency of complement inhibitors. This prime aim to present the current knowledge of complement in ADs, analyse the function of complement in the pathogenesis and treatment of ADs, we underscore the current situation of nanosystems assisting complement inhibitors in the treatment of ADs. Considering technological, physiological, and clinical validation challenges, we critically appraise the challenges for successfully translating the findings of preclinical studies of these nanosystem assisted-complement inhibitors into the clinic, and future perspectives were also summarised. (The graphical abstract is by BioRender.).
Collapse
Affiliation(s)
- Yaya Wei
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jueshuo Guo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Tingting Meng
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yaping Mai
- School of Science and Technology Centers, Ningxia Medical University, Yinchuan, China
| | - Wenbao Zuo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
15
|
Huang J, Yan Z, Song Y, Chen T. Nanodrug Delivery Systems for Myasthenia Gravis: Advances and Perspectives. Pharmaceutics 2024; 16:651. [PMID: 38794313 PMCID: PMC11125447 DOI: 10.3390/pharmaceutics16050651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Myasthenia gravis (MG) is a rare chronic autoimmune disease caused by the production of autoantibodies against the postsynaptic membrane receptors present at the neuromuscular junction. This condition is characterized by fatigue and muscle weakness, including diplopia, ptosis, and systemic impairment. Emerging evidence suggests that in addition to immune dysregulation, the pathogenesis of MG may involve mitochondrial damage and ferroptosis. Mitochondria are the primary site of energy production, and the reactive oxygen species (ROS) generated due to mitochondrial dysfunction can induce ferroptosis. Nanomedicines have been extensively employed to treat various disorders due to their modifiability and good biocompatibility, but their application in MG management has been rather limited. Nevertheless, nanodrug delivery systems that carry immunomodulatory agents, anti-oxidants, or ferroptosis inhibitors could be effective for the treatment of MG. Therefore, this review focuses on various nanoplatforms aimed at attenuating immune dysregulation, restoring mitochondrial function, and inhibiting ferroptosis that could potentially serve as promising agents for targeted MG therapy.
Collapse
Affiliation(s)
| | | | - Yafang Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (J.H.); (Z.Y.)
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (J.H.); (Z.Y.)
| |
Collapse
|
16
|
Lei T, Yang Z, Li H, Qin M, Gao H. Interactions between nanoparticles and pathological changes of vascular in Alzheimer's disease. Adv Drug Deliv Rev 2024; 207:115219. [PMID: 38401847 DOI: 10.1016/j.addr.2024.115219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Emerging evidence suggests that vascular pathological changes play a pivotal role in the pathogenesis of Alzheimer's disease (AD). The dysfunction of the cerebral vasculature occurs in the early course of AD, characterized by alterations in vascular morphology, diminished cerebral blood flow (CBF), impairment of the neurovascular unit (NVU), vasculature inflammation, and cerebral amyloid angiopathy. Vascular dysfunction not only facilitates the influx of neurotoxic substances into the brain, triggering inflammation and immune responses but also hampers the efflux of toxic proteins such as Aβ from the brain, thereby contributing to neurodegenerative changes in AD. Furthermore, these vascular changes significantly impact drug delivery and distribution within the brain. Therefore, developing targeted delivery systems or therapeutic strategies based on vascular alterations may potentially represent a novel breakthrough in AD treatment. This review comprehensively examines various aspects of vascular alterations in AD and outlines the current interactions between nanoparticles and pathological changes of vascular.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zixiao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
17
|
Ke J, Yu C, Li S, Hong Y, Xu Y, Wang K, Meng T, Ping Y, Fu Q, Yuan H, Hu F. Combining Multifunctional Delivery System with Blood-Brain Barrier Reversible Opening Strategy for the Enhanced Treatment of Alzheimer's Disease. Adv Healthc Mater 2024; 13:e2302939. [PMID: 38117094 DOI: 10.1002/adhm.202302939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Indexed: 12/21/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative illness characterized by intracellular tau-phosphorylation, β-amyloid (Aβ) plaques accumulation, neuroinflammation, and impaired behavioral ability. Owing to the lack of effective brain delivery approaches and the presence of the blood-brain barrier (BBB), current AD therapeutic endeavors are severely limited. Herein, a multifunctional delivery system (RVG-DDQ/PDP@siBACE1) is elaborately combined with a protein kinase B (AKT) agonist (SC79) for facilitating RVG-DDQ/PDP@siBACE1 to target and penetrate BBB, enter brain parenchyma, and further accumulate in AD brain lesion. Moreover, compared with the unitary dose of RVG-DDQ/PDP@siBACE1, this collaborative therapy strategy exhibits a distinctive synergistic function including scavenging reactive oxygen species (ROS), decreasing of Aβ production, alleviating neuroinflammation by promoting the polarized microglia into the anti-inflammatory M2-like phenotype and significantly enhancing the cognitive functions of AD mice. More strikingly, according to these results, an innovative signaling pathway "lncRNA MALAT1/miR-181c/BCL2L11" is found that can mediate the neuronal apoptosis of AD. Taken together, combining the brain targeted delivery system with noninvasive BBB opening can provide a promising strategy and platform for targeting treatment of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jia Ke
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Caini Yu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Sufen Li
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Yiling Hong
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Yichong Xu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Kai Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Ping
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| |
Collapse
|
18
|
Huang LY, Ou YN, Yang YX, Wang ZT, Tan L, Yu JT. Associations of cardiovascular risk factors and lifestyle behaviors with neurodegenerative disease: a Mendelian randomization study. Transl Psychiatry 2023; 13:267. [PMID: 37488110 PMCID: PMC10366095 DOI: 10.1038/s41398-023-02553-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
Previous observational studies reported that midlife clustering of cardiovascular risk factors and lifestyle behaviors were associated with neurodegenerative disease; however, these findings might be biased by confounding and reverse causality. This study aimed to investigate the causal associations of cardiovascular risk factors and lifestyle behaviors with neurodegenerative disease, using the two-sample Mendelian randomization design. Genetic variants for the modifiable risk factors and neurodegenerative disease were extracted from large-scale genome-wide association studies. The inverse-variance weighted method was used as the main analysis method, and MR-Egger regression and leave-one-out analyses were performed to identify potential violations. Genetically predicted diastolic blood pressure (DBP: OR per 1 mmHg, 0.990 [0.979-1.000]), body mass index (BMI: OR per 1 SD, 0.880 [0.825-0.939]), and educational level (OR per 1 SD, 0.698 [0.602-0.810]) were associated with lower risk of late-onset Alzheimer's disease (LOAD), while genetically predicted low-density lipoprotein (LDL: OR per 1 SD, 1.302 [1.066-1.590]) might increase LOAD risk. Genetically predicted exposures (including LDL and BMI) applied to familial AD showed the same effect. The association of LDL was also found with Amyotrophic lateral sclerosis (ALS) (LDL: OR per 1 SD, 1.180 [1.080-1.289]). This MR analysis showed that LDL, BMI, BP, and educational level were causally related to AD; a significant association between LDL and ALS risk, as well as the potential effect of sleep duration on PD risk, were also revealed. Targeting these modifiable factors was a promising strategy of neurodegenerative disease prevention.
Collapse
Affiliation(s)
- Liang-Yu Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yu-Xiang Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|