1
|
Cui H, Li J. Hydrogel adhesives for tissue recovery. Adv Colloid Interface Sci 2025; 341:103496. [PMID: 40168713 DOI: 10.1016/j.cis.2025.103496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/11/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Hydrogel adhesives (HAs) are promising and rewarding tools for improving tissue therapy management. Such HAs had excellent properties and potential applications in biological tissues, such as suture replacement, long-term administration, and hemostatic sealing. In this review, the common designs and the latest progress of HAs based on various methodologies are systematically concluded. Thereafter, how to deal with interfacial water to form a robust wet adhesion and how to balance the adhesion and non-adhesion are underlined. This review also provides a brief description of gelation strategies and raw materials. Finally, the potentials of wound healing, hemostatic sealing, controlled drug delivery, and the current applications in dermal, dental, ocular, cardiac, stomach, and bone tissues are discussed. The comprehensive insight in this review will inspire more novel and practical HAs in the future.
Collapse
Affiliation(s)
- Haohao Cui
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jingguo Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Xu L, Zhang J, Luo J, Cui Y, Chen J, Zeng B, Deng Z, Shao L. "Double-sided protector" Janus hydrogels for skin and mucosal wound repair: applications, mechanisms, and prospects. J Nanobiotechnology 2025; 23:387. [PMID: 40426120 DOI: 10.1186/s12951-025-03438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Skin and mucous membranes serve as crucial barrier tissues within the human body. Defective wound healing not only inflicts pain but also heightens the risk of infection and impairs immune function. Janus hydrogels possess two-sided distinct asymmetric structures that endow them with diverse properties such as high water absorbency, flexibility, anti-adhesion ability etc. These hydrogels also exhibit great potential in biofluid transport, drug delivery and promoting tissue repair. Currently, research efforts predominantly concentrate on the preparation techniques, properties, and biomedical applications. This review summarized its structural characteristics and different forms of designations, and focused on the possible mechanisms, the existing problems and improvement strategies for the skin and mucous tissues wound, aiming to provide new design ideas for repairing complex skin and mucous membrane tissue defects.
Collapse
Affiliation(s)
- Laijun Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- School of Stomatology, Changsha Medical University, Changsha, 410219, China
| | - Junyi Zhang
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China
| | - Junsi Luo
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China
| | - Yiteng Cui
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China
| | - Jinhong Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Bin Zeng
- School of Stomatology, Changsha Medical University, Changsha, 410219, China
| | - Zhiyuan Deng
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China.
- School of Stomatology, Changsha Medical University, Changsha, 410219, China.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Yan T, Cheng J, Liu H, Wang Y, Zhang C, Huang D, Liu J, Wang Z. Multifunctional Janus Hydrogels: Surface Design Strategies for Next-Generation Clinical Solutions. Gels 2025; 11:343. [PMID: 40422363 DOI: 10.3390/gels11050343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/03/2025] [Accepted: 05/04/2025] [Indexed: 05/28/2025] Open
Abstract
Janus hydrogels, distinguished by their dual-sided structure with distinct physical and chemical properties, have garnered significant attention in the medical field, particularly for applications in drug delivery, tissue engineering, and wound healing. Their ability to simultaneously perform multiple functions, such as targeted drug release and biomimetic tissue interaction, positions them as a promising platform for advanced therapeutic strategies. The growing interest in these hydrogels is primarily driven by their multifunctionality and capacity to address complex biological needs. This review delves into the design, fabrication methods, and applications of Janus hydrogels in medicine, focusing on their potential to overcome the limitations of conventional therapies and providing a comprehensive overview of their role in contemporary biomedical applications.
Collapse
Affiliation(s)
- Taoxu Yan
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Junyao Cheng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Haoming Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yifan Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuyue Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jianheng Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Zheng Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
4
|
Zhu X, Zhang L, Qi Y, Zhang J, Tang F, Zong Z. A novel strategy for addressing post-surgical abdominal adhesions: Janus hydrogel. Colloids Surf B Biointerfaces 2025; 249:114511. [PMID: 39837049 DOI: 10.1016/j.colsurfb.2025.114511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/23/2025]
Abstract
Abdominal adhesions are a frequent complication after abdominal surgery, which can cause significant pain and burden to patients. Despite various treatment options, including surgical intervention and pharmacotherapy, these often fail to consistently and effectively prevent postoperative abdominal adhesions. Janus hydrogel is famous for its asymmetric characteristics, which shows great prospects in the prevention and treatment of abdominal adhesion. This review outlines the preparation methods, mechanisms of action, and key applications of Janus hydrogel in the prevention of postoperative abdominal adhesions. Furthermore, we examine the current limitations of the Janus hydrogel anti-adhesion barrier and explore potential future directions for its development.
Collapse
Affiliation(s)
- Xinhui Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lipeng Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yingcheng Qi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jingyu Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fuxin Tang
- Department of General Surgery (Hernia and Abdominal Wall Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Peng W, Jiang Y, Zhang Y, Lai Y, Zhu Y, Wang H, Kan Z, Liu P. AA/MA/AMA copolymer and chitosan as self-gelling powders for rapid hemostasis and robust tissue adhesion. Int J Biol Macromol 2025; 310:143443. [PMID: 40306527 DOI: 10.1016/j.ijbiomac.2025.143443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
Bleeding control by traditional hemostatic materials poses a risk of continuing oozing bleeding, while existing self-gelling hemostatic powders still face challenges in simultaneously achieving robust wound sealing and effectively accelerating blood coagulation. Herein, we reported acrylic acid/methacrylic acid/2-aminoethyl methacrylate copolymer (PAMA) and chitosan (CS) as a new type of self-gelling composite powder (PAMA-CS) for acute bleeding wound sealing with reduced blood leakage. Upon rapid blood absorption, PAMA-CS powders could quickly form an adhesive hydrogel that strongly binds to bleeding tissues, exhibiting high burst pressure tolerance (up to 452.6 mmHg) for wound sealing to prevent bleeding. The incorporation of chitosan endowed significantly enhanced liquid uptake ability and accelerated blood coagulation (clot index of 77.92 % within 30 s) to the PAMA-CS powder. Based on the synergistic effect of tight adhesive sealing and accelerating intrinsic blood coagulation, PAMA-CS powders could achieve effective hemostasis within 20 s for acute bleeding liver and stomach on rats, outperforming commercial hemostatic chitosan powders. Combined with rapid hemostasis, tight & stable wound sealing, and favorable biodegradation, PAMA-CS powders may serve as a promising hemostatic candidate for emergency bleeding control and wound closure.
Collapse
Affiliation(s)
- Wan Peng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China; Department of College of Life Sciences, Nanjing Normal University, 210023, PR China
| | - Yefeng Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yang Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Youjin Lai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yiming Zhu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Huixia Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zilin Kan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Pingsheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
6
|
Zhang W, Yang H, Zhang X, Wang Z, Luan S. Fluorinated poly(aryl ether)/polypropylene composite patch for prevention of abdominal adhesions after hernia repairs. Biomater Sci 2025; 13:2134-2141. [PMID: 40084999 DOI: 10.1039/d4bm01704h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Hernia typically does not heal spontaneously. Large-pore patches, most notably polypropylene patches (PP patches), are the gold standard in hernia repair surgery. However, a single patch is insufficient for both anti-adhesion and tissue fusion, leading to complications such as organ adhesions. In this study, a chemically stable and biocompatible modified fluorinated poly(aryl ether) (FPAE-F) was prepared by grafting perfluoroalkyl groups onto a fluorinated poly(aryl ether) via nucleophilic aromatic substitution. A porous FPAE-F fiber film (eFPAE-F) was fabricated by electrospinning and combined with a PP patch to produce a modified fluorinated poly(aryl ether)/polypropylene (FPAE-F/PP) composite patch. The eFPAE-F layer of the composite patch, which faces the abdominal viscera, exhibits a water contact angle of 151.3 ± 1.2°. This superhydrophobic surface prevents protein adhesion, thereby inhibiting rapid fibroblast proliferation. The small pore size (3.22 ± 1.25 μm) of the eFPAE-F layer effectively impedes fibroblast infiltration while permitting the transport and metabolism of nutrients. In vivo experiments have demonstrated that the composite patch is a viable anti-adhesion material, resulting in no adhesions and low inflammation levels after 2 weeks. Due to its outstanding anti-adhesion properties, eFPAE-F/PP is expected to be applied in the field of hernia repair.
Collapse
Affiliation(s)
- Wenqing Zhang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Huawei Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Zhaoyang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Shifang Luan
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
7
|
Chen M, Liu J, Lin J, Zhuang K, Shan Y, Tiwari S, Jiang L, Zhang J. Progress in Polysaccharide-Based Hydrogels for Preventing Postoperative Adhesions: A Review. Gels 2025; 11:188. [PMID: 40136893 PMCID: PMC11942346 DOI: 10.3390/gels11030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Postoperative adhesions are common complications following surgery, often accompanied by pain and inflammation that significantly diminish patients' quality of life. Moreover, managing postoperative adhesions incurs substantial cost, imposing a considerable financial burden on both patients and healthcare systems. Traditional anti-adhesion materials are confronted with limitations, such as inadequate tissue adherence in a moist environment and poor degradability, underscoring the urgent need for more effective solutions. Recently, polysaccharide-based hydrogels have received considerable attention for their potential in preventing postoperative adhesions. The hydrogels not only facilitate wound healing but also effectively reduce inflammation, providing a promising approach to preventing postoperative adhesions. This review provides an extensive analysis of the progress made in the development of polysaccharide-based hydrogels for postoperative anti-adhesion therapy. It highlights their principal benefits, outlines future research trajectories, and addresses the ongoing challenges that need to be overcome.
Collapse
Affiliation(s)
- Mengyao Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, Ningbo 315300, China
| | - Jialin Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhong Lin
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhuang
- Pharma Solutions, Nutrition and Health, BASF (China) Company, Ltd., 333 Jiang Xin Sha Road, Shanghai 200137, China
| | - Yudong Shan
- Hangzhou Zhongmeihuadong Pharmaceutical Co., Ltd., 866 Moganshan Road, Hangzhou 310011, China
| | - Sandip Tiwari
- Pharma Solutions, BASF Corp., 500 White Plains Rd, Tarrytown, NY 10591, USA
| | - Lei Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, Ningbo 315300, China
| | - Jiantao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Yan M, Hu SY, Tan HJ, Dai R, Wang H, Peng X, Wang ZG, Xu JZ, Li ZM. Double-Dynamic-Bond Cross-Linked Hydrogel Adhesive with Cohesion-Adhesion Enhancement for Emergency Tissue Closure and Infected Wound Healing. Adv Healthc Mater 2025; 14:e2404447. [PMID: 39840490 DOI: 10.1002/adhm.202404447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/07/2025] [Indexed: 01/23/2025]
Abstract
The hydrogel adhesives with strong tissue adhesion and biological characteristics are urgently needed for injury sealing and tissue repair. However, the negative correlation between tissue adhesion and the mechanical strength poses a challenge for their practical application. Herein, a bio-inspired cohesive enhancement strategy is developed to prepare the hydrogel adhesive with simultaneously enhanced mechanical strength and tissue adhesion. The double cross-linked network is achieved through the cooperation between polyacrylic acid grafted with N-hydroxy succinimide crosslinked by tannic acid and cohesion-enhanced ion crosslinking of sodium alginate and Ca2+. Such a unique structure endows the resultant hydrogel adhesive with excellent tissue adhesion strength and mechanical strength. The hydrogel adhesive is capable of sealing various organs in vitro, and exhibits satisfactory on-demand removability, antibacterial, and antioxidant properties. As a proof of concept, the hydrogel adhesive not only effectively halts non-compressible hemorrhages of beating heart and femoral artery injury models in rats, but also accelerates the healing of infected wound by inhibiting bacteria and reducing inflammation. Overall, this advanced hydrogel adhesive is promising as an emergency rescue adhesive that enables robust tissue closure, timely controlling bleeding, and promoting damaged tissue healing.
Collapse
Affiliation(s)
- Ming Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shi-Yu Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hao-Jie Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Dai
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu, 610065, China
| | - Zhi-Guo Wang
- West China School of Nursing, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- West China School of Nursing, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Cheng QS, Xu PY, Luo SC, Chen AZ. Advances in Adhesive Materials for Oral and Maxillofacial Soft Tissue Diseases. Macromol Biosci 2025; 25:e2400494. [PMID: 39588806 DOI: 10.1002/mabi.202400494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Oral diseases represent a prevalent global health burden, profoundly affecting patients' quality of life. Given the involvement of oral mucosa and muscles in diverse physiological functions, coupled with clinical aesthetics considerations, repairing oral and maxillofacial soft tissue defects poses a formidable challenge. Wet-adhesive materials are regarded as promising oral repair materials due to their unique advantages in easily overcoming physical and biological barriers in the oral cavity. This review first introduces the intricate wet-state environment prevalent in the oral cavity, meticulously explaining the fundamental physical and chemical adhesion mechanisms that underpin adhesive materials. It then comprehensively summarizes the diverse types of adhesives utilized in stomatology, encompassing polysaccharide, protein, and synthetic polymer adhesive materials. The review further evaluates the latest research advancements in utilizing these materials to treat various oral and maxillofacial soft tissue diseases, including oral mucosal diseases, periodontitis, peri-implantitis, oral and maxillofacial skin defects, and maxillofacial tumors. Finally, it also highlights the promising future prospects and pivotal challenges related to stomatology application of multifunctional adhesive materials.
Collapse
Affiliation(s)
- Qiu-Shuang Cheng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Pei-Yao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Sheng-Chang Luo
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| |
Collapse
|
10
|
Liu L, Zhao F, Zhang Y, Yu X, Chen H, Rong H, Yuan H, Zhang J, Deng L, Li S, Dong A. An In Situ UV Cross-Linking Asymmetric Adhesive Hydrogel for Noncompressible Hemostasis and Postoperative Adhesion Prevention. ACS Biomater Sci Eng 2025; 11:595-608. [PMID: 39644223 DOI: 10.1021/acsbiomaterials.4c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Noncompressible hemorrhage control is vital for clinical outcome after surgical treatment and prehospital trauma injuries. Meanwhile, wound bleeding and tissue damage could induce postoperative adhesions, leading to a severe threat to the health of patients. Considerable research had been conducted on the development of hemostatic and antiadhesive materials. However, it was still a great challenge to realize hemostasis and antiadhesion simultaneously especially in inaccessible and irregular wound sites. In this study, a kind of fluid hemostatic agent composed of gelatin methacryloyl/sulfobetaine methacrylate/oxidized konjac glucomannan (termed GOS) was developed, which spread immediately upon contacting the hepatic trauma surface and turned into hydrogels under UV radiation within 5 s, resulting in rapid hemostasis and firm adhesion to tissues (shear strength 486.08 kPa). Importantly, the surface of the as-formed GOS hydrogel exhibited lubricious and nonadhesive properties, exhibiting excellent anti-postoperative adhesion performance in a rat liver hemostasis model and a rat abdominal wall-cecum adhesion model. In addition, the GOS hydrogel reduced the postoperative secretion of inflammatory factors TNF-α and IL-6, facilitating the tissue repair. Therefore, the asymmetrical adhesive GOS hydrogel could fulfill the requirements for simultaneously rapid hemostasis, tissue adhesion, and subsequent excellent antiadhesion, which demonstrated significant potential for diverse clinical surgical operation scenarios.
Collapse
Affiliation(s)
- Lingyuan Liu
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Feng Zhao
- Chest Hospital, Tianjin University, Tianjin 300000, China
| | - Yiqun Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xinghui Yu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Hongjin Chen
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hui Rong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haicheng Yuan
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Liandong Deng
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shuangyang Li
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| |
Collapse
|
11
|
Yang X, Bi S, He C, Yuan L, Zhang L, Gu J, Yan B, He J. Rapid Fluid-Induced-Expanding Chitosan-Derived Hemostatic Sponges with Excellent Antimicrobial and Antioxidant Properties for Incompressible Hemorrhage and Wound Healing. Biomacromolecules 2025; 26:689-704. [PMID: 39743505 DOI: 10.1021/acs.biomac.4c01581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Chitosan-based materials are known for their excellent biocompatibility and inherent hemostatic properties. However, their hemostatic efficiency is significantly affected by poor wettability and mechanical strength. Herein, we developed a novel hemostatic super elastic sponge from mussel-inspired chitosan modified with long alkyl and catechol functional groups (HMCC) via a simple freezing-drying procedure. The incorporation of decanal and catechol in the HMCC sponge significantly enhances its antimicrobial and antioxidant properties and facilitates multiple interactions with blood cells, thus promoting their enrichment for rapid hemostasis. Moreover, HMCC sponges exhibit high compressibility and rapid fluid-induced size recovery capacity, enabling wound shape adaptation to ensure minimizing irritation. In vivo experiments revealed that HMCC sponges possessed enhanced procoagulant, hemostasis abilities, and favorable degradability and could promote wound healing in a rat skin wound model. These results highlight the potential of the HMCC sponge as a promising solution for the clinical management of major bleeding.
Collapse
Affiliation(s)
- Xuekun Yang
- Department of Cardiovascular Surgery, West China Hospital, College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Changyuan He
- Department of Cardiovascular Surgery, West China Hospital, College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Liubo Yuan
- Department of Cardiovascular Surgery, West China Hospital, College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Li Zhang
- Department of Cardiovascular Surgery, West China Hospital, College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Bin Yan
- Department of Cardiovascular Surgery, West China Hospital, College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Jin He
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 202150, China
| |
Collapse
|
12
|
Yang J, Liu W, Wang W. A supramolecular hydrogel leveraging hierarchical multi-strength hydrogen-bonds hinged strategy achieving a striking adhesive-mechanical balance. Bioact Mater 2025; 43:32-47. [PMID: 39318637 PMCID: PMC11421952 DOI: 10.1016/j.bioactmat.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
To obtain high-performance tissue-adhesive hydrogel embodying excellent mechanical integrity, a supramolecular hydrogel patch is fabricated through in situ copolymerization of a liquid-liquid phase separation precursor composed of self-complementary 2-2-ureido-4-pyrimidone-based monomer and acrylic acid coupled with subsequent corporation of bioactive epigallocatechin gallate. Remarkably, the prepared supramolecular hydrogel leverages hierarchical multi-strength hydrogen-bonds hinged strategy assisted by alkyl-based hydrophobic pockets, broadening the distribution of binding strength of physical junctions, striking a canonical balance between superb mechanical performance and robust adhesive capacity. Ultimately, the fabricated supramolecular hydrogel patch stands out as a high stretchability (1500 %), an excellent tensile strength (2.6 MPa), a superhigh toughness (12.6 MJ m-3), an instant and robust tissue adhesion strength (263.2 kPa for porcine skin), the considerable endurance under cyclic loading and reversible adhesion, a superior burst pressure tolerance (108 kPa) to those of commercially-available tissue sealants, and outstanding anti-swelling behavior. The resultant supramolecular hydrogel patch demonstrates the rapid hemorrhage control within 60 s in liver injury and efficient wound closure and healing effects with alleviated inflammation and reduced scarring in full-thickness skin incision, confirming its medical translation as a promising self-rescue tissue-adhesive patch for hemorrhage prevention and sutureless wound closure.
Collapse
Affiliation(s)
- Jumin Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wei Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
13
|
Ito S, Watanabe S, Komatsu H, Nagasaka K, Palai D, Maki N, Tai T, Sugai K, Kawamura T, Sato Y, Taguchi T. Development of a Janus tissue adhesive hemostatic patch based on hydrophobically-modified Alaska pollock gelatin. BIOMATERIALS ADVANCES 2025; 166:214028. [PMID: 39244829 DOI: 10.1016/j.bioadv.2024.214028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/24/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Uncontrollable hemorrhage from trauma and open surgery leads to a high percentage of death. Even though some patch-type hemostatic materials have been used in the clinic, sufficient tissue adhesion property and the management of tissue adhesion and anti-adhesion have been the challenges. In this report, we designed Janus tissue adhesive hemostatic patch, consisting of Alaska pollock gelatin (Org-ApGltn) as a support layer and decanoyl group-modified ApGltn (C10-ApGltn) with pentaerythritol poly(ethylene glycol) ether tetrasuccinimidyl glutarate (4S-PEG) as an adhesive layer, named as the C10-ApGltn patch. The C10-ApGltn patch adhered onto blood vessel surface by the activation 4S-PEG and hydrophobic groups in C10-ApGltn through the covalent bond formation and physical interaction. The burst strength of the C10-ApGltn patch was optimized in terms of the degree of substitution, the molecular weight of 4S-PEG, the concentration of C10-ApGltn, and the NHS/NH2 ratio. The optimized C10-ApGltn patch showed significantly higher burst strength with commercially available TachoSil®. The C10-ApGltn patch showed enzymatic degradability in a buffer solution with collagenase. In a rat liver hemorrhage model, the C10-ApGltn patch acted as a sealant on the hemorrhage site and exhibited competitive hemostatic property to TachoSil®.
Collapse
Affiliation(s)
- Shima Ito
- Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Shiharu Watanabe
- Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hiyori Komatsu
- Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuhiro Nagasaka
- Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Debabrata Palai
- Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Naoki Maki
- Department of Thoracic Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tetsuo Tai
- Department of Thoracic Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuto Sugai
- Department of Thoracic Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tomoyuki Kawamura
- Department of Thoracic Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yukio Sato
- Department of Thoracic Surgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tetsushi Taguchi
- Biomaterials field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, Degree Programs in Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
14
|
Cao S, Ji P, Hao L, Sun C, Mao H, Gu Z. Self-assembling chitosan based injectable and expandable sponge with antimicrobial property for hemostasis and wound healing. Carbohydr Polym 2025; 347:122699. [PMID: 39486940 DOI: 10.1016/j.carbpol.2024.122699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 11/04/2024]
Abstract
Chitosan and chitosan derivative are widely used in hemostasis, antibiosis and wound repair for its good biocompatibility and unique effect. However, the preparation of chitosan based hemostatic materials or wound dressings generally involves chemical crosslinking agent introduction, acid residue or complicated preparation process, which limits its clinical application. In this study, an injectable and expandable chitosan sponge was constructed by chitosan (CS) and quaternized chitosan (QCS) self-assembly without acid retention and chemical crosslinker introduction. In the neutral condition, the hydrogen bond of CS molecules can act as the driving force to form cross-linking network, and the QCS was introduced to regulate the hydrogen bond of CS to avoid the excessive aggregation. The porous QCS/CS sponge was obtained by freeze-drying of the self-assembly QCS/CS hydrogel. The sponge exhibited high expansibility, injectability and water/blood triggered shape memory property. Due to the introduction of QCS, the sponge showed good antibacterial properties, which can protect the wound from bacterial invasion. The convenient and green preparation method of injectable and expandable QCS/CS sponge is a potential method for the treatment of hemostasis and wound healing.
Collapse
Affiliation(s)
- Shujun Cao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bio-inspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Peihong Ji
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bio-inspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Lili Hao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bio-inspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China.
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bio-inspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China.
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bio-inspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
15
|
Li S, Liu L, Qiao F, Ma J, Miao H, Gao S, Ma Y, Yu X, Liu S, Yuan H, Dong A. Bioinspired Asymmetric-Adhesion Janus Hydrogel Patch Regulating by Zwitterionic Polymers for Wet Tissues Adhesion and Postoperative Adhesion Prevention. Adv Healthc Mater 2024; 13:e2402268. [PMID: 39295481 DOI: 10.1002/adhm.202402268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/27/2024] [Indexed: 09/21/2024]
Abstract
Asymmetrically adhesive hydrogel patch with robust wet tissue adhesion simultaneously anti-postoperative adhesion is essential for clinical applications in internal soft-tissue repair and postoperative anti-adhesion. Herein, inspired by the lubricative role of serosa and the underwater adhesion mechanism of mussels, an asymmetrically adhesive hydrogel Janus patch is developed with adhesion layer (AL) and anti-adhesion layer (anti-AL) through an in situ step-by-step polymerization process in the mold. The AL exhibits excellent adhesion to internal soft-tissues. In contrast, the anti-AL demonstrated ultralow fouling property against protein and fibroblasts, which hinders the early and advanced stages of development of the adhesion. Moreover, the Janus patch simultaneously promotes tissue regeneration via ROS clearance capability of catechol moieties in the AL. Results from in vivo experiments with rabbits and rats demonstrate that the AL strongly adheres to traumatized tissue, while the anti-AL surface demonstrate efficacy in preventing of post-abdominal surgery adhesions in contrast to clinical patches. Considering the advantages in terms of therapeutic efficacy and off the shelf, the Janus patch developed in this work presents a promise for preventing postoperative adhesions and promoting regeneration of internal tissue defects.
Collapse
Affiliation(s)
- Shuangyang Li
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Lingyuan Liu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Fengtao Qiao
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jinzhu Ma
- NMPA Key Laboratory for Quality Evaluation of Non-active Implant Devices, Tianjin, 300384, China
| | - Hui Miao
- NMPA Key Laboratory for Quality Evaluation of Non-active Implant Devices, Tianjin, 300384, China
| | - Shangdong Gao
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yongqiang Ma
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xinghui Yu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Siyuan Liu
- School of Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Haicheng Yuan
- Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
16
|
Ding Z, Liang Z, Rong X, Fu X, Fan J, Lai Y, Cai Y, Huang C, Li L, Tang G, Luo Z, Zhou Z. Janus-Structured Microgel Barrier with Tissue Adhesive and Hemostatic Characteristics for Efficient Prevention of Postoperative Adhesion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403753. [PMID: 39340270 DOI: 10.1002/smll.202403753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/15/2024] [Indexed: 09/30/2024]
Abstract
Postoperative adhesion (POA) is a common and serious complication following various types of surgery. Current physical barriers either have a short residence time at the surgical site with a low tissue attachment capacity or are prone to undesired adhesion formation owing to the double-sided adhesive property, which limits the POA prevention efficacy of the barriers. In this study, Janus-structured microgels (Janus-MGs) with asymmetric tissue adhesion capabilities are fabricated using a novel bio-friendly gas-shearing microfluidic platform. The anti-adhesive side of Janus-MGs, which consists of alginate, hyaluronic acid, and derivatives, endows the material with separation, lubrication, and adhesion prevention properties. The adhesive side provided Janus-MGs with tissue attachment and retention capability through catechol-based adhesion, thereby enhancing the in situ adhesion prevention effect. In addition, Janus-MGs significantly reduced blood loss and shortened the hemostatic time in rats, further reducing adhesion formation. Three commonly used rat POA models with different tissue structures and motion patterns are established in this study, namely peritoneal adhesion, intrauterine adhesion, and peritendinous adhesion models, and the results showed that Janus-MGs effectively prevented the occurrence of POA in all the models. The fabrication of Janus-MGs offers a reliable strategy and a promising paradigm for preventing POA following diverse surgical procedures.
Collapse
Affiliation(s)
- Zichuan Ding
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhimin Liang
- West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiao Rong
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoxue Fu
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaxuan Fan
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yahao Lai
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongrui Cai
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Huang
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lingli Li
- West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zeyu Luo
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongke Zhou
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
17
|
Liu Y, Wang K, Ren W, Gao N, Li J, Wang H. A Dry Patch with In Situ Solid-to-Gel Transformation for All-in-One Skin Wound Care. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64087-64100. [PMID: 39500517 DOI: 10.1021/acsami.4c16041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Hydrogel-based dressing materials offer significant potential in expediting skin wound healing. Nevertheless, they face several challenges: poor adhesion to wound tissues, difficulties in preservation under ambient conditions, and limited multifunctionality to support all wound healing stages. In this work, a dry patch is designed to address these persistent issues by featuring an in situ solid-to-gel transformation and Janus wet tissue adhesiveness. The HGP patch integrates a wet adhesive layer combining dopamine-conjugated hyaluronic acid (HD) and poly(acrylic acid) (PAA), a drug-loading layer comprising gelatin (Gel), and a nonadhesive gelation layer of poly(vinyl alcohol) (PVA) and sodium alginate (SA). This hierarchical structural design confers exceptional wound adhesion, hemostatic capabilities, and antibacterial and antioxidant activities, as well as immune regulatory properties. These attributes collectively support accelerated skin wound healing, particularly in cases complicated by bacterial infections. This research charts an approach to engineer hydrogel-based wound dressings through on-site hydrogel formation, thus advancing the treatment of wounds afflicted with complex infections.
Collapse
Affiliation(s)
- Yong Liu
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Kaiyuan Wang
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Wenwen Ren
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Nannan Gao
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Juanjuan Li
- School of Life and Health Science, Hainan University, Haikou 570228, China
| | - Hao Wang
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
18
|
Tang C, Li Y, Fei X, Zhao W, Tian J, Xu L, Wang Y. An integrally formed Janus supramolecular bio-gel with intelligent adhesion for multifunctional healthcare. J Colloid Interface Sci 2024; 680:1030-1041. [PMID: 39549347 DOI: 10.1016/j.jcis.2024.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Despite the rapid development of Janus adhesive hydrogels, most of them still entail complex fabrication processes and have the inherent flaws, such as fragility and instability, thereby restricting their biomedical applications. In this study, a novel Janus bio-gel with strong mechanical and intelligent adhesion functions is facilely fabricated through a gravity-driven settlement strategy, employing poly-cyclodextrin microspheres (PCDMs). This strategy takes advantage of the sedimentation behavior of PCDMs with various diameters to establish structural disparities on both sides of the Janus bio-gel, thereby resolving multiple predicaments including the tedious synthesis steps and poor bonding of multilayer hydrogels. Owing to the multiple dynamic interactions between polymers and PCDMs, the Janus supramolecular bio-gel demonstrates outstanding mechanical toughness (1.97 MJ/m3) and elongation rate (≈800 %). More attractively, the resulting Janus bio-gel exhibits remarkable adhesiveness (316.4 J/m2 for interfacial toughness) and adhesive differences that are exceed 50 times between the two surfaces. Furthermore, the Janus supramolecular bio-gel also has excellent antibacterial properties, biocompatibility, environmental stability, and multiple monitoring functions, accelerating wound stably healing and monitoring physiologic parameters on the skin. This strategy provides a straightforward and promising approach to directly achieve multifunctional integration for smart health management.
Collapse
Affiliation(s)
- Chenyang Tang
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Fei
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China.
| | - Wenhui Zhao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Longquan Xu
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
19
|
Lin X, Huang Z, Huang H, Fang Y, Weng Y, Wang Z, Zhao H, Liu H. A tough Janus poly(vinyl alcohol)-based hydrogel for wound closure and anti postoperative adhesion. Acta Biomater 2024; 188:103-116. [PMID: 39243837 DOI: 10.1016/j.actbio.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Traditional adhesive hydrogels perform well in tissue adhesion but they fail to prevent postoperative tissue adhesion. To address this challenge, a biodegradable Janus adhesive hydrogel (J-AH) was designed and fabricated by the assembly of three different functional layers including anti-adhesive layer, reinforceable layer, and wet tissue adhesive layer. Each layer of J-AH serves a specific function: the top zwitterionic polymeric anti-adhesive layer shows superior resistance to cell/protein and tissue adhesion; the middle poly(vinyl alcohol)/tannic acid reinforceable matrix layer endows the hydrogel with good mechanical toughness of ∼2.700 MJ/m3; the bottom poly(acrylic acid)/polyethyleneimine adhesive layer imparts tough adhesion (∼382.93 J/m2 of interfacial toughness) to wet tissues. In the rat liver and femoral injury models, J-AH could firmly adhere to the bleeding tissues to seal the wounds and exhibit impressive hemostatic efficiency. Moreover, in the in vivo adhesion/anti-adhesion assay of J-AH between the defected cecum and peritoneal walls, the top anti-adhesive layer can effectively inhibit undesired postoperative abdominal adhesion and inflammatory reaction. Therefore, this research may present a new strategy for the design of advanced bio-absorbable Janus adhesive hydrogels with multi-functions including tissue adhesion, anti-postoperative adhesion and biodegradation. STATEMENT OF SIGNIFICANCE: Despite many adhesive hydrogels with tough tissue adhesion capability have been reported, their proclivity for undesired postoperative adhesion remains a serious problem. The postoperative adhesion may lead to major complications and even endanger the lives of patients. The injectable hydrogels can cover the irregular wound and suppress the formation of postoperative adhesion. However, due to the lack of adhesive properties with tissue, it is difficult for the hydrogels to maintain on the wound surface, resulting in poor anti-postoperative adhesion effect. Herein, we design a Janus adhesive hydrogel (J-AH). J-AH integrates together robust wet tissue adhesion and anti-postoperative adhesion. Therefore, this research may present a new strategy for the design of advanced bio-absorbable Janus adhesive hydrogels.
Collapse
Affiliation(s)
- Xiaojin Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Zongxuan Huang
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine (900TH Hospital of Joint Logistics Support Force), Fuzhou 35025, China
| | - Hongjian Huang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yunxiang Weng
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Zhengchao Wang
- College of Life Science, Fujian Normal University, Fujian 350007, China
| | - Hu Zhao
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine (900TH Hospital of Joint Logistics Support Force), Fuzhou 35025, China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China; Fujian-Taiwan Science and Technology Cooperation Base of Biomedical, Materials and Tissue Engineering, Fujian 350007, China; Engineering Research Center of Industrial Biocatalysis, Fujian 350007, China.
| |
Collapse
|
20
|
Hu Q, Zhang Y, Song Y, Shi H, Yang D, Zhang H, Gu Y. 3D printing/electrospinning of a bilayered composite patch with antibacterial and antiadhesive properties for repairing abdominal wall defects. J Mater Chem B 2024; 12:10054-10067. [PMID: 39258439 DOI: 10.1039/d4tb01543f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The application of patch methods for repairing abdominal wall wounds presents a variety of challenges, such as adhesion and limited mobility due to inadequate mechanical strength and nonabsorbable materials. Among these complications, postoperative visceral adhesion and wound infection are particularly serious. In this study, a bilayered composite patch with a gelatin methacryloyl (GelMA)/sodium alginate (SA)-vancomycin (Van)@polycaprolactone (PCL) (GelMA/SA-Van@PCL) antibacterial layer was prepared via coaxial 3D printing and a polycaprolactone (PCL)-silicon dioxide (SiO2) antiadhesive layer (PCL-SiO2) was prepared via electrospinning and electrostatic spray for hernia repair. The evaluation of the physicochemical properties revealed that the composite patch had outstanding tensile properties (16 N cm-1), excellent swelling (swelling rate of 243.81 ± 12.52%) and degradation (degradation rate of 53.14 ± 3.02%) properties. Furthermore, the composite patch containing the antibiotic Van exhibited good antibacterial and long-term drug release properties. Both in vivo and in vitro experiments indicated that the composite patch displayed outstanding biocompatibility and antiadhesive properties and could prevent postoperative infections. In summary, the bilayered composite patch can effectively prevent postoperative complications while promoting tissue growth and repair and holds significant application potential in hernia repair.
Collapse
Affiliation(s)
- Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China.
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
| | - Yu Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China.
| | - Yongteng Song
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China.
| | - Hekai Shi
- Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Dongchao Yang
- Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China.
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
| | - Yan Gu
- Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Pan M, Shui T, Zhao Z, Xiang L, Yan B, Gu N, Zeng H. Engineered Janus hydrogels: biomimetic surface engineering and biomedical applications. Natl Sci Rev 2024; 11:nwae316. [PMID: 39411354 PMCID: PMC11476813 DOI: 10.1093/nsr/nwae316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Hydrogel bioadhesives, when applied to dysfunctional tissues substituting the epidermis or endothelium, exhibit compelling characteristics that enable revolutionary diagnostic and therapeutic procedures. Despite their demonstrated efficacy, these hydrogels as soft implants are still limited by improper symmetric surface functions, leading to postoperative complications and disorders. Janus hydrogel bioadhesives with unique asymmetric surface designs have thus been proposed as a reliable and biocompatible hydrogel interface, mimicking the structural characteristics of natural biological barriers. In this comprehensive review, we provide guidelines for the rational design of Janus hydrogel bioadhesives, covering methods for hydrogel surface chemistry and microstructure engineering. The engineering of Janus hydrogels is highlighted, specifically in tuning the basal surface to facilitate instant and robust hydrogel-tissue integration and modulating the apical surface as the anti-adhesion, anti-fouling, and anti-wear barrier. These asymmetric designs hold great potential in clinical translation, supporting applications including hemostasis/tissue sealing, chronic wound management, and regenerative medicine. By shedding light on the potential of Janus hydrogels as bioactive interfaces, this review paper aims to inspire further research and overcome current obstacles for advancing soft matter in next-generation healthcare.
Collapse
Affiliation(s)
- Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213164, China
| | - Tao Shui
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Li Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ning Gu
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| |
Collapse
|
22
|
Deng J, Li J, Yan L, Guo W, Ding X, Ding P, Liu S, Sun Y, Jiang G, Okoro OV, Shavandi A, Xie Z, Fan L, Nie L. Accelerated, injectable, self-healing, scarless wound dressings using rGO reinforced dextran/chitosan hydrogels incorporated with PDA-loaded asiaticoside. Int J Biol Macromol 2024; 278:134424. [PMID: 39111509 DOI: 10.1016/j.ijbiomac.2024.134424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
The process of wound healing is intricate and complex, necessitating the intricate coordination of various cell types and bioactive molecules. Despite significant advances, challenges persist in achieving accelerated healing and minimizing scar formation. Herein, a multifunctional hydrogel engineered via dynamic Schiff base crosslinking between oxidized dextran and quaternized chitosan, reinforced with reduced graphene oxide (rGO) is reported. The resulting OQG hydrogels demonstrated injectability to aid in conforming to irregular wound geometries, rapid self-healing to maintain structural integrity and adhesion for intimate integration with wound beds. Moreover, the developed hydrogels possessed antioxidant and antibacterial activities, mitigating inflammation and preventing infection. The incorporation of conductive rGO further facilitated the transmission of endogenous electrical signals, stimulating cell migration and tissue regeneration. In addition, the polydopamine-encapsulated asiaticoside (AC@PDA) nanoparticles were encapsulated in OQG hydrogels to reduce scar formation during in vivo evaluations. In vitro results confirmed the histocompatibility of the hydrogels to promote cell migration. The recovery of the full-thickness rat wounds revealed that these designed OQG hydrogels with the incorporation of AC@PDA nanoparticles could accelerate wound healing, reduce inflammation, facilitate angiogenesis, and minimize scarring when implemented. This multifunctional hydrogel system offers a promising strategy for enhanced wound management and scarless tissue regeneration, addressing the multifaceted challenges in wound care.
Collapse
Affiliation(s)
- Jun Deng
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jingyu Li
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Guo
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Peng Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Shuang Liu
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| | - Zhizhong Xie
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Lihong Fan
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
23
|
Shao H, Deng J, Xu Z, Zhu J, Jian W, Zhang P, Zhou X, Zhang X, She H, Ma J, Wu X, Li H. A Janus hydrogel that enables wet tissue adhesion and resists abdominal adhesions. Mater Today Bio 2024; 28:101248. [PMID: 39318376 PMCID: PMC11421368 DOI: 10.1016/j.mtbio.2024.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/26/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Hydrogels have indeed achieved significant advancements, yet their clinical translation has been hampered by their inherent limitations in wet adhesion properties. Furthermore, the design of adhesive hydrogels that can resist postoperative adhesions remains an intricate challenge. In this study, we introduce a Janus hydrogel (JGP) that offers a novel approach to address these challenges. The JGP hydrogel has two asymmetrical sides, consisting of an adhesion layer (AL) and an anti-adhesion layer (AAL). Specifically, the AL incorporates three key components: N-[tris(hydroxymethyl)methyl]acrylamide (THMA), acrylic acid (AAc), and the acrylic acid N-hydroxysuccinimide ester (AAc-NHS). By drying the AL, it has a rapid water absorption capability. The abundance of hydroxyl and carboxyl groups in the AL enables the formation of robust hydrogen bonds with tissues, thereby achieving superior adhesive properties. Additionally, the synergistic effect of THMA's tridentate hydrogen bonding and the covalent bonding formed by AAc-NHS with tissue ensures long-lasting wet adhesion. To realize the anti-adhesion function, one side of the AL was immersed in a solution of [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), which undergoes crosslinking to form the AAL. A comprehensive series of tests have confirmed that the JGP hydrogel exhibits exceptional mechanical properties, efficient and enduring adhesion, excellent biocompatibility, and degradability. Moreover, it possesses remarkable hemostatic properties and robust anti-abdominal adhesion characteristics.
Collapse
Affiliation(s)
- Hanjie Shao
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo, 315000, PR China
| | - Junjie Deng
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, PR China
- Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Zeping Xu
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo, 315000, PR China
| | - Jiujun Zhu
- Department of Microelectronics, School of Physical Science and Technology, Ningbo University, PR China
| | - Wei Jian
- School of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, 315211, PR China
| | - Peiru Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Xinhua Zhou
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo, 315000, PR China
| | - Xie Zhang
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo, 315000, PR China
| | - Hao She
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo, 315000, PR China
| | - Jingyun Ma
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo, 315000, PR China
| | - Xiang Wu
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo, 315000, PR China
| | - Hong Li
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo, 315000, PR China
| |
Collapse
|
24
|
Yuan L, Wei H, Pan Z, Deng X, Yang L, Wang Y, Lu D, Li Z, Luo F, Li J, Tan H. A bioinspired injectable antioxidant hydrogel for prevention of postoperative adhesion. J Mater Chem B 2024; 12:6968-6980. [PMID: 38915270 DOI: 10.1039/d4tb00805g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Postoperative adhesions, a prevalent complication following abdominal surgery, affect 90% of patients undergoing abdominal surgical procedures. Currently, the primary approach to prevent postoperative adhesions involves physical isolation of the surgical site and surrounding tissues using a hydrogel; however, this method represents a rudimentary strategy. Herein, considering the impact of oxidative stress and free radicals on postoperative adhesion during wound healing, an injectable antioxidant hydrogel, named PU-OHA-D, was successfully synthesized, which is formed by the crosslinking of dopamine-modified oxidized hyaluronic acid (OHA-D) and dihydrazide-terminated polyurethane (PU-ADH) through hydrazone bonding. PU-OHA-D hydrogel possesses versatile characteristics such as rapid gel formation, injectability, self-repair capability and biodegradability. Additionally, they exhibit an excellent ability to clear free radicals and superior tissue adhesion. PU-OHA-D can be injected in situ to form a hydrogel to prevent abdominal wall-cecum adhesion. Importantly, it can effectively eliminate free radicals and inhibit oxidative stress at the wound site. Thereby, it leads to collagen physiological degradation and prevents the occurrence of postoperative adhesions. The bioinspired hydrogel demonstrates its great potential in preventing postoperative adhesion and promoting wound healing.
Collapse
Affiliation(s)
- Lei Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Hongxiu Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - ZhongJing Pan
- Department of Otorhinolaryngology, Head & Neck Surgery, West China Hospital, Sichuan University, Sichuan, Chengdu 610041, China
| | - Xiaobo Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Lin Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dan Lu
- Department of Otorhinolaryngology, Head & Neck Surgery, West China Hospital, Sichuan University, Sichuan, Chengdu 610041, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
25
|
Zhang M, Han F, Duan X, Zheng D, Cui Q, Liao W. Advances of biological macromolecules hemostatic materials: A review. Int J Biol Macromol 2024; 269:131772. [PMID: 38670176 DOI: 10.1016/j.ijbiomac.2024.131772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Achieving hemostasis is a necessary intervention to rapidly and effectively control bleeding. Conventional hemostatic materials currently used in clinical practice may aggravate the damage at the bleeding site due to factors such as poor adhesion and poor adaptation. Compared to most traditional hemostatic materials, polymer-based hemostatic materials have better biocompatibility and offer several advantages. They provide a more effective method of stopping bleeding and avoiding additional damage to the body in case of excessive blood loss. Various hemostatic materials with greater functionality have been developed in recent years for different organs using diverse design strategies. This article reviews the latest advances in the development of polymeric hemostatic materials. We introduce the coagulation cascade reaction after bleeding and then discuss the hemostatic mechanisms and advantages and disadvantages of various polymer materials, including natural, synthetic, and composite polymer hemostatic materials. We further focus on the design strategies, properties, and characterization of hemostatic materials, along with their applications in different organs. Finally, challenges and prospects for the application of hemostatic polymeric materials are summarized and discussed. We believe that this review can provide a reference for related research on hemostatic materials, contributing to the further development of polymer hemostatic materials.
Collapse
Affiliation(s)
- Mengyang Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Dongxi Zheng
- School of Mechanical and Intelligent Manufacturing, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qiuyan Cui
- The Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China.
| |
Collapse
|
26
|
Jiang Y, Zhu C, Ma X, Fan D. Janus hydrogels: merging boundaries in tissue engineering for enhanced biomaterials and regenerative therapies. Biomater Sci 2024; 12:2504-2520. [PMID: 38529571 DOI: 10.1039/d3bm01875j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In recent years, the design and synthesis of Janus hydrogels have witnessed a thriving development, overcoming the limitations of single-performance materials and expanding their potential applications in tissue engineering and regenerative medicine. Janus hydrogels, with their exceptional mechanical properties and excellent biocompatibility, have emerged as promising candidates for various biomedical applications, including tissue engineering and regenerative therapies. In this review, we present the latest progress in the synthesis of Janus hydrogels using commonly employed preparation methods. We elucidate the surface and interface interactions of these hydrogels and discuss the enhanced properties bestowed by the unique "Janus" structure in biomaterials. Additionally, we explore the applications of Janus hydrogels in facilitating regenerative therapies, such as drug delivery, wound healing, tissue engineering, and biosensing. Furthermore, we analyze the challenges and future trends associated with the utilization of Janus hydrogels in biomedical applications.
Collapse
Affiliation(s)
- Yingxue Jiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| |
Collapse
|
27
|
Lu W, Wang X, Kong C, Chen S, Hu C, Zhang J. Hemoadhican-Based Bioabsorbable Hydrogel for Preventing Postoperative Adhesions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17267-17284. [PMID: 38556996 DOI: 10.1021/acsami.4c01088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Postoperative peritoneal adhesions are a prevalent clinical issue following abdominal and pelvic surgery, frequently resulting in heightened personal and societal health burdens. Traditional biomedical barriers offer limited benefits because of practical challenges for doctors and their incompatibility with laparoscopic surgery. Hydrogel materials, represented by hyaluronic acid gels, are receiving increasing attention. However, existing antiadhesive gels still have limited effectiveness or carry the risk of complications in clinical applications. Herein, we developed a novel hydrogel using polysaccharide hemoadhican (HD) as the base material and polyethylene glycol diglycidyl ether (PEGDE) as the cross-linking agent. The HD hydrogels exhibit appropriate mechanical properties, injectability, and excellent cytocompatibility. We demonstrate resistance to protein adsorption and L929 fibroblast cell adhesion to the HD hydrogel. The biodegradability and efficacy against peritoneal adhesion are further evaluated in C57BL/6 mice. Our results suggest a potential strategy for anti-postoperative tissue adhesion barrier biomaterials.
Collapse
Affiliation(s)
- Weiling Lu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Xianjin Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Chengtao Hu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| |
Collapse
|
28
|
Guo X, Wang A, Sheng N, He Y, Liu W, Li Z, Luo F, Li J, Tan H. Janus Polyurethane Adhesive Patch with Antibacterial Properties for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15970-15980. [PMID: 38501704 DOI: 10.1021/acsami.4c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Despite the rapid development of tissue adhesives, flaws including allergies, poor stability, and indiscriminate double-sided adhesive properties limit their application in the medical field. In this work, Janus polyurethane patches were spontaneously prepared by adjusting the difference in the functional group distribution between the top and bottom sides of the patch during emulsion drying. Consequently, poor adhesion was exhibited on the bottom surface, while the top surface can easily adhere to metals, polymers, glasses, and tissues. The difference in adhesive strength to pork skin between the two surfaces is more than 5 times. The quaternary ammonium salt and hydrophilic components on the surface of the polyurethane patch enable the rapid removal and absorption of water from the tissue surface to achieve wet adhesion. Animal experiments have demonstrated that this multifunctional Janus polyurethane patch can promote skin wound closure and healing of infected wounds. This facile and effective strategy to construct Janus polyurethane patch provides a promising method for the development of functional tissue-adhesives.
Collapse
Affiliation(s)
- Xiaolei Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Ao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Nan Sheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Yuanyuan He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Wenkai Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
29
|
Kang SI, Shin HH, Hyun DH, Yoon G, Park JS, Ryu JH. Double-layer adhesives for preventing anastomotic leakage and reducing post-surgical adhesion. Mater Today Bio 2023; 23:100806. [PMID: 37766901 PMCID: PMC10520874 DOI: 10.1016/j.mtbio.2023.100806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Preventing anastomotic leakage (AL) and postoperative adhesions after gastrointestinal surgery is crucial for ensuring a favorable surgical prognosis. However, AL prevention using tissue adhesives can unintentionally lead to undesirable adhesion formation, while anti-adhesive agents may interfere with wound healing and contribute to AL. In this study, we have developed a double-layer patch, consisting of an adhesive layer on one side, utilizing gallic acid-conjugated chitosan (CHI-G), and an anti-adhesive layer on the opposite side, employing crosslinked hyaluronic acid (cHA). These CHI-G/cHA double-layer adhesives significantly prevented AL by forming physical barriers of CHI-G and reduced post-surgical adhesion at the anastomosis sites by the anti-adhesive layers of cHA. The bursting pressure (161.1 ± 21.6 mmHg) of double-layer adhesives-applied rat intestine at postoperative day 21 was far higher than those of the control (129.4 ± 5.7 mmHg) and the commercial anti-adhesives-applied group (120.8 ± 5.2 mmHg). In addition, adhesion score of double-layer adhesives-applied rat intestine was 3.6 ± 0.3 at postoperative day 21, which was similar to that of the commercial anti-adhesives-applied group (3.6 ± 0.3) and lower than that of the control group (4.9 ± 0.5). These findings indicate that the double-layer patch (CHI-G/cHA) has the potential to effectively prevent both postoperative adhesions and anastomotic leakage, offering a promising solution for gastrointestinal surgery.
Collapse
Affiliation(s)
- Sung Il Kang
- Department of Surgery, College of Medicine, Yeungnam University, Daegu, 42415, South Korea
| | - Hyun Ho Shin
- Department of Chemical Engineering, Wonkwang University, Iksan, Jeonbuk, 54538, South Korea
| | - Da Han Hyun
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41404, South Korea
| | - Ghilsuk Yoon
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, 41566, South Korea
| | - Jun Seok Park
- Department of Surgery, School of Medicine, Kyungpook National University Hospital, Daegu, 41404, Republic of Korea
| | - Ji Hyun Ryu
- Department of Chemical Engineering, Wonkwang University, Iksan, Jeonbuk, 54538, South Korea
- Department of Carbon Convergence Engineering, Wonkwang University, Iksan, Jeonbuk, 54538, South Korea
- Smart Convergence Materials Analysis Center, Wonkwang University, Iksan, Jeonbuk, 54538, South Korea
| |
Collapse
|