1
|
Sande CM, Chen S, Mitchell DV, Lin P, Abraham DM, Cheng JM, Gebhard T, Deolikar RJ, Freeman C, Zhou M, Kumar S, Bowman M, Bowman RL, Zheng S, Munkhbileg B, Chen Q, Stanley NL, Guo K, Lapite A, Hausler R, Taylor DM, Corines J, Morrissette JJ, Lieberman DB, Yang G, Shestova O, Gill S, Zheng J, Smith-Simmer K, Banaszak LG, Shoger KN, Reinig EF, Peterson M, Nicholas P, Walne AJ, Dokal I, Rosenheck JP, Oetjen KA, Link DC, Gelman AE, Reilly CR, Dutta R, Lindsley RC, Brundige KJ, Agarwal S, Bertuch AA, Churpek JE, Tague LK, Johnson FB, Olson TS, Babushok DV. ATM-dependent DNA damage response constrains cell growth and drives clonal hematopoiesis in telomere biology disorders. J Clin Invest 2025; 135:e181659. [PMID: 40179146 PMCID: PMC11996883 DOI: 10.1172/jci181659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Telomere biology disorders (TBDs) are genetic diseases caused by defective telomere maintenance. TBD patients often develop bone marrow failure and have an increased risk of myeloid neoplasms. To better understand the factors underlying hematopoietic outcomes in TBD, we comprehensively evaluated acquired genetic alterations in hematopoietic cells from 166 pediatric and adult TBD patients. Of these patients, 47.6% (28.8% of children, 56.1% of adults) had clonal hematopoiesis. Recurrent somatic alterations involved telomere maintenance genes (7.6%), spliceosome genes (10.4%, mainly U2AF1 p.S34), and chromosomal alterations (20.2%), including 1q gain (5.9%). Somatic variants affecting the DNA damage response (DDR) were identified in 21.5% of patients, including 20 presumed loss-of-function variants in ataxia-telangiectasia mutated (ATM). Using multimodal approaches, including single-cell sequencing, assays of ATM activation, telomere dysfunction-induced foci analysis, and cell-growth assays, we demonstrate telomere dysfunction-induced activation of the ATM-dependent DDR pathway with increased senescence and apoptosis in TBD patient cells. Pharmacologic ATM inhibition, modeling the effects of somatic ATM variants, selectively improved TBD cell fitness by allowing cells to bypass DDR-mediated senescence without detectably inducing chromosomal instability. Our results indicate that ATM-dependent DDR induced by telomere dysfunction is a key contributor to TBD pathogenesis and suggest dampening hyperactive ATM-dependent DDR as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Christopher M. Sande
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Laboratories, Seattle Children’s Hospital, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Stone Chen
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dana V. Mitchell
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ping Lin
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Diana M. Abraham
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessie Minxuan Cheng
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Talia Gebhard
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Drexel University College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Rujul J. Deolikar
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Colby Freeman
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mary Zhou
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sushant Kumar
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Bowman
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert L. Bowman
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shannon Zheng
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bolormaa Munkhbileg
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Qijun Chen
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Natasha L. Stanley
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Children’s Hospital of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathy Guo
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ajibike Lapite
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Ryan Hausler
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Deanne M. Taylor
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James Corines
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer J.D. Morrissette
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David B. Lieberman
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guang Yang
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Olga Shestova
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Saar Gill
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jiayin Zheng
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kelcy Smith-Simmer
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine and
| | - Lauren G. Banaszak
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine and
| | - Kyle N. Shoger
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine and
| | - Erica F. Reinig
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Madilynn Peterson
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine and
| | - Peter Nicholas
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amanda J. Walne
- Blizard Institute Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Inderjeet Dokal
- Blizard Institute Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Justin P. Rosenheck
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Ohio State University, Columbus, Ohio, USA
| | - Karolyn A. Oetjen
- Division of Oncology, Section of Stem Cell Biology, Department of Medicine
| | - Daniel C. Link
- Division of Oncology, Section of Stem Cell Biology, Department of Medicine
- Department of Pathology & Immunology, and
| | - Andrew E. Gelman
- Division of Oncology, Section of Stem Cell Biology, Department of Medicine
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Christopher R. Reilly
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ritika Dutta
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - R. Coleman Lindsley
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Karyn J. Brundige
- Division of Hematology/Oncology, Boston Children’s Hospital, Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children’s Hospital, Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alison A. Bertuch
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer and Hematology Centers, Houston, Texas, USA
| | - Jane E. Churpek
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine and
| | - Laneshia K. Tague
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - F. Brad Johnson
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy S. Olson
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daria V. Babushok
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Kusne Y, Badar T, Lasho T, Marando L, Mangaonkar AA, Finke C, Foran JM, Al‐Kali A, Palmer J, Arana Yi C, Alkhateeb HB, Gangat N, Viswanatha D, Litzow MR, Chlon T, Ferrer A, Patnaik MM. Prevalence of cytopenia(s) and somatic variants in patients with DDX41 mutant germline predisposition syndrome. Br J Haematol 2025; 206:1109-1120. [PMID: 40040251 PMCID: PMC11985375 DOI: 10.1111/bjh.20018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025]
Abstract
Germline variants in DDX41 (DDX41MT-germline predisposition syndrome [GPS]) are associated with predisposition to haematological malignancies (HM), including lymphoid and myeloid neoplasms (MN). We retrospectively analysed the clinical and molecular features of 195 patients diagnosed and treated at Mayo Clinic with DDX41MT-GPS. Patients with germline DDX41 pathogenic variants (42.3%) and variants of unknown significance (VUS, 57.6%) were included. The median age was 68.6 years (16.2-93.4). Ninety-two per cent were Caucasian, 64.1% were male and 30.8% had a family history of HM. There were 92 distinct germline variants among our cohort, and the most common was p.Met1? (15.9%), followed by p.Asp140Glyfs*2 (9.2%). Clinical diagnoses included asymptomatic carriers (10.2%), clonal cytopenia of undetermined significance (CCUS, 6.1%), myeloproliferative neoplasms (6.7%), myelodysplastic syndrome (40.5%), acute myeloid leukaemia (20.5%), lymphoid neoplasms (9.2%), plasma cell dyscrasias (6.1%) and solid tumours (22.5%). Patients with MN were older (median age 70 vs. 63.5 years) and more likely to be male (M:F ratio 2.3 vs. 1.0) and most patients (78.8%) with MN had a normal karyotype. The most common somatic variants involved DDX41 (34.4%), followed by TET2 (11.2%), DNMT3A (9.6%) and ASXL1 (9.2%). In summary, we have comprehensively described the spectrum of clinical phenotypes within the Mayo Clinic DDX41MT-GPS cohort.
Collapse
Affiliation(s)
- Yael Kusne
- Division of Hematology/OncologyMayo ClinicScottsdaleArizonaUSA
| | - Talha Badar
- Division of Hematology/Oncology and Bone Marrow Transplant ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Terra Lasho
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Ludovica Marando
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | | | - Christy Finke
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - James M. Foran
- Division of Hematology/Oncology and Bone Marrow Transplant ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Aref Al‐Kali
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Jeanne Palmer
- Division of Hematology/OncologyMayo ClinicScottsdaleArizonaUSA
| | | | - Hassan B. Alkhateeb
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Naseema Gangat
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | | | - Mark R. Litzow
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Timothy Chlon
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Alejandro Ferrer
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Mrinal M. Patnaik
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
3
|
Yoshida K. Clonal hematopoiesis in cancer predisposition syndromes. Int J Hematol 2024:10.1007/s12185-024-03878-x. [PMID: 39643764 DOI: 10.1007/s12185-024-03878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/02/2024] [Accepted: 11/10/2024] [Indexed: 12/09/2024]
Abstract
After recent advances in sequencing technologies led to the discovery of novel genes associated with predisposition to hematological malignancies, studies have now shown that myeloid neoplasms associated with germline variants are more common than previously estimated. Based on these findings, myeloid neoplasms with germline predisposition have emerged as a unique category in the recent World Health Organization classification of Haematolymphoid Tumors. Clonal hematopoiesis is common in healthy individuals, particularly in older people. In patients with germline predisposition to hematological malignancies, clonal hematopoiesis is frequently observed at younger ages and is often associated with unique disease-specific driver mutations, some of which are hypothesized to compensate for the inherited defect. This review summarizes recent findings on clonal hematopoiesis in cancer predisposition syndromes.
Collapse
Affiliation(s)
- Kenichi Yoshida
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
4
|
Gutierrez-Rodrigues F, Groarke EM, Thongon N, Rodriguez-Sevilla JJ, Catto LFB, Niewisch MR, Shalhoub R, McReynolds LJ, Clé DV, Patel BA, Ma X, Hironaka D, Donaires FS, Spitofsky N, Santana BA, Lai TP, Alemu L, Kajigaya S, Darden I, Zhou W, Browne PV, Paul S, Lack J, Young DJ, DiNardo CD, Aviv A, Ma F, De Oliveira MM, de Azambuja AP, Dunbar CE, Olszewska M, Olivier E, Papapetrou EP, Giri N, Alter BP, Bonfim C, Wu CO, Garcia-Manero G, Savage SA, Young NS, Colla S, Calado RT. Clonal landscape and clinical outcomes of telomere biology disorders: somatic rescue and cancer mutations. Blood 2024; 144:2402-2416. [PMID: 39316766 PMCID: PMC11862815 DOI: 10.1182/blood.2024025023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
ABSTRACT Telomere biology disorders (TBDs), caused by pathogenic germ line variants in telomere-related genes, present with multiorgan disease and a predisposition to cancer. Clonal hematopoiesis (CH) as a marker of cancer development and survival in TBDs is poorly understood. Here, we characterized the clonal landscape of a large cohort of 207 patients with TBD with a broad range of age and phenotype. CH occurred predominantly in symptomatic patients and in signature genes typically associated with cancers: PPM1D, POT1, TERT promoter (TERTp), U2AF1S34, and/or TP53. Chromosome 1q gain (Chr1q+) was the commonest karyotypic abnormality. Clinically, multiorgan involvement and CH in TERTp, TP53, and splicing factor genes were associated with poorer overall survival. Chr1q+ and splicing factor or TP53 mutations significantly increased the risk of hematologic malignancies, regardless of clonal burden. Chr1q+ and U2AF1S34 mutated clones were premalignant events associated with the secondary acquisition of mutations in genes related to hematologic malignancies. Similar to the known effects of Chr1q+ and TP53-CH, functional studies demonstrated that U2AF1S34 mutations primarily compensated for aberrant upregulation of TP53 and interferon pathways in telomere-dysfunctional hematopoietic stem cells, highlighting the TP53 pathway as a canonical route of malignancy in TBD. In contrast, somatic POT1/PPM1D/TERTp mutations had distinct trajectories unrelated to cancer development. With implications beyond TBD, our data show that telomere dysfunction is a strong selective pressure for CH. In TBD, CH is a poor prognostic marker associated with worse overall survival. The identification of key regulatory pathways that drive clonal transformation in TBD allows for the identification of patients at a higher risk of cancer development.
Collapse
Affiliation(s)
| | - Emma M. Groarke
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Luiz Fernando B. Catto
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marena R. Niewisch
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ruba Shalhoub
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Lisa J. McReynolds
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Diego V. Clé
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bhavisha A. Patel
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Xiaoyang Ma
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Dalton Hironaka
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Flávia S. Donaires
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nina Spitofsky
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Barbara A. Santana
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tsung-Po Lai
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Lemlem Alemu
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ivana Darden
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Paul V. Browne
- Department of Haematology, Trinity College Dublin, Dublin, Ireland
| | - Subrata Paul
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David J. Young
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Courtney D. DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Abraham Aviv
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Feiyang Ma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | | | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Malgorzata Olszewska
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emmanuel Olivier
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eirini P. Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Neelam Giri
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Blanche P. Alter
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Carmem Bonfim
- Bone Marrow Transplantation Unit, Federal University of Parana, Curitiba, Brazil
- Pediatric Blood and Marrow Transplantation Program, Pequeno Principe Hospital, Curitiba, Brazil
| | - Colin O. Wu
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Sharon A. Savage
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Neal S. Young
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rodrigo T. Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
5
|
Attardi E, Corey SJ, Wlodarski MW. Clonal hematopoiesis in children with predisposing conditions. Semin Hematol 2024; 61:35-42. [PMID: 38311515 DOI: 10.1053/j.seminhematol.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
Clonal hematopoiesis in children and young adults differs from that occuring in the older adult population. A variety of stressors drive this phenomenon, sometimes independent of age-related processes. For the purposes of this review, we adopt the term clonal hematopoiesis in predisposed individuals (CHIPI) to differentiate it from classical, age-related clonal hematopoiesis of indeterminate potential (CHIP). Stress-induced CHIPI selection can be extrinsic, such as following immunologic, infectious, pharmacologic, or genotoxic exposures, or intrinsic, involving germline predisposition from inherited bone marrow failure syndromes. In these conditions, clonal advantage relates to adaptations allowing improved cell fitness despite intrinsic defects affecting proliferation and differentiation. In certain contexts, CHIPI can improve competitive fitness by compensating for germline defects; however, the downstream effects of clonal expansion are often unpredictable - they may either counteract the underlying pathology or worsen disease outcomes. A more complete understanding of how CHIPI arises in young people can lead to the definition of preleukemic states and strategies to assess risk, surveillance, and prevention to leukemic transformation. Our review summarizes current research on stress-induced clonal dynamics in individuals with germline predisposition syndromes.
Collapse
Affiliation(s)
- Enrico Attardi
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN; Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Seth J Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Lasho T, Patnaik MM. Adaptive and Maladaptive Clonal Hematopoiesis in Telomere Biology Disorders. Curr Hematol Malig Rep 2024; 19:35-44. [PMID: 38095828 DOI: 10.1007/s11899-023-00719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE OF REVIEW Telomere biology disorders (TBDs) are germline-inherited conditions characterized by reduction in telomerase function, accelerated shortening of telomeres, predisposition to organ-failure syndromes, and increased risk of neoplasms, especially myeloid malignancies. In normal cells, critically short telomeres trigger apoptosis and/or cellular senescence. However, the evolutionary mechanism by which TBD-related telomerase-deficient cells can overcome this fitness constraint remains elusive. RECENT FINDINGS Preliminary data suggests the existence of adaptive somatic mosaic states characterized by variants in TBD-related genes and maladaptive somatic mosaic states that attempt to overcome hematopoietic fitness constraints by alternative methods leading to clonal hematopoiesis. TBDs are both rare and highly heterogeneous in presentation, and the association of TBD with malignant transformation is unclear. Understanding the clonal complexity and mechanisms behind TBD-associated molecular signatures that lead to somatic adaptation in the setting of defective hematopoiesis will help inform therapy and treatment for this set of diseases.
Collapse
Affiliation(s)
- Terra Lasho
- Division of Hematology, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN, 55905, USA
| | - Mrinal M Patnaik
- Division of Hematology, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
7
|
Erlacher M, Andresen F, Sukova M, Stary J, De Moerloose B, Bosch JVDWT, Dworzak M, Seidel MG, Polychronopoulou S, Beier R, Kratz CP, Nathrath M, Frühwald MC, Göhring G, Bergmann AK, Mayerhofer C, Lebrecht D, Ramamoorthy S, Yoshimi A, Strahm B, Wlodarski MW, Niemeyer CM. Spontaneous remission and loss of monosomy 7: a window of opportunity for young children with SAMD9L syndrome. Haematologica 2024; 109:422-430. [PMID: 37584291 PMCID: PMC10828767 DOI: 10.3324/haematol.2023.283591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
Monosomy 7 is the most common cytogenetic abnormality in pediatric myelodysplastic syndrome (MDS) and associated with a high risk of disease progression. However, in young children, spontaneous loss of monosomy 7 with concomitant hematologic recovery has been described, especially in the presence of germline mutations in SAMD9 and SAMD9L genes. Here, we report on our experience of close surveillance instead of upfront hematopoietic stem cell transplantation (HSCT) in seven patients diagnosed with SAMD9L syndrome and monosomy 7 at a median age of 0.6 years (range, 0.4-2.9). Within 14 months from diagnosis, three children experienced spontaneous hematological remission accompanied by a decrease in monosomy 7 clone size. Subclones with somatic SAMD9L mutations in cis were identified in five patients, three of whom attained hematological remission. Two patients acquired RUNX1 and EZH2 mutations during the observation period, of whom one progressed to myelodysplastic syndrome with excess of blasts (MDS-EB). Four patients underwent allogeneic HSCT at a median time of 26 months (range, 14-40) from diagnosis for MDSEB, necrotizing granulomatous lymphadenitis, persistent monosomy 7, and severe neutropenia. At last follow-up, six patients were alive, while one passed away due to transplant-related causes. These data confirm previous observations that monosomy 7 can be transient in young children with SAMD9L syndrome. However, they also indicate that delaying HSCT poses a substantial risk of severe infection and disease progression. Finally, surveillance of patients with SAMD9L syndrome and monosomy 7 is critical to define the evolving genetic landscape and to determine the appropriate timing of HSCT (clinicaltrials gov. Identifier: NCT00662090).
Collapse
Affiliation(s)
- Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg.
| | - Felicia Andresen
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg
| | - Martina Sukova
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent
| | | | - Michael Dworzak
- St. Anna Children's Hospital, Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria; St. Anna Children's Cancer Research Institute, Vienna
| | - Markus G Seidel
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology (T.A.O.), Aghia Sophia Children's Hospital, Athens, Greece
| | - Rita Beier
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover
| | - Michaela Nathrath
- Department of Pediatric Hematology and Oncology, Klinikum Kassel, Kassel, Germany; Department of Pediatrics and Children's Cancer Research Center, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich
| | - Michael C Frühwald
- Pediatrics and Adolescent Medicine, University Medical Center Augsburg, Augsburg
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Hannover
| | - Anke K Bergmann
- Department of Human Genetics, Hannover Medical School, Hannover
| | - Christina Mayerhofer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg
| | - Dirk Lebrecht
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg
| | - Senthilkumar Ramamoorthy
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg
| | - Ayami Yoshimi
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg
| | - Brigitte Strahm
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg
| | - Marcin W Wlodarski
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Charlotte M Niemeyer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg
| |
Collapse
|
8
|
Weeks LD, Ebert BL. Causes and consequences of clonal hematopoiesis. Blood 2023; 142:2235-2246. [PMID: 37931207 PMCID: PMC10862247 DOI: 10.1182/blood.2023022222] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
ABSTRACT Clonal hematopoiesis (CH) is described as the outsized contribution of expanded clones of hematopoietic stem and progenitor cells (HSPCs) to blood cell production. The prevalence of CH increases dramatically with age. CH can be caused by somatic mutations in individual genes or by gains and/or losses of larger chromosomal segments. CH is a premalignant state; the somatic mutations detected in CH are the initiating mutations for hematologic malignancies, and CH is a strong predictor of the development of blood cancers. Moreover, CH is associated with nonmalignant disorders and increased overall mortality. The somatic mutations that drive clonal expansion of HSPCs can alter the function of terminally differentiated blood cells, including the release of elevated levels of inflammatory cytokines. These cytokines may then contribute to a broad range of inflammatory disorders that increase in prevalence with age. Specific somatic mutations in the peripheral blood in coordination with blood count parameters can powerfully predict the development of hematologic malignancies and overall mortality in CH. In this review, we summarize the current understanding of CH nosology and origins. We provide an overview of available tools for risk stratification and discuss management strategies for patients with CH presenting to hematology clinics.
Collapse
Affiliation(s)
- Lachelle D. Weeks
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| |
Collapse
|
9
|
Cacic AM, Schulz FI, Germing U, Dietrich S, Gattermann N. Molecular and clinical aspects relevant for counseling individuals with clonal hematopoiesis of indeterminate potential. Front Oncol 2023; 13:1303785. [PMID: 38162500 PMCID: PMC10754976 DOI: 10.3389/fonc.2023.1303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) has fascinated the medical community for some time. Discovered about a decade ago, this phenomenon links age-related alterations in hematopoiesis not only to the later development of hematological malignancies but also to an increased risk of early-onset cardiovascular disease and some other disorders. CHIP is detected in the blood and is characterized by clonally expanded somatic mutations in cancer-associated genes, predisposing to the development of hematologic neoplasms such as MDS and AML. CHIP-associated mutations often involve DNA damage repair genes and are frequently observed following prior cytotoxic cancer therapy. Genetic predisposition seems to be a contributing factor. It came as a surprise that CHIP significantly elevates the risk of myocardial infarction and stroke, and also contributes to heart failure and pulmonary hypertension. Meanwhile, evidence of mutant clonal macrophages in vessel walls and organ parenchyma helps to explain the pathophysiology. Besides aging, there are some risk factors promoting the appearance of CHIP, such as smoking, chronic inflammation, chronic sleep deprivation, and high birth weight. This article describes fundamental aspects of CHIP and explains its association with hematologic malignancies, cardiovascular disorders, and other medical conditions, while also exploring potential progress in the clinical management of affected individuals. While it is important to diagnose conditions that can lead to adverse, but potentially preventable, effects, it is equally important not to stress patients by confronting them with disconcerting findings that cannot be remedied. Individuals with diagnosed or suspected CHIP should receive counseling in a specialized outpatient clinic, where professionals from relevant medical specialties may help them to avoid the development of CHIP-related health problems. Unfortunately, useful treatments and clinical guidelines for managing CHIP are still largely lacking. However, there are some promising approaches regarding the management of cardiovascular disease risk. In the future, strategies aimed at restoration of gene function or inhibition of inflammatory mediators may become an option.
Collapse
Affiliation(s)
- Anna Maria Cacic
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Felicitas Isabel Schulz
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Norbert Gattermann
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| |
Collapse
|
10
|
Schratz KE. Clonal evolution in inherited marrow failure syndromes predicts disease progression. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:125-134. [PMID: 38066914 PMCID: PMC10727088 DOI: 10.1182/hematology.2023000469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Progression to myelodysplastic syndromes (MDS) and acute myeloid leukemia is one of the most serious complications of the inherited bone marrow failure and MDS-predisposition syndromes. Given the lack of predictive markers, this risk can also be a source of great uncertainty and anxiety to patients and their providers alike. Recent data show that some acquired mutations may provide a window into this risk. While maladaptive mechanisms, such as monosomy 7, are associated with a high risk of leukemogenesis, mutations that offset the inherited defect (known as somatic genetic rescue) may attenuate this risk. Somatic mutations that are shared with age-acquired clonal hematopoiesis mutations also show syndrome-specific patterns that may provide additional data as to disease risk. This review focuses on recent progress in this area with an emphasis on the biological underpinnings and interpretation of these patterns for patient care decisions.
Collapse
Affiliation(s)
- Kristen E. Schratz
- Department of Oncology
- Telomere Center at Johns Hopkins, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
11
|
Homan CC, Drazer MW, Yu K, Lawrence DM, Feng J, Arriola-Martinez L, Pozsgai MJ, McNeely KE, Ha T, Venugopal P, Arts P, King-Smith SL, Cheah J, Armstrong M, Wang P, Bödör C, Cantor AB, Cazzola M, Degelman E, DiNardo CD, Duployez N, Favier R, Fröhling S, Rio-Machin A, Klco JM, Krämer A, Kurokawa M, Lee J, Malcovati L, Morgan NV, Natsoulis G, Owen C, Patel KP, Preudhomme C, Raslova H, Rienhoff H, Ripperger T, Schulte R, Tawana K, Velloso E, Yan B, Kim E, Sood R, NISC Comparative Sequencing Program, Hsu AP, Holland SM, Phillips K, Poplawski NK, Babic M, Wei AH, Forsyth C, Mar Fan H, Lewis ID, Cooney J, Susman R, Fox LC, Blombery P, Singhal D, Hiwase D, Phipson B, Schreiber AW, Hahn CN, Scott HS, Liu P, Godley LA, Brown AL. Somatic mutational landscape of hereditary hematopoietic malignancies caused by germline variants in RUNX1, GATA2, and DDX41. Blood Adv 2023; 7:6092-6107. [PMID: 37406166 PMCID: PMC10582382 DOI: 10.1182/bloodadvances.2023010045] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/22/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Individuals with germ line variants associated with hereditary hematopoietic malignancies (HHMs) have a highly variable risk for leukemogenesis. Gaps in our understanding of premalignant states in HHMs have hampered efforts to design effective clinical surveillance programs, provide personalized preemptive treatments, and inform appropriate counseling for patients. We used the largest known comparative international cohort of germline RUNX1, GATA2, or DDX41 variant carriers without and with hematopoietic malignancies (HMs) to identify patterns of genetic drivers that are unique to each HHM syndrome before and after leukemogenesis. These patterns included striking heterogeneity in rates of early-onset clonal hematopoiesis (CH), with a high prevalence of CH in RUNX1 and GATA2 variant carriers who did not have malignancies (carriers-without HM). We observed a paucity of CH in DDX41 carriers-without HM. In RUNX1 carriers-without HM with CH, we detected variants in TET2, PHF6, and, most frequently, BCOR. These genes were recurrently mutated in RUNX1-driven malignancies, suggesting CH is a direct precursor to malignancy in RUNX1-driven HHMs. Leukemogenesis in RUNX1 and DDX41 carriers was often driven by second hits in RUNX1 and DDX41, respectively. This study may inform the development of HHM-specific clinical trials and gene-specific approaches to clinical monitoring. For example, trials investigating the potential benefits of monitoring DDX41 carriers-without HM for low-frequency second hits in DDX41 may now be beneficial. Similarly, trials monitoring carriers-without HM with RUNX1 germ line variants for the acquisition of somatic variants in BCOR, PHF6, and TET2 and second hits in RUNX1 are warranted.
Collapse
Affiliation(s)
- Claire C. Homan
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Michael W. Drazer
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, Center for Clinical Cancer Genetics, and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Kai Yu
- Division of Intramural Research, Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - David M. Lawrence
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Jinghua Feng
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Luis Arriola-Martinez
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Matthew J. Pozsgai
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, Center for Clinical Cancer Genetics, and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Kelsey E. McNeely
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, Center for Clinical Cancer Genetics, and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Thuong Ha
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Parvathy Venugopal
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Peer Arts
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Sarah L. King-Smith
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jesse Cheah
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Mark Armstrong
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Paul Wang
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Alan B. Cantor
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Erin Degelman
- Alberta Children’s Hospital, Calgary, Alberta, Canada
| | - Courtney D. DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nicolas Duployez
- Laboratory of Hematology, Biology and Pathology Center, Centre Hospitalier Regional Universitaire de Lille, Lille, France
- Jean-Pierre Aubert Research Center, INSERM, Universitaire de Lille, Lille, France
| | - Remi Favier
- Assistance Publique-Hôpitaux de Paris, Armand Trousseau Children's Hospital, Paris, France
| | - Stefan Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ana Rio-Machin
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Mineo Kurokawa
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Joanne Lee
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Neil V. Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Carolyn Owen
- Division of Hematology and Hematological Malignancies, Foothills Medical Centre, Calgary, AB, Canada
| | - Keyur P. Patel
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Claude Preudhomme
- Laboratory of Hematology, Biology and Pathology Center, Centre Hospitalier Regional Universitaire de Lille, Lille, France
- Jean-Pierre Aubert Research Center, INSERM, Universitaire de Lille, Lille, France
| | - Hana Raslova
- Institut Gustave Roussy, Université Paris Sud, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France
| | | | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Rachael Schulte
- Division of Pediatric Hematology and Oncology, Riley Children’s Hospital, Indiana University School of Medicine, Indianapolis, IN
| | - Kiran Tawana
- Department of Haematology, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Elvira Velloso
- Service of Hematology, Transfusion and Cell Therapy and Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31) HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil
- Genetics Laboratory, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Benedict Yan
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Erika Kim
- National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Raman Sood
- Division of Intramural Research, Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | | | - Amy P. Hsu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Steven M. Holland
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kerry Phillips
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Nicola K. Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Milena Babic
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Andrew H. Wei
- Department of Haematology, Peter McCallum Cancer Centre, Royal Melbourne Hospital, Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Melbourne, VIC, Australia
| | - Cecily Forsyth
- Central Coast Haematology, North Gosford, NSW, Australia
| | - Helen Mar Fan
- Department of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Ian D. Lewis
- Adelaide Oncology & Haematology, North Adelaide, SA, Australia
| | - Julian Cooney
- Department of Haematology, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Rachel Susman
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | - Lucy C. Fox
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Piers Blombery
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Deepak Singhal
- Department of Haematology, SA Pathology, Adelaide, SA, Australia
| | - Devendra Hiwase
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, SA Pathology, Adelaide, SA, Australia
| | - Belinda Phipson
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics and Department of Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andreas W. Schreiber
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Hamish S. Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Paul Liu
- Division of Intramural Research, Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Lucy A. Godley
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, Center for Clinical Cancer Genetics, and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Anna L. Brown
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
12
|
Younes IE, Syler L, Hamed A. Review of clonal hematopoiesis, subtypes and its role in neoplasia and different morbidities. Leuk Res 2023; 130:107307. [PMID: 37186988 DOI: 10.1016/j.leukres.2023.107307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Abstract
Clonal hematopoiesis (CH) is the development of a certain cell lineage which is the cornerstone of hematologic malignancy especially myeloid neoplasms, however, can also be found in old age (6th-7th decade). CH is caused by many different somatic mutations most commonly in DNMT3A, TET2, ASXL1, SF3B1 and TP53. It is detected by different sequencing methods, the most commonly used ones are next generation sequencing (NGS) which can be whole exome, whole genome sequencing or a panel for certain genes. CH is divided into multiple categories depending on the clinical picture associated with it into: clonal monocytosis of undetermined significance (CMUS), clonal hematopoiesis of indeterminate significance (CHIP), clonal cytopenia and monocytosis of undetermined significance (CCMUS) and clonal cytopenia of undetermined significance (CCUS). In order to diagose CH, first other hematologic malignancies must be ruled out CH is also associated with many different entities including lung cancer and some studies have shown that COVID-19 infections are affected by CH. Certain traits and infections are associated with CH including smoking, obesity, and cardiovascular disease. A minority of patients with CH progress to a malignant process (between 0.5 %-2 %) which do not require treatment, however, any patient with CH should be kept under surveillance in order to detect any malignancy early and be treated accordingly. SIMPLE SUMMARY: Clonal hematopoiesis (CH) is considered to be the predisposing factor for development of different hematologic neoplasms. With the help of NGS, patients with CH can be monitored more closely. Several studies have shown that these patients might develop hematologic neoplasms in their lifetime. It has been subdivided into multiple groups according to the clinical picture and/or blood counts.
Collapse
Affiliation(s)
| | - Lee Syler
- Department of Pathology, University of South Florida, Tampa, FL 33620, USA
| | - Amira Hamed
- Department of Pathology, University of Massachusetts, Worcester, MA 01655, USA
| |
Collapse
|
13
|
Mendez LM, Patnaik MM. Clonal Hematopoiesis: Origins and determinants of evolution. Leuk Res 2023; 129:107076. [PMID: 37075557 DOI: 10.1016/j.leukres.2023.107076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
The accrual of somatic mutations is a byproduct of aging. When a clone bearing a somatic genetic alteration, conferring comparative competitive advantage, displays sufficient outgrowth to become detectable amongst an otherwise polyclonal background in the hematopoietic system, this is called clonal hematopoiesis (CH). Somatic genetic alterations observed in CH include point mutations in cancer related genes, mosaic chromosomal alterations or a combination of these. Interestingly, clonal hematopoiesis (CH) can also occur with somatic variants in genes without a known role in cancer and in the absence of a somatic genetic alteration through a process that has been described as 'genetic drift'. Clonal hematopoiesis of indeterminate significance (CHIP), is age-related and defined by the presence of somatic point mutations in cancer related genes, in the absence of cytopenias or a diagnosis of hematologic neoplasm, with a variant allele fraction ≥ 2 %. Remarkably, the increased mortality associated with CHIP is largely due to cardiovascular disease. Subsequently, CHIP has been associated with a myriad of age-related conditions such as Alzheimer's Disease, osteoporosis, CVA and COPD. CHIP is associated with an increased risk of hematologic malignancies, particularly myeloid neoplasms, with the risk rising with increasing clone size and clonal complexity. Mechanisms regulating clonal evolution and progression to hematologic malignancies remain to be defined. However, observations on context specific CH arising in the setting of bone marrow failure states, or on exposure to chemotherapy and radiation therapy, suggest that CH reflects context specific selection pressures and constraint-escape mechanisms.
Collapse
Affiliation(s)
- Lourdes M Mendez
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center and Smilow Cancer Hospital, Yale University School of Medicine, CT, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, MN, USA.
| |
Collapse
|
14
|
Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology disorders. Nat Rev Genet 2023; 24:86-108. [PMID: 36151328 DOI: 10.1038/s41576-022-00527-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/24/2023]
Abstract
Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes that prevent the activation of DNA damage response and repair pathways. Numerous factors localize at telomeres to regulate their length, structure and function, to avert replicative senescence or genome instability and cell death. In humans, Mendelian defects in several of these factors can result in abnormally short or dysfunctional telomeres, causing a group of rare heterogeneous premature-ageing diseases, termed telomeropathies, short-telomere syndromes or telomere biology disorders (TBDs). Here, we review the TBD-causing genes identified so far and describe their main functions associated with telomere biology. We present molecular aspects of TBDs, including genetic anticipation, phenocopy, incomplete penetrance and somatic genetic rescue, which underlie the complexity of these diseases. We also discuss the implications of phenotypic and genetic features of TBDs on fundamental aspects related to human telomere biology, ageing and cancer, as well as on diagnostic, therapeutic and clinical approaches.
Collapse
Affiliation(s)
- Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
- Université Paris Cité, Imagine Institute, Paris, France.
| | - Caroline Kannengiesser
- APHP Service de Génétique, Hôpital Bichat, Paris, France
- Inserm U1152, Université Paris Cité, Paris, France
| | - Alison A Bertuch
- Departments of Paediatrics and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
15
|
Abstract
Germline genetic defects impairing telomere length maintenance may result in severe medical conditions in humans, from aplastic anemia and myeloid neoplasms to interstitial lung disease and liver cirrhosis, from childhood (dyskeratosis congenita) to old age (pulmonary fibrosis). The molecular mechanisms underlying these clinically distinct disorders are pathologically excessive telomere erosion, limiting cell proliferation and differentiation, tissue regeneration, and increasing genomic instability. Recent findings also indicate that telomere shortening imbalances stem cell fate and is associated with an abnormal inflammatory response and the senescent-associated secretory phenotype. Bone marrow failure is the most common phenotype in patients with telomere diseases. Pulmonary fibrosis is a typical phenotype in older patients, and disease progression appears faster than in pulmonary fibrosis not associated with telomeropathies. Liver cirrhosis may present in isolation or in combination with other phenotypes. Diagnosis is based on clinical suspicion and may be confirmed by telomere length measurement and genetic testing. Next-generation sequencing (NGS) techniques have improved genetic testing; today, at least 16 genes have been implicated in telomeropathies. NGS also allows tracking of clonal hematopoiesis and malignant transformation. Patients with telomere diseases are at high risk of developing cancers, including myeloid neoplasms and head and neck cancer. However, treatment options are still limited. Transplant modalities (bone marrow, lung, and liver) may be definitive to the respective organ involvement but limited by donor availability, comorbidities, and impact on other affected organs. In clinical trials, androgens elongate telomeres of peripheral blood leukocytes and improve hematopoiesis. Further understanding of how telomere erosion impairs organ function and how somatic mutations evolve in the hematopoietic tissue may help develop new strategies to treat and prevent telomere diseases.
Collapse
Affiliation(s)
- Vinicius S Carvalho
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Willian R Gomes
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
16
|
S L, M K, U WK, M M. Somatic compensation of inherited bone marrow failure. Semin Hematol 2022; 59:167-173. [DOI: 10.1053/j.seminhematol.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023]
|
17
|
Ye B, Sheng Y, Zhang M, Hu Y, Huang H. Early detection and intervention of clonal hematopoiesis for preventing hematological malignancies. Cancer Lett 2022; 538:215691. [DOI: 10.1016/j.canlet.2022.215691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 12/17/2022]
|
18
|
Alagpulinsa DA, Toribio MP, Alhallak I, Shmookler Reis RJ. Advances in understanding the molecular basis of clonal hematopoiesis. Trends Mol Med 2022; 28:360-377. [PMID: 35341686 DOI: 10.1016/j.molmed.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/28/2022]
Abstract
Hematopoietic stem cells (HSCs) are polyfunctional, regenerating all blood cells via hematopoiesis throughout life. Clonal hematopoiesis (CH) is said to occur when a substantial proportion of mature blood cells is derived from a single dominant HSC lineage, usually because these HSCs have somatic mutations that confer a fitness and expansion advantage. CH strongly associates with aging and enrichment in some diseases irrespective of age, emerging as an independent causal risk factor for hematologic malignancies, cardiovascular disease, adverse disease outcomes, and all-cause mortality. Defining the molecular mechanisms underlying CH will thus provide a framework to develop interventions for healthy aging and disease treatment. Here, we review the most recent advances in understanding the molecular basis of CH in health and disease.
Collapse
Affiliation(s)
- David A Alagpulinsa
- Vaccine & Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | - Mabel P Toribio
- Metabolism Unit, Division of Endocrinology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Iad Alhallak
- Metabolism Unit, Division of Endocrinology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare System and Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
19
|
Sharma R, Sahoo SS, Honda M, Granger SL, Goodings C, Sanchez L, Künstner A, Busch H, Beier F, Pruett-Miller SM, Valentine MB, Fernandez AG, Chang TC, Géli V, Churikov D, Hirschi S, Pastor VB, Boerries M, Lauten M, Kelaidi C, Cooper MA, Nicholas S, Rosenfeld JA, Polychronopoulou S, Kannengiesser C, Saintomé C, Niemeyer CM, Revy P, Wold MS, Spies M, Erlacher M, Coulon S, Wlodarski MW. Gain-of-function mutations in RPA1 cause a syndrome with short telomeres and somatic genetic rescue. Blood 2022; 139:1039-1051. [PMID: 34767620 PMCID: PMC8854676 DOI: 10.1182/blood.2021011980] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
Human telomere biology disorders (TBD)/short telomere syndromes (STS) are heterogeneous disorders caused by inherited loss-of-function mutations in telomere-associated genes. Here, we identify 3 germline heterozygous missense variants in the RPA1 gene in 4 unrelated probands presenting with short telomeres and varying clinical features of TBD/STS, including bone marrow failure, myelodysplastic syndrome, T- and B-cell lymphopenia, pulmonary fibrosis, or skin manifestations. All variants cluster to DNA-binding domain A of RPA1 protein. RPA1 is a single-strand DNA-binding protein required for DNA replication and repair and involved in telomere maintenance. We showed that RPA1E240K and RPA1V227A proteins exhibit increased binding to single-strand and telomeric DNA, implying a gain in DNA-binding function, whereas RPA1T270A has binding properties similar to wild-type protein. To study the mutational effect in a cellular system, CRISPR/Cas9 was used to knock-in the RPA1E240K mutation into healthy inducible pluripotent stem cells. This resulted in severe telomere shortening and impaired hematopoietic differentiation. Furthermore, in patients with RPA1E240K, we discovered somatic genetic rescue in hematopoietic cells due to an acquired truncating cis RPA1 mutation or a uniparental isodisomy 17p with loss of mutant allele, coinciding with stabilized blood counts. Using single-cell sequencing, the 2 somatic genetic rescue events were proven to be independently acquired in hematopoietic stem cells. In summary, we describe the first human disease caused by germline RPA1 variants in individuals with TBD/STS.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
| | - Sushree S Sahoo
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
| | - Masayoshi Honda
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Sophie L Granger
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Charnise Goodings
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
| | - Louis Sanchez
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7196, INSERM Unité1154, Paris, France
| | - Axel Künstner
- Lübeck Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | | | | | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN
| | - Vincent Géli
- Marseille Cancer Research Centre, Unité1068 INSERM, UMR 7258 CNRS, Aix-Marseille University (UM 105), Institut Paoli-Calmettes, Equipe Labellisée par la Ligue Nationale contre le Cancer, Marseille, France
| | - Dmitri Churikov
- Marseille Cancer Research Centre, Unité1068 INSERM, UMR 7258 CNRS, Aix-Marseille University (UM 105), Institut Paoli-Calmettes, Equipe Labellisée par la Ligue Nationale contre le Cancer, Marseille, France
| | - Sandrine Hirschi
- Department of Respiratory Medicine and Rare Pulmonary Diseases, Strasbourg University Hospital, Strasbourg, France
| | - Victor B Pastor
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melchior Lauten
- University Hospital Schleswig-Holstein, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Charikleia Kelaidi
- Department of Pediatric Hematology/Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Megan A Cooper
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO
| | | | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology/Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Caroline Kannengiesser
- Department of Genetics, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris University, INSERM U1152, Paris, France
| | - Carole Saintomé
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7196, INSERM Unité1154, Paris, France
- Sorbonne Université, Education and Research Unit for Life Sciences (UFR 927), Paris, France
| | - Charlotte M Niemeyer
- German Cancer Consortium (DKTK), Freiburg, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany; and
| | - Patrick Revy
- Université de Paris, Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Laboratoire Labellisé Ligue, INSERM UMR 1163, Paris, France
| | - Marc S Wold
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Miriam Erlacher
- German Cancer Consortium (DKTK), Freiburg, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany; and
| | - Stéphane Coulon
- Marseille Cancer Research Centre, Unité1068 INSERM, UMR 7258 CNRS, Aix-Marseille University (UM 105), Institut Paoli-Calmettes, Equipe Labellisée par la Ligue Nationale contre le Cancer, Marseille, France
| | - Marcin W Wlodarski
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany; and
| |
Collapse
|
20
|
Choijilsuren HB, Park Y, Jung M. Mechanisms of somatic transformation in inherited bone marrow failure syndromes. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:390-398. [PMID: 34889377 PMCID: PMC8791168 DOI: 10.1182/hematology.2021000271] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inherited bone marrow failure syndromes (IBMFS) cause hematopoietic stem progenitor cell (HSPC) failure due to germline mutations. Germline mutations influence the number and fitness of HSPC by various mechanisms, for example, abnormal ribosome biogenesis in Shwachman-Diamond syndrome and Diamond-Blackfan anemia, unresolved DNA cross-links in Fanconi anemia, neutrophil maturation arrest in severe congenital neutropenia, and telomere shortening in short telomere syndrome. To compensate for HSPC attrition, HSPCs are under increased replication stress to meet the need for mature blood cells. Somatic alterations that provide full or partial recovery of functional deficit implicated in IBMFS can confer a growth advantage. This review discusses results of recent genomic studies and illustrates our new understanding of mechanisms of clonal evolution in IBMFS.
Collapse
Affiliation(s)
- Haruna Batzorig Choijilsuren
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
- Department of Molecular and Cellular Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| | - Yeji Park
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Moonjung Jung
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
21
|
Steensma DP. How predictive is the finding of clonal hematopoiesis for the development of myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML)? Best Pract Res Clin Haematol 2021; 34:101327. [PMID: 34865699 DOI: 10.1016/j.beha.2021.101327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Clonal hematopoiesis (CH) - a biological state in which one or a small number of hematopoietic stem or progenitor cells contribute disproportionately to blood cell production, usually as a result of somatic gene mutations in the stem cells - is often considered to be a precursor to myeloid neoplasia, especially myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). However, the majority of people with CH never develop an overt myeloid neoplasm, and CH can be a precursor to lymphoid cancers as well as myeloid neoplasms. In addition, CH increases all-cause mortality and augments the risk of several non-neoplastic medical conditions, including atherosclerotic cardiovascular disease. CH can arise during aging, or in the context of an inherited marrow failure syndrome, aplastic anemia, or hematopoietic cell transplantation. Risk factors for progression of CH to myeloid neoplasia include larger clone size; the presence of a TP53, IDH1/2, or splicing mutation; multiple mutations; and associated cytopenias or abnormal red blood cell indices. The receipt of genotoxic chemotherapy or radiation, which can promote clonal expansion of mutant clones at the expense of healthy progenitor cells, may result in therapy-related MDS/AML.
Collapse
|
22
|
Marnell CS, Bick A, Natarajan P. Clonal hematopoiesis of indeterminate potential (CHIP): Linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease. J Mol Cell Cardiol 2021; 161:98-105. [PMID: 34298011 PMCID: PMC8629838 DOI: 10.1016/j.yjmcc.2021.07.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is the presence of a clonally expanded hematopoietic stem cell caused by a leukemogenic mutation in individuals without evidence of hematologic malignancy, dysplasia, or cytopenia. CHIP is associated with a 0.5-1.0% risk per year of leukemia. Remarkably, it confers a two-fold increase in cardiovascular risk independent of traditional risk factors. Roughly 80% of patients with CHIP have mutations in epigenetic regulators DNMT3A, TET2, ASXL1, DNA damage repair genes PPM1D, TP53, the regulatory tyrosine kinase JAK2, or mRNA spliceosome components SF3B1, and SRSF2. CHIP is associated with a pro-inflammatory state that has been linked to coronary artery disease, myocardial infarction, and venous thromboembolic disease, as well as prognosis among those with aortic stenosis and heart failure. Heritable and acquired risk factors are associated with increased CHIP prevalence, including germline variation, age, unhealthy lifestyle behaviors (i.e. smoking, obesity), inflammatory conditions, premature menopause, HIV and exposure to cancer therapies. This review aims to summarize emerging research on CHIP, the mechanisms underlying its important role in propagating inflammation and accelerating cardiovascular disease, and new studies detailing the role of associated risk factors and co-morbidities that increase CHIP prevalence.
Collapse
Affiliation(s)
- Christopher S Marnell
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America; Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America; Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
| | - Alexander Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Pradeep Natarajan
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America; Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America; Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, United States of America.
| |
Collapse
|
23
|
Huang YC, Wang CY. Telomere Attrition and Clonal Hematopoiesis of Indeterminate Potential in Cardiovascular Disease. Int J Mol Sci 2021; 22:9867. [PMID: 34576030 PMCID: PMC8467562 DOI: 10.3390/ijms22189867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022] Open
Abstract
Clinical evidence suggests that conventional cardiovascular disease (CVD) risk factors cannot explain all CVD incidences. Recent studies have shown that telomere attrition, clonal hematopoiesis of indeterminate potential (CHIP), and atherosclerosis (telomere-CHIP-atherosclerosis, TCA) evolve to play a crucial role in CVD. Telomere dynamics and telomerase have an important relationship with age-related CVD. Telomere attrition is associated with CHIP. CHIP is commonly observed in elderly patients. It is characterized by an increase in blood cell clones with somatic mutations, resulting in an increased risk of hematological cancer and atherosclerotic CVD. The most common gene mutations are DNA methyltransferase 3 alpha (DNMT3A), Tet methylcytosine dioxygenase 2 (TET2), and additional sex combs-like 1 (ASXL1). Telomeres, CHIP, and atherosclerosis increase chronic inflammation and proinflammatory cytokine expression. Currently, their epidemiology and detailed mechanisms related to the TCA axis remain incompletely understood. In this article, we reviewed recent research results regarding the development of telomeres and CHIP and their relationship with atherosclerotic CVD.
Collapse
Affiliation(s)
- Yi-Chun Huang
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan;
| | - Chao-Yung Wang
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan;
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
24
|
Pasca S, Gondek LP. Clonal hematopoiesis and bone marrow failure syndromes. Best Pract Res Clin Haematol 2021; 34:101273. [PMID: 34404525 DOI: 10.1016/j.beha.2021.101273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Bone marrow failure syndromes (BMF) are a group of conditions characterized by inefficient hematopoiesis frequently associated with extra-hematopoietic phenotypes and variable risk of progression to myeloid malignancies. They can be acquired or inherited and mediated by either cell extrinsic factors or cell intrinsic impairment of hematopoietic stem cell (HSC) function. The pathophysiology includes immune-mediated attack (e.g., acquired BMFs) or germline defects in DNA damage repair machinery, telomeres maintenance or ribosomes biogenesis. (e.g., inherited BMF). Clonal hematopoiesis (CH) that frequently accompanies BMF may provide a mechanism of improved HSC fitness through the evasion of extracellular pressure or somatic reversion of germline defects. The mechanism for the CH selective advantage differs depending on the condition in which it occurs. However, this adaptation mechanism, particularly when involving putative oncogenes or tumor suppressors, may lead to increased risk of myeloid malignancies. Surveillance and early detection of leukemogenic clones may lead to timely implementation of curative therapies and improved survival.
Collapse
Affiliation(s)
- Sergiu Pasca
- Department of Oncology, Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Lukasz P Gondek
- Department of Oncology, Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
25
|
Gutierrez-Rodrigues F, Sahoo SS, Wlodarski MW, Young NS. Somatic mosaicism in inherited bone marrow failure syndromes. Best Pract Res Clin Haematol 2021; 34:101279. [PMID: 34404533 DOI: 10.1016/j.beha.2021.101279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 12/20/2022]
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a heterogenous group of diseases caused by pathogenic germline variants in key pathways associated with haematopoiesis and genomic stability. Germline variants in IBMFS-related genes are known to reduce the fitness of hematopoietic stem and progenitor cells (HSPC), which has been hypothesized to drive clonal selection in these diseases. In many IBMFS, somatic mosaicism predominantly impacts cells by two distinct mechanisms, with contrasting effects. An acquired variation can improve cell fitness towards baseline levels, providing rescue of a deleterious phenotype. Alternatively, somatic mosaicism may result in a fitness advantage that results in malignant transformation. This review will describe these phenomena in IBMFS and delineate their relevance for diagnosis and clinical management. In addition, we will discuss which samples and methods can be used for detection of mosaicism according to clinical phenotype, type of mosaicism, and sample availability.
Collapse
Affiliation(s)
| | - Sushree S Sahoo
- Department of Hematology, St. Jude Children's Research Hospital, TN, USA
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, TN, USA; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, USA
| |
Collapse
|
26
|
Hughes AD, Kurre P. The impact of clonal diversity and mosaicism on haematopoietic function in Fanconi anaemia. Br J Haematol 2021; 196:274-287. [PMID: 34258754 DOI: 10.1111/bjh.17653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Recent advances have facilitated studies of the clonal architecture of the aging haematopoietic system, and provided clues to the mechanisms underlying the origins of hematopoietic malignancy. Much less is known about the clonal composition of haematopoiesis and its impact in bone marrow failure (BMF) disorders, including Fanconi anaemia (FA). Understanding clonality in FA is likely to inform both the marked predisposition to cancer and the rapid erosion of regenerative reserve seen with this disease. This may also hold broader lessons for haematopoietic stem cell biology in other diseases with a clonal restriction. In this review, we focus on the conceptual basis and available tools to study clonality, and highlight insights in somatic mosaicism and malignant evolution in FA in the context of haematopoietic failure and gene therapy.
Collapse
Affiliation(s)
- Andrew D Hughes
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
27
|
Crisà E, Boggione P, Nicolosi M, Mahmoud AM, Al Essa W, Awikeh B, Aspesi A, Andorno A, Boldorini R, Dianzani I, Gaidano G, Patriarca A. Genetic Predisposition to Myelodysplastic Syndromes: A Challenge for Adult Hematologists. Int J Mol Sci 2021; 22:ijms22052525. [PMID: 33802366 PMCID: PMC7959319 DOI: 10.3390/ijms22052525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Myelodysplastic syndromes (MDS) arising in the context of inherited bone marrow failure syndromes (IBMFS) differ in terms of prognosis and treatment strategy compared to MDS occurring in the adult population without an inherited genetic predisposition. The main molecular pathways affected in IBMFS involve telomere maintenance, DNA repair, biogenesis of ribosomes, control of proliferation and others. The increased knowledge on the genes involved in MDS pathogenesis and the wider availability of molecular diagnostic assessment have led to an improvement in the detection of IBMFS genetic predisposition in MDS patients. A punctual recognition of these disorders implies a strict surveillance of the patient in order to detect early signs of progression and promptly offer allogeneic hematopoietic stem cell transplantation, which is the only curative treatment. Moreover, identifying an inherited mutation allows the screening and counseling of family members and directs the choice of donors in case of need for transplantation. Here we provide an overview of the most recent data on MDS with genetic predisposition highlighting the main steps of the diagnostic and therapeutic management. In order to highlight the pitfalls of detecting IBMFS in adults, we report the case of a 27-year-old man affected by MDS with an underlying telomeropathy.
Collapse
Affiliation(s)
- Elena Crisà
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
- Correspondence: (E.C.); (G.G.); Tel.: +39-0321-660-655 (E.C. & G.G.); Fax: +39-0321-373-3095 (E.C.)
| | - Paola Boggione
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Maura Nicolosi
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Abdurraouf Mokhtar Mahmoud
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Wael Al Essa
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Bassel Awikeh
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Anna Aspesi
- Laboratory of Genetic Pathology, Division of Pathology, Department of Health Sciences, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (A.A.); (I.D.)
| | - Annalisa Andorno
- Division of Pathology, Department of Health Sciences, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (A.A.); (R.B.)
| | - Renzo Boldorini
- Division of Pathology, Department of Health Sciences, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (A.A.); (R.B.)
| | - Irma Dianzani
- Laboratory of Genetic Pathology, Division of Pathology, Department of Health Sciences, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (A.A.); (I.D.)
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
- Correspondence: (E.C.); (G.G.); Tel.: +39-0321-660-655 (E.C. & G.G.); Fax: +39-0321-373-3095 (E.C.)
| | - Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| |
Collapse
|
28
|
Cancer spectrum and outcomes in the Mendelian short telomere syndromes. Blood 2021; 135:1946-1956. [PMID: 32076714 DOI: 10.1182/blood.2019003264] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022] Open
Abstract
Short telomeres have been linked to cancer risk, yet other evidence supports them being tumor suppressive. Here, we report cancer outcomes in individuals with germline mutations in telomerase and other telomere-maintenance genes. Among 180 individuals evaluated in a hospital-based setting, 12.8% had cancer. Solid tumors were rare (2.8%); nearly all were young male DKC1 mutation carriers, and they were generally resectable with good short-term outcomes. Myelodysplastic syndrome (MDS) was most common, followed by acute myeloid leukemia (AML); they accounted for 75% of cancers. Age over 50 years was the biggest risk factor, and MDS/AML usually manifested with marrow hypoplasia and monosomy 7, but the somatic mutation landscape was indistinct from unselected patients. One- and 2-year survival were 61% and 39%, respectively, and two-thirds of MDS/AML patients died of pulmonary fibrosis and/or hepatopulmonary syndrome. In one-half of the cases, MDS/AML patients showed a recurrent peripheral blood pattern of acquired, granulocyte-specific telomere shortening. This attrition was absent in age-matched mutation carriers who did not have MDS/AML. We tested whether adult short telomere patients without MDS/AML also had evidence of clonal hematopoiesis of indeterminate potential-related mutations and found that 30% were affected. These patients also primarily suffered morbidity from pulmonary fibrosis during follow-up. Our data show that the Mendelian short telomere syndromes are associated with a relatively narrow cancer spectrum, primarily MDS and AML. They suggest that short telomere length is sufficient to drive premature age-related clonal hematopoiesis in these inherited disorders.
Collapse
|
29
|
Carrascoso-Rubio C, Zittersteijn HA, Pintado-Berninches L, Fernández-Varas B, Lozano ML, Manguan-Garcia C, Sastre L, Bueren JA, Perona R, Guenechea G. Generation of dyskeratosis congenita-like hematopoietic stem cells through the stable inhibition of DKC1. Stem Cell Res Ther 2021; 12:92. [PMID: 33514435 PMCID: PMC7844988 DOI: 10.1186/s13287-021-02145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022] Open
Abstract
Dyskeratosis congenita (DC) is a rare telomere biology disorder, which results in different clinical manifestations, including severe bone marrow failure. To date, the only curative treatment for the bone marrow failure in DC patients is allogeneic hematopoietic stem cell transplantation. However, due to the toxicity associated to this treatment, improved therapies are recommended for DC patients. Here, we aimed at generating DC-like human hematopoietic stem cells in which the efficacy of innovative therapies could be investigated. Because X-linked DC is the most frequent form of the disease and is associated with an impaired expression of DKC1, we have generated DC-like hematopoietic stem cells based on the stable knock-down of DKC1 in human CD34+ cells with lentiviral vectors encoding for DKC1 short hairpin RNAs. At a molecular level, DKC1-interfered CD34+ cells showed a decreased expression of TERC, as well as a diminished telomerase activity and increased DNA damage, cell senescence, and apoptosis. Moreover, DKC1-interfered human CD34+ cells showed defective clonogenic ability and were incapable of repopulating the hematopoiesis of immunodeficient NSG mice. The development of DC-like hematopoietic stem cells will facilitate the understanding of the molecular and cellular basis of this inherited bone marrow failure syndrome and will serve as a platform to evaluate the efficacy of new hematopoietic therapies for DC.
Collapse
Affiliation(s)
- Carlos Carrascoso-Rubio
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), 28029, Madrid, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense, 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain.,Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040, Madrid, Spain
| | - Hidde A Zittersteijn
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense, 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain.,Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040, Madrid, Spain
| | - Laura Pintado-Berninches
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Beatriz Fernández-Varas
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - M Luz Lozano
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense, 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain.,Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040, Madrid, Spain
| | - Cristina Manguan-Garcia
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Juan A Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense, 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain.,Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040, Madrid, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Guillermo Guenechea
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Avenida Complutense, 40, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain. .,Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), 28040, Madrid, Spain.
| |
Collapse
|
30
|
Nombela P, Miguel-López B, Blanco S. The role of m 6A, m 5C and Ψ RNA modifications in cancer: Novel therapeutic opportunities. Mol Cancer 2021; 20:18. [PMID: 33461542 PMCID: PMC7812662 DOI: 10.1186/s12943-020-01263-w] [Citation(s) in RCA: 312] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
RNA modifications have recently emerged as critical posttranscriptional regulators of gene expression programmes. Significant advances have been made in understanding the functional role of RNA modifications in regulating coding and non-coding RNA processing and function, which in turn thoroughly shape distinct gene expression programmes. They affect diverse biological processes, and the correct deposition of many of these modifications is required for normal development. Alterations of their deposition are implicated in several diseases, including cancer. In this Review, we focus on the occurrence of N6-methyladenosine (m6A), 5-methylcytosine (m5C) and pseudouridine (Ψ) in coding and non-coding RNAs and describe their physiopathological role in cancer. We will highlight the latest insights into the mechanisms of how these posttranscriptional modifications influence tumour development, maintenance, and progression. Finally, we will summarize the latest advances on the development of small molecule inhibitors that target specific writers or erasers to rewind the epitranscriptome of a cancer cell and their therapeutic potential.
Collapse
Affiliation(s)
- Paz Nombela
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007, Salamanca, Spain
| | - Borja Miguel-López
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007, Salamanca, Spain
| | - Sandra Blanco
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
31
|
Skibenes ST, Clausen I, Raaschou-Jensen K. Next-generation sequencing in hypoplastic bone marrow failure: What difference does it make? Eur J Haematol 2020; 106:3-13. [PMID: 32888355 DOI: 10.1111/ejh.13513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022]
Abstract
Hypoplastic bone marrow failure is a diagnostic feature of multiple haematological disorders, which also share a substantial overlap of clinical symptoms. Hence, discrimination of underlying disorders in patients presenting with hypoplastic bone marrow failure remains a major challenge in the clinic. Recent next-generation sequencing (NGS) studies have broadened our understanding of the varying molecular mechanisms and advanced diagnostics of disorders exhibiting hypoplastic bone marrow failure. In this article, we present a literature review of NGS studies of haematological disorders associated with hypoplastic bone marrow failure and highlight the relevance of NGS for improved clinical diagnostics and decision-making.
Collapse
Affiliation(s)
- Sofie T Skibenes
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Ida Clausen
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
32
|
Kandarakov O, Belyavsky A. Clonal Hematopoiesis, Cardiovascular Diseases and Hematopoietic Stem Cells. Int J Mol Sci 2020; 21:ijms21217902. [PMID: 33114351 PMCID: PMC7663255 DOI: 10.3390/ijms21217902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases and cancer, the leading causes of morbidity and mortality in the elderly, share some common mechanisms, in particular inflammation, contributing to their progression and pathogenesis. However, somatic mutagenesis, a driving force in cancer development, has not been generally considered as an important factor in cardiovascular disease pathology. Recent studies demonstrated that during normal aging, somatic mutagenesis occurs in blood cells, often resulting in expansion of mutant clones that dominate hematopoiesis at advanced age. This clonal hematopoiesis is primarily associated with mutations in certain leukemia-related driver genes and, being by itself relatively benign, not only increases the risks of subsequent malignant hematopoietic transformation, but, unexpectedly, has a significant impact on progression of atherosclerosis and cardiovascular diseases. In this review, we discuss the phenomenon of clonal hematopoiesis, the most important genes involved in it, its impact on cardiovascular diseases, and relevant aspects of hematopoietic stem cell biology.
Collapse
|
33
|
Tsai FD, Lindsley RC. Clonal hematopoiesis in the inherited bone marrow failure syndromes. Blood 2020; 136:1615-1622. [PMID: 32736377 PMCID: PMC7530647 DOI: 10.1182/blood.2019000990] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/20/2020] [Indexed: 12/16/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) are characterized by ineffective hematopoiesis and increased risk for developing myeloid malignancy. The pathophysiologies of different IBMFSs are variable and can relate to defects in diverse biological processes, including DNA damage repair (Fanconi anemia), telomere maintenance (dyskeratosis congenita), and ribosome biogenesis (Diamond-Blackfan anemia, Shwachman-Diamond syndrome). Somatic mutations leading to clonal hematopoiesis have been described in IBMFSs, but the distinct mechanisms by which mutations drive clonal advantage in each disease and their associations with leukemia risk are not well understood. Clinical observations and laboratory models of IBMFSs suggest that the germline deficiencies establish a qualitatively impaired functional state at baseline. In this context, somatic alterations can promote clonal hematopoiesis by improving the competitive fitness of specific hematopoietic stem cell clones. Some somatic alterations relieve baseline fitness constraints by normalizing the underlying germline deficit through direct reversion or indirect compensation, whereas others do so by subverting senescence or tumor-suppressor pathways. Clones with normalizing somatic mutations may have limited transformation potential that is due to retention of functionally intact fitness-sensing and tumor-suppressor pathways, whereas those with mutations that impair cellular elimination may have increased risk for malignant transformation that is due to subversion of tumor-suppressor pathways. Because clonal hematopoiesis is not deterministic of malignant transformation, rational surveillance strategies will depend on the ability to prospectively identify specific clones with increased leukemic potential. We describe a framework by which an understanding of the processes that promote clonal hematopoiesis in IBMFSs may inform clinical surveillance strategies.
Collapse
Affiliation(s)
- Frederick D Tsai
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - R Coleman Lindsley
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
34
|
Karner K, George TI, Patel JL. Current Aspects of Clonal Hematopoiesis: Implications for Clinical Diagnosis. Ann Lab Med 2019; 39:509-514. [PMID: 31240877 PMCID: PMC6660325 DOI: 10.3343/alm.2019.39.6.509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/11/2019] [Accepted: 06/09/2019] [Indexed: 12/29/2022] Open
Abstract
The broad dissemination of next-generation sequencing capability has increased recognition of clonal hematopoiesis in various clinical settings. In hematologically normal individuals, somatic mutations may occur at an increasing frequency with age in genes that are also commonly mutated in overt myeloid malignancies such as AML and MDS (e.g., DNMT3A, TET2, and ASXL1). This is referred to as clonal hematopoiesis of indeterminate potential (CHIP) and is a benign state; however, it carries a risk of progression to hematologic malignancy as well as mortality primarily because of increased cardiovascular events. In clinical settings, clonal hematopoiesis may be observed in cytopenic patients who do not otherwise meet the criteria for hematologic malignancy, a condition referred to as clonal cytopenias of undetermined significance (CCUS). Distinguishing CCUS from overt MDS or other myeloid neoplasms can be challenging because of the overlapping mutational landscape observed in these conditions. Genetic features that could be diagnostically helpful in making this distinction include the number and biological function of mutated genes as well as the observed variant allele frequency. A working knowledge of clonal hematopoiesis is essential for the diagnosis and clinical management of patients with hematologic conditions. This review describes the key characteristics of clonal hematopoiesis with particular focus on implications for differential diagnosis in patients with CHIP, idiopathic cytopenia, CCUS, and myeloid malignancy.
Collapse
Affiliation(s)
- Kristin Karner
- Department of Pathology, University of Utah School of Medicine and ARUP Laboratories, Salt Lake City, UT, USA
| | - Tracy I George
- Department of Pathology, University of Utah School of Medicine and ARUP Laboratories, Salt Lake City, UT, USA.
| | - Jay L Patel
- Department of Pathology, University of Utah School of Medicine and ARUP Laboratories, Salt Lake City, UT, USA
| |
Collapse
|
35
|
MacNeil DE, Lambert-Lanteigne P, Autexier C. N-terminal residues of human dyskerin are required for interactions with telomerase RNA that prevent RNA degradation. Nucleic Acids Res 2019; 47:5368-5380. [PMID: 30931479 PMCID: PMC6547437 DOI: 10.1093/nar/gkz233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
The telomerase holoenzyme responsible for maintaining telomeres in vertebrates requires many components in vivo, including dyskerin. Dyskerin binds and regulates the accumulation of the human telomerase RNA, hTR, as well as other non-coding RNAs that share the conserved H/ACA box motif. The precise mechanism by which dyskerin controls hTR levels is unknown, but is evidenced by defective hTR accumulation caused by substitutions in dyskerin, that are observed in the X-linked telomere biology disorder dyskeratosis congenita (X-DC). To understand the role of dyskerin in hTR accumulation, we analyzed X-DC substitutions K39E and K43E in the poorly characterized dyskerin N-terminus, and A353V within the canonical RNA binding domain (the PUA). These variants exhibited impaired binding to hTR and polyadenylated hTR species, while interactions with other H/ACA RNAs appear largely unperturbed by the N-terminal substitutions. hTR accumulation and telomerase activity defects of dyskerin-deficient cells were rescued by wildtype dyskerin but not the variants. hTR 3′ extended or polyadenylated species did not accumulate, suggesting hTR precursor degradation occurs upstream of mature complex assembly in the absence of dyskerin binding. Our findings demonstrate that the dyskerin-hTR interaction mediated by PUA and N-terminal residues of dyskerin is crucial to prevent unchecked hTR degradation.
Collapse
Affiliation(s)
- Deanna E MacNeil
- Jewish General Hospital of McGill University, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Patrick Lambert-Lanteigne
- Jewish General Hospital of McGill University, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada
| | - Chantal Autexier
- Jewish General Hospital of McGill University, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
36
|
Yeh JK, Lin MH, Wang CY. Telomeres as Therapeutic Targets in Heart Disease. ACTA ACUST UNITED AC 2019; 4:855-865. [PMID: 31998853 PMCID: PMC6978555 DOI: 10.1016/j.jacbts.2019.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022]
Abstract
Age-associated CVDs impose a great burden on current health systems. Despite the fact that current strong evidence supports the links among aging, telomere attrition, and CVDs, there is no clear direction for the development of telomere therapeutics against CVDs. This review focuses on immune modulation, CHIP, pharmaceutical interventions, and gene therapy for their therapeutic roles in age-associated CVDs. The future goal of telomere cardiovascular therapy in young subjects is to prevent senescence and diseases, whereas in older adult subjects, the goal is restoration of cardiovascular functions. Further studies on the telomere-CHIP-atherosclerosis axis may shed insights on how to achieve these 2 different therapeutic targets.
Telomeres are double-stranded repeats of G-rich tandem DNA sequences that gradually shorten with each cell division. Aging, inflammation, and oxidative stress accelerate the process of telomere shortening. Telomerase counteracts this process by maintaining and elongating the telomere length. Patients with atherosclerotic diseases and cardiovascular risk factors (e.g., smoking, obesity, sedentary lifestyle, and hypertension) have shorter leukocyte telomere length. Following myocardial infarction, telomerase expression and activity in cardiomyocytes and endothelial cells increase significantly, implying that telomerase plays a role in regulating tissue repairs in heart diseases. Although previous studies have focused on the changes of telomeres in heart diseases and the telomere length as a marker for aging cardiovascular systems, recent studies have explored the potential of telomeres and telomerase in the treatment of cardiovascular diseases. This review discusses the significant advancements of telomere therapeutics in gene therapy, atherosclerosis, anti-inflammation, and immune modulation in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Jih-Kai Yeh
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City, Taiwan
| | - Mei-Hsiu Lin
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City, Taiwan
| | - Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City, Taiwan.,Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
37
|
Revy P, Kannengiesser C, Fischer A. Somatic genetic rescue in Mendelian haematopoietic diseases. Nat Rev Genet 2019; 20:582-598. [DOI: 10.1038/s41576-019-0139-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
|
38
|
Steensma DP. Clinical consequences of clonal hematopoiesis of indeterminate potential. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:264-269. [PMID: 30504320 PMCID: PMC6245996 DOI: 10.1182/asheducation-2018.1.264] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Clonally restricted hematopoiesis is a common aging-associated biological state that predisposes to subsequent development of a hematological malignancy or cardiovascular death. Clonal expansion driven by leukemia-associated somatic mutations, such as DNMT3A, ASXL1, or TET2, is best characterized, but oligoclonality can also emerge without recognized leukemia-driver mutations, perhaps as a result of stochastic neutral drift. Murine models provide compelling evidence that a major mechanism of increased cardiovascular mortality in the context of clonal hematopoiesis is accelerated atherogenesis driven by inflammasome-mediated endothelial injury, resulting from proinflammatory interactions between endothelium and macrophages derived from circulating clonal monocytes. Altered inflammation likely influences other biological processes as well. The rate of development of overt neoplasia in patients with clonal hematopoiesis of indeterminate potential (CHIP), as currently defined, is 0.5% to 1% per year. Contributing factors to clonal progression other than acquisition of secondary mutations in hematopoietic cells (ie, stronger leukemia drivers) are incompletely understood. Disordered endogenous immunity in the context of increased proliferative pressure, short telomeres leading to chromosomal instability, an unhealthy marrow microenvironment that favors expansion of clonal stem cells and acquisition of new mutations while failing to support healthy hematopoiesis, and aging-associated changes in hematopoietic stem cells, including altered DNA damage response, an altered transcriptional program, and consequences of epigenetic alterations, are all potential contributors to clonal progression. Clinical management of patients with CHIP includes monitoring for hematological changes and reduction of modifiable cardiovascular risk factors; eventually, it will also likely include anti-inflammatory therapies and targeted approaches to prune emergent dangerous clones.
Collapse
Affiliation(s)
- David P Steensma
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| |
Collapse
|
39
|
Steensma DP. Clinical consequences of clonal hematopoiesis of indeterminate potential. Blood Adv 2018; 2:3404-3410. [PMID: 30482770 PMCID: PMC6258914 DOI: 10.1182/bloodadvances.2018020222] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/02/2018] [Indexed: 01/02/2023] Open
Abstract
Clonally restricted hematopoiesis is a common aging-associated biological state that predisposes to subsequent development of a hematological malignancy or cardiovascular death. Clonal expansion driven by leukemia-associated somatic mutations, such as DNMT3A, ASXL1, or TET2, is best characterized, but oligoclonality can also emerge without recognized leukemia-driver mutations, perhaps as a result of stochastic neutral drift. Murine models provide compelling evidence that a major mechanism of increased cardiovascular mortality in the context of clonal hematopoiesis is accelerated atherogenesis driven by inflammasome-mediated endothelial injury, resulting from proinflammatory interactions between endothelium and macrophages derived from circulating clonal monocytes. Altered inflammation likely influences other biological processes as well. The rate of development of overt neoplasia in patients with clonal hematopoiesis of indeterminate potential (CHIP), as currently defined, is 0.5% to 1% per year. Contributing factors to clonal progression other than acquisition of secondary mutations in hematopoietic cells (ie, stronger leukemia drivers) are incompletely understood. Disordered endogenous immunity in the context of increased proliferative pressure, short telomeres leading to chromosomal instability, an unhealthy marrow microenvironment that favors expansion of clonal stem cells and acquisition of new mutations while failing to support healthy hematopoiesis, and aging-associated changes in hematopoietic stem cells, including altered DNA damage response, an altered transcriptional program, and consequences of epigenetic alterations, are all potential contributors to clonal progression. Clinical management of patients with CHIP includes monitoring for hematological changes and reduction of modifiable cardiovascular risk factors; eventually, it will also likely include anti-inflammatory therapies and targeted approaches to prune emergent dangerous clones.
Collapse
Affiliation(s)
- David P Steensma
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| |
Collapse
|
40
|
Jose SS, Tidu F, Burilova P, Kepak T, Bendickova K, Fric J. The Telomerase Complex Directly Controls Hematopoietic Stem Cell Differentiation and Senescence in an Induced Pluripotent Stem Cell Model of Telomeropathy. Front Genet 2018; 9:345. [PMID: 30210531 PMCID: PMC6123533 DOI: 10.3389/fgene.2018.00345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/09/2018] [Indexed: 01/16/2023] Open
Abstract
Telomeropathies are rare disorders associated with impaired telomere length control mechanisms that frequently result from genetic mutations in the telomerase complex. Dyskeratosis congenita is a congenital progressive telomeropathy in which mutation in the telomerase RNA component (TERC) impairs telomere maintenance leading to accelerated cellular senescence and clinical outcomes resembling premature aging. The most severe clinical feature is perturbed hematopoiesis and bone-marrow failure, but the underlying mechanisms are not fully understood. Here, we developed a model of telomerase function imbalance using shRNA to knockdown TERC expression in human induced pluripotent stem cells (iPSCs). We then promoted in vitro hematopoiesis in these cells to analyze the effects of TERC impairment. Reduced TERC expression impaired hematopoietic stem-cell (HSC) differentiation and increased the expression of cellular senescence markers and production of reactive oxygen species. Interestingly, telomere length was unaffected in shTERC knockdown iPSCs, leading to conclusion that the phenotype is controlled by non-telomeric functions of telomerase. We then assessed the effects of TERC-depletion in THP-1 myeloid cells and again observed reduced hematopoietic and myelopoietic differentiative potential. However, these cells exhibited impaired telomerase activity as verified by accelerated telomere shortening. shTERC-depleted iPSC-derived and THP-1-derived myeloid precursors had lower phagocytic capacity and increased ROS production, indicative of senescence. These findings were confirmed using a BIBR1532 TERT inhibitor, suggesting that these phenotypes are dependent on telomerase function but not directly linked to telomere length. These data provide a better understanding of the molecular processes driving the clinical signs of telomeropathies and identify novel roles of the telomerase complex other than regulating telomere length.
Collapse
Affiliation(s)
- Shyam Sushama Jose
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Federico Tidu
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Burilova
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tomas Kepak
- Pediatric Oncology Translational Research, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Pediatric Hematology and Oncology, The University Hospital Brno, Brno, Czechia
| | - Kamila Bendickova
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jan Fric
- Cellular and Molecular Immunoregulation Group, Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
41
|
Schaefer EJ, Lindsley RC. Significance of Clonal Mutations in Bone Marrow Failure and Inherited Myelodysplastic Syndrome/Acute Myeloid Leukemia Predisposition Syndromes. Hematol Oncol Clin North Am 2018; 32:643-655. [PMID: 30047417 PMCID: PMC6065266 DOI: 10.1016/j.hoc.2018.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Clonal hematopoiesis as a hallmark of myelodysplastic syndrome (MDS) is mediated by the selective advantage of clonal hematopoietic stem cells in a context-specific manner. Although primary MDS emerges without known predisposing cause and is associated with advanced age, secondary MDS may develop in younger patients with bone marrow failure syndromes or after exposure to chemotherapy, respectively. This article discusses recent advances in the understanding of context-dependent clonal hematopoiesis in MDS with focus on clonal evolution in inherited and acquired bone marrow failure syndromes.
Collapse
MESH Headings
- Anemia, Aplastic/genetics
- Anemia, Aplastic/immunology
- Anemia, Aplastic/pathology
- Anemia, Aplastic/therapy
- Bone Marrow Diseases/genetics
- Bone Marrow Diseases/immunology
- Bone Marrow Diseases/pathology
- Bone Marrow Diseases/therapy
- Bone Marrow Failure Disorders
- Clonal Evolution/genetics
- Clonal Evolution/immunology
- Genetic Predisposition to Disease
- Hemoglobinuria, Paroxysmal/genetics
- Hemoglobinuria, Paroxysmal/immunology
- Hemoglobinuria, Paroxysmal/pathology
- Hemoglobinuria, Paroxysmal/therapy
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/immunology
- Myelodysplastic Syndromes/pathology
- Myelodysplastic Syndromes/therapy
Collapse
Affiliation(s)
- Eva J Schaefer
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - R Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
42
|
Kirschner M, Maurer A, Wlodarski MW, Ventura Ferreira MS, Bouillon AS, Halfmeyer I, Blau W, Kreuter M, Rosewich M, Corbacioglu S, Beck J, Schwarz M, Bittenbring J, Radsak MP, Wilk CM, Koschmieder S, Begemann M, Kurth I, Schemionek M, Brümmendorf TH, Beier F. Recurrent somatic mutations are rare in patients with cryptic dyskeratosis congenita. Leukemia 2018; 32:1762-1767. [PMID: 29749397 DOI: 10.1038/s41375-018-0125-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/11/2018] [Accepted: 03/15/2018] [Indexed: 12/22/2022]
Abstract
Dyskeratosis congenita (DKC) is a paradigmatic telomere disorder characterized by substantial and premature telomere shortening, bone marrow failure, and a dramatically increased risk of developing myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). DKC can occur as a late-onset, so-called cryptic form, with first manifestation in adults. Somatic MDS-related mutations are found in up to 35% of patients with acquired aplastic anemia (AA), especially in patients with short telomeres. The aim of our study was to investigate whether cryptic DKC is associated with an increased incidence of MDS-related somatic mutations, thereby linking the accelerated telomere shortening with the increased risk of MDS/AML. Samples from 15 adult patients (median age: 42 years, range: 23-60 years) with molecularly confirmed cryptic DKC were screened using next-generation gene panel sequencing to detect MDS-related somatic variants. Only one of the 15 patients (7%) demonstrated a clinically relevant MDS-related somatic variant. This incidence was dramatically lower than formerly described in acquired AA. Based on our data, we conclude that clonal evolution of subclones carrying MDS-related mutations is not the predominant mechanism for MDS/AML initiation in adult cryptic DKC patients.
Collapse
Affiliation(s)
- Martin Kirschner
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Angela Maurer
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Marcin W Wlodarski
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Hospital Freiburg, Freiburg, Germany
| | - Monica S Ventura Ferreira
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anne-Sophie Bouillon
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Insa Halfmeyer
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Blau
- Department of Hematology and Oncology, Justus-Liebig University, Giessen, Germany
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Pneumology and Respiratory Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Martin Rosewich
- Department of Paediatric Pulmonology, Allergy and Cystic Fibrosis, Children's Hospital, Goethe-University, Frankfurt, Germany
| | - Selim Corbacioglu
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| | - Joachim Beck
- Department of Hematology, Medical Oncology, & Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michaela Schwarz
- Department of Hematology and Oncology, University Hospital Charité, Berlin, Germany
| | - Jörg Bittenbring
- Department of Hematology and Oncology, University Hospital Saarland, Homburg, Germany
| | - Markus P Radsak
- Department of Hematology, Medical Oncology, & Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mirle Schemionek
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
43
|
Abstract
Genetic investigations of fibrotic diseases, including those of late onset, often yield unanticipated insights into disease pathogenesis. This Review focuses on pathways underlying lung fibrosis that are generalizable to other organs. Herein, we discuss genetic variants subdivided into those that shorten telomeres, activate the DNA damage response, change resident protein expression or function, or affect organelle activity. Genetic studies provide a window into the downstream cascade of maladaptive responses and pathways that lead to tissue fibrosis. In addition, these studies reveal interactions between genetic variants, environmental factors, and age that influence the phenotypic spectrum of disease. The discovery of forces counterbalancing inherited risk alleles identifies potential therapeutic targets, thus providing hope for future prevention or reversal of fibrosis.
Collapse
|
44
|
Wegman-Ostrosky T, Savage SA. The genomics of inherited bone marrow failure: from mechanism to the clinic. Br J Haematol 2017; 177:526-542. [PMID: 28211564 DOI: 10.1111/bjh.14535] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/19/2016] [Indexed: 12/31/2022]
Abstract
The inherited bone marrow failure syndromes (IBMFS) typically present with significant cytopenias in at least one haematopoietic cell lineage that may progress to pancytopenia, and are associated with increased risk of cancer. Although the clinical features of the IBMFS are often diagnostic, variable disease penetrance and expressivity may result in diagnostic dilemmas. The discovery of the genetic aetiology of the IBMFS has been greatly facilitated by next-generation sequencing methods. This has advanced understanding of the underlying biology of the IBMFS and been essential in improving clinical management and genetic counselling for affected patients. Herein we review the clinical features, underlying biology, and new genomic discoveries in the IBMFS, including Fanconi anaemia, dyskeratosis congenita, Diamond Blackfan anaemia, Shwachman Diamond syndrome and some disorders of the myeloid and megakaryocytic lineages.
Collapse
Affiliation(s)
- Talia Wegman-Ostrosky
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Research Division, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Stanley N, Olson TS, Babushok DV. Recent advances in understanding clonal haematopoiesis in aplastic anaemia. Br J Haematol 2017; 177:509-525. [PMID: 28107566 DOI: 10.1111/bjh.14510] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acquired aplastic anaemia (AA) is an immune-mediated bone marrow failure disorder inextricably linked to clonal haematopoiesis. The majority of AA patients have somatic mutations and/or structural chromosomal abnormalities detected as early as at diagnosis. In contrast to other conditions linked to clonal haematopoiesis, the clonal signature of AA reflects its immune pathophysiology. The most common alterations are clonal expansions of cells lacking glycophosphotidylinositol-anchored proteins, loss of human leucocyte antigen alleles, and mutations in BCOR/BCORL1, ASXL1 and DNMT3A. Here, we present the current knowledge of clonal haematopoiesis in AA as it relates to aging, inherited bone marrow failure, and the grey-zone overlap of AA and myelodysplastic syndrome (MDS). We conclude by discussing the significance of clonal haematopoiesis both for improved diagnosis of AA, as well as for a more precise, personalized approach to prognostication of outcomes and therapy choices.
Collapse
Affiliation(s)
- Natasha Stanley
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Timothy S Olson
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Blood and Marrow Transplant Program, Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Daria V Babushok
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Hematology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|