1
|
Meng N, Lu J, Zhou J, Yang S, Zhang C, Jia R, Ding Y, Bao Y, Wang J, Ma X, Chen R, Jiang Z, Xie C, Lu L, Lu W. Improved immunocompatibility of active targeting liposomes by attenuating nucleophilic attack of cyclic RGD peptides on complement 3. Biomaterials 2025; 321:123350. [PMID: 40267598 DOI: 10.1016/j.biomaterials.2025.123350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/31/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
One of the challenges for the clinical translation of active targeting nanomedicines is the adverse interactions between targeting ligands and blood components. Herein, a novel regularity, which reveals the interactions between cyclic RGD (Arg-Gly-Asp) peptide-modified liposomes and complement components in blood, is reported. As the nucleophilicity of arginine guanidine group within the cyclic RGD-like peptide increases, targeting liposomes potentiate complement cascade via the amplification loop of complement 3 (C3), ultimately leading to accelerated blood clearance, increased deposition in the reticuloendothelial system (RES) organs, enhanced immune responses, and potential side effects. By appropriately reducing the nucleophilicity of guanidine group, cyclic R2 peptide is designed for modification of liposomes to target integrin αvβ3. Compared to the widely used targeting molecule c(RGDyK), R2 eliminates the negative effects of C3 opsonization and specific antibody production, significantly improves the in vivo immunocompatibility of targeting liposomes, and demonstrates superior anti-tumor efficacy in mouse models of orthotopic breast cancer and glioma. Thus, the proposed regularity of interactions between guanidine nucleophilicity and C3, along with the successful application of the low complement activation capacity targeting ligand R2, provides new insights for addressing challenges related to complement activation in the clinical translation of active targeting nanomedicines.
Collapse
Affiliation(s)
- Nana Meng
- Department of Pharmaceutics, School of Pharmacy, Fudan University & National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203, China
| | - Jiasheng Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203, China
| | - Jianfen Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University & National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203, China
| | - Shengmin Yang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203, China
| | - Chen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203, China
| | - Ruiyi Jia
- Department of Pharmaceutics, School of Pharmacy, Fudan University & National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203, China
| | - Yuan Ding
- Department of Pharmaceutics, School of Pharmacy, Fudan University & National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203, China
| | - Yanning Bao
- Department of Pharmaceutics, School of Pharmacy, Fudan University & National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203, China
| | - Jun Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203, China
| | - Xiaopei Ma
- Department of Pharmaceutics, School of Pharmacy, Fudan University & National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203, China
| | - Ruohan Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203, China
| | - Zhixuan Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University & National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203, China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China.
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Shanghai, 201203, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, China; Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China.
| |
Collapse
|
2
|
Jajosky RP, Covington ML, Liu J, Chai L, Zerra PE, Chonat S, Stowell SR, Arthur CM. CD47 regulates antigen modulation and red blood cell clearance following an incompatible transfusion. Front Immunol 2025; 16:1548548. [PMID: 40255405 PMCID: PMC12006802 DOI: 10.3389/fimmu.2025.1548548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/21/2025] [Indexed: 04/22/2025] Open
Abstract
Red blood cell (RBC) alloantibodies can result in the rapid removal of incompatible RBCs following transfusion. However, antibody-mediated clearance of RBCs is not the inevitable outcome of an incompatible transfusion. Antibody engagement can also result in the modulation of the target antigen, often rendering RBCs resistant to antibody-mediated removal. Despite this, the factors that regulate antibody-induced RBC removal or antigen modulation remain incompletely understood. Given the ability of CD47 to regulate RBC survival in general, we examined the possible role of CD47 in governing antibody-mediated RBC clearance and antigen modulation. This was achieved by crossing the well-established HEL-OVA-Duffy (HOD) mouse model with CD47 knockout (KO) mice to generate offspring that express the HOD antigen and either WT (HOD CD47 WT), heterozygote (HOD CD47 HET) or KO (HOD CD47 KO) levels of CD47. Using the commonly employed anti-HEL immunization model, our results demonstrate that while antibody engagement of HOD CD47 WT RBCs resulted in rapid antigen modulation in the absence of detectable RBC clearance, antibody binding to HOD CD47 HET RBCs did result in detectable RBC removal despite similar rates and overall levels of antigen modulation. In contrast, despite accelerated clearance of HOD CD47 KO RBCs in the absence of anti-HEL antibodies, the rate of RBC removal and antigen modulation was enhanced in the presence of anti-HEL antibodies. Taken together, these results suggest a role for CD47 in regulating the overall consequence of an incompatible RBC transfusion.
Collapse
Affiliation(s)
- Ryan P. Jajosky
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, United States
| | - Mischa L. Covington
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, United States
| | - Jun Liu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, United States
| | - Li Chai
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Patricia E. Zerra
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, United States
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Chukwuemeka CG, Ndubueze CW, Kolawole AV, Joseph JN, Oladipo IH, Ofoezie EF, Annor-Yeboah SA, Bello ARE, Ganiyu SO. In vitro erythropoiesis: the emerging potential of induced pluripotent stem cells (iPSCs). BLOOD SCIENCE 2025; 7:e00215. [PMID: 39726795 PMCID: PMC11671056 DOI: 10.1097/bs9.0000000000000215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Due to global blood shortages and restricted donor blood storage, the focus has switched to the in vitro synthesis of red blood cells (RBCs) from induced pluripotent stem cells (iPSCs) as a potential solution. Many processes are required to synthesize RBCs from iPSCs, including the production of iPSCs from human or animal cells, differentiation of iPSCs into hematopoietic stem cells, culturing, and maturation of the hematopoietic stem cells (HSC) to make functional erythrocytes. Previous investigations on the in vitro production of erythrocytes have shown conflicting results. Some studies have demonstrated substantial yields of functional erythrocytes, whereas others have observed low yields of enucleated cells. Before large-scale in vitro RBC production can be achieved, several challenges which have limited its application in the clinic must be overcome. These issues include optimizing differentiation techniques to manufacture vast amounts of functional RBCs, upscaling the manufacturing process, cost-effectiveness, and assuring the production of RBCs with good manufacturing practices (GMP) before they can be used for therapeutic purposes.
Collapse
Affiliation(s)
| | - Chizaram W. Ndubueze
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| | - Adeola V. Kolawole
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| | - Joshua N. Joseph
- College of Science, University of Massey, Tennent Drive, Massey University, Palmerston North 4410, New Zealand
- Resilient Agriculture, AgResearch Limited, Grasslands Research Centre Tennent Drive, Fitzherbert Palmerston North 4410, New Zealand
| | - Ifeoluwa H. Oladipo
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| | - Ezichi F. Ofoezie
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| | | | - Abdur-Rahman Eneye Bello
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
- Department of Biochemistry, Confluence University of Science and Technology, Osara, Kogi State, Nigeria
| | - Sodiq O. Ganiyu
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| |
Collapse
|
4
|
Jajosky RP, Zerra PE, Chonat S, Stowell SR, Arthur CM. Harnessing the potential of red blood cells in immunotherapy. Hum Immunol 2024; 85:111084. [PMID: 39255557 PMCID: PMC11808826 DOI: 10.1016/j.humimm.2024.111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024]
Abstract
Red blood cell (RBC) transfusion represents one of the earliest and most widespread forms of cellular therapy. While the primary purpose of RBC transfusions is to enhance the oxygen-carrying capacity of the recipient, RBCs also possess unique properties that make them attractive vehicles for inducing antigen-specific immune tolerance. Preclinical studies have demonstrated that RBC transfusion alone, in the absence of inflammatory stimuli, often fails to elicit detectable alloantibody formation against model RBC antigens. Several studies also suggest that RBC transfusion without inflammation may not only fail to generate a detectable alloantibody response but can also induce a state of antigen-specific non-responsiveness, a phenomenon potentially influenced by the density of the corresponding RBC alloantigen. The unique properties of RBCs, including their inability to divide and their stable surface antigen expression, make them attractive platforms for displaying exogenous antigens with the goal of leveraging their ability to induce antigen-specific non-responsiveness. This could facilitate antigen presentation to the host's immune system without triggering innate immune activation, potentially enabling the induction of antigen-specific tolerance for therapeutic applications in autoimmune disorders, preventing immune responses against protein therapeutics, or reducing alloreactivity in the setting of transfusion and transplantation.
Collapse
Affiliation(s)
- Ryan P Jajosky
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Patricia E Zerra
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Satheesh Chonat
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
5
|
Gomes FL, Jeong SH, Shin SR, Leijten J, Jonkheijm P. Engineering Synthetic Erythrocytes as Next-Generation Blood Substitutes. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2315879. [PMID: 39386164 PMCID: PMC11460667 DOI: 10.1002/adfm.202315879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 10/12/2024]
Abstract
Blood scarcity is one of the main causes of healthcare disruptions worldwide, with blood shortages occurring at an alarming rate. Over the last decades, blood substitutes has aimed at reinforcing the supply of blood, with several products (e.g., hemoglobin-based oxygen carriers, perfluorocarbons) achieving a limited degree of success. Regardless, there is still no widespread solution to this problem due to persistent challenges in product safety and scalability. In this Review, we describe different advances in the field of blood substitution, particularly in the development of artificial red blood cells, otherwise known as engineered erythrocytes. We categorize the different strategies into natural, synthetic, or hybrid approaches, and discuss their potential in terms of safety and scalability. We identify synthetic engineered erythrocytes as the most powerful approach, and describe erythrocytes from a materials engineering perspective. We review their biological structure and function, as well as explore different methods of assembling a material-based cell. Specifically, we discuss how to recreate size, shape, and deformability through particle fabrication, and how to recreate the functional machinery through synthetic biology and nanotechnology. We conclude by describing the versatile nature of synthetic erythrocytes in medicine and pharmaceuticals and propose specific directions for the field of erythrocyte engineering.
Collapse
Affiliation(s)
- Francisca L Gomes
- Department of Molecules and Materials, Laboratory of Biointerface Chemistry, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, Drienerlolaan 5, Enschede, 7522NB,The Netherlands
- Department of Developmental BioEngineering, Leijten Laboratory, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Seol-Ha Jeong
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Leijten Laboratory, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Pascal Jonkheijm
- Department of Molecules and Materials, Laboratory of Biointerface Chemistry, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, Drienerlolaan 5, Enschede, 7522NB,The Netherlands
| |
Collapse
|
6
|
Wang E, Liu S, Zhang X, Peng Q, Yu H, Gao L, Xie A, Ma D, Zhao G, Cheng L. An Optimized Human Erythroblast Differentiation System Reveals Cholesterol-Dependency of Robust Production of Cultured Red Blood Cells Ex Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303471. [PMID: 38481061 PMCID: PMC11165465 DOI: 10.1002/advs.202303471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/01/2023] [Indexed: 06/12/2024]
Abstract
The generation of cultured red blood cells (cRBCs) ex vivo represents a potentially unlimited source for RBC transfusion and other cell therapies. Human cRBCs can be generated from the terminal differentiation of proliferating erythroblasts derived from hematopoietic stem/progenitor cells or erythroid precursors in peripheral blood mononuclear cells. Efficient differentiation and maturation into cRBCs highly depend on replenishing human plasma, which exhibits variable potency across donors or batches and complicates the consistent cRBC production required for clinical translation. Hence, the role of human plasma in erythroblast terminal maturation is investigated and uncovered that 1) a newly developed cell culture basal medium mimicking the metabolic profile of human plasma enhances cell growth and increases cRBC yield upon erythroblast terminal differentiation and 2) LDL-carried cholesterol, as a substitute for human plasma, is sufficient to support erythroid survival and terminal differentiation ex vivo. Consequently, a chemically-defined optimized medium (COM) is developed, enabling robust generation of cRBCs from erythroblasts of multiple origins, with improved enucleation efficiency and higher reticulocyte yield, without the need for supplementing human plasma or serum. In addition, the results reveal the crucial role of lipid metabolism during human terminal erythropoiesis.
Collapse
Affiliation(s)
- Enyu Wang
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Senquan Liu
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Xinye Zhang
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Qingyou Peng
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Huijuan Yu
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Lei Gao
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - An Xie
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Ding Ma
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Gang Zhao
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Linzhao Cheng
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Division of HematologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| |
Collapse
|
7
|
Gunawardena N, Chou ST. Generation of red blood cells from induced pluripotent stem cells. Curr Opin Hematol 2024; 31:115-121. [PMID: 38362913 PMCID: PMC10959681 DOI: 10.1097/moh.0000000000000810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
PURPOSE OF REVIEW Human induced pluripotent stem cells (iPSCs) are an attractive source to generate in-vitro-derived blood for use as transfusable and reagent red cells. We review recent advancements in the field and the remaining limitations for clinical use. RECENT FINDINGS For iPSC-derived red blood cell (RBC) generation, recent work has optimized culture conditions to omit feeder cells, enhance red cell maturation, and produce cells that mimic fetal or adult-type RBCs. Genome editing provides novel strategies to improve cell yield and create designer RBCs with customized antigen phenotypes. SUMMARY Current protocols support red cell production that mimics embryonic and fetal hematopoiesis and cell yield sufficient for diagnostic RBC reagents. Ongoing challenges to generate RBCs for transfusion include recapitulating definitive erythropoiesis to produce functional adult-type cells, increasing scalability of culture conditions, and optimizing high-density manufacturing capacity.
Collapse
Affiliation(s)
| | - Stella T Chou
- Division of Hematology, Department of Pediatrics
- Division of Transfusion Medicine, Department of Pathology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Martins GLS, Nonaka CKV, Rossi EA, de Lima AVR, Adanho CSA, Oliveira MS, Yahouedehou SCMA, de Souza CLEM, Gonçalves MDS, Paredes BD, Souza BSDF. Evaluation of 2D and 3D Erythroid Differentiation Protocols Using Sickle Cell Disease and Healthy Donor Induced Pluripotent Stem Cells. Cells 2023; 12:cells12081121. [PMID: 37190030 DOI: 10.3390/cells12081121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Sickle cell disease (SCD) is a highly prevalent genetic disease caused by a point mutation in the HBB gene, which can lead to chronic hemolytic anemia and vaso-occlusive events. Patient-derived induced pluripotent stem cells (iPSCs) hold promise for the development of novel predictive methods for screening drugs with anti-sickling activity. In this study, we evaluated and compared the efficiency of 2D and 3D erythroid differentiation protocols using a healthy control and SCD-iPSCs. METHODS iPSCs were subjected to hematopoietic progenitor cell (HSPC) induction, erythroid progenitor cell induction, and terminal erythroid maturation. Differentiation efficiency was confirmed by flow cytometry analysis, colony-forming unit (CFU) assay, morphological analyses, and qPCR-based gene expression analyses of HBB and HBG2. RESULTS Both 2D and 3D differentiation protocols led to the induction of CD34+/CD43+ HSPCs. The 3D protocol showed good efficiency (>50%) and high productivity (45-fold) for HSPC induction and increased the frequency of BFU-E, CFU-E, CFU-GM, and CFU-GEMM colonies. We also produced CD71+/CD235a+ cells (>65%) with a 630-fold cell expansion relative to that at the beginning of the 3D protocol. After erythroid maturation, we observed 95% CD235a+/DRAQ5- enucleated cells, orthochromatic erythroblasts, and increased expression of fetal HBG2 compared to adult HBB. CONCLUSION A robust 3D protocol for erythroid differentiation was identified using SCD-iPSCs and comparative analyses; however, the maturation step remains challenging and requires further development.
Collapse
Affiliation(s)
- Gabriele Louise Soares Martins
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | - Carolina Kymie Vasques Nonaka
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador 41253-190, Brazil
| | - Erik Aranha Rossi
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | - Adne Vitória Rocha de Lima
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | - Corynne Stephanie Ahouefa Adanho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | - Moisés Santana Oliveira
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | | | | | | | - Bruno Diaz Paredes
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador 41253-190, Brazil
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador 41253-190, Brazil
| |
Collapse
|
9
|
Koren A. The continuing global challenges of treating patients with beta‐thalassemia. Br J Haematol 2023; 201:183-184. [PMID: 36971072 DOI: 10.1111/bjh.18769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
In this issue, Hokland et al. offer an interesting view of the different approaches on how to treat a beta-thalassemia patient. The principal concerns, that this report reveals, are the very wide differences in the facilities and economic resources available for the care of patients. Management of thalassemia should become a word wide health care priority and may include at last those two steps: national and international registries; national programs for screening couples at risk and providing preventive measures to prevent births of patients with thalassemia. Commentary on: Hokland et al. Thalassaemia-A global view. Br J Haematol. 2023;201:208-223.
Collapse
Affiliation(s)
- Ariel Koren
- Pediatric Hematology Unit, Emek Medical Centre, Afula, Israel
| |
Collapse
|
10
|
Bernecker C, Matzhold EM, Kolb D, Avdili A, Rohrhofer L, Lampl A, Trötzmüller M, Singer H, Oldenburg J, Schlenke P, Dorn I. Membrane Properties of Human Induced Pluripotent Stem Cell-Derived Cultured Red Blood Cells. Cells 2022; 11:cells11162473. [PMID: 36010549 PMCID: PMC9406338 DOI: 10.3390/cells11162473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 12/16/2022] Open
Abstract
Cultured red blood cells from human induced pluripotent stem cells (cRBC_iPSCs) are a promising source for future concepts in transfusion medicine. Before cRBC_iPSCs will have entrance into clinical or laboratory use, their functional properties and safety have to be carefully validated. Due to the limitations of established culture systems, such studies are still missing. Improved erythropoiesis in a recently established culture system, closer simulating the physiological niche, enabled us to conduct functional characterization of enucleated cRBC_iPSCs with a focus on membrane properties. Morphology and maturation stage of cRBC_iPSCs were closer to native reticulocytes (nRETs) than to native red blood cells (nRBCs). Whereas osmotic resistance of cRBC_iPSCs was similar to nRETs, their deformability was slightly impaired. Since no obvious alterations in membrane morphology, lipid composition, and major membrane associated protein patterns were observed, reduced deformability might be caused by a more primitive nature of cRBC_iPSCs comparable to human embryonic- or fetal liver erythropoiesis. Blood group phenotyping of cRBC_iPSCs further confirmed the potency of cRBC_iPSCs as a prospective device in pre-transfusional routine diagnostics. Therefore, RBC membrane analyses obtained in this study underscore the overall prospects of cRBC_iPSCs for their future application in the field of transfusion medicine.
Collapse
Affiliation(s)
- Claudia Bernecker
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Eva Maria Matzhold
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Medical University of Graz, 8010 Graz, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria
| | - Afrim Avdili
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Lisa Rohrhofer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Annika Lampl
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Martin Trötzmüller
- Core Facility Mass Spectrometry, Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
| | - Heike Singer
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany
| | - Peter Schlenke
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Isabel Dorn
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|
11
|
Rao I, Crisafulli L, Paulis M, Ficara F. Hematopoietic Cells from Pluripotent Stem Cells: Hope and Promise for the Treatment of Inherited Blood Disorders. Cells 2022; 11:cells11030557. [PMID: 35159366 PMCID: PMC8834203 DOI: 10.3390/cells11030557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 01/26/2023] Open
Abstract
Inherited blood disorders comprise a large spectrum of diseases due to germline mutations in genes with key function in the hematopoietic system; they include immunodeficiencies, anemia or metabolic diseases. For most of them the only curative treatment is bone marrow transplantation, a procedure associated to severe complications; other therapies include red blood cell and platelet transfusions, which are dependent on donor availability. An alternative option is gene therapy, in which the wild-type form of the mutated gene is delivered into autologous hematopoietic stem cells using viral vectors. A more recent therapeutic perspective is gene correction through CRISPR/Cas9-mediated gene editing, that overcomes safety concerns due to insertional mutagenesis and allows correction of base substitutions in large size genes difficult to incorporate into vectors. However, applying this technique to genomic disorders caused by large gene deletions is challenging. Chromosomal transplantation has been proposed as a solution, using a universal source of wild-type chromosomes as donor, and induced pluripotent stem cells (iPSCs) as acceptor. One of the obstacles to be addressed for translating PSC research into clinical practice is the still unsatisfactory differentiation into transplantable hematopoietic stem or mature cells. We provide an overview of the recent progresses in this field and discuss challenges and potential of iPSC-based therapies for the treatment of inherited blood disorders.
Collapse
Affiliation(s)
- Ilaria Rao
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (I.R.); (L.C.); (M.P.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Laura Crisafulli
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (I.R.); (L.C.); (M.P.)
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
| | - Marianna Paulis
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (I.R.); (L.C.); (M.P.)
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
| | - Francesca Ficara
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (I.R.); (L.C.); (M.P.)
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
- Correspondence:
| |
Collapse
|