1
|
Sun Y, Ma X, Gong Y, Guo H, Zhou C, Hu Q, Zhou Z, Zhang Y, Liang S, Li G. Inhibition of P2X7R by Hypericin improves Diabetic Cardiac Autonomic Neuropathy through the proteasome- Nrf2 - GPX4 signaling axis. Neurotoxicology 2025:S0161-813X(25)00059-2. [PMID: 40412558 DOI: 10.1016/j.neuro.2025.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/29/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Hypericin (HYP), a primary active compound derived from hypericum perforatum has been studied in the context of diabetes. The purpose of this study is to observe whether HYP can improve diabetic cardiac autonomic neuropathy (DCAN) and its possible mechanism. The current findings suggest that multiple drivers of ferroptosis in DCAN converge on the antioxidant protein nuclear factor erythroid 2-related factor 2(Nrf2). Overactivated P2X7 receptor (P2X7R) increases Nrf2 degradation by increasing proteasome activity through calcium ion accumulation. This work showed that HYP inhibited P2X7R expression, leading to elevated Nrf2 levels, thereby counteracting ferroptosis. This inhibition improves abnormal changes in cardiac function during the pathological process of DCAN in diabetic rats, including heart rate (HR), blood pressure (BP), heart rate variability (HRV), and sympathetic nerve discharge (SND). In summary, HYP enhances Nrf2 protein levels by suppressing P2X7R expression, reducing calcium-induced proteasome activity, and inhibits ferroptosis and inflammation. Thus, HYP alleviated DCAN progression.
Collapse
Affiliation(s)
- Yusen Sun
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Xiaoqian Ma
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yanning Gong
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Hongmin Guo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Congfa Zhou
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Qixing Hu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zhiying Zhou
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Shangdong Liang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Guilin Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
2
|
Kouroumalis E, Tsomidis I, Voumvouraki A. HFE-Related Hemochromatosis May Be a Primary Kupffer Cell Disease. Biomedicines 2025; 13:683. [PMID: 40149659 PMCID: PMC11940282 DOI: 10.3390/biomedicines13030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
Iron overload can lead to increased deposition of iron and cause organ damage in the liver, the pancreas, the heart and the synovium. Iron overload disorders are due to either genetic or acquired abnormalities such as excess transfusions or chronic liver diseases. The most common genetic disease of iron deposition is classic hemochromatosis (HH) type 1, which is caused by mutations of HFE. Other rare forms of HH include type 2A with mutations at the gene hemojuvelin or type 2B with mutations in HAMP that encodes hepcidin. HH type 3, is caused by mutations of the gene that encodes transferrin receptor 2. Mutations of SLC40A1 which encodes ferroportin cause either HH type 4A or HH type 4B. In the present review, an overview of iron metabolism including absorption by enterocytes and regulation of iron by macrophages, liver sinusoidal endothelial cells (LSECs) and hepatocyte production of hepcidin is presented. Hereditary Hemochromatosis and the current pathogenetic model are analyzed. Finally, a new hypothesis based on published data was suggested. The Kupffer cell is the primary defect in HFE hemochromatosis (and possibly in types 2 and 3), while the hepcidin-relative deficiency, which is the common underlying abnormality in the three types of HH, is a secondary consequence.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete Medical School, 71500 Heraklion, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
3
|
Fisher AL, Phillips S, Wang CY, Paulo JA, Xiao X, Xu Y, Moschetta GA, Xue Y, Mancias JD, Babitt JL. The hepcidin-ferroportin axis modulates liver endothelial cell BMP expression to influence iron homeostasis in mice. Blood 2025; 145:625-634. [PMID: 39437541 DOI: 10.1182/blood.2024024795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT The liver hormone hepcidin regulates systemic iron homeostasis to provide enough iron for vital processes while limiting toxicity. Hepcidin acts by degrading its receptor ferroportin (encoded by Slc40a1) to decrease iron export to plasma. Iron controls hepcidin production in part by inducing liver endothelial cells (LECs) to produce bone morphogenetic proteins (BMPs) that activate hepcidin transcription in hepatocytes. Here, we used in vitro and in vivo models to investigate whether ferroportin contributes to LEC intracellular iron content to modulate BMP expression and, thereby, hepcidin. Quantitative proteomics of LECs from mice fed different iron diets demonstrated an inverse relationship between dietary iron and endothelial ferroportin expression. Slc40a1 knockdown primary mouse LECs and endothelial Slc40a1 knockout mice exhibited increased LEC iron and BMP ligand expression. Endothelial Slc40a1 knockout mice also exhibited altered systemic iron homeostasis with decreased serum and total liver iron but preserved erythropoiesis. Although endothelial Slc40a1 knockout mice had similar hepcidin expression to control mice, hepcidin levels were inappropriately high relative to iron levels. Moreover, when iron levels were equalized with iron treatment, hepcidin levels were higher in endothelial Slc40a1 knockout mice than in controls. Finally, LEC ferroportin levels were inversely correlated with hepcidin levels in multiple mouse models, and treatment of hepcidin-deficient mice with mini-hepcidin decreased LEC ferroportin expression. Overall, these data show that LEC ferroportin modulates LEC iron and consequently BMP expression to influence hepcidin production. Furthermore, LEC ferroportin expression is regulated by hepcidin, demonstrating a bidirectional communication between LECs and hepatocytes to orchestrate systemic iron homeostasis.
Collapse
Affiliation(s)
- Allison L Fisher
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sydney Phillips
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Chia-Yu Wang
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Xia Xiao
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yang Xu
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gillian A Moschetta
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yongqiang Xue
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jodie L Babitt
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Parrow NL, Fleming RE. BMPs and iron: the ins and outs. Blood 2025; 145:557-558. [PMID: 39913338 DOI: 10.1182/blood.2024027052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
|
5
|
Zhang J, Chen X, Huang D, Tan X. Impact of p. Gingivalis-induced chronic apical periodontitis on systemic iron homeostasis via the hepatic IL-6/STAT3/Hepcidin signaling pathway. Int Immunopharmacol 2025; 147:114002. [PMID: 39787762 DOI: 10.1016/j.intimp.2024.114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND AND AIMS Chronic apical periodontitis (CAP), an inflammatory disease of the oral cavity caused by bacterial infections with Porphyromonas gingivalis (P. gingivalis) as a key pathogen, has been associated with systemic effects, potentially influencing distant organs including liver. The liver plays a key role in iron metabolism and immunity by hepcidin. This study aims to investigate the impact of P. gingivalis-induced CAP on liver and systemic iron metabolism, focusing on the role of the IL-6/STAT3 signaling pathway in hepatic hepcidin synthesis. METHODS A murine model of CAP was established by pulp chamber infection with P. gingivalis. Serum levels of IL-6, ferritin, and hepcidin were measured via ELISA. High-throughput sequencing was used to analyze hepatic gene expression, and immunohistochemistry with fluorescent staining was performed to validate protein expression in liver tissues. RESULTS CAP led to significant changes in serum iron, ferritin, and IL-6. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed enrichment in pathways like JAK/STAT signaling and acute-phase responses, and gene set enrichment analysis (GSEA) also indicated activation of IL-6/JAK/STAT3 signaling pathway. Iimmunofluorescence confirmed increased IL-6, p-STAT3, and hepcidin expression. These levels were alleviated by stattic treatment, mitigating CAP-induced inflammatory and iron-regulatory effects. CONCLUSION P. gingivalis-induced CAP triggered systemic inflammation and disrupts iron metabolism via the IL-6/STAT3 signaling pathway, potentially affecting liver function. Targeting this pathway may offer therapeutic strategies for managing iron dysregulation in chronic inflammatory diseases like CAP.
Collapse
Affiliation(s)
- Jinglan Zhang
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuan Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, Guangdong, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xuelian Tan
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Chu PL, Wang CS, Wang C, Lin CY. Association of urinary glyphosate levels with iron homeostasis among a representative sample of US adults: NHANES 2013-2018. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116962. [PMID: 39208573 DOI: 10.1016/j.ecoenv.2024.116962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Glyphosate and glyphosate-based herbicides (GBH), widely used globally, were initially considered harmless to humans. Experimental studies have suggested that these substances can disrupt iron homeostasis by interfering with iron uptake or triggering inflammatory responses. However, their potential impact on human iron homeostasis remains underexplored. APPROACH AND RESULTS We analyzed data from 5812 participants aged three and older from the 2013 to 2018 NHANES. We investigated the relationships between urinary glyphosate levels, oral iron intake, and markers of iron homeostasis, including serum iron, unsaturated iron-binding capacity (UIBC), total iron-binding capacity (TIBC), transferrin saturation, ferritin, and transferrin receptor. Higher urinary glyphosate levels were positively associated with oral iron intake (β = 1.310, S.E. = 0.382, P = 0.001). A one-unit increase in the natural logarithm (ln)-glyphosate was associated with lower serum iron (β = - 4.236, 95 % CI = - 6.432 to - 2.039, P < 0.001) and ferritin (β = - 9.994, 95 % CI = - 17.342 to - 2.647, P = 0.009), and higher UIBC (β = 5.431, 95 % CI = 1.061-9.800, P = 0.018) and transferrin receptor levels (β = 0.139, 95 % CI = 0.015-0.263, P = 0.029). Increasing glyphosate exposure was associated with significant decreases in serum iron and ferritin across exposure quintiles (trend P-values = 0.003 and 0.018, respectively). CONCLUSIONS Higher glyphosate exposure is associated with reduced iron availability, suggesting potential disruptions in iron absorption. These findings underscore the need for further research into the health implications of glyphosate exposure on iron homeostasis.
Collapse
Affiliation(s)
- Pei-Lun Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei 242, Taiwan
| | - Chia-Sung Wang
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; Hsin Sheng College of Medical Care and Management, Taoyuan City 325, Taiwan
| | - ChiKang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Chien-Yu Lin
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan.
| |
Collapse
|
7
|
Chen Y, Zhang W, Xu X, Xu B, Yang Y, Yu H, Li K, Liu M, Qi L, Jiao X. Gene signatures of copper metabolism related genes may predict prognosis and immunity status in Ewing's sarcoma. Front Oncol 2024; 14:1388868. [PMID: 39050579 PMCID: PMC11267503 DOI: 10.3389/fonc.2024.1388868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Background Cuproptosis is copper-induced cell death. Copper metabolism related genes (CMRGs) were demonstrated that used to assess the prognosis out of tumors. In the study, CMRGs were tested for their effect on TME cell infiltration in Ewing's sarcoma (ES). Methods The GEO and ICGC databases provided the mRNA expression profiles and clinical features for downloading. In the GSE17674 dataset, 22prognostic-related copper metabolism related genes (PR-CMRGs) was identified by using univariate regression analysis. Subsequently, in order to compare the survival rates of groups with high and low expression of these PR-CMRGs,Kaplan-Meier analysis was implemented. Additionally, correlations among them were examined. The study employed functional enrichment analysis to investigate probable underlying pathways, while GSVA was applied to evaluate enriched pathways in the ES (Expression Set). Through an unsupervised clustering algorithm, samples were classified into two clusters, revealing significant differences in survival rates and levels of immune infiltration. Results Using Lasso and step regression methods, five genes (TFRC, SORD, SLC11A2, FKBP4, and AANAT) were selected as risk signatures. According to the Kaplan-Meier survival analysis, the high-risk group had considerably lower survival rates than the low-risk group(p=6.013e-09). The area under the curve (AUC) values for the receiver operating characteristic (ROC) curve were 0.876, 0.883, and 0.979 for 1, 3, and 5 years, respectively. The risk model was further validated in additional datasets, namely GSE63155, GSE63156, and the ICGC datasets. To aid in outcome prediction, a nomogram was developed that incorporated risk levels and clinical features. This nomogram's performance was effectively validated through calibration curves.Additionally, the study evaluated the variations in immune infiltration across different risk groups, as well as high-expression and low-expression groups. Importantly, several drugs were identified that displayed sensitivity, offering potential therapeutic options for ES. Conclusion The findings above strongly indicate that CMRGs play crucial roles in predicting prognosis and immune status in ES.
Collapse
Affiliation(s)
- Yongqin Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wencan Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiao Xu
- Sterile Supply Department, The First People Hospital of Jinan, Jinan, Shandong, China
| | - Biteng Xu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuxuan Yang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Haozhi Yu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ke Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mingshan Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Qi
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiejia Jiao
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
8
|
Tsyplenkova S, Charlebois E, Fillebeen C, Pantopoulos K. Excess of circulating apotransferrin enhances dietary iron absorption in mice. Blood 2024; 144:117-121. [PMID: 38527216 DOI: 10.1182/blood.2023022916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024] Open
Abstract
ABSTRACT Intravenous injection of excess apotransferrin enhances dietary iron absorption in mice and triggers accumulation of plasma non-transferrin-bound iron. Injected fluorescent-labeled transferrin colocalizes with lamina propria macrophages, consistent with the recently proposed iron absorption checkpoint involving macrophage-mediated transferrin degradation.
Collapse
Affiliation(s)
- Sofiya Tsyplenkova
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Edouard Charlebois
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Carine Fillebeen
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Fisher AL, Phillips S, Wang CY, Paulo JA, Xiao X, Moschetta GA, Sridhar A, Mancias JD, Babitt JL. Endothelial ZIP8 plays a minor role in BMP6 regulation by iron in mice. Blood 2024; 143:2433-2437. [PMID: 38518102 PMCID: PMC11443574 DOI: 10.1182/blood.2023023385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024] Open
Abstract
ABSTRACT Iron-mediated induction of bone morphogenetic protein (BMP)6 expression by liver endothelial cells is essential for iron homeostasis regulation. We used multiple dietary and genetic mouse cohorts to demonstrate a minor functional role for the metal-ion transporter ZIP8 in regulating BMP6 expression under high-iron conditions.
Collapse
Affiliation(s)
- Allison L. Fisher
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sydney Phillips
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Chia-Yu Wang
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Xia Xiao
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gillian A. Moschetta
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Adhvaith Sridhar
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Joseph D. Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jodie L. Babitt
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Knutson MD. The elusive endothelial iron transporter. Blood 2024; 143:2349-2350. [PMID: 38842863 DOI: 10.1182/blood.2024024664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
|
11
|
Shao M, Qi K, Wang L, Yu X, Zhang Q, Yu L, Wang L, Yang C, Fan L. E3 ubiquitin ligase CHIP interacts with transferrin receptor 1 for degradation and promotes cell proliferation through inhibiting ferroptosis in hepatocellular carcinoma. Cell Signal 2024; 118:111148. [PMID: 38521179 DOI: 10.1016/j.cellsig.2024.111148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/02/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Hepatocellular carcinoma (HCC) is the major form of liver malignancy with high incidence and mortality. Identifying novel biomarkers and understanding regulatory mechanisms underlying the development and progression of HCC are critical for improving diagnosis, treatment and patient outcomes. Carboxyl terminus of Hsc-70-interacting protein (CHIP) is a well-described U-box-type E3 ubiquitin ligase which promotes the ubiquitination and degradation of numerous tumor-associated proteins. Recent studies have shown that CHIP can play as a tumor-suppressor gene or an oncogene in different kinds of malignancies. To date, the function and mechanism of CHIP in hepatocellular carcinoma remains largely unknown. Based on TCGA data, we found that compared with high CHIP expression, the overall survival of HCC patients with low expression of CHIP was better. In addition, CHIP overexpression markedly enhanced HCC cell proliferation and colony formation. Conversely, knockdown of CHIP restrained the proliferation and colony formation of HCC cells. Meanwhile, knockdown of CHIP decreased mitochondrial cristae or ruptured outer mitochondrial membrane, promoted the accumulation of Fe2+ and ferroptosis of HCC cells. Further research for the first time confirmed that CHIP interacts and degrades transferrin receptor 1 (TfR1) by ubiquitin-proteasome pathway, which leads to the inhibition of ferroptosis and promotes the proliferation of HCC cells. The analysis of proteomics data from CPTAC revealed a negative correlation between CHIP and TfR1 protein expression levels in HCC. These findings indicate that CHIP acts as a negative modulator of ferroptosis and functions as an oncogene in HCC.
Collapse
Affiliation(s)
- Miaomiao Shao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Kangwei Qi
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Lanxin Wang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Xiaoxuan Yu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qingyu Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Long Yu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Lan Wang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Caiting Yang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, PR China; Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, PR China.
| | - Lu Fan
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
12
|
Ma H, Huang Y, Tian W, Liu J, Yan X, Ma L, Lai J. Endothelial transferrin receptor 1 contributes to thrombogenesis through cascade ferroptosis. Redox Biol 2024; 70:103041. [PMID: 38241836 PMCID: PMC10831316 DOI: 10.1016/j.redox.2024.103041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
Oxidative stress and iron accumulation-induced ferroptosis occurs in injured vascular cells and can promote thrombogenesis. Transferrin receptor 1 (encoded by the TFRC gene) is an initial element involved in iron transport and ferroptosis and is highly expressed in injured vascular tissues, but its role in thrombosis has not been determined. To explore the potential mechanism and therapeutic effect of TFRC on thrombogenesis, a DVT model of femoral veins (FVs) was established in rats, and weighted correlation network analysis (WGCNA) was used to identify TFRC as a hub protein that is associated with thrombus formation. TFRC was knocked down by adeno-associated virus (AAV) or lentivirus transduction in FVs or human umbilical vein endothelial cells (HUVECs), respectively. Thrombus characteristics and ferroptosis biomarkers were evaluated. Colocalization analysis, molecular docking and coimmunoprecipitation (co-IP) were used to evaluate protein interactions. Tissue-specific TFRC knockdown alleviated iron overload and redox stress, thereby preventing ferroptosis in injured FVs. Loss of TFRC in injured veins could alleviate thrombogenesis, reduce thrombus size and attenuate hypercoagulability. The protein level of thrombospondin-1 (THBS1) was increased in DVT tissues, and silencing TFRC decreased the protein level of THBS1. In vitro experiments further showed that TFRC and THBS1 were sensitive to erastin-induced ferroptosis and that TFRC knockdown reversed this effect. TFRC can interact with THBS1 in the domain spanning from TSR1-2 to TSR1-3 of THBS1. Amino acid sites, including GLN320 of TFRC and ASP502 of THBS1, could be potential pharmacological targets. Erastin induced ferroptosis affected extracellular THBS1 levels and weakened the interaction between TFRC and THBS1 both in vivo and in vitro, and promoted the interaction between THBS1 and CD47. This study revealed a linked relationship between venous ferroptosis and coagulation cascades. Controlling TFRC and ferroptosis in endothelial cells can be an efficient approach for preventing and treating thrombogenesis.
Collapse
Affiliation(s)
- Haotian Ma
- NHC Key Laboratory of Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China; Institute of Forensic Injury, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Yongtao Huang
- Department of Orthopedics, Ruihua Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenrong Tian
- NHC Key Laboratory of Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China; Institute of Forensic Injury, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Jincen Liu
- NHC Key Laboratory of Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China; Institute of Forensic Injury, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Xinyue Yan
- NHC Key Laboratory of Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China; Institute of Forensic Injury, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Lei Ma
- NHC Key Laboratory of Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China; Institute of Forensic Injury, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China
| | - Jianghua Lai
- NHC Key Laboratory of Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China; Institute of Forensic Injury, Bio-evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
13
|
Zurawska G, Jończy A, Niklewicz M, Sas Z, Rumieńczyk I, Kulecka M, Piwocka K, Rygiel TP, Mikula M, Mleczko-Sanecka K. Iron-triggered signaling via ETS1 and the p38/JNK MAPK pathway regulates Bmp6 expression. Am J Hematol 2024; 99:543-554. [PMID: 38293789 DOI: 10.1002/ajh.27223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 02/01/2024]
Abstract
BMP6 is an iron-sensing cytokine whose transcription in liver sinusoidal endothelial cells (LSECs) is enhanced by high iron levels, a step that precedes the induction of the iron-regulatory hormone hepcidin. While several reports suggested a cell-autonomous induction of Bmp6 by iron-triggered signals, likely via sensing of oxidative stress by the transcription factor NRF2, other studies proposed the dominant role of a paracrine yet unidentified signal released by iron-loaded hepatocytes. To further explore the mechanisms of Bmp6 transcriptional regulation, we used female mice aged 10-11 months, which are characterized by hepatocytic but not LSEC iron accumulation, and no evidence of systemic iron overload. We found that LSECs of aged mice exhibit increased Bmp6 mRNA levels as compared to young controls, but do not show a transcriptional signature characteristic of activated NFR2-mediated signaling in FACS-sorted LSECs. We further observed that primary murine LSECs derived from both wild-type and NRF2 knock-out mice induce Bmp6 expression in response to iron exposure. By analyzing transcriptomic data of FACS-sorted LSECs from aged versus young mice, as well as early after iron citrate injections, we identified ETS1 as a candidate transcription factor involved in Bmp6 transcriptional regulation. By performing siRNA-mediated knockdown, small-molecule treatments, and chromatin immunoprecipitation in primary LSECs, we show that Bmp6 transcription is regulated by iron via ETS1 and p38/JNK MAP kinase-mediated signaling, at least in part independently of NRF2. Thereby, these findings identify the new components of LSEC iron sensing machinery broadly associated with cellular stress responses.
Collapse
Affiliation(s)
- Gabriela Zurawska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Aneta Jończy
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Marta Niklewicz
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Zuzanna Sas
- Medical University of Warsaw, Warsaw, Poland
| | - Izabela Rumieńczyk
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Tomasz P Rygiel
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Mikula
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | |
Collapse
|
14
|
Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol 2024; 25:133-155. [PMID: 37783783 DOI: 10.1038/s41580-023-00648-1] [Citation(s) in RCA: 241] [Impact Index Per Article: 241.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/04/2023]
Abstract
In mammals, hundreds of proteins use iron in a multitude of cellular functions, including vital processes such as mitochondrial respiration, gene regulation and DNA synthesis or repair. Highly orchestrated regulatory systems control cellular and systemic iron fluxes ensuring sufficient iron delivery to target proteins is maintained, while limiting its potentially deleterious effects in iron-mediated oxidative cell damage and ferroptosis. In this Review, we discuss how cells acquire, traffick and export iron and how stored iron is mobilized for iron-sulfur cluster and haem biogenesis. Furthermore, we describe how these cellular processes are fine-tuned by the combination of various sensory and regulatory systems, such as the iron-regulatory protein (IRP)-iron-responsive element (IRE) network, the nuclear receptor co-activator 4 (NCOA4)-mediated ferritinophagy pathway, the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) axis or the nuclear factor erythroid 2-related factor 2 (NRF2) regulatory hub. We further describe how these pathways interact with systemic iron homeostasis control through the hepcidin-ferroportin axis to ensure appropriate iron fluxes. This knowledge is key for the identification of novel therapeutic opportunities to prevent diseases of cellular and/or systemic iron mismanagement.
Collapse
Affiliation(s)
- Bruno Galy
- German Cancer Research Center (DKFZ), Division of Virus-associated Carcinogenesis (F170), Heidelberg, Germany
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Martina Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
15
|
Fisher AL, Wang CY, Xu Y, Phillips S, Paulo JA, Małachowska B, Xiao X, Fendler W, Mancias JD, Babitt JL. Quantitative proteomics and RNA-sequencing of mouse liver endothelial cells identify novel regulators of BMP6 by iron. iScience 2023; 26:108555. [PMID: 38125029 PMCID: PMC10730383 DOI: 10.1016/j.isci.2023.108555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Hepcidin is the master hormone governing systemic iron homeostasis. Iron regulates hepcidin by activating bone morphogenetic protein (BMP)6 expression in liver endothelial cells (LECs), but the mechanisms are incompletely understood. To address this, we performed proteomics and RNA-sequencing on LECs from iron-adequate and iron-loaded mice. Gene set enrichment analysis identified transcription factors activated by high iron, including Nrf-2, which was previously reported to contribute to BMP6 regulation, and c-Jun. Jun (encoding c-Jun) knockdown blocked Bmp6 but not Nrf-2 pathway induction by iron in LEC cultures. Chromatin immunoprecipitation of mouse livers showed iron-dependent c-Jun binding to predicted sites in Bmp6 regulatory regions. Finally, c-Jun inhibitor blunted induction of Bmp6 and hepcidin, but not Nrf-2 activity, in iron-loaded mice. However, Bmp6 and iron parameters were unchanged in endothelial Jun knockout mice. Our data suggest that c-Jun participates in iron-mediated BMP6 regulation independent of Nrf-2, though the mechanisms may be redundant and/or multifactorial.
Collapse
Affiliation(s)
- Allison L. Fisher
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chia-Yu Wang
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yang Xu
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sydney Phillips
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Beata Małachowska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Albert Einstein College of Medicine, NYC, NY, USA
| | - Xia Xiao
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joseph D. Mancias
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jodie L. Babitt
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Yu W, Hu Y, Liu Z, Guo K, Ma D, Peng M, Wang Y, Zhang J, Zhang X, Wang P, Zhang J, Liu P, Lu J. Sorting nexin 3 exacerbates doxorubicin-induced cardiomyopathy via regulation of TFRC-dependent ferroptosis. Acta Pharm Sin B 2023; 13:4875-4892. [PMID: 38045054 PMCID: PMC10692393 DOI: 10.1016/j.apsb.2023.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 12/05/2023] Open
Abstract
The clinical utilization of doxorubicin (Dox) in various malignancies is restrained by its major adverse effect: irreversible cardiomyopathy. Extensive studies have been done to explore the prevention of Dox cardiomyopathy. Currently, ferroptosis has been shown to participate in the incidence and development of Dox cardiomyopathy. Sorting Nexin 3 (SNX3), the retromer-associated cargo binding protein with important physiological functions, was identified as a potent therapeutic target for cardiac hypertrophy in our previous study. However, few study has shown whether SNX3 plays a critical role in Dox-induced cardiomyopathy. In this study, a decreased level of SNX3 in Dox-induced cardiomyopathy was observed. Cardiac-specific Snx3 knockout (Snx3-cKO) significantly alleviated cardiomyopathy by downregulating Dox-induced ferroptosis significantly. SNX3 was further demonstrated to exacerbate Dox-induced cardiomyopathy via induction of ferroptosis in vivo and in vitro, and cardiac-specific Snx3 transgenic (Snx3-cTg) mice were more susceptible to Dox-induced ferroptosis and cardiomyopathy. Mechanistically, SNX3 facilitated the recycling of transferrin 1 receptor (TFRC) via direct interaction, disrupting iron homeostasis, increasing the accumulation of iron, triggering ferroptosis, and eventually exacerbating Dox-induced cardiomyopathy. Overall, these findings established a direct SNX3-TFRC-ferroptosis positive regulatory axis in Dox-induced cardiomyopathy and suggested that targeting SNX3 provided a new effective therapeutic strategy for Dox-induced cardiomyopathy through TFRC-dependent ferroptosis.
Collapse
Affiliation(s)
- Wenjing Yu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuehuai Hu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiping Liu
- School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Kaiteng Guo
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dinghu Ma
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingxia Peng
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuemei Wang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Zhang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaolei Zhang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Panxia Wang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiguo Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shangdong Academy of Medical Sciences, Taian 271016, China
| | - Peiqing Liu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Shandong First Medical University & Shangdong Academy of Medical Sciences, Taian 271016, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
17
|
Dent MR, DeMartino AW. Nitric oxide and thiols: Chemical biology, signalling paradigms and vascular therapeutic potential. Br J Pharmacol 2023:10.1111/bph.16274. [PMID: 37908126 PMCID: PMC11058123 DOI: 10.1111/bph.16274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Nitric oxide (• NO) interactions with biological thiols play crucial, but incompletely determined, roles in vascular signalling and other biological processes. Here, we highlight two recently proposed signalling paradigms: (1) the formation of a vasodilating labile nitrosyl ferrous haem (NO-ferrohaem) facilitated by thiols via thiyl radical generation and (2) polysulfides/persulfides and their interaction with • NO. We also describe the specific (bio)chemical routes in which • NO and thiols react to form S-nitrosothiols, a broad class of small molecules, and protein post-translational modifications that can influence protein function through catalytic site or allosteric structural changes. S-Nitrosothiol formation depends upon cellular conditions, but critically, an appropriate oxidant for either the thiol (yielding a thiyl radical) or • NO (yielding a nitrosonium [NO+ ]-donating species) is required. We examine the roles of these collective • NO/thiol species in vascular signalling and their cardiovascular therapeutic potential.
Collapse
Affiliation(s)
- Matthew R. Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony W. DeMartino
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Xiao X, Xu Y, Moschetta GA, Yu Y, Fisher AL, Alfaro-Magallanes VM, McMillen S, Phillips S, Wang CY, Christian J, Babitt JL. BMP5 contributes to hepcidin regulation and systemic iron homeostasis in mice. Blood 2023; 142:1312-1322. [PMID: 37478395 PMCID: PMC10613724 DOI: 10.1182/blood.2022019195] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023] Open
Abstract
Hepcidin is the master regulator of systemic iron homeostasis. The bone morphogenetic protein (BMP) signaling pathway is a critical regulator of hepcidin expression in response to iron and erythropoietic drive. Although endothelial-derived BMP6 and BMP2 ligands have key functional roles as endogenous hepcidin regulators, both iron and erythropoietic drives still regulate hepcidin in mice lacking either or both ligands. Here, we used mice with an inactivating Bmp5 mutation (Bmp5se), either alone or together with a global or endothelial Bmp6 knockout, to investigate the functional role of BMP5 in hepcidin and systemic iron homeostasis regulation. We showed that Bmp5se-mutant mice exhibit hepcidin deficiency at age 10 days, blunted hepcidin induction in response to oral iron gavage, and mild liver iron loading when fed on a low- or high-iron diet. Loss of 1 or 2 functional Bmp5 alleles also leads to increased iron loading in Bmp6-heterozygous mice and more profound hemochromatosis in global or endothelial Bmp6-knockout mice. Moreover, double Bmp5- and Bmp6-mutant mice fail to induce hepcidin in response to long-term dietary iron loading. Finally, erythroferrone binds directly to BMP5 and inhibits BMP5 induction of hepcidin in vitro. Although erythropoietin suppresses hepcidin in Bmp5se-mutant mice, it fails to suppress hepcidin in double Bmp5- and Bmp6-mutant males. Together, these data demonstrate that BMP5 plays a functional role in hepcidin and iron homeostasis regulation, particularly under conditions in which BMP6 is limited.
Collapse
Affiliation(s)
- Xia Xiao
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yang Xu
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gillian A. Moschetta
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yang Yu
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Allison L. Fisher
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Víctor M. Alfaro-Magallanes
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, Madrid, Spain
| | - Shasta McMillen
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sydney Phillips
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Chia-Yu Wang
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jan Christian
- Division of Hematology and Hematologic Malignancies, Department of Neurobiology and Internal Medicine, University of Utah, Salt Lake City, UT
| | - Jodie L. Babitt
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Li Y, Ma JQ, Wang CC, Zhou J, Sun YD, Wei XL, Zhao ZQ. Ferroptosis: A potential target of macrophages in plaque vulnerability. Open Life Sci 2023; 18:20220722. [PMID: 37791060 PMCID: PMC10543703 DOI: 10.1515/biol-2022-0722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
Plaque vulnerability has been the subject of several recent studies aimed at reducing the risk of stroke and carotid artery stenosis. Atherosclerotic plaque development is a complex process involving inflammation mediated by macrophages. Plaques become more vulnerable when the equilibrium between macrophage recruitment and clearance is disturbed. Lipoperoxides, which are affected by iron levels in cells, are responsible for the cell death seen in ferroptosis. Ferroptosis results from lipoperoxide-induced mitochondrial membrane toxicity. Atherosclerosis in ApoE(-/-) mice is reduced when ferroptosis is inhibited and iron intake is limited. Single-cell sequencing revealed that a ferroptosis-related gene was substantially expressed in atherosclerosis-modeled macrophages. Since ferroptosis can be regulated, it offers hope as a non-invasive method of treating carotid plaque. In this study, we discuss the role of ferroptosis in atherosclerotic plaque vulnerability, including its mechanism, regulation, and potential future research directions.
Collapse
Affiliation(s)
- Yu Li
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Ji-Qing Ma
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Chao-Chen Wang
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Jian Zhou
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Yu-Dong Sun
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University,
Nanjing201411, China
| | - Xiao-Long Wei
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Zhi-Qing Zhao
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| |
Collapse
|
20
|
Ginzburg Y, An X, Rivella S, Goldfarb A. Normal and dysregulated crosstalk between iron metabolism and erythropoiesis. eLife 2023; 12:e90189. [PMID: 37578340 PMCID: PMC10425177 DOI: 10.7554/elife.90189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023] Open
Abstract
Erythroblasts possess unique characteristics as they undergo differentiation from hematopoietic stem cells. During terminal erythropoiesis, these cells incorporate large amounts of iron in order to generate hemoglobin and ultimately undergo enucleation to become mature red blood cells, ultimately delivering oxygen in the circulation. Thus, erythropoiesis is a finely tuned, multifaceted process requiring numerous properly timed physiological events to maintain efficient production of 2 million red blood cells per second in steady state. Iron is required for normal functioning in all human cells, the erythropoietic compartment consuming the majority in light of the high iron requirements for hemoglobin synthesis. Recent evidence regarding the crosstalk between erythropoiesis and iron metabolism sheds light on the regulation of iron availability by erythroblasts and the consequences of insufficient as well as excess iron on erythroid lineage proliferation and differentiation. In addition, significant progress has been made in our understanding of dysregulated iron metabolism in various congenital and acquired malignant and non-malignant diseases. Finally, we report several actual as well as theoretical opportunities for translating the recently acquired robust mechanistic understanding of iron metabolism regulation to improve management of patients with disordered erythropoiesis, such as anemia of chronic inflammation, β-thalassemia, polycythemia vera, and myelodysplastic syndromes.
Collapse
Affiliation(s)
- Yelena Ginzburg
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Xiuli An
- LFKRI, New York Blood CenterNew YorkUnited States
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Cell and Molecular Biology affinity group (CAMB), University of PennsylvaniaPhiladelphiaUnited States
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics at the Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Penn Center for Musculoskeletal Disorders at the Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at University of PennsylvaniaPhiladelphiaUnited States
- RNA Institute at University of PennsylvaniaPhiladelphiaUnited States
| | - Adam Goldfarb
- Department of Pathology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
21
|
Bao J, Yan Y, Zuo D, Zhuo Z, Sun T, Lin H, Han Z, Zhao Z, Yu H. Iron metabolism and ferroptosis in diabetic bone loss: from mechanism to therapy. Front Nutr 2023; 10:1178573. [PMID: 37215218 PMCID: PMC10196368 DOI: 10.3389/fnut.2023.1178573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
Osteoporosis, one of the most serious and common complications of diabetes, has affected the quality of life of a large number of people in recent years. Although there are many studies on the mechanism of diabetic osteoporosis, the information is still limited and there is no consensus. Recently, researchers have proven that osteoporosis induced by diabetes mellitus may be connected to an abnormal iron metabolism and ferroptosis inside cells under high glucose situations. However, there are no comprehensive reviews reported. Understanding these mechanisms has important implications for the development and treatment of diabetic osteoporosis. Therefore, this review elaborates on the changes in bones under high glucose conditions, the consequences of an elevated glucose microenvironment on the associated cells, the impact of high glucose conditions on the iron metabolism of the associated cells, and the signaling pathways of the cells that may contribute to diabetic bone loss in the presence of an abnormal iron metabolism. Lastly, we also elucidate and discuss the therapeutic targets of diabetic bone loss with relevant medications which provides some inspiration for its cure.
Collapse
Affiliation(s)
- Jiahao Bao
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yixuan Yan
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Daihui Zuo
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyong Zhuo
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Tianhao Sun
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Hongli Lin
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Zheshen Han
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Zhiyang Zhao
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongbo Yu
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
22
|
Xiao X, Moschetta GA, Xu Y, Fisher AL, Alfaro-Magallanes VM, Dev S, Wang CY, Babitt JL. Regulation of iron homeostasis by hepatocyte TfR1 requires HFE and contributes to hepcidin suppression in β-thalassemia. Blood 2023; 141:422-432. [PMID: 36322932 PMCID: PMC9936306 DOI: 10.1182/blood.2022017811] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Transferrin receptor 1 (TfR1) performs a critical role in cellular iron uptake. Hepatocyte TfR1 is also proposed to influence systemic iron homeostasis by interacting with the hemochromatosis protein HFE to regulate hepcidin production. Here, we generated hepatocyte Tfrc knockout mice (Tfrcfl/fl;Alb-Cre+), either alone or together with Hfe knockout or β-thalassemia, to investigate the extent to which hepatocyte TfR1 function depends on HFE, whether hepatocyte TfR1 impacts hepcidin regulation by serum iron and erythropoietic signals, and its contribution to hepcidin suppression and iron overload in β-thalassemia. Compared with Tfrcfl/fl;Alb-Cre- controls, Tfrcfl/fl;Alb-Cre+ mice displayed reduced serum and liver iron; mildly reduced hematocrit, mean cell hemoglobin, and mean cell volume; increased erythropoietin and erythroferrone; and unchanged hepcidin levels that were inappropriately high relative to serum iron, liver iron, and erythroferrone levels. However, ablation of hepatocyte Tfrc had no impact on iron phenotype in Hfe knockout mice. Tfrcfl/fl;Alb-Cre+ mice also displayed a greater induction of hepcidin by serum iron compared with Tfrcfl/fl;Alb-Cre- controls. Finally, although acute erythropoietin injection similarly reduced hepcidin in Tfrcfl/fl;Alb-Cre+ and Tfrcfl/fl;Alb-Cre- mice, ablation of hepatocyte Tfrc in a mouse model of β-thalassemia intermedia ameliorated hepcidin deficiency and liver iron loading. Together, our data suggest that the major nonredundant function of hepatocyte TfR1 in iron homeostasis is to interact with HFE to regulate hepcidin. This regulatory pathway is modulated by serum iron and contributes to hepcidin suppression and iron overload in murine β-thalassemia.
Collapse
Affiliation(s)
- Xia Xiao
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gillian A. Moschetta
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yang Xu
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Allison L. Fisher
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Som Dev
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Chia-Yu Wang
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jodie L. Babitt
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
23
|
Non-transferrin-bound iron takes the driver's seat. Blood 2023; 141:214-216. [PMID: 36656611 DOI: 10.1182/blood.2022019049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
24
|
Liver sinusoidal endothelial cells induce BMP6 expression in response to non-transferrin-bound iron. Blood 2023; 141:271-284. [PMID: 36351237 DOI: 10.1182/blood.2022016987] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Homeostatic adaptation to systemic iron overload involves transcriptional induction of bone morphogenetic protein 6 (BMP6) in liver sinusoidal endothelial cells (LSECs). BMP6 is then secreted to activate signaling of the iron hormone hepcidin (HAMP) in neighboring hepatocytes. To explore the mechanism of iron sensing by LSECs, we generated TfrcTek-Cre mice with endothelial cell-specific ablation of transferrin receptor 1 (Tfr1). We also used control Tfrcfl/fl mice to characterize the LSEC-specific molecular responses to iron using single-cell transcriptomics. TfrcTek-Cre animals tended to have modestly increased liver iron content (LIC) compared with Tfrcfl/fl controls but expressed physiological Bmp6 and Hamp messenger RNA (mRNA). Despite a transient inability to upregulate Bmp6, they eventually respond to iron challenges with Bmp6 and Hamp induction, yet occasionally to levels slightly lower relative to LIC. High dietary iron intake triggered the accumulation of serum nontransferrin bound iron (NTBI), which significantly correlated with liver Bmp6 and Hamp mRNA levels and elicited more profound alterations in the LSEC transcriptome than holo-transferrin injection. This culminated in the robust induction of Bmp6 and other nuclear factor erythroid 2-related factor 2 (Nrf2) target genes, as well as Myc target genes involved in ribosomal biogenesis and protein synthesis. LSECs and midzonal hepatocytes were the most responsive liver cells to iron challenges and exhibited the highest expression of Bmp6 and Hamp mRNAs, respectively. Our data suggest that during systemic iron overload, LSECs internalize NTBI, which promotes oxidative stress and thereby transcriptionally induces Bmp6 via Nrf2. Tfr1 appears to contribute to iron sensing by LSECs, mostly under low iron conditions.
Collapse
|