1
|
Chen CP, Lin HY, Wang LK, Chern SR, Wu PS, Chen SW, Wu FT, Fran S, Chen YY, Town DD, Pan CW, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of a small supernumerary marker chromosome derived from inv dup(15). Taiwan J Obstet Gynecol 2021; 59:580-585. [PMID: 32653133 DOI: 10.1016/j.tjog.2020.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE We present prenatal diagnosis and molecular cytogenetic characterization of an inverted duplication of proximal chromosome 15 [inv dup(15)] presenting as a small supernumerary marker chromosome (sSMC) at amniocentesis associated with concomitant microduplication of 8q22.1. MATERIALS AND METHODS A 39-year-old woman underwent amniocentesis at 16 weeks of gestation because of advanced maternal age, and the result was 47, XY, +mar dn. The woman requested for repeat amniocentesis at 20 weeks of gestation. Array comparative genomic hybridization (aCGH), fluorescence in situ hybridization (FISH), quantitative fluorescent polymerase chain reaction (QF-PCR) and DNA methylation analysis were applied to determine the nature of the sSMC. RESULTS aCGH on the uncultured amniocytes revealed the result of arr 8q22.1 (93,918,763-96,618,539) × 3.0, arr 15q11.2q13.2 (22,765,628-30,658,876) × 4.0, arr 15q13.2q13.3 (30,653,877-32,509,926) × 3.0 [GRCh37 (hg19)]. Interphase FISH analysis using RP11-34H12 [15q13.2; Texas Red, 30,709,033-30,893,021 (hg19)] on 100 uncultured amniocytes showed that 38 cells had three signals, 45 cells had four signals and 27 cells had two signals. The parental bloods had normal aCGH results. The karyotype of cultured amniocytes was 47, XY, +inv dup(15) (pter→q13::q13→pter) which was confirmed by metaphase FISH analysis. No informative markers could be found in QF-PCR analysis. DNA methylation analysis on cord blood confirmed a maternal origin of the 15q11-q13 gene dosage increase with a result of 15q11.2 SNRPN DNA hypermethylation. Postnatal cytogenetic analysis on cord blood, umbilical cord and placenta showed the results consistent with the prenatal diagnosis. CONCLUSION Molecular cytogenetic techniques are useful for rapid diagnosis of an inv dup(15) chromosome presenting as an sSMC at amniocentesis.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Hsiang-Yu Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Liang-Kai Wang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Fang-Tzu Wu
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Sisca Fran
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yun-Yi Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Dai-Dyi Town
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chen-Wen Pan
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
2
|
Pavone P, Ruggieri M, Marino SD, Corsello G, Pappalardo X, Polizzi A, Parano E, Romano C, Marino S, Praticò AD, Falsaperla R. Chromosome 15q BP3 to BP5 deletion is a likely locus for speech delay and language impairment: Report on a four-member family and an unrelated boy. Mol Genet Genomic Med 2020; 8:e1109. [PMID: 31991071 PMCID: PMC7196468 DOI: 10.1002/mgg3.1109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Deletions in chromosome 15q13 have been reported both in healthy people and individuals with a wide range of behavioral and neuropsychiatric disturbances. Six main breakpoint (BP) subregions (BP1-BP6) are mapped to the 15q13 region and three further embedded BP regions (BP3-BP5). The deletion at BP4-BP5 is the rearrangement most frequently observed compared to other known deletions in BP3-BP5 and BP3-BP4 regions. Deletions of each of these three regions have previously been implicated in a variable range of clinical phenotypes, including minor dysmorphism, developmental delay/intellectual disability, epilepsy, autism spectrum disorders, behavioral disturbances, and speech disorders. Of note, no overt clinical difference among each group of BP region deletions has been recorded so far. METHODS We report on a four-member family plus an additional unrelated boy affected by a BP3-BP5 deletion that presented with typical clinical signs including speech delay and language impairment. A review of the clinical features associated with the three main groups of BP regions (BP4-BP5, BP3-BP5, and BP3-BP4) deletions is reported. RESULTS Array-CGH analysis revealed in the mother (case 1) and in her three children (cases 2, 3, and 4), as well as in the unrelated boy (case 5), the following rearrangement: arr (hg19) 15q13.1-q13.3 (29.213.402-32.510.863) x1. CONCLUSION This report, along with other recent observations, suggests the hypothesis that the BP region comprised between BP3 and BP5 in chromosome 15q13 is involved in several brain human dysfunctions, including impairment of the language development and, its deletion, may be directly or indirectly responsible for the speech delay and language deficit in the affected individuals.
Collapse
Affiliation(s)
- Piero Pavone
- Unit of Clinical PediatricsUniversity Hospital “Policlinico‐Vittorio Emanuele”University of CataniaCataniaItaly
- Unit of Rare Diseases of the Nervous System in ChildhoodDepartment of Clinical and Experimental MedicineSection of Pediatrics and Child NeuropsychiatryUniversity of CataniaCataniaItaly
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in ChildhoodDepartment of Clinical and Experimental MedicineSection of Pediatrics and Child NeuropsychiatryUniversity of CataniaCataniaItaly
| | - Simona D. Marino
- Units of Pediatrics and Pediatric EmergencyUniversity Hospital “Policlinico‐Vittorio Emanuele”CataniaItaly
| | - Giovanni Corsello
- Units of Pediatrics and Neonatal Intensive CareDepartment of Health Promotion of Maternal‐Infantile Care and of Excellence Internal and Specialist Medicine “G. D'Alessandro” [PROMISE]University of PalermoPalermoItaly
| | - Xena Pappalardo
- National Council of ResearchInstitute for Research and Biomedical Innovation (IRIB)Unit of CataniaCataniaItaly
| | - Agata Polizzi
- Chair of PediatricsDepartment of Educational SciencesUniversity of CataniaCataniaItaly
| | - Enrico Parano
- National Council of ResearchInstitute for Research and Biomedical Innovation (IRIB)Unit of CataniaCataniaItaly
| | - Catia Romano
- Units of Pediatrics and Pediatric EmergencyUniversity Hospital “Policlinico‐Vittorio Emanuele”CataniaItaly
| | - Silvia Marino
- Units of Pediatrics and Pediatric EmergencyUniversity Hospital “Policlinico‐Vittorio Emanuele”CataniaItaly
| | - Andrea Domenico Praticò
- Unit of Rare Diseases of the Nervous System in ChildhoodDepartment of Clinical and Experimental MedicineSection of Pediatrics and Child NeuropsychiatryUniversity of CataniaCataniaItaly
| | - Raffaele Falsaperla
- Units of Pediatrics and Pediatric EmergencyUniversity Hospital “Policlinico‐Vittorio Emanuele”CataniaItaly
| |
Collapse
|
3
|
Domínguez-Iturza N, Lo AC, Shah D, Armendáriz M, Vannelli A, Mercaldo V, Trusel M, Li KW, Gastaldo D, Santos AR, Callaerts-Vegh Z, D'Hooge R, Mameli M, Van der Linden A, Smit AB, Achsel T, Bagni C. The autism- and schizophrenia-associated protein CYFIP1 regulates bilateral brain connectivity and behaviour. Nat Commun 2019; 10:3454. [PMID: 31371726 PMCID: PMC6672001 DOI: 10.1038/s41467-019-11203-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/20/2019] [Indexed: 12/26/2022] Open
Abstract
Copy-number variants of the CYFIP1 gene in humans have been linked to autism spectrum disorders (ASD) and schizophrenia (SCZ), two neuropsychiatric disorders characterized by defects in brain connectivity. Here, we show that CYFIP1 plays an important role in brain functional connectivity and callosal functions. We find that Cyfip1-heterozygous mice have reduced functional connectivity and defects in white matter architecture, similar to phenotypes found in patients with ASD, SCZ and other neuropsychiatric disorders. Cyfip1-deficient mice also present decreased myelination in the callosal axons, altered presynaptic function, and impaired bilateral connectivity. Finally, Cyfip1 deficiency leads to abnormalities in motor coordination, sensorimotor gating and sensory perception, which are also known neuropsychiatric disorder-related symptoms. These results show that Cyfip1 haploinsufficiency compromises brain connectivity and function, which might explain its genetic association to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nuria Domínguez-Iturza
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
- Department of Human Genetics KU Leuven, VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Adrian C Lo
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Disha Shah
- Department of Biomedical Sciences, Bio-Imaging Laboratory, University of Antwerp, 2610, Antwerp, Belgium
- Department of Neuroscience KU Leuven, VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Marcelo Armendáriz
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000, Leuven, Belgium
| | - Anna Vannelli
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Valentina Mercaldo
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Massimo Trusel
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081, Amsterdam, The Netherlands
| | - Denise Gastaldo
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Ana Rita Santos
- Department of Human Genetics KU Leuven, VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
- VIB Discovery Sciences, Bioincubator, 3001, Heverlee, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Faculty of Psychology and Educational Sciences, KU Leuven, Laboratory of Biological Psychology, 3000, Leuven, Belgium
| | - Rudi D'Hooge
- Faculty of Psychology and Educational Sciences, KU Leuven, Laboratory of Biological Psychology, 3000, Leuven, Belgium
| | - Manuel Mameli
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Annemie Van der Linden
- Department of Biomedical Sciences, Bio-Imaging Laboratory, University of Antwerp, 2610, Antwerp, Belgium
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081, Amsterdam, The Netherlands
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
- Department of Human Genetics KU Leuven, VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland.
- Department of Human Genetics KU Leuven, VIB Center for Brain & Disease Research, 3000, Leuven, Belgium.
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
4
|
Reilly J, Gallagher L, Chen JL, Leader G, Shen S. Bio-collections in autism research. Mol Autism 2017; 8:34. [PMID: 28702161 PMCID: PMC5504648 DOI: 10.1186/s13229-017-0154-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental disorders with diverse clinical manifestations and symptoms. In the last 10 years, there have been significant advances in understanding the genetic basis for ASD, critically supported through the establishment of ASD bio-collections and application in research. Here, we summarise a selection of major ASD bio-collections and their associated findings. Collectively, these include mapping ASD candidate genes, assessing the nature and frequency of gene mutations and their association with ASD clinical subgroups, insights into related molecular pathways such as the synapses, chromatin remodelling, transcription and ASD-related brain regions. We also briefly review emerging studies on the use of induced pluripotent stem cells (iPSCs) to potentially model ASD in culture. These provide deeper insight into ASD progression during development and could generate human cell models for drug screening. Finally, we provide perspectives concerning the utilities of ASD bio-collections and limitations, and highlight considerations in setting up a new bio-collection for ASD research.
Collapse
Affiliation(s)
- Jamie Reilly
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| | - Louise Gallagher
- Trinity Translational Medicine Institute and Department of Psychiatry, Trinity Centre for Health Sciences, St. James Hospital Street, Dublin 8, Ireland
| | - June L. Chen
- Department of Special Education, Faculty of Education, East China Normal University, Shanghai, 200062 China
| | - Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research (ICAN), Department of Psychology, National University of Ireland Galway, University Road, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| |
Collapse
|
5
|
Chen CP, Lin SP, Chern SR, Wu PS, Chen YN, Chen SW, Lee CC, Town DD, Yang CW, Wang W. Molecular cytogenetic characterization of an inv dup(15) chromosome presenting as a small supernumerary marker chromosome associated with the inv dup(15) syndrome. Taiwan J Obstet Gynecol 2016; 55:728-732. [DOI: 10.1016/j.tjog.2016.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2016] [Indexed: 12/13/2022] Open
|
6
|
Granild Bie Mertz L, Christensen R, Vogel I, Hertz JM, Østergaard JR. Epilepsy and cataplexy in Angelman syndrome. Genotype-phenotype correlations. RESEARCH IN DEVELOPMENTAL DISABILITIES 2016; 56:177-182. [PMID: 27323320 DOI: 10.1016/j.ridd.2016.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Angelman syndrome (AS) is a neurogenetic disorder characterized by intellectual disability, epilepsy, and low threshold for laughter. AIMS We investigated the occurrence and severity of epilepsy and laughter-induced loss of postural muscle tone determined by the different genetic subtypes. METHODS This study included 39 children with AS. Deletion breakpoints were determined by high resolution CGH microarray (1×1M Agilent). Clinical data were based on a parent interview and medical record review. RESULTS All patients with AS based on a deletion had epilepsy. Epilepsy was present in 3/4 children with UBE3A mutation, and 4/5 with pUPD. Onset of epilepsy occurred earlier in deletion cases compared to pUPD or UBE3A mutations cases. Laughter-induced postural muscle tone loss occurred only among deletion cases. We found no differences in severity of epilepsy between children with a larger Class I or a smaller Class II deletions, or between the total group with a deletion compared to children with pUPD or a UBE3A mutation. The drugs most frequently prescribed were benzodiazepines in monotherapy, or a combination of benzodiazepines and valproic acid. CONCLUSION Epilepsy is very common in patients with AS, especially in patients with a deletion. Postural muscle tone loss and collapsing during outbursts of laughter were seen in patients with a deletion only.
Collapse
Affiliation(s)
- Line Granild Bie Mertz
- Centre for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Denmark.
| | - Rikke Christensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Ida Vogel
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Michael Hertz
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - John R Østergaard
- Centre for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Denmark
| |
Collapse
|
7
|
Botezatu A, Puiu M, Cucu N, Diaconu CC, Badiu C, Arsene C, Iancu IV, Plesa A, Anton G. Comparative molecular approaches in Prader-Willi syndrome diagnosis. Gene 2016; 575:353-358. [PMID: 26335514 DOI: 10.1016/j.gene.2015.08.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/27/2015] [Accepted: 08/17/2015] [Indexed: 12/01/2022]
Abstract
Prader-Willi and Angelman syndromes are two distinct neurogenetic disorders caused by chromosomal deletions, uniparental disomy or loss of the imprinted gene expression in the 15q11-q13 region. PWS results from the lack of the paternally expressed gene contribution in the region. The aim of our study was to compare a new molecular approach based on the quantification of the expression of non-imprinted bi-allelic gene (NIPA1 and OCA2) with in house MS-PCR and the MS-MLPA test. Blood samples were collected from 12 patients, clinical criteria positives for Prader-Willi syndrome. DNA and RNA samples were isolated from white blood cells. Epigenetic changes at SNRPN gene locus were evaluated by MS-PCR technique. The expression levels of two non-imprinted genes (NIPA1 and OCA2) were evaluated in qReal-Time PCR, in order to identify type 1 and type 2 deletions. SALSA MS-MLPA kit ME028 was used to detect copy number changes and to analyze CpG islands methylation of the 15q11 region. MS-MLPA test confirmed that 8/12 patients presented different types of deletion at the SNRPN gene level (promoter, introns, and exons) and 4/8 displayed type 1 or type 2 deletion. In children with 15q11-13 deletions, the decreased level of NIPA1and OCA2 gene expression is related to chromosomal abnormality in the investigated area. The deletions were confirmed by MS-MLPA analysis, thus recommending NIPA1 and OCA2 gene expression as an alternate method to investigate deletions.
Collapse
Affiliation(s)
- Anca Botezatu
- "Stefan S. Nicolau" Institute of Virology Bucharest, Romania.
| | - Maria Puiu
- "V.Babes" University of Medicine and Pharmacy Timisoara, Romania
| | - Natalia Cucu
- University of Bucharest, Faculty of Biology, Bucharest, Romania
| | | | - C Badiu
- "C.I. Parhon" Institute of Endocrinology Bucharest, Romania
| | - C Arsene
- University of Bucharest, Faculty of Biology, Bucharest, Romania
| | - Iulia V Iancu
- "Stefan S. Nicolau" Institute of Virology Bucharest, Romania
| | - Adriana Plesa
- "Stefan S. Nicolau" Institute of Virology Bucharest, Romania
| | - Gabriela Anton
- "Stefan S. Nicolau" Institute of Virology Bucharest, Romania
| |
Collapse
|
8
|
Mertz LGB, Christensen R, Vogel I, Hertz JM, Østergaard JR. Eating behavior, prenatal and postnatal growth in Angelman syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2014; 35:2681-2690. [PMID: 25064682 DOI: 10.1016/j.ridd.2014.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
The objectives of the present study were to investigate eating behavior and growth parameters in Angelman syndrome. We included 39 patients with Angelman syndrome. Twelve cases had a larger Class I deletion, eighteen had a smaller Class II deletion, whereas paternal uniparental disomy (pUPD) or a verified UBE3A mutation were present in five and four cases, respectively. Eating behavior was assessed by a questionnaire. Anthropometric measures were obtained from medical records and compared to Danish reference data. Children with pUPD had significantly larger birth weight and birth length than children carrying a deletion or a UBE3A mutation. We found no difference in birth weight or length in children with Class I or Class II deletions. When maternal birth weight and/or birth weight of siblings were taken into consideration, children with Class I deletion had a lower weight at birth than expected, and the weight continued to be reduced during the investigated initial five years of life. In contrast, children with pUPD showed hyperphagic behavior and their weight increased significantly after the age of two years. Accordingly, their body mass index was significantly increased as compared to children with a deletion. At birth, one child showed microcephaly. At five years of age, microcephaly was observed in half of the deletion cases, but in none of the cases with a UBE3A mutation or pUPD. The apparently normal cranial growth in the UBE3A and pUPD patients should however be regarded as the result of a generally increased growth. Eating behavior, pre- and postnatal growth in children with Angelman syndrome depends on genotype.
Collapse
Affiliation(s)
- Line G B Mertz
- Centre for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark.
| | - Rikke Christensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Ida Vogel
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Jens M Hertz
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - John R Østergaard
- Centre for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Mertz LGB, Thaulov P, Trillingsgaard A, Christensen R, Vogel I, Hertz JM, Ostergaard JR. Neurodevelopmental outcome in Angelman syndrome: genotype-phenotype correlations. RESEARCH IN DEVELOPMENTAL DISABILITIES 2014; 35:1742-1747. [PMID: 24656292 DOI: 10.1016/j.ridd.2014.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
Angelman syndrome (AS) is a neurogenetic disorder characterized by intellectual disability, developmental delay, lack of speech, and epileptic seizures. Previous studies have indicated that children with AS due to 15q11.2-q13 deletions have a more severe developmental delay and present more often autistic features than those with AS caused by other genetic etiologies. The present study investigated the neurodevelopmental profiles of the different genetic etiologies of AS, and examined the evolution of mental development and autistic features over a 12-year period in children with a 15q11.2-q13 deletion. This study included 42 children with AS. Twelve had a Class I deletion, 18 had Class II deletions, three showed atypical large deletions, five had paternal uniparental disomy (pUPD) and four had UBE3A mutations. Children with a deletion (Class I and Class II) showed significantly reduced developmental age in terms of visual perception, receptive language, and expressive language when compared to those with a UBE3A mutation and pUPD. Within all subgroups, expressive language performance was significantly reduced when compared to the receptive performance. A follow-up study of seven AS cases with 15q11.2-q13 deletions revealed that over 12 years, the level of autistic features did not change, but both receptive and expressive language skills improved.
Collapse
Affiliation(s)
- Line Granild Bie Mertz
- Centre for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Denmark.
| | - Per Thaulov
- Psychiatric Hospital for Children and Adolescents, Aarhus University Hospital, Denmark
| | | | - Rikke Christensen
- Department of Clinical Genetics, Aarhus University Hospital, Denmark
| | - Ida Vogel
- Department of Clinical Genetics, Aarhus University Hospital, Denmark
| | | | - John R Ostergaard
- Centre for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Denmark
| |
Collapse
|
10
|
Chen CP, Chen M, Su YN, Chern SR, Wu PS, Chang SP, Kuo YL, Chen WL, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of mosaicism for a small supernumerary marker chromosome derived from chromosome 15. Taiwan J Obstet Gynecol 2014; 53:129-32. [DOI: 10.1016/j.tjog.2013.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2013] [Indexed: 02/03/2023] Open
|
11
|
Glutamatergic candidate genes in autism spectrum disorder: an overview. J Neural Transm (Vienna) 2014; 121:1081-106. [PMID: 24493018 DOI: 10.1007/s00702-014-1161-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/13/2014] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders with early onset in childhood. Most of the risk for ASD can be explained by genetic variants that act in interaction with biological environmental risk factors. However, the architecture of the genetic components is still unclear. Genetic studies and subsequent systems biological approaches described converging functional effects of identified genes towards pathways relevant for neuronal signalling. Mouse models suggest an aberrant synaptic plasticity at the neuropathological level, which is believed to be conferred by dysregulation of long-term potentiation or depression of neuronal connections. A central pathway regulating these mechanisms is glutamatergic signalling. Here, we hypothesized that susceptibility genes for ASD are enriched for components of this pathway. To further understand the impact of ASD risk genes on the glutamatergic pathway, we performed a systematic review using the literature database "pubmed" and the "AutismKB" knowledgebase. We provide an overview of the glutamatergic system in typical brain function and development, and summarize findings from linkage, association, copy number variants, and sequencing studies in ASD to provide a comprehensive picture of the glutamatergic landscape of ASD genetics. Genetic variants associated with ASD were enriched in glutamatergic pathways, affecting receptor signalling, metabolism and transport. Furthermore, in genetically modified mouse models for ASD, pharmacological compounds acting on ionotropic or metabotropic receptor activity are able to rescue ASD reminscent phenotypes. We conclude that glutamatergic genetic risk factors for ASD show a complex pattern and further studies are needed to fully understand its mechanisms, before translation of findings into clinical applications and individualized treatment approaches will be possible.
Collapse
|
12
|
Xu F, Li L, Schulz VP, Gallagher PG, Xiang B, Zhao H, Li P. Cytogenomic mapping and bioinformatic mining reveal interacting brain expressed genes for intellectual disability. Mol Cytogenet 2014; 7:4. [PMID: 24410907 PMCID: PMC3905969 DOI: 10.1186/1755-8166-7-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/16/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Microarray analysis has been used as the first-tier genetic testing to detect chromosomal imbalances and copy number variants (CNVs) for pediatric patients with intellectual and developmental disabilities (ID/DD). To further investigate the candidate genes and underlying dosage-sensitive mechanisms related to ID, cytogenomic mapping of critical regions and bioinformatic mining of candidate brain-expressed genes (BEGs) and their functional interactions were performed. Critical regions of chromosomal imbalances and pathogenic CNVs were mapped by subtracting known benign CNVs from the Databases of Genomic Variants (DGV) and extracting smallest overlap regions with cases from DatabasE of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources (DECIPHER). BEGs from these critical regions were revealed by functional annotation using Database for Annotation, Visualization, and Integrated Discovery (DAVID) and by tissue expression pattern from Uniprot. Cross-region interrelations and functional networks of the BEGs were analyzed using Gene Relationships Across Implicated Loci (GRAIL) and Ingenuity Pathway Analysis (IPA). RESULTS Of the 1,354 patients analyzed by oligonucleotide array comparative genomic hybridization (aCGH), pathogenic abnormalities were detected in 176 patients including genomic disorders in 66 patients (37.5%), subtelomeric rearrangements in 45 patients (25.6%), interstitial imbalances in 33 patients (18.8%), chromosomal structural rearrangements in 17 patients (9.7%) and aneuploidies in 15 patients (8.5%). Subtractive and extractive mapping defined 82 disjointed critical regions from the detected abnormalities. A total of 461 BEGs was generated from 73 disjointed critical regions. Enrichment of central nervous system specific genes in these regions was noted. The number of BEGs increased with the size of the regions. A list of 108 candidate BEGs with significant cross region interrelation was identified by GRAIL and five significant gene networks involving cell cycle, cell-to-cell signaling, cellular assembly, cell morphology, and gene expression regulations were denoted by IPA. CONCLUSIONS These results characterized ID related cross-region interrelations and multiple networks of candidate BEGs from the detected genomic imbalances. Further experimental study of these BEGs and their interactions will lead to a better understanding of dosage-sensitive mechanisms and modifying effects of human mental development.
Collapse
Affiliation(s)
- Fang Xu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Lun Li
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA.,Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Vincent P Schulz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick G Gallagher
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Bixia Xiang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - Peining Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Mertz LGB, Christensen R, Vogel I, Hertz JM, Nielsen KB, Grønskov K, Østergaard JR. Angelman syndrome in Denmark. birth incidence, genetic findings, and age at diagnosis. Am J Med Genet A 2013; 161A:2197-203. [PMID: 23913711 DOI: 10.1002/ajmg.a.36058] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/07/2012] [Accepted: 04/20/2013] [Indexed: 11/09/2022]
Abstract
Angelman syndrome (AS) is a neurogenetic disorder caused by loss of expression of the maternal imprinted gene UBE3A on chromosome 15q11.2-q13. Clinical features of AS include severe intellectual disability, a happy disposition, ataxia, mandibular prognatism, and epilepsy. Our objectives were to examine the birth incidence of AS in Denmark and to characterize the size of the 15q11.2-q13 deletions with 1,000K array CGH. In addition, we analyzed genotype differences in regard to age at diagnosis and investigated the occurrence of deletions/duplications outside the 15q11.2-q13 regions. We identified 51 patients with genetically verified AS, which corresponded to a birth incidence of 1:24,580 (95%CI: 1:23,727-1:25,433). Thirty-six patients showed a deletion; 13 had a Class I deletion and 20 had a Class II deletion. There was bimodal distribution of the BP3 breakpoint. Three patients had larger and atypical deletions, with distal breakpoints telomeric to BP3. Five patients had paternal uniparental disomy (pUPD) of chromosome 15, and four had a verified UBE3A mutation. Additional deletions/duplications outside the 15q11.2-q13 areas were demonstrated in half the participants. Six harbored more than one CNV. Mean age at diagnosis was 21 months (95%CI: 17-23 months) for children with a deletion and 46 months (95%CI: 36-55 months) for children with pUPD or a UBE3A mutation (P < 0.01). The presence of a CNV outside 15q11.2-q13 did not have an impact on age at diagnosis.
Collapse
Affiliation(s)
- Line Granild Bie Mertz
- Department of Pediatrics, Center for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
14
|
Liu APY, Tang WF, Lau ET, Chan KYK, Kan ASY, Wong KY, Tso WWY, Jalal K, Lee SL, Chau CSK, Chung BHY. Expanded Prader-Willi syndrome due to chromosome 15q11.2-14 deletion: report and a review of literature. Am J Med Genet A 2013; 161A:1309-18. [PMID: 23633107 DOI: 10.1002/ajmg.a.35909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/25/2013] [Indexed: 11/08/2022]
Abstract
We report on a male infant with de novo unbalanced t(5;15) translocation resulting in a 17.23 Mb deletion within 15q11.2-q14 and a 25.12 kb deletion in 5pter. The 15q11.2-q14 deletion encompassed the 15q11.2-q13 Prader-Willi syndrome (PWS) critical region and the recently described 15q13.3 microdeletion syndrome region while the 5pter deletion contained no RefSeq genes. From our literature review, patients with similar deletions in chromosome 15q exhibit expanded phenotype of severe developmental delay, protracted feeding problem, absent speech, central visual impairment, congenital malformations and epilepsy in addition to those typical of PWS. The patient reported herein had previously unreported anomalies of mega cisterna magna, horseshoe kidney and the rare neonatal interstitial lung disease known as pulmonary interstitial glycogenosis. Precise breakpoint delineation by microarray is useful in patients with atypical PWS deletions to guide investigation and prognostication.
Collapse
Affiliation(s)
- Anthony P Y Liu
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, and Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rout U, Abdul-Rahman OA, Dhossche DM. An immunological basis of hyperphagia driven by GABAergic dysfunction in Prader-Willi Syndrome. Med Hypotheses 2012; 78:462-4. [PMID: 22289342 DOI: 10.1016/j.mehy.2011.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 12/27/2011] [Indexed: 10/14/2022]
Abstract
Impaired immune function is increasingly seen as a core element of various neurological, psychiatric, and developmental disorders but has not yet been investigated in subjects with Prader-Willi Syndrome. We hypothesize that the emergence and the progression of PWS may be regulated by immune dysfunction involving auto-antibodies and miRNA driven by GABAergic dysfunction. Future research testing this hypothesis is discussed.
Collapse
Affiliation(s)
- Ujjwal Rout
- Department of Surgery, Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | | | |
Collapse
|
16
|
Unique and atypical deletions in Prader-Willi syndrome reveal distinct phenotypes. Eur J Hum Genet 2011; 20:283-90. [PMID: 22045295 DOI: 10.1038/ejhg.2011.187] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a multisystem, contiguous gene disorder caused by an absence of paternally expressed genes within the 15q11.2-q13 region via one of the three main genetic mechanisms: deletion of the paternally inherited 15q11.2-q13 region, maternal uniparental disomy and imprinting defect. The deletion class is typically subdivided into Type 1 and Type 2 based on their proximal breakpoints (BP1-BP3 and BP2-BP3, respectively). Despite PWS being a well-characterized genetic disorder the role of the specific genes contributing to various aspects of the phenotype are not well understood. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) is a recently developed technique that detects copy number changes and aberrant DNA methylation. In this study, we initially applied MS-MLPA to elucidate the deletion subtypes of 88 subjects. In our cohort, 32 had a Type 1 and 49 had a Type 2 deletion. The remaining seven subjects had unique or atypical deletions that were either smaller (n=5) or larger (n=2) than typically described and were further characterized by array-based comparative genome hybridization. In two subjects both the PWS region (15q11.2) and the newly described 15q13.3 microdeletion syndrome region were deleted. The subjects with a unique or an atypical deletion revealed distinct phenotypic features. In conclusion, unique or atypical deletions were found in ∼8% of the deletion subjects with PWS in our cohort. These novel deletions provide further insight into the potential role of several of the genes within the 15q11.2 and the 15q13.3 regions.
Collapse
|
17
|
Kim EY, Kim YK, Kim MK, Jung JM, Jeon GW, Kim HR, Sin JB. A case of de novo duplication of 15q24-q26.3. KOREAN JOURNAL OF PEDIATRICS 2011; 54:267-71. [PMID: 21949522 PMCID: PMC3174363 DOI: 10.3345/kjp.2011.54.6.267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/11/2010] [Accepted: 12/10/2010] [Indexed: 11/29/2022]
Abstract
Distal duplication, or trisomy 15q, is an extremely rare chromosomal disorder characterized by prenatal and postnatal overgrowth, mental retardation, and craniofacial malformations. Additional abnormalities typically include an unusually short neck, malformations of the fingers and toes, scoliosis and skeletal malformations, genital abnormalities, particularly in affected males, and, in some cases, cardiac defects. The range and severity of symptoms and physical findings may vary from case to case, depending upon the length and location of the duplicated portion of chromosome 15q. Most reported cases of duplication of the long arm of chromosome 15 frequently have more than one segmental imbalance resulting from unbalanced translocations involving chromosome 15 and deletions in another chromosome, as well as other structural chromosomal abnormalities. We report a female newborn with a de novo duplication, 15q24-q26.3, showing intrauterine overgrowth, a narrow asymmetric face with down-slanting palpebral fissures, a large, prominent nose, and micrognathia, arachnodactyly, camptodactyly, congenital heart disease, hydronephrosis, and hydroureter. Chromosomal analysis showed a 46,XX,inv(9)(p12q13),dup(15)(q24q26.3). Array comparative genomic hybridization analysis revealed a gain of 42 clones on 15q24-q26.3. This case represents the only reported patient with a de novo 15q24-q26.3 duplication that did not result from an unbalanced translocation and did not have a concomitant monosomic component in Korea.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Pediatrics, Pusan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Jin DK. Systematic review of the clinical and genetic aspects of Prader-Willi syndrome. KOREAN JOURNAL OF PEDIATRICS 2011; 54:55-63. [PMID: 21503198 PMCID: PMC3077502 DOI: 10.3345/kjp.2011.54.2.55] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 01/31/2011] [Indexed: 01/20/2023]
Abstract
Prader-Willi syndrome (PWS) is a complex multisystem genetic disorder that is caused by the lack of expression of paternally inherited imprinted genes on chromosome 15q11-q13. This syndrome has a characteristic phenotype including severe neonatal hypotonia, early-onset hyperphagia, development of morbid obesity, short stature, hypogonadism, learning disabilities, behavioral problems, and psychiatric problems. PWS is an example of a genetic condition caused by genomic imprinting. It can occur via 3 main mechanisms that lead to the absence of expression of paternally inherited genes in the 15q11.2-q13 region: paternal microdeletion, maternal uniparental disomy, and an imprinting defect. Over 99% of PWS cases can be diagnosed using DNA methylation analysis. Early diagnosis of PWS is important for effective long-term management. Growth hormone (GH) treatment improves the growth, physical phenotype, and body composition of patients with PWS. In recent years, GH treatment in infants has been shown to have beneficial effects on the growth and neurological development of patients diagnosed during infancy. There is a clear need for an integrated multidisciplinary approach to facilitate early diagnosis and optimize management to improve quality of life, prevent complications, and prolong life expectancy in patients with PWS.
Collapse
Affiliation(s)
- Dong Kyu Jin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Rosenfeld JA, Stephens LE, Coppinger J, Ballif BC, Hoo JJ, French BN, Banks VC, Smith WE, Manchester D, Tsai ACH, Merrion K, Mendoza-Londono R, Dupuis L, Schultz R, Torchia B, Sahoo T, Bejjani B, Weaver DD, Shaffer LG. Deletions flanked by breakpoints 3 and 4 on 15q13 may contribute to abnormal phenotypes. Eur J Hum Genet 2011; 19:547-54. [PMID: 21248749 DOI: 10.1038/ejhg.2010.237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Non-allelic homologous recombination (NAHR) between segmental duplications in proximal chromosome 15q breakpoint (BP) regions can lead to microdeletions and microduplications. Several individuals with deletions flanked by BP3 and BP4 on 15q13, immediately distal to, and not including the Prader-Willi/Angelman syndrome (PW/AS) critical region and proximal to the BP4-BP5 15q13.3 microdeletion syndrome region, have been reported; however, because the deletion has also been found in normal relatives, the significance of these alterations is unclear. We have identified six individuals with deletions limited to the BP3-BP4 interval and an additional four individuals with deletions of the BP3-BP5 interval from 34 046 samples submitted for clinical testing by microarray-based comparative genomic hybridization (aCGH). Of four individuals with BP3-BP4 deletions for whom parental testing was conducted, two were apparently de novo and two were maternally inherited. A comparison of clinical features, available for five individuals in our study (four with deletions within BP3-BP4 and one with a BP3-BP5 deletion), with those in the literature show common features of short stature and/or failure to thrive, microcephaly, hypotonia, and premature breast development in some individuals. Although the BP3-BP4 deletion does not yet demonstrate statistically significant enrichment in abnormal populations compared with control populations, the presence of common clinical features among probands and the presence of genes with roles in development and nervous system function in the deletion region suggest that this deletion may have a role in abnormal phenotypes in some individuals.
Collapse
|
20
|
Hou A, Lin SP, Ho SY, Chen CFJ, Lin HY, Chen YJ, Huang CY, Chiu HC, Chuang CK, Chen KS. Genetic studies of Prader-Willi patients provide evidence for conservation of genomic architecture in proximal chromosome 15q. Ann Hum Genet 2011; 75:211-21. [PMID: 21198515 DOI: 10.1111/j.1469-1809.2010.00633.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Prader-Willi syndrome (PWS) is a neurogenetic disorder associated with recurrent genomic recombination involving low copy repeats (LCRs) located in the human chromosome 15q11-q13. Previous studies of PWS patients from Asia suggested that there is a higher incidence of deletion and lower incidence of maternal uniparental disomy (mUPD) compared to that of Western populations. In this report, we present genetic etiology of 28 PWS patients from Taiwan. Consistent with the genetic etiology findings from Western populations, the type II deletion appears to be the most common deletion subtype. Furthermore, the ratio of the two most common deletion subtypes and the ratio of the maternal heterodisomy to isodisomy cases observed from this study are in agreement with previous findings from Western populations. In addition, we identified and further mapped the deletion breakpoints in two patients with atypical deletions using array CGH (comparative genomic hybridization). Despite the relatively small numbers of patients in each subgroup, our findings suggest that the genomic architecture responsible for the recurrent recombination in PWS is conserved in Taiwanese of the Han Chinese heritage and Western populations, thereby predisposing chromosome 15q11-q13 to a similar risk of rearrangements.
Collapse
Affiliation(s)
- Aihua Hou
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tan WH, Bacino CA, Skinner SA, Anselm I, Barbieri-Welge R, Bauer-Carlin A, Beaudet AL, Bichell TJ, Gentile JK, Glaze DG, Horowitz LT, Kothare SV, Lee HS, Nespeca MP, Peters SU, Sahoo T, Sarco D, Waisbren SE, Bird LM. Angelman syndrome: Mutations influence features in early childhood. Am J Med Genet A 2011; 155A:81-90. [PMID: 21204213 PMCID: PMC3563320 DOI: 10.1002/ajmg.a.33775] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by a lack of expression of the maternal copy of UBE3A. Although the "classic" features of AS are well described, few large-scale studies have delineated the clinical features in AS. We present baseline data from 92 children with a molecular diagnosis of AS between 5 and 60 months old who are enrolled in the National Institutes of Health Rare Diseases Clinical Research Network Angelman Syndrome Natural History Study from January 2006 to March 2008. Seventy-four percent of participants had deletions, 14% had either uniparental disomy (UPD) or imprinting defects, and 12% had UBE3A mutations. Participants with UPD/imprinting defects were heavier (P = 0.0002), while those with deletions were lighter, than the general population (P < 0.0001). Twenty out of 92 participants were underweight, all of whom had deletions or UBE3A mutations. Eight out of 92 participants (6/13 (46%) with UPD/imprinting defects and 2/11 (18%) with UBE3A mutations) were obese. Seventy-four out of 92 participants (80%) had absolute or relative microcephaly. No participant was macrocephalic. The most common behavioral findings were mouthing behavior (95%), short attention span (92%), ataxic or broad-based gait (88%), history of sleep difficulties (80%), and fascination with water (75%). Frequent, easily provoked laughter was observed in 60%. Clinical seizures were reported in 65% of participants but all electroencephalograms (EEGs) were abnormal. We conclude that the most characteristic feature of AS is the neurobehavioral phenotype, but specific EEG findings are highly sensitive for AS. Obesity is common among those with UPD/imprinting defects.
Collapse
Affiliation(s)
- Wen-Hann Tan
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Division of Genetics, Children’s Hospital Boston; Harvard Medical School, Boston, Massachusetts
| | - Carlos A. Bacino
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Kleberg Genetics Clinic, Texas Children’s Hospital; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Steven A. Skinner
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Greenwood Genetic Center, Greenwood, South Carolina
| | - Irina Anselm
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Department of Neurology, Children’s Hospital Boston; Harvard Medical School, Boston, Massachusetts
| | - Rene Barbieri-Welge
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Developmental Services, Rady Children’s Hospital San Diego, San Diego, California
| | - Astrid Bauer-Carlin
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Greenwood Genetic Center, Greenwood, South Carolina
| | - Arthur L. Beaudet
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Kleberg Genetics Clinic, Texas Children’s Hospital; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Terry Jo Bichell
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, Tennessee
| | - Jennifer K. Gentile
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Department of Psychiatry, Children’s Hospital Boston; Harvard Medical School, Boston, Massachusetts
| | - Daniel G. Glaze
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Texas Children’s Hospital; Section of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Lucia T. Horowitz
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Greenwood Genetic Center, Greenwood, South Carolina
| | - Sanjeev V. Kothare
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Department of Neurology, Children’s Hospital Boston; Harvard Medical School, Boston, Massachusetts
| | - Hye-Seung Lee
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Pediatric Epidemiology Center, Department of Pediatrics, University of South Florida, Tampa, Florida
| | - Mark P. Nespeca
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Division of Neurology, Rady Children’s Hospital San Diego, Department of Neuroscience, University of California, San Diego, California
| | - Sarika U. Peters
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Meyer Center for Developmental Pediatrics, Texas Children’s Hospital; Section of Developmental Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Trilochan Sahoo
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Dean Sarco
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Department of Neurology, Children’s Hospital Boston; Harvard Medical School, Boston, Massachusetts
| | - Susan E. Waisbren
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Department of Psychiatry, Children’s Hospital Boston; Harvard Medical School, Boston, Massachusetts
| | - Lynne M. Bird
- NIH Rare Diseases Clinical Research Network—Angelman, Rett, & Prader-Willi Syndromes Consortium
- Division of Genetics/Dysmorphology, Rady Children’s Hospital San Diego; Department of Pediatrics, University of California, San Diego, California
| |
Collapse
|
22
|
Buiting K. Prader-Willi syndrome and Angelman syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 154C:365-76. [DOI: 10.1002/ajmg.c.30273] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Berg JS, Potocki L, Bacino CA. Common recurrent microduplication syndromes: diagnosis and management in clinical practice. Am J Med Genet A 2010; 152A:1066-78. [PMID: 20425813 DOI: 10.1002/ajmg.a.33185] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Details on the phenotypic consequences of genomic microdeletions and microduplications are rapidly emerging in the wake of increased utilization of high-resolution methods for the detection of genomic copy number variants (CNVs). Due to their recent discovery, the complete phenotypic characterization of these syndromes is still in progress. For practicing clinicians, this unprecedented molecular diagnostic capability has in many cases outpaced our ability to convey conclusive information regarding these conditions to patients and family members. In particular, genomic microduplication syndromes are frequently associated with variable phenotypes and incomplete penetrance, leading to difficulty in counseling regarding the potential future consequences of a given microduplication. In this review, we have attempted to provide an initial set of recommendations for the management of patients with recurrent microduplication syndromes. We summarize the clinical information for microduplications of 14 different genomic regions and provide a framework for clinical evaluation and anticipatory guidance in these conditions. It is our expectation that these preliminary guidelines will be revised further for each microduplication syndrome as more information becomes available.
Collapse
Affiliation(s)
- Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
24
|
Kleefstra T, de Leeuw N, Wolf R, Nillesen WM, Schobers G, Mieloo H, Willemsen M, Perrotta CS, Poddighe PJ, Feenstra I, Draaisma J, van Ravenswaaij-Arts CM. Phenotypic spectrum of 20 novel patients with molecularly defined supernumerary marker chromosomes 15 and a review of the literature. Am J Med Genet A 2010; 152A:2221-9. [DOI: 10.1002/ajmg.a.33529] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Abstract
During the past five years, copy number variation (CNV) has emerged as a highly prevalent form of genomic variation, bridging the interval between long-recognised microscopic chromosomal alterations and single-nucleotide changes. These genomic segmental differences among humans reflect the dynamic nature of genomes, and account for both normal variations among us and variations that predispose to conditions of medical consequence. Here, we place CNVs into their historical and medical contexts, focusing on how these variations can be recognised, documented, characterised and interpreted in clinical diagnostics. We also discuss how they can cause disease or influence adaptation to an environment. Various clinical exemplars are drawn out to illustrate salient characteristics and residual enigmas of CNVs, particularly the complexity of the data and information associated with CNVs relative to that of single-nucleotide variation. The potential is immense for CNVs to explain and predict disorders and traits that have long resisted understanding. However, creative solutions are needed to manage the sudden and overwhelming burden of expectation for laboratories and clinicians to assay and interpret these complex genomic variations as awareness permeates medical practice. Challenges remain for understanding the relationship between genomic changes and the phenotypes that might be predicted and prevented by such knowledge.
Collapse
|
26
|
Depienne C, Moreno-De-Luca D, Heron D, Bouteiller D, Gennetier A, Delorme R, Chaste P, Siffroi JP, Chantot-Bastaraud S, Benyahia B, Trouillard O, Nygren G, Kopp S, Johansson M, Rastam M, Burglen L, Leguern E, Verloes A, Leboyer M, Brice A, Gillberg C, Betancur C. Screening for genomic rearrangements and methylation abnormalities of the 15q11-q13 region in autism spectrum disorders. Biol Psychiatry 2009; 66:349-59. [PMID: 19278672 DOI: 10.1016/j.biopsych.2009.01.025] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/18/2009] [Accepted: 01/21/2009] [Indexed: 11/30/2022]
Abstract
BACKGROUND Maternally derived duplications of the 15q11-q13 region are the most frequently reported chromosomal aberrations in autism spectrum disorders (ASD). Prader-Willi and Angelman syndromes, caused by 15q11-q13 deletions or abnormal methylation of imprinted genes, are also associated with ASD. However, the prevalence of these disorders in ASD is unknown. The aim of this study was to assess the frequency of 15q11-q13 rearrangements in a large sample of patients ascertained for ASD. METHODS A total of 522 patients belonging to 430 families were screened for deletions, duplications, and methylation abnormalities involving 15q11-q13 with multiplex ligation-dependent probe amplification (MLPA). RESULTS We identified four patients with 15q11-q13 abnormalities: a supernumerary chromosome 15, a paternal interstitial duplication, and two subjects with Angelman syndrome, one with a maternal deletion and the other with a paternal uniparental disomy. CONCLUSIONS Our results show that abnormalities of the 15q11-q13 region are a significant cause of ASD, accounting for approximately 1% of cases. Maternal interstitial 15q11-q13 duplications, previously reported to be present in 1% of patients with ASD, were not detected in our sample. Although paternal duplications of chromosome 15 remain phenotypically silent in the majority of patients, they can give rise to developmental delay and ASD in some subjects, suggesting that paternally expressed genes in this region can contribute to ASD, albeit with reduced penetrance compared with maternal duplications. These findings indicate that patients with ASD should be routinely screened for 15q genomic imbalances and methylation abnormalities and that MLPA is a reliable, rapid, and cost-effective method to perform this screening.
Collapse
Affiliation(s)
- Christel Depienne
- INSERM U679, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Autism spectrum disorder (ASD) is a behaviourally defined syndrome where the etiology and pathophysiology is only partially understood. In a small proportion of children with the condition, a specific medical disorder is identified, but the causal significance in many instances is unclear. Currently, the medical conditions that are best established as probable causes of ASD include Fragile X syndrome, Tuberous Sclerosis and abnormalities of chromosome 15 involving the 15q11-13 region. Various other single gene mutations, genetic syndromes, chromosomal abnormalities and rare de novo copy number variants have been reported as being possibly implicated in etiology, as have several ante and post natal exposures and complications. However, in most instances the evidence base for an association with ASD is very limited and largely derives from case reports or findings from small, highly selected and uncontrolled case series. Not only therefore, is there uncertainty over whether the condition is associated, but the potential basis for the association is very poorly understood. In some cases the medical condition may be a consequence of autism or simply represent an associated feature deriving from an underlying shared etiology. Nevertheless, it is clear that in a growing proportion of individuals potentially causal medical conditions are being identified and clarification of their role in etio-pathogenesis is necessary. Indeed, investigations into the causal mechanisms underlying the association between conditions such as tuberous sclerosis, Fragile X and chromosome 15 abnormalities are beginning to cast light on the molecular and neurobiological pathways involved in the pathophysiology of ASD. It is evident therefore, that much can be learnt from the study of probably causal medical disorders as they represent simpler and more tractable model systems in which to investigate causal mechanisms. Recent advances in genetics, molecular and systems biology and neuroscience now mean that there are unparalleled opportunities to test causal hypotheses and gain fundamental insights into the nature of autism and its development.
Collapse
Affiliation(s)
- Patrick F Bolton
- The Social Genetic & Developmental Psychiatry Centre and The Department of Child and Adolescent Psychiatry, The Institute of Psychiatry, King's College London, London, England,
| |
Collapse
|
28
|
Miller DT, Shen Y, Weiss LA, Korn J, Anselm I, Bridgemohan C, Cox GF, Dickinson H, Gentile J, Harris DJ, Hegde V, Hundley R, Khwaja O, Kothare S, Luedke C, Nasir R, Poduri A, Prasad K, Raffalli P, Reinhard A, Smith SE, Sobeih MM, Soul JS, Stoler J, Takeoka M, Tan WH, Thakuria J, Wolff R, Yusupov R, Gusella JF, Daly MJ, Wu BL. Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders. J Med Genet 2008; 46:242-8. [PMID: 18805830 DOI: 10.1136/jmg.2008.059907] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Segmental duplications at breakpoints (BP4-BP5) of chromosome 15q13.2q13.3 mediate a recurrent genomic imbalance syndrome associated with mental retardation, epilepsy, and/or electroencephalogram (EEG) abnormalities. PATIENTS DNA samples from 1445 unrelated patients submitted consecutively for clinical array comparative genomic hybridisation (CGH) testing at Children's Hospital Boston and DNA samples from 1441 individuals with autism from 751 families in the Autism Genetic Resource Exchange (AGRE) repository. RESULTS We report the clinical features of five patients with a BP4-BP5 deletion, three with a BP4-BP5 duplication, and two with an overlapping but smaller duplication identified by whole genome high resolution oligonucleotide array CGH. These BP4-BP5 deletion cases exhibit minor dysmorphic features, significant expressive language deficits, and a spectrum of neuropsychiatric impairments that include autism spectrum disorder, attention deficit hyperactivity disorder, anxiety disorder, and mood disorder. Cognitive impairment varied from moderate mental retardation to normal IQ with learning disability. BP4-BP5 covers approximately 1.5 Mb (chr15:28.719-30.298 Mb) and includes six reference genes and 1 miRNA gene, while the smaller duplications cover approximately 500 kb (chr15:28.902-29.404 Mb) and contain three reference genes and one miRNA gene. The BP4-BP5 deletion and duplication events span CHRNA7, a candidate gene for seizures. However, none of these individuals reported here have epilepsy, although two have an abnormal EEG. CONCLUSIONS The phenotype of chromosome 15q13.2q13.3 BP4-BP5 microdeletion/duplication syndrome may include features of autism spectrum disorder, a variety of neuropsychiatric disorders, and cognitive impairment. Recognition of this broader phenotype has implications for clinical diagnostic testing and efforts to understand the underlying aetiology of this syndrome.
Collapse
Affiliation(s)
- D T Miller
- Department of Laboratory Medicine, Children's Hospital Boston, 300 Longwood Ave, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13. Neurobiol Dis 2008; 38:181-91. [PMID: 18840528 DOI: 10.1016/j.nbd.2008.08.011] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 08/05/2008] [Indexed: 12/21/2022] Open
Abstract
A cluster of low copy repeats on the proximal long arm of chromosome 15 mediates various forms of stereotyped deletions and duplication events that cause a group of neurodevelopmental disorders that are associated with autism or autism spectrum disorders (ASD). The region is subject to genomic imprinting and the behavioral phenotypes associated with the chromosome 15q11.2-q13 disorders show a parent-of-origin specific effect that suggests that an increased copy number of maternally derived alleles contributes to autism susceptibility. Notably, nonimprinted, biallelically expressed genes within the interval also have been shown to be misexpressed in brains of patients with chromosome 15q11.2-q13 genomic disorders, indicating that they also likely play a role in the phenotypic outcome. This review provides an overview of the phenotypes of these disorders and their relationships with ASD and outlines the regional genes that may contribute to the autism susceptibility imparted by copy number variation of the region.
Collapse
|
30
|
Newkirk HL, Bittel DC, Butler MG. Analysis of the Prader-Willi syndrome chromosome region using quantitative microsphere hybridization (QMH) array. Am J Med Genet A 2008; 146A:2346-54. [PMID: 18698613 DOI: 10.1002/ajmg.a.32459] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We previously developed a novel quantitative microsphere suspension hybridization (QMH) assay for high-throughput determination of genomic copy number by direct hybridization of unique sequence probes to genomic DNA followed by flow cytometric analysis. Herein, we describe the first clinical application of this assay examining the Prader-Willi syndrome (PWS) chromosome region at 15q11-13. We designed 30 unique sequence test probes (approximately 60 nucleotides each) spanning 11.37 Mb of chromosome 15q11.2-q13.3 and a disomic reference probe (Actin Beta, chromosome 7p22.1), conjugated to spectrally distinct polystyrene microsphere levels. All probes were hybridized to biotin-labeled genomic DNA in multiplex QMH reactions, and hybridization was detected using phycoerythrin-labeled streptavidin and analyzed by dual-laser flow cytometry. Copy number differences were distinguished by comparing mean fluorescence intensities (MFI) of the test probes to the reference probe in 20 individuals with PWS and six controls. The mean MFI ratio for deleted loci was 0.56 +/- 0.09 (n = 88) as compared to the MFI ratios for normal loci, 0.96 +/- 0.06 (n = 236), and duplicated loci, 1.44 +/- 0.10 (n = 22). A multiplex QMH assay could readily distinguish type I from type II deletions in PWS subjects, as well as small (approximately 4.3 kb) imprinting center (IC) deletions, with no overlap in MFI values compared with normal loci. Using this diagnostic QMH assay, the precise deleted genomic interval could be ascertained in all PWS subjects examined in the present study.
Collapse
Affiliation(s)
- H L Newkirk
- Genomics Research Laboratory, Children's Mercy Hospital and Clinics, Kansas City, Missouri 64108, USA.
| | | | | |
Collapse
|
31
|
Carelle-Calmels N, Girard-Lemaire F, Guérin E, Bieth E, Rudolf G, Biancalana V, Pecheur H, Demil H, Schneider T, de Saint-Martin A, Caron O, Legrain M, Gaston V, Flori E. Proximal 15q familial euchromatic variant and PWS/AS critical region duplication in the same patient: a cytogenetic pitfall. Eur J Med Genet 2008; 51:547-57. [PMID: 18692163 DOI: 10.1016/j.ejmg.2008.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 07/07/2008] [Indexed: 11/30/2022]
Abstract
Cytogenetically detectable elongation of the 15q proximal region can be associated with Prader-Willi/Angelman critical region interstitial duplications or with inherited juxtacentromeric euchromatic variants. The first category has been reported in association with developmental delay and autistic disorders. These pathogenic recurrent duplications are more frequently of maternal origin and originate from unequal meiotic crossovers between chromosome 15 low-copy repeats. 15q juxtacentromeric euchromatic variants reflect polymorphic copy number variations of segments containing pseudogenes and usually segregate without apparent phenotypic consequence. Pathogenic relevant 15q11-q13 duplications are not distinguishable from the innocuous euchromatic variants with conventional cytogenetic methods. We report cytogenetic and molecular studies of a patient with hypotonia, developmental delay and epilepsy, carrying, on the same chromosome 15, both a de novo 15q11-q13 interstitial duplication and an inherited 15q juxtacentromeric amplification from maternal origin. The duplication, initially suspected by fluorescent in situ hybridization (FISH), has been confirmed by molecular studies. The 15q juxtacentromeric region amplification, which segregates in the family for at least three generations, has been confirmed by FISH using BAC probes overlapping the NF1 and GABRA5 pseudogenes. This report emphasizes the importance to distinguish proximal 15q polymorphic variants from clinically significant duplications. In any patient with inherited 15q proximal variant but unexplained developmental delay suggesting 15q11-q13 pathology, a pathogenic rearrangement has to be searched with adapted strategies, in order to detect deletions as well as duplications of this region.
Collapse
Affiliation(s)
- Nadège Carelle-Calmels
- Service de Cytogénétique, Fédération de Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Makoff AJ, Flomen RH. Detailed analysis of 15q11-q14 sequence corrects errors and gaps in the public access sequence to fully reveal large segmental duplications at breakpoints for Prader-Willi, Angelman, and inv dup(15) syndromes. Genome Biol 2008; 8:R114. [PMID: 17573966 PMCID: PMC2394762 DOI: 10.1186/gb-2007-8-6-r114] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 04/23/2007] [Accepted: 06/15/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromosome 15 contains many segmental duplications, including some at 15q11-q13 that appear to be responsible for the deletions that cause Prader-Willi and Angelman syndromes and for other genomic disorders. The current version of the human genome sequence is incomplete, with seven gaps in the proximal region of 15q, some of which are flanked by duplicated sequence. We have investigated this region by conducting a detailed examination of the sequenced genomic clones in the public database, focusing on clones from the RP11 library that originates from one individual. RESULTS Our analysis has revealed assembly errors, including contig NT_078094 being in the wrong orientation, and has enabled most of the gaps between contigs to be closed. We have constructed a map in which segmental duplications are no longer interrupted by gaps and which together reveals a complex region. There are two pairs of large direct repeats that are located in regions consistent with the two classes of deletions associated with Prader-Willi and Angelman syndromes. There are also large inverted repeats that account for the formation of the observed supernumerary marker chromosomes containing two copies of the proximal end of 15q and associated with autism spectrum disorders when involving duplications of maternal origin (inv dup[15] syndrome). CONCLUSION We have produced a segmental map of 15q11-q14 that reveals several large direct and inverted repeats that are incompletely and inaccurately represented on the current human genome sequence. Some of these repeats are clearly responsible for deletions and duplications in known genomic disorders, whereas some may increase susceptibility to other disorders.
Collapse
Affiliation(s)
- Andrew J Makoff
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Denmark Hill, London SE5 8AF, UK
| | - Rachel H Flomen
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Denmark Hill, London SE5 8AF, UK
| |
Collapse
|
33
|
Sharp AJ, Mefford HC, Li K, Baker C, Skinner C, Stevenson RE, Schroer RJ, Novara F, De Gregori M, Ciccone R, Broomer A, Casuga I, Wang Y, Xiao C, Barbacioru C, Gimelli G, Bernardina BD, Torniero C, Giorda R, Regan R, Murday V, Mansour S, Fichera M, Castiglia L, Failla P, Ventura M, Jiang Z, Cooper GM, Knight SJL, Romano C, Zuffardi O, Chen C, Schwartz CE, Eichler EE. A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat Genet 2008; 40:322-8. [PMID: 18278044 PMCID: PMC2365467 DOI: 10.1038/ng.93] [Citation(s) in RCA: 412] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 01/07/2008] [Indexed: 11/09/2022]
Abstract
We report a recurrent microdeletion syndrome causing mental retardation, epilepsy and variable facial and digital dysmorphisms. We describe nine affected individuals, including six probands: two with de novo deletions, two who inherited the deletion from an affected parent and two with unknown inheritance. The proximal breakpoint of the largest deletion is contiguous with breakpoint 3 (BP3) of the Prader-Willi and Angelman syndrome region, extending 3.95 Mb distally to BP5. A smaller 1.5-Mb deletion has a proximal breakpoint within the larger deletion (BP4) and shares the same distal BP5. This recurrent 1.5-Mb deletion contains six genes, including a candidate gene for epilepsy (CHRNA7) that is probably responsible for the observed seizure phenotype. The BP4-BP5 region undergoes frequent inversion, suggesting a possible link between this inversion polymorphism and recurrent deletion. The frequency of these microdeletions in mental retardation cases is approximately 0.3% (6/2,082 tested), a prevalence comparable to that of Williams, Angelman and Prader-Willi syndromes.
Collapse
Affiliation(s)
- Andrew J Sharp
- Department of Genome Sciences, University of Washington School of Medicine, 1705 NE Pacific St., Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tabor HK, Cho MK. Ethical implications of array comparative genomic hybridization in complex phenotypes: points to consider in research. Genet Med 2007; 9:626-31. [PMID: 17873651 PMCID: PMC2220022 DOI: 10.1097/gim.0b013e3181485688] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
As with many new diagnostic technologies, the recent rapid emergence of array comparative genome hybridization in clinical genetics provides the power to observe new biological phenomena before their clinical significance is well understood. This raises ethical issues for clinicians when applying the technologies. However, at this early stage of research and development on array comparative genome hybridization, the ethical implications of the conduct of research, as well as how research findings are presented and interpreted, should also be considered by the research, clinical, and ethics communities. These considerations are especially important in the use of array comparative genome hybridization to study complex and common traits. We examined recent publications on autism as an example of the application of array comparative genome hybridization to a complex phenotype. Our goal was to identify points to consider for researchers, clinicians, and patients/families to ensure responsible and ethical design, presentation, and interpretation of these kinds of studies.
Collapse
Affiliation(s)
- Holly K Tabor
- Stanford Center for Biomedical Ethics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA.
| | | |
Collapse
|
35
|
Sahoo T, Bacino CA, German JR, Shaw CA, Bird LM, Kimonis V, Anselm I, Waisbren S, Beaudet AL, Peters SU. Identification of novel deletions of 15q11q13 in Angelman syndrome by array-CGH: molecular characterization and genotype–phenotype correlations. Eur J Hum Genet 2007; 15:943-9. [PMID: 17522620 DOI: 10.1038/sj.ejhg.5201859] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder characterized by mental retardation, absent speech, ataxia, and a happy disposition. Deletions of the 15q11q13 region are found in approximately 70% of AS patients. The deletions are sub-classified into class I and class II based on their sizes of approximately 6.8 and approximately 6.0, respectively, with two different proximal breakpoints and a common distal breakpoint. Utilizing a chromosome 15-specific comparative genomic hybridization genomic microarray (array-CGH), we have identified, determined the deletion sizes, and mapped the breakpoints in a cohort of 44 cases, to relate those breakpoints to the genomic architecture and derive more precise genotype-phenotype correlations. Interestingly four patients of the 44 studied (9.1%) had novel and unusually large deletions, and are reported here. This is the first report of very large deletions of 15q11q13 resulting in AS; the largest deletion being >10.6 Mb. These novel deletions involve three different distal breakpoints, two of which have been earlier shown to be involved in the generation of isodicentric 15q chromosomes (idic15). Additionally, precise determination of the deletion breakpoints reveals the presence of directly oriented low-copy repeats (LCRs) flanking the recurrent and novel breakpoints. The LCRs are adequate in size, orientation, and homology to enable abnormal recombination events leading to deletions and duplications. This genomic organization provides evidence for a common mechanism for the generation of both common and rare deletion types. Larger deletions result in a loss of several genes outside the common Angelman syndrome-Prader-Willi syndrome (AS-PWS) critical interval, and a more severe phenotype.
Collapse
Affiliation(s)
- Trilochan Sahoo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Miller J, Kranzler J, Liu Y, Schmalfuss I, Theriaque DW, Shuster JJ, Hatfield A, Mueller OT, Goldstone AP, Sahoo T, Beaudet AL, Driscoll DJ. Neurocognitive findings in Prader-Willi syndrome and early-onset morbid obesity. J Pediatr 2006; 149:192-8. [PMID: 16887432 DOI: 10.1016/j.jpeds.2006.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 03/22/2006] [Accepted: 04/13/2006] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To examine whether early-onset morbid obesity is associated with cognitive impairment, neuropathologic changes, and behavioral problems. STUDY DESIGN This case-control study compared head MRI scans and cognitive, achievement, and behavioral evaluations of subjects with Prader-Willi syndrome (PWS), early-onset morbid obesity (EMO), and normal-weight sibling control subjects from both groups. Head MRI was done on 17 PWS, 18 EMO, and 21 siblings, and cognitive, achievement, and behavioral evaluations were done on 19 PWS, 17 EMO, and 24 siblings. RESULTS The mean General Intellectual Ability score of the EMO group was 77.4 +/- 17.8; PWS, 63.3 +/- 14.2; and control subjects, 106.4 +/- 13.0. Achievement scores for the three groups were EMO, 78.7 +/- 18.8; PWS, 71.2 +/- 17.0; and control subjects, 104.8 +/- 17.0. Significant negative behaviors and poor adaptive skills were found in the EMO group. White matter lesions were noted on brain MRI in 6 subjects with PWS and 5 with EMO. None of the normal-weight control subjects had these findings. CONCLUSIONS Individuals with EMO have significantly lower cognitive function and more behavioral problems than control subjects with no history of childhood obesity. Both EMO and PWS subjects have white matter lesions on brain MRI that have not previously been described.
Collapse
Affiliation(s)
- Jennifer Miller
- Department of Pediatrics and the Center for Mammalian Genetics, University of Florida, College of Medicine, Gainesville, Florida 32610-0296, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sahoo T, Peters SU, Madduri NS, Glaze DG, German JR, Bird LM, Barbieri-Welge R, Bichell TJ, Beaudet AL, Bacino CA. Microarray based comparative genomic hybridization testing in deletion bearing patients with Angelman syndrome: genotype-phenotype correlations. J Med Genet 2006; 43:512-6. [PMID: 16183798 PMCID: PMC2564536 DOI: 10.1136/jmg.2005.036913] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 08/30/2005] [Accepted: 09/04/2005] [Indexed: 11/03/2022]
Abstract
BACKGROUND Angelman syndrome (AS) is a neurodevelopmental disorder characterised by severe mental retardation, dysmorphic features, ataxia, seizures, and typical behavioural characteristics, including a happy sociable disposition. AS is caused by maternal deficiency of UBE3A (E6 associated protein ubiquitin protein ligase 3A gene), located in an imprinted region on chromosome 15q11-q13. Although there are four different molecular types of AS, deletions of the 15q11-q13 region account for approximately 70% of the AS patients. These deletions are usually detected by fluorescence in situ hybridisation studies. The deletions can also be subclassified based on their size into class I and class II, with the former being larger and encompassing the latter. METHODS We studied 22 patients with AS due to microdeletions using a microarray based comparative genomic hybridisation (array CGH) assay to define the deletions and analysed their phenotypic severity, especially expression of the autism phenotype, in order to establish clinical correlations. RESULTS Overall, children with larger, class I deletions were significantly more likely to meet criteria for autism, had lower cognitive scores, and lower expressive language scores compared with children with smaller, class II deletions. Children with class I deletions also required more medications to control their seizures than did those in the class II group. CONCLUSIONS There are four known genes (NIPA1, NIPA2, CYFIP1, & GCP5) that are affected by class I but not class II deletions, thus raising the possibility of a role for these genes in autism as well as the development of expressive language skills.
Collapse
Affiliation(s)
- T Sahoo
- Associate Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|