1
|
Winarni TI, Aishworiya R, Culpepper H, Zafarullah M, Mendoza G, Wilaisakditipakorn TJ, Likhitweerawong N, Law J, Hagerman R, Tassone F. In Utero Alcohol and Unsuitable Home Environmental Exposure Combined with FMR1 Full Mutation Allele Cause Severe Fragile X Syndrome Phenotypes. Int J Mol Sci 2025; 26:2840. [PMID: 40243429 PMCID: PMC11988866 DOI: 10.3390/ijms26072840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
We investigated the molecular and clinical profile of five boys carrying the fragile X messenger ribonucleoprotein 1 (FMR1) mutation and who suffered from the effects of prenatal alcohol exposure. Fragile X syndrome (FXS) testing was performed using PCR and Southern Blot analysis, and fragile X messenger ribonucleoprotein protein (FMRP) expression levels were measured by Western blot analysis. Clinical evaluation included cognitive functions, adaptive skills, autism phenotype, and severity of behavior measures. Fetal Alcohol Spectrum Disorder (FASD) was also assessed. Five adopted male siblings were investigated, four of which (cases 1, 2, 3, and 4) were diagnosed with FXS, FASD, and ASD, and one, the fraternal triplet (case 5), was diagnosed with FASD and ASD and no FXS. The molecular profile of case 1 and 2 showed the presence of a hypermethylated full mutation (FM) and the resulting absence of FMRP. Cases 3 and 4 (identical twins) were FM-size mosaics (for the presence of an FM and a deleted allele), resulting in 16% and 50% FMRP expression levels, respectively. FMRP expression level was normal in case 5 (fraternal twin). Severe behavioral problems were observed in all cases, including aggression, tantrum, self-harming, anxiety, and defiant behavior, due to different mutations of the FMR1 gene, in addition to biological exposure, home environmental factors, and potentially to additional background gene effects.
Collapse
Affiliation(s)
- Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 50275, Central Java, Indonesia;
| | - Ramkumar Aishworiya
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore 119074, Singapore;
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Hannah Culpepper
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (H.C.); (M.Z.); (G.M.)
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (H.C.); (M.Z.); (G.M.)
| | - Guadalupe Mendoza
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (H.C.); (M.Z.); (G.M.)
| | - Tanaporn Jasmine Wilaisakditipakorn
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (T.J.W.); (J.L.); (R.H.)
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA;
| | - Narueporn Likhitweerawong
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA;
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Julie Law
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (T.J.W.); (J.L.); (R.H.)
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA;
| | - Randi Hagerman
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (T.J.W.); (J.L.); (R.H.)
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA;
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (H.C.); (M.Z.); (G.M.)
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA;
| |
Collapse
|
2
|
Pham K, Malachowski T, Zhou L, Kim JH, Su C, Phillips-Cremins JE. Mosaic H3K9me3 at BREACHes predicts synaptic gene expression associated with fragile X syndrome cognitive severity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644148. [PMID: 40166285 PMCID: PMC11957133 DOI: 10.1101/2025.03.19.644148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Diseases vary in clinical presentation across individuals despite the same molecular diagnosis. In fragile X syndrome (FXS), mutation-length expansion of a CGG short tandem repeat (STR) in FMR1 causes reduced gene expression and FMRP loss. Nevertheless, FMR1 and FMRP are limited predictors of adaptive functioning and cognition in FXS patients, suggesting that molecular correlates of clinical measures would add diagnostic value. We recently uncovered Megabase-scale domains of heterochromatin (BREACHes) in FXS patient-derived iPSCs. Here, we identify BREACHes in FXS brain tissue (N=4) and absent from sex/age-matched neurotypical controls (N=4). BREACHes span >250 genes and exhibit patient-specific H3K9me3 variation. Using N=4 FXS iPSC lines and N=7 single-cell isogenic FXS iPSC subclones, we observe a strong correlation between inter-sample H3K9me3 variation and heterogeneous BREACH gene repression. We demonstrate improved prediction of cognitive metrics in FXS patients with an additive model of blood FMRP and mRNA levels of H3K9me3-mosaic, but not H3K9me3-invariant, BREACH genes. Our results highlight the utility of H3K9me3 variation at BREACHes for identifying genes associated with FXS clinical metrics.
Collapse
Affiliation(s)
- Kenneth Pham
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Malachowski
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Linda Zhou
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ji Hun Kim
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chuanbin Su
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E. Phillips-Cremins
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Protic D, Polli R, Bettella E, Usdin K, Murgia A, Tassone F. Somatic Instability Leading to Mosaicism in Fragile X Syndrome and Associated Disorders: Complex Mechanisms, Diagnostics, and Clinical Relevance. Int J Mol Sci 2024; 25:13681. [PMID: 39769443 PMCID: PMC11728179 DOI: 10.3390/ijms252413681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Fragile X syndrome (FXS) is a genetic condition caused by the inheritance of alleles with >200 CGG repeats in the 5' UTR of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. These full mutation (FM) alleles are associated with DNA methylation and gene silencing, which result in intellectual disabilities, developmental delays, and social and behavioral issues. Mosaicism for both the size of the CGG repeat tract and the extent of its methylation is commonly observed in individuals with the FM. Mosaicism has also been reported in carriers of premutation (PM) alleles, which have 55-200 CGG repeats. PM alleles confer risk for the fragile X premutation-associated conditions (FXPAC), including FXTAS, FXPOI, and FXAND, conditions thought to be due to the toxic consequences of transcripts containing large CGG-tracts. Unmethylated FM (UFM) alleles are transcriptionally and translationally active. Thus, they produce transcripts with toxic effects. These transcripts do produce some FMRP, the encoded product of the FMR1 gene, albeit with reduced translational efficiency. As a result, mosaicism can result in a complex clinical presentation. Here, we review the concept of mosaicism in both FXS and in PM carriers, including its potential clinical significance.
Collapse
Affiliation(s)
- Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11000 Belgrade, Serbia
| | - Roberta Polli
- Department of Women’s and Children’s Health, University of Padova, 35127 Padova, Italy; (R.P.); (E.B.)
- Pediatric Research Institute Città della Speranza, 35127 Padova, Italy
| | - Elisa Bettella
- Department of Women’s and Children’s Health, University of Padova, 35127 Padova, Italy; (R.P.); (E.B.)
- Pediatric Research Institute Città della Speranza, 35127 Padova, Italy
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Alessandra Murgia
- Department of Women’s and Children’s Health, University of Padova, 35127 Padova, Italy; (R.P.); (E.B.)
- Pediatric Research Institute Città della Speranza, 35127 Padova, Italy
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Kumari D, Grant-Bier J, Kadyrov F, Usdin K. Intersection of the fragile X-related disorders and the DNA damage response. DNA Repair (Amst) 2024; 144:103785. [PMID: 39549538 PMCID: PMC11789500 DOI: 10.1016/j.dnarep.2024.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
The Repeat Expansion Diseases (REDs) are a large group of human genetic disorders that result from an increase in the number of repeats in a disease-specific tandem repeat or microsatellite. Emerging evidence suggests that the repeats trigger an error-prone form of DNA repair that causes the expansion mutation by exploiting a limitation in normal mismatch repair. Furthermore, while much remains to be understood about how the mutation causes pathology in different diseases in this group, there is evidence to suggest that some of the downstream consequences of repeat expansion trigger the DNA damage response in ways that contribute to disease pathology. This review will discuss these subjects in the context of the Fragile X-related disorders (aka the FMR1 disorders) that provide a particularly interesting example of the intersection between the repeats and the DNA damage response that may also be relevant for many other diseases in this group.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessalyn Grant-Bier
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Farid Kadyrov
- Division of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Hnoonual A, Plong-On O, Worachotekamjorn J, Charalsawadi C, Limprasert P. Clinical and molecular characteristics of FMR1 microdeletion in patient with fragile X syndrome and review of the literature. Clin Chim Acta 2024; 553:117728. [PMID: 38142803 DOI: 10.1016/j.cca.2023.117728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Fragile X syndrome (FXS) is mainly caused by FMR1 CGG repeat expansions. Other types of mutations, particularly deletions, are also responsible for FXS phenotypes, however these mutations are often missed by routine clinical testing. MATERIALS AND METHODS Molecular diagnosis in cases of suspected FXS was a combination of PCR and Southern blot. Measurement of the FMRP protein level was useful for detecting potentially deleterious impact. RESULTS PCR analysis and Southern blot revealed a case with premutation and suspected deletion alleles. Sanger sequencing showed that the deletion involved 313 bp upstream of repeats and some parts of CGG repeat tract, leaving transcription start site. FMRP was detected in 5.5 % of blood lymphocytes. CONCLUSION According to our review of case reports, most patients carrying microdeletion and full mutation had typical features of FXS. To our knowledge, our case is the first to describe mosaicism of a premutation and microdeletion in the FMR1 gene. The patient was probably protected from the effects of the deletion by mosaicism with premutation allele, leading to milder phenotype. It is thus important to consider appropriate techniques for detecting FMR1 variants other than repeat expansions which cannot be detected by routine FXS diagnosis.
Collapse
Affiliation(s)
- Areerat Hnoonual
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Genomic Medicine Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Oradawan Plong-On
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | | - Chariyawan Charalsawadi
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Genomic Medicine Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Pornprot Limprasert
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Genomic Medicine Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
6
|
Hwang YH, Hayward BE, Zafarullah M, Kumar J, Durbin Johnson B, Holmans P, Usdin K, Tassone F. Both cis and trans-acting genetic factors drive somatic instability in female carriers of the FMR1 premutation. Sci Rep 2022; 12:10419. [PMID: 35729184 PMCID: PMC9213438 DOI: 10.1038/s41598-022-14183-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
The fragile X mental retardation (FMR1) gene contains an expansion-prone CGG repeat within its 5' UTR. Alleles with 55-200 repeats are known as premutation (PM) alleles and confer risk for one or more of the FMR1 premutation (PM) disorders that include Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), Fragile X-associated Primary Ovarian Insufficiency (FXPOI), and Fragile X-Associated Neuropsychiatric Disorders (FXAND). PM alleles expand on intergenerational transmission, with the children of PM mothers being at risk of inheriting alleles with > 200 CGG repeats (full mutation FM) alleles) and thus developing Fragile X Syndrome (FXS). PM alleles can be somatically unstable. This can lead to individuals being mosaic for multiple size alleles. Here, we describe a detailed evaluation of somatic mosaicism in a large cohort of female PM carriers and show that 94% display some evidence of somatic instability with the presence of a series of expanded alleles that differ from the next allele by a single repeat unit. Using two different metrics for instability that we have developed, we show that, as with intergenerational instability, there is a direct relationship between the extent of somatic expansion and the number of CGG repeats in the originally inherited allele and an inverse relationship with the number of AGG interruptions. Expansions are progressive as evidenced by a positive correlation with age and by examination of blood samples from the same individual taken at different time points. Our data also suggests the existence of other genetic or environmental factors that affect the extent of somatic expansion. Importantly, the analysis of candidate single nucleotide polymorphisms (SNPs) suggests that two DNA repair factors, FAN1 and MSH3, may be modifiers of somatic expansion risk in the PM population as observed in other repeat expansion disorders.
Collapse
Affiliation(s)
- Ye Hyun Hwang
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Bruce Eliot Hayward
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Jay Kumar
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Blythe Durbin Johnson
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Peter Holmans
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurology, School of Medicine, Cardiff University, Cardiff, UK
| | - Karen Usdin
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA. .,MIND Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| |
Collapse
|
7
|
Jiraanont P, Manor E, Tabatadze N, Zafarullah M, Mendoza G, Melikishvili G, Tassone F. De Novo Large Deletion Leading to Fragile X Syndrome. Front Genet 2022; 13:884424. [PMID: 35646065 PMCID: PMC9130735 DOI: 10.3389/fgene.2022.884424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Fragile X syndrome (FXS) is the most frequent cause of X-linked inherited intellectual disabilities (ID) and the most frequent monogenic form of autism spectrum disorders. It is caused by an expansion of a CGG trinucleotide repeat located in the 5'UTR of the FMR1 gene, resulting in the absence of the fragile X mental retardation protein, FMRP. Other mechanisms such as deletions or point mutations of the FMR1 gene have been described and account for approximately 1% of individuals with FXS. Here, we report a 7-year-old boy with FXS with a de novo deletion of approximately 1.1 Mb encompassing several genes, including the FMR1 and the ASFMR1 genes, and several miRNAs, whose lack of function could result in the observed proband phenotypes. In addition, we also demonstrate that FMR4 completely overlaps with ASFMR1, and there are no sequencing differences between both transcripts (i.e., ASFMR1/FMR4 throughout the article).
Collapse
Affiliation(s)
- Poonnada Jiraanont
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Esther Manor
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.,Genetics Institute, Soroka Medical Center, Beersheba, Israel
| | - Nazi Tabatadze
- Department of Pediatrics, MediClub Georgia Medical Center, Tbilisi, Georgia
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Guadalupe Mendoza
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Gia Melikishvili
- Department of Pediatrics, MediClub Georgia Medical Center, Tbilisi, Georgia
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States.,UC Davis MIND Institute, UC Davis Health, Sacramento, CA, United States
| |
Collapse
|
8
|
Beyond Trinucleotide Repeat Expansion in Fragile X Syndrome: Rare Coding and Noncoding Variants in FMR1 and Associated Phenotypes. Genes (Basel) 2021; 12:genes12111669. [PMID: 34828275 PMCID: PMC8623550 DOI: 10.3390/genes12111669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
FMR1 (FMRP translational regulator 1) variants other than repeat expansion are known to cause disease phenotypes but can be overlooked if they are not accounted for in genetic testing strategies. We collected and reanalyzed the evidence for pathogenicity of FMR1 coding, noncoding, and copy number variants published to date. There is a spectrum of disease-causing FMR1 variation, with clinical and functional evidence supporting pathogenicity of five splicing, five missense, one in-frame deletion, one nonsense, and four frameshift variants. In addition, FMR1 deletions occur in both mosaic full mutation patients and as constitutional pathogenic alleles. De novo deletions arise not only from full mutation alleles but also alleles with normal-sized CGG repeats in several patients, suggesting that the CGG repeat region may be prone to genomic instability even in the absence of repeat expansion. We conclude that clinical tests for potentially FMR1-related indications such as intellectual disability should include methods capable of detecting small coding, noncoding, and copy number variants.
Collapse
|
9
|
Hayward BE, Usdin K. Mechanisms of Genome Instability in the Fragile X-Related Disorders. Genes (Basel) 2021; 12:genes12101633. [PMID: 34681027 PMCID: PMC8536109 DOI: 10.3390/genes12101633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
The Fragile X-related disorders (FXDs), which include the intellectual disability fragile X syndrome (FXS), are disorders caused by expansion of a CGG-repeat tract in the 5′ UTR of the X-linked FMR1 gene. These disorders are named for FRAXA, the folate-sensitive fragile site that localizes with the CGG-repeat in individuals with FXS. Two pathological FMR1 allele size classes are distinguished. Premutation (PM) alleles have 54–200 repeats and confer the risk of fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI). PM alleles are prone to both somatic and germline expansion, with female PM carriers being at risk of having a child with >200+ repeats. Inheritance of such full mutation (FM) alleles causes FXS. Contractions of PM and FM alleles can also occur. As a result, many carriers are mosaic for different sized alleles, with the clinical presentation depending on the proportions of these alleles in affected tissues. Furthermore, it has become apparent that the chromosomal fragility of FXS individuals reflects an underlying problem that can lead to chromosomal numerical and structural abnormalities. Thus, large numbers of CGG-repeats in the FMR1 gene predisposes individuals to multiple forms of genome instability. This review will discuss our current understanding of these processes.
Collapse
|
10
|
Erbs E, Fenger-Grøn J, Jacobsen CM, Lildballe DL, Rasmussen M. Spontaneous rescue of a FMR1 repeat expansion and review of deletions in the FMR1 non-coding region. Eur J Med Genet 2021; 64:104244. [PMID: 34022415 DOI: 10.1016/j.ejmg.2021.104244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/16/2021] [Accepted: 05/02/2021] [Indexed: 12/07/2022]
Abstract
Fragile X syndrome (FXS) is caused by CGG-repeat expansion in the 5' UTR of FMR1 of >200 repeats. Rarely, FXS is caused by deletions; however, it is not clear whether deletions including only the non-coding region of FMR1 are pathogenic. We report a deletion in the 5' UTR of FMR1 in an unaffected male infant and review 12 reported deletions involving only the non-coding region of FMR1. Genetic testing was requested in a male infant born to a mother harbouring a FMR1 full mutation. The maternal grandmother carried a FMR1 premutation. FMR1 CGG repeats were analysed using repeat-primed PCR. Only a short PCR fragment was amplified and subsequent Sanger sequencing detected an 88 bp deletion in hemizygous form. The deletion included all CGG repeats and flanking sequences but no FMR1 exons. Linkage analysis using STR markers revealed that the deletion had occurred on the allele, which was expanded in the mother and the maternal grandmother. Reverse transcription and quantitative PCR showed normal FMR1 mRNA levels. Grønskov et al. reported a 157 bp deletion of all CGG repeats and flanking sequences in a female without FXS hemizygous for the FMR1 gene due to a deletion on the other X chromosome. Protein expression was unaffected by the deletion. The reported deletion comprises the deletion detected in the male infant. At almost 2 years of age he is unaffected. Based on these observations and the normal FMR1 mRNA level, we conclude that a spontaneous rescue of an FMR1 repeat expansion has occurred.
Collapse
Affiliation(s)
- Emilie Erbs
- Department of Clinical Genetics, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark.
| | - Jesper Fenger-Grøn
- Department of Paediatrics, Lillebaelt Hospital, University Hospital of Southern Denmark, Kolding, Denmark
| | - Cecilie Mondrup Jacobsen
- Department of Clinical Genetics, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Dorte Launholt Lildballe
- Department of Clinical Genetics, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Maria Rasmussen
- Department of Clinical Genetics, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
11
|
Graef JD, Wu H, Ng C, Sun C, Villegas V, Qadir D, Jesseman K, Warren ST, Jaenisch R, Cacace A, Wallace O. Partial FMRP expression is sufficient to normalize neuronal hyperactivity in Fragile X neurons. Eur J Neurosci 2020; 51:2143-2157. [PMID: 31880363 PMCID: PMC7318714 DOI: 10.1111/ejn.14660] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is the most common genetic form of intellectual disability caused by a CGG repeat expansion in the 5′‐UTR of the Fragile X mental retardation gene FMR1, triggering epigenetic silencing and the subsequent absence of the protein, FMRP. Reactivation of FMR1 represents an attractive therapeutic strategy targeting the genetic root cause of FXS. However, largely missing in the FXS field is an understanding of how much FMR1 reactivation is required to rescue FMRP‐dependent mutant phenotypes. Here, we utilize FXS patient‐derived excitatory neurons to model FXS in vitro and confirm that the absence of FMRP leads to neuronal hyperactivity. We further determined the levels of FMRP and the percentage of FMRP‐positive cells necessary to correct this phenotype utilizing a mixed and mosaic neuronal culture system and a combination of CRISPR, antisense and expression technologies to titrate FMRP in FXS and WT neurons. Our data demonstrate that restoration of greater than 5% of overall FMRP expression levels or greater than 20% FMRP‐expressing neurons in a mosaic pattern is sufficient to normalize a FMRP‐dependent, hyperactive phenotype in FXS iPSC‐derived neurons.
Collapse
Affiliation(s)
| | - Hao Wu
- Fulcrum Therapeutics, Cambridge, MA, USA
| | - Carrie Ng
- Fulcrum Therapeutics, Cambridge, MA, USA
| | | | | | | | | | - Stephen T Warren
- Departments of Human Genetics, Biochemistry, and Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Rudolf Jaenisch
- Department of Biology, MIT, 9 Cambridge Center, Whitehead Institute, Cambridge, MA, USA
| | | | | |
Collapse
|
12
|
Jiraanont P, Kumar M, Tang HT, Espinal G, Hagerman PJ, Hagerman RJ, Chutabhakdikul N, Tassone F. Size and methylation mosaicism in males with Fragile X syndrome. Expert Rev Mol Diagn 2018; 17:1023-1032. [PMID: 28929824 DOI: 10.1080/14737159.2017.1377612] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Size and methylation mosaicism are a common phenomenon in Fragile X syndrome (FXS). Here, the authors report a study on twelve fragile X males with atypical mosaicism, seven of whom presented with autism spectrum disorder. METHODS A combination of Southern Blot and PCR analysis was used for CGG allele sizing and methylation. FMR1 mRNA and FMRP expression were measured by qRT-PCR and by Homogeneous Time Resolved Fluorescence methodology, respectively. RESULTS DNA analysis showed atypical size- or methylation-mosaicism with both, full mutation and smaller (normal to premutation) alleles, as well as a combination of methylated and unmethylated alleles. Four individuals carried a deletion of the CGG repeat and portions of the flanking regions. The extent of methylation among the participants was reflected in the lower FMR1 mRNA and FMRP expression levels detected in these subjects. CONCLUSION Decreased gene expression is likely the main contributor to the cognitive impairment observed in these subjects; although the presence of a normal allele did not appear to compensate for the presence of the full mutation, it correlated with better cognitive function in some but not all of the reported cases emphasizing the complexity of the molecular and clinical profile in FXS.
Collapse
Affiliation(s)
- Poonnada Jiraanont
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA.,b Research Center for Neuroscience, Institute of Molecular Biosciences , Mahidol University , Nakornpathom , Thailand
| | - Madhur Kumar
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA
| | - Hiu-Tung Tang
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA
| | - Glenda Espinal
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA
| | - Paul J Hagerman
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA.,c M.I.N.D. Institute , University of California Davis Medical Center , Sacramento , CA , USA
| | - Randi J Hagerman
- c M.I.N.D. Institute , University of California Davis Medical Center , Sacramento , CA , USA.,d Department of Pediatrics , University of California, Davis Medical Center , Sacramento , CA , USA
| | - Nuanchan Chutabhakdikul
- b Research Center for Neuroscience, Institute of Molecular Biosciences , Mahidol University , Nakornpathom , Thailand
| | - Flora Tassone
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA.,c M.I.N.D. Institute , University of California Davis Medical Center , Sacramento , CA , USA
| |
Collapse
|
13
|
Sherman SL, Kidd SA, Riley C, Berry-Kravis E, Andrews HF, Miller RM, Lincoln S, Swanson M, Kaufmann WE, Brown WT. FORWARD: A Registry and Longitudinal Clinical Database to Study Fragile X Syndrome. Pediatrics 2017; 139:S183-S193. [PMID: 28814539 PMCID: PMC5621599 DOI: 10.1542/peds.2016-1159e] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Advances in the care of patients with fragile X syndrome (FXS) have been hampered by lack of data. This deficiency has produced fragmentary knowledge regarding the natural history of this condition, healthcare needs, and the effects of the disease on caregivers. To remedy this deficiency, the Fragile X Clinic and Research Consortium was established to facilitate research. Through a collective effort, the Fragile X Clinic and Research Consortium developed the Fragile X Online Registry With Accessible Research Database (FORWARD) to facilitate multisite data collection. This report describes FORWARD and the way it can be used to improve health and quality of life of FXS patients and their relatives and caregivers. METHODS FORWARD collects demographic information on individuals with FXS and their family members (affected and unaffected) through a 1-time registry form. The longitudinal database collects clinician- and parent-reported data on individuals diagnosed with FXS, focused on those who are 0 to 24 years of age, although individuals of any age can participate. RESULTS The registry includes >2300 registrants (data collected September 7, 2009 to August 31, 2014). The longitudinal database includes data on 713 individuals diagnosed with FXS (data collected September 7, 2012 to August 31, 2014). Longitudinal data continue to be collected on enrolled patients along with baseline data on new patients. CONCLUSIONS FORWARD represents the largest resource of clinical and demographic data for the FXS population in the United States. These data can be used to advance our understanding of FXS: the impact of cooccurring conditions, the impact on the day-to-day lives of individuals living with FXS and their families, and short-term and long-term outcomes.
Collapse
Affiliation(s)
- Stephanie L. Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia;,Address correspondence to Stephanie L. Sherman, PhD, Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Whitehead Building, Suite 301, Atlanta, GA 303022. E-mail:
| | - Sharon A. Kidd
- National Fragile X Foundation, Washington, District of Columbia
| | - Catharine Riley
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics,,Neurological Sciences, and,Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Howard F. Andrews
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | | | - Sharyn Lincoln
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, Massachusetts
| | - Mark Swanson
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Walter E. Kaufmann
- Department of Neurology, Boston Children’s Hospital, Boston Massachusetts;,Center for Translational Research, Greenwood Genetic Center, Greenwood, South Carolina; and
| | - W. Ted Brown
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| |
Collapse
|
14
|
Towards a Better Molecular Diagnosis of FMR1-Related Disorders-A Multiyear Experience from a Reference Lab. Genes (Basel) 2016; 7:genes7090059. [PMID: 27598204 PMCID: PMC5042390 DOI: 10.3390/genes7090059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/03/2016] [Accepted: 08/19/2016] [Indexed: 11/29/2022] Open
Abstract
The article summarizes over 20 years of experience of a reference lab in fragile X mental retardation 1 gene (FMR1) molecular analysis in the molecular diagnosis of fragile X spectrum disorders. This includes fragile X syndrome (FXS), fragile X-associated primary ovarian insufficiency (FXPOI) and fragile X-associated tremor/ataxia syndrome (FXTAS), which are three different clinical conditions with the same molecular background. They are all associated with an expansion of CGG repeats in the 5′UTR of FMR1 gene. Until 2016, the FMR1 gene was tested in 9185 individuals with the pre-screening PCR, supplemented with Southern blot analysis and/or Triplet Repeat Primed PCR based method. This approach allowed us to confirm the diagnosis of FXS, FXPOI FXTAS in 636/9131 (6.96%), 4/43 (9.3%) and 3/11 (27.3%) of the studied cases, respectively. Moreover, the FXS carrier status was established in 389 individuals. The technical aspect of the molecular analysis is very important in diagnosis of FXS-related disorders. The new methods were subsequently implemented in our laboratory. This allowed the significance of the Southern blot technique to be decreased until its complete withdrawal. Our experience points out the necessity of implementation of the GeneScan based methods to simplify the testing procedure as well as to obtain more information for the patient, especially if TP-PCR based methods are used.
Collapse
|
15
|
Germinal mosaicism for a deletion of the FMR1 gene leading to fragile X syndrome. Eur J Med Genet 2016; 59:459-62. [PMID: 27546052 DOI: 10.1016/j.ejmg.2016.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 11/20/2022]
Abstract
Aberrant CGG trinucleotide amplification within the FMR1 gene, which spans approximately 38 Kb of genomic DNA is almost always what leads to fragile X syndrome (FXS). However, deletions of part or the entire FMR1 gene can also cause FXS. Both CGG amplification-induced silencing and deletions result in the absence of the FMR1 gene product, FMRP. Here, we report a rare case of germinal mosaicism of a deletion encompassing approximately 300 Kb of DNA, which by removing the entire FMR1 gene led to FXS. The male proband, carrying the deletion, presented in clinic with the typical features of FXS. His mother was analyzed by FISH on metaphase chromosomes with cosmid probe c22.3 spanning the FMR1 locus, and she was found not to carry the deletion on 30 analyzed cells from peripheral blood lymphocytes. Prenatal examination of the mother's third pregnancy showed that the male fetus also had the same deletion as the proband. Following this prenatal diagnosis, FISH analysis in the mother was expanded to 400 metaphases from peripheral lymphocytes, and a heterozygous FMR1 deletion was found in three. Although this result could be considered questionable from a diagnostic point of view, it indicates that the deletion is in the ovary's germinal cells.
Collapse
|
16
|
Gonçalves TF, dos Santos JM, Gonçalves AP, Tassone F, Mendoza-Morales G, Ribeiro MG, Kahn E, Boy R, Pimentel MMG, Santos-Rebouças CB. Finding FMR1 mosaicism in Fragile X syndrome. Expert Rev Mol Diagn 2016; 16:501-7. [PMID: 26716517 DOI: 10.1586/14737159.2016.1135739] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Almost all patients with Fragile X Syndrome (FXS) exhibit a CGG repeat expansion (full mutation) in the Fragile Mental Retardation 1 gene (FMR1). Here, the authors report five unrelated males with FXS harboring a somatic full mutation/deletion mosaicism. METHODS Mutational profiles were only elucidated by using a combination of molecular approaches (CGG-based PCR, Sanger sequencing, MS-MLPA, Southern blot and mPCR). RESULTS Four patients exhibited small deletions encompassing the CGG repeats tract and flanking regions, whereas the remaining had a larger deletion comprising at least exon 1 and part of intron 1 of FMR1 gene. The presence of a 2-3 base pairs microhomology in proximal and distal non-recurrent breakpoints without scars supports the involvement of microhomology mediated induced repair (MMBIR) mechanism in three small deletions. CONCLUSION The authors data highlights the importance of using different research methods to elucidate atypical FXS mutational profiles, which are clinically undistinguishable and may have been underestimated.
Collapse
Affiliation(s)
| | | | | | - Flora Tassone
- b Department of Biochemistry and Molecular Medicine , UC Davis School of Medicine, University of California, Davis , Sacramento , CA , USA.,c Davis MIND Institute , Sacramento , CA , USA
| | - Guadalupe Mendoza-Morales
- b Department of Biochemistry and Molecular Medicine , UC Davis School of Medicine, University of California, Davis , Sacramento , CA , USA
| | - Márcia Gonçalves Ribeiro
- d Clinical Genetics Service , IPPMG, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Evelyn Kahn
- d Clinical Genetics Service , IPPMG, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Raquel Boy
- e Pedro Ernesto University Hospital , State University of Rio de Janeiro , Rio de Janeiro , Brazil
| | | | | |
Collapse
|
17
|
Pretto D, Yrigollen CM, Tang HT, Williamson J, Espinal G, Iwahashi CK, Durbin-Johnson B, Hagerman RJ, Hagerman PJ, Tassone F. Clinical and molecular implications of mosaicism in FMR1 full mutations. Front Genet 2014; 5:318. [PMID: 25278957 PMCID: PMC4166380 DOI: 10.3389/fgene.2014.00318] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/25/2014] [Indexed: 12/27/2022] Open
Abstract
Expansions of more than 200 CGG repeats (full mutation) in the FMR1 gene give rise to fragile X syndrome (FXS) through a process that generally involves hypermethylation of the FMR1 promoter region and gene silencing, resulting in absence of expression of the encoded protein, FMRP. However, mosaicism with alleles differing in size and extent of methylation often exist within or between tissues of individuals with FXS. In the current work, CGG-repeat lengths and methylation status were assessed for eighteen individuals with FXS, including 13 mosaics, for which peripheral blood cells (PBMCs) and primary fibroblast cells were available. Our results show that for both PBMCs and fibroblasts, FMR1 mRNA and FMRP expression are directly correlated with the percent of methylation of the FMR1 allele. In addition, Full Scale IQ scores were inversely correlated with the percent methylation and positively correlated with higher FMRP expression. These latter results point toward a positive impact on cognition for full mutation mosaics with lower methylation compared to individuals with fully methylated, full mutation alleles. However, we did not observe a significant reduction in the number of seizures, nor in the severity of hyperactivity or autism spectrum disorder, among individuals with mosaic genotypes in the presentation of FXS. These observations suggest that low, but non-zero expression of FMRP may be sufficient to positively impact cognitive function in individuals with FXS, with methylation mosaicism (lowered methylation fraction) contributing to a more positive clinical outcome.
Collapse
Affiliation(s)
- Dalyir Pretto
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis Davis, CA, USA
| | - Carolyn M Yrigollen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis Davis, CA, USA
| | - Hiu-Tung Tang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis Davis, CA, USA
| | - John Williamson
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis Davis, CA, USA
| | - Glenda Espinal
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis Davis, CA, USA
| | - Chris K Iwahashi
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis Davis, CA, USA
| | - Blythe Durbin-Johnson
- Department of Public Health Sciences, School of Medicine, University of California at Davis Davis, CA, USA
| | - Randi J Hagerman
- Department of Pediatrics, School of Medicine, University of California at Davis Davis, CA, USA ; MIND Institute, UC Davis Medical Center Sacramento, CA, USA
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis Davis, CA, USA ; Department of Pediatrics, School of Medicine, University of California at Davis Davis, CA, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis Davis, CA, USA ; Department of Pediatrics, School of Medicine, University of California at Davis Davis, CA, USA
| |
Collapse
|
18
|
Chaudhary AG, Hussein IR, Abuzenadah A, Gari M, Bassiouni R, Sogaty S, Lary S, Al-Quaiti M, Al Balwi M, Al Qahtani M. Molecular diagnosis of fragile X syndrome using methylation sensitive techniques in a cohort of patients with intellectual disability. Pediatr Neurol 2014; 50:368-76. [PMID: 24630283 DOI: 10.1016/j.pediatrneurol.2013.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/04/2013] [Accepted: 11/23/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Fragile X syndrome, the most common form of inherited intellectual disability, is caused by expansion of CGG trinucleotide repeat at the 5' untranslated region of the FMR1 gene at Xq27. In affected individuals, the CGG repeat expansion leads to hypermethylation and the gene is transcriptionally inactive. Our aim was to identify fragile X syndrome among children with intellectual disability in Saudi Arabia. PATIENTS AND METHODS The study included 63 patients (53 males, 10 females) presented with intellectual disability, 29 normal subjects, and 23 other family members. DNA samples from six patients previously diagnosed with fragile X syndrome by Southern blot technique were used as positive controls. The method was based on bisulfite treatment of DNA followed by two different techniques. The first technique applied polymerase chain reaction amplification using one set of primers specific for amplifying methylated CpG dinucleotide region; another set designed to amplify the unmethylated CGG repeats. The second technique used the methylation-specific melting curve analysis for detection of methylation status of the FMR1 promoter region. RESULTS Molecular testing using methylation sensitive polymerase chain reaction had shown amplified products in all normal subjects using unmethylated but not methylated primers indicating normal alleles, whereas amplified products were obtained using methylated polymerase chain reaction primers in fragile X syndrome-positive samples and in 9 of 53 males, indicating affected individuals. Molecular testing using melting curve analysis has shown a single low melting peak in all normal males and in (44/53) patients indicating unmethylated FMR1 gene, whereas high melting peak indicating methylated gene was observed in the fragile X syndrome-positive samples and in 9 of 53 patients. We found 100% concordance between results of both techniques and the results of Southern blot analysis. Three samples have shown both methylated and unmethylated alleles, indicating possible mosaicism. No female patients or carriers could be detected by both techniques. CONCLUSION The technique can be applied for the rapid screening for fragile X syndrome among patients with intellectual disability. The impact of mosaicism on clinical severity needs further investigation.
Collapse
Affiliation(s)
- Adeel G Chaudhary
- Faculty of Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ibtessam R Hussein
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| | - Adel Abuzenadah
- Faculty of Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mamdouh Gari
- Faculty of Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Randa Bassiouni
- Pediatric Hospital, Ministry of Health, Al Taif, Kingdom of Saudi Arabia
| | | | - Sahira Lary
- Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Maha Al-Quaiti
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohammed Al Balwi
- King Abdulaziz Medical City for National Guard Health Affairs, and King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Al Qahtani
- Faculty of Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Lokanga RA, Zhao XN, Usdin K. The mismatch repair protein MSH2 is rate limiting for repeat expansion in a fragile X premutation mouse model. Hum Mutat 2014; 35:129-36. [PMID: 24130133 PMCID: PMC3951054 DOI: 10.1002/humu.22464] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/03/2013] [Indexed: 11/06/2022]
Abstract
Fragile X-associated tremor and ataxia syndrome, Fragile X-associated primary ovarian insufficiency, and Fragile X syndrome are Repeat Expansion Diseases caused by expansion of a CGG•CCG-repeat microsatellite in the 5 UTR of the FMR1 gene. To help understand the expansion mechanism responsible for these disorders, we have crossed mice containing∼147 CGG•CCG repeats in the endogenous murine Fmr1 gene with mice containing a null mutation in the gene encoding the mismatch repair protein MSH2. MSH2 mutations are associated with elevated levels of generalized microsatellite instability. However, we show here for the first time that in the FX mouse model, all maternally and paternally transmitted expansions require Msh2. Even the loss of one Msh2 allele reduced the intergenerational expansion frequency significantly. Msh2 is also required for all somatic expansions and loss of even one functional Msh2 allele reduced the extent of somatic expansion in some organs. Tissues with lower levels of MSH2 were more sensitive to the loss of a single Msh2 allele. This suggests that MSH2 is rate limiting for expansion in this mouse model and that MSH2 levels may be a key factor that accounts for tissue-specific differences in expansion risk.
Collapse
Affiliation(s)
- Rachel Adihe Lokanga
- Section on Genomic Structure and Function, Laboratory of Cell and
Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases,
National Institutes of Health, Bethesda, MD 20892-0830
- Division of Medical Biochemistry, University of Cape Town, Cape
Town, South Africa
| | - Xiao-Nan Zhao
- Section on Genomic Structure and Function, Laboratory of Cell and
Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases,
National Institutes of Health, Bethesda, MD 20892-0830
| | - Karen Usdin
- Section on Genomic Structure and Function, Laboratory of Cell and
Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases,
National Institutes of Health, Bethesda, MD 20892-0830
| |
Collapse
|
20
|
Xu H, Rosales-Reynoso MA, Barros-Núñez P, Peprah E. DNA repair/replication transcripts are down regulated in patients with Fragile X Syndrome. BMC Res Notes 2013; 6:90. [PMID: 23497562 PMCID: PMC3637561 DOI: 10.1186/1756-0500-6-90] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 02/22/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Fragile X Syndrome (FXS) and its associated disorders are caused by the expansion of the CGG repeat in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene, with disease classification based on the number of CGG repeats. The mechanisms of repeat expansion are dependent on the presence of cis elements and the absence of trans factors both of which are not mutually exclusive and contribute to repeat instability. Expansions associated with trans factors are due to the haploinsuffient or reduced expression of several DNA repair/metabolizing proteins. The reduction of expression in trans factors has been primarily conducted in animal models without substantial examination of many of these expansion mechanisms and trans factors in humans. RESULTS To understand the trans factors and pathways associated with trinucleotide repeat expansion we have analyzed two microarray datasets which characterized the transcript expression in patients with FXS and in controls. CONCLUSION We observed significant down regulation of DNA damage/repair pathway transcripts. This observation was consistent in both datasets, which used different populations. Within these datasets, several transcripts overlapped in the direction of association and fold change. Further characterization of these genes will be critical to understand their role in trinucleotide repeat instability in FXS.
Collapse
Affiliation(s)
- Huichun Xu
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Dr. MSC 5635, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
21
|
Small genomic rearrangements involving FMR1 support the importance of its gene dosage for normal neurocognitive function. Neurogenetics 2012; 13:333-9. [DOI: 10.1007/s10048-012-0340-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
|
22
|
Wang T, Bray SM, Warren ST. New perspectives on the biology of fragile X syndrome. Curr Opin Genet Dev 2012; 22:256-63. [PMID: 22382129 DOI: 10.1016/j.gde.2012.02.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/06/2012] [Accepted: 02/03/2012] [Indexed: 01/03/2023]
Abstract
Fragile X syndrome (FXS) is a trinucleotide repeat disorder caused by a CGG repeat expansion in FMR1, and loss of its protein product FMRP. Recent studies have provided increased support for the role of FMRP in translational repression via ribosomal stalling and the microRNA pathway. In neurons, particular focus has been placed on identifying the signaling pathways such as PI3K and mTOR downstream of group 1 metabotropic glutamate receptors (mGluR1/5) that regulate FMRP. New evidence also suggests that loss of FMRP causes presynaptic dysfunction and abnormal adult neurogenesis. In addition, studies on FXS stem cells especially induced pluripotent stem (iPS) cells and new sequencing efforts hold out promise for deeper understanding of the silencing process and mutation spectrum of FMR1.
Collapse
Affiliation(s)
- Tao Wang
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
23
|
Abstract
Fragile X syndrome (FXS) is characterized by moderate to severe intellectual disability, which is accompanied by macroorchidism and distinct facial morphology. FXS is caused by the expansion of the CGG trinucleotide repeat in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene. The syndrome has been studied in ethnically diverse populations around the world and has been extensively characterized in several populations. Similar to other trinucleotide expansion disorders, the gene-specific instability of FMR1 is not accompanied by genomic instability. Currently we do not have a comprehensive understanding of the molecular underpinnings of gene-specific instability associated with tandem repeats. Molecular evidence from in vitro experiments and animal models supports several pathways for gene-specific trinucleotide repeat expansion. However, whether the mechanisms reported from other systems contribute to trinucleotide repeat expansion in humans is not clear. To understand how repeat instability in humans could occur, the CGG repeat expansion is explored through molecular analysis and population studies which characterized CGG repeat alleles of FMR1. Finally, the review discusses the relevance of these studies in understanding the mechanism of trinucleotide repeat expansion in FXS.
Collapse
Affiliation(s)
- Emmanuel Peprah
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institute of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Clinical utility gene card for: fragile X mental retardation syndrome, fragile X-associated tremor/ataxia syndrome and fragile X-associated primary ovarian insufficiency. Eur J Hum Genet 2011; 19:ejhg201155. [PMID: 21540884 DOI: 10.1038/ejhg.2011.55] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
25
|
Hall D, Pickler L, Riley K, Tassone F, Hagerman R. Parkinsonism and cognitive decline in a fragile X mosaic male. Mov Disord 2010; 25:1523-4. [PMID: 20568092 DOI: 10.1002/mds.23150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Romero-Espinoza P, Rosales-Reynoso MA, Willemsen R, Barros-Núñez P. FMR1Protein Expression in Blood Smears for Fragile X Syndrome Diagnosis in a Mexican Population Sample. Genet Test Mol Biomarkers 2010; 14:511-4. [DOI: 10.1089/gtmb.2009.0172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Mónica A. Rosales-Reynoso
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Rob Willemsen
- CBG-Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
27
|
Bailey DB, Armstrong FD, Kemper AR, Skinner D, Warren SF. Supporting family adaptation to presymptomatic and "untreatable" conditions in an era of expanded newborn screening. J Pediatr Psychol 2009; 34:648-61. [PMID: 18378512 PMCID: PMC2722102 DOI: 10.1093/jpepsy/jsn032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 01/31/2008] [Accepted: 03/08/2008] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE As technology advances, newborn screening will be possible for conditions not screened today. With an expansion of screening, strategies will be needed to support family adaptation to unexpected and possibly uncertain genetic information provided shortly after birth. METHOD Although candidate conditions for expanded newborn screening will typically be associated with increased morbidity or mortality, for most there is no proven medical treatment that must be implemented quickly. Many will have clinical features that gradually emerge and for which the severity of impact is not predictable. Parents will seek guidance on information, support, and treatment possibilities. This article summarizes issues evoked by expanded newborn screening and suggests strategies for supporting families of identified children. RESULTS We propose four components necessary to support family adaptation to pre-symptomatic and "untreatable" conditions in an era of expanded newborn screening: (1) accurate and understandable information; (2) formal and informal support; (3) active surveillance; and (4) general and targeted interventions. We argue that no condition is "untreatable" and that a well-designed program of prevention and support has the potential to maximize benefit and minimize harm. CONCLUSIONS Pediatric psychologists can play important roles in an era of expanded newborn screening by helping families understand genetic information, make informed decisions about genetic testing, and cope with the potential psychosocial consequences of genetic information.
Collapse
Affiliation(s)
- Donald B Bailey
- RTI International, Research Triangle Park, NC 27709-2194, USA.
| | | | | | | | | |
Collapse
|
28
|
Bailey DB, Raspa M, Olmsted M, Holiday DB. Co-occurring conditions associated with FMR1 gene variations: findings from a national parent survey. Am J Med Genet A 2008; 146A:2060-9. [PMID: 18570292 DOI: 10.1002/ajmg.a.32439] [Citation(s) in RCA: 342] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Parents enrolling in a national survey of families of children with fragile X (FX) reported whether each of their children had been diagnosed or treated for developmental delay or eight conditions frequently associated with FX: attention problems, hyperactivity, aggressiveness, self-injury, autism, seizures, anxiety, or depression. This article reports results for 976 full mutation males, 259 full mutation females, 57 premutation males, and 199 premutation females. Co-occurring conditions were frequently reported for all FMR1 gene variations. The number of co-occurring conditions experienced was strongly associated with parent reports of their child's ability to learn, adaptability, and quality of life. Most individuals with the full mutation experienced multiple co-occurring conditions, with a modal number of 4 for males and 2 for females. Most (>80%) full mutation males and females had been diagnosed or treated for attention problems. Premutation males, when compared with a matched group of non-FX males, were more likely to have been diagnosed or treated for developmental delay, attention problems, aggression, seizures, autism, and anxiety. Premutation females were more likely to have been diagnosed or treated for attention problems, anxiety, depression, and developmental delay. Clusters of conditions were identified, seeming to occur in an additive fashion. Self-injury, autism, and seizures rarely occurred in isolation, but were more likely in individuals who also had problems with attention, anxiety, and hyperactivity. The findings provide a reference point for future studies on the prevalence and nature of co-occurring conditions in FX; suggest the possibility that certain conditions cluster together; provide evidence that male and female carriers experience elevated rates of co-occurring conditions compared with matched groups of non-carrier children; and emphasize the importance of including an assessment of co-occurring conditions in any clinical evaluation of individuals with abnormal variation in the FMR1 gene.
Collapse
Affiliation(s)
- Donald B Bailey
- RTI International, Research Triangle Park, North Carolina 27709-2194, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
The purposes of this study were to present DNA analysis findings of our case series of fragile X syndrome (FXS) based on methylation-specific polymerase chain reaction (MS-PCR), PCR, and Southern blotting alongside developmental characteristics including psychological profiles and to review the literature on FXS in Korea. The reports of 65 children (male:female, 52:13; age, 6.12+/-4.00 yrs) referred for the diagnosis of FXS over a 26-months period were retrospectively reviewed for the identification of full mutation or premutation of fragile X mental retardation 1 (FMR1). Among the 65 children, there were 4 boys with full mutation, and one boy showed premutation of FMR1, yielding a 6.15% positive rate of FXS. All 4 children with full mutation showed significant developmental delay, cognitive dysfunction, and varying degrees of autistic behaviors. The boys with premutation showed also moderate mental retardation, severe drooling, and behavioral problems as severe as the boys with full mutation. Thirteen articles on FXS in Korea have been published since 1993, and they were reviewed. The positive rate of FXS was in the range of 0.77-8.51%, depending on the study groups and the method of diagnosis. Finally, the population-based prevalence study on FXS in Korea is required in the near future.
Collapse
Affiliation(s)
- Shin-Young Yim
- Department of Physical Medicine and Rehabilitation, Ajou University School of Medicine, Suwon, Korea
| | - Bo Hyun Jeon
- Department of Physical Medicine and Rehabilitation, Ajou University School of Medicine, Suwon, Korea
| | - Jung A Yang
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| | - Hyon J. Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
30
|
Coffee B, Ikeda M, Budimirovic DB, Hjelm LN, Kaufmann WE, Warren ST. Mosaic FMR1 deletion causes fragile X syndrome and can lead to molecular misdiagnosis: a case report and review of the literature. Am J Med Genet A 2008; 146A:1358-67. [PMID: 18412117 DOI: 10.1002/ajmg.a.32261] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The most common cause of fragile X syndrome is expansion of a CGG trinucleotide repeat in the 5'UTR of FMR1. This expansion leads to transcriptional silencing of the gene. However, other mutational mechanisms, such as deletions of FMR1, also cause fragile X syndrome. The result is the same for both the expansion mediated silencing and deletion, absence of the gene product, FMRP. We report here on an 11-year-old boy with a cognitive and behavioral profile with features compatible with, but not specific to, fragile X syndrome. A mosaic deletion of 1,013,395 bp was found using high-density X chromosome microarray analysis followed by sequencing of the deletion breakpoints. We review the literature of FMR1 deletions and present this case in the context of other FMR1 deletions having mental retardation that may or may not have the classic fragile X phenotype.
Collapse
Affiliation(s)
- Bradford Coffee
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Cecconi M, Forzano F, Rinaldi R, Cappellacci S, Grammatico P, Faravelli F, Dagna Bricarelli F, Di Maria E, Grasso M. A single nucleotide variant in the FMR1 CGG repeat results in a "Pseudodeletion" and is not associated with the fragile X syndrome phenotype. J Mol Diagn 2008; 10:272-5. [PMID: 18403614 DOI: 10.2353/jmoldx.2008.070163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular diagnosis of fragile X syndrome relies on the detection of the pathogenic CGG repeat expansion in the FMR1 gene. Deletions and point mutations have occasionally been reported. Rare polymorphisms might mimic a deletion by Southern blot analysis, leading to false-positive results. We describe a novel rare nucleotide substitution within the CGG repeat. The proband was a woman with a positive family history of mental retardation. Southern blot analysis showed an additional band consistent with a deletion in the region detected by the StB12.3 probe. Sequencing of this region revealed a G>C transversion that interrupts the CGG repeat and introduces an EagI site. The same variant was observed in both the healthy son and father of the proband, supporting the hypothesis that the nucleotide substitution is a silent polymorphism, the frequency of which we estimated to be less than 1% in the general population. These findings argue for a pathogenic role of nucleotide variants within the CGG repeat and suggest possible consequences of unexpected findings in the molecular diagnostics of fragile X syndrome. Thus, although the sequence context of a single nucleotide substitution may not predict possible effects on mRNA or protein function, a specific change in the higher order structures of DNA or mRNA may be functionally relevant in the pathological phenotype.
Collapse
|
32
|
Bailey DB, Skinner D, Davis AM, Whitmarsh I, Powell C. Ethical, legal, and social concerns about expanded newborn screening: fragile X syndrome as a prototype for emerging issues. Pediatrics 2008; 121:e693-704. [PMID: 18310190 DOI: 10.1542/peds.2007-0820] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Technology will make it possible to screen for fragile X syndrome and other conditions that do not meet current guidelines for routine newborn screening. This possibility evokes at least 8 broad ethical, legal, and social concerns: (1) early identification of fragile X syndrome, an "untreatable" condition, could lead to heightened anxiety about parenting, oversensitivity to development, alterations in parenting, or disrupted bonding; (2) because fragile X syndrome screening should be voluntary, informed consent could overwhelm parents with information, significantly burden hospitals, and reduce participation in the core screening program; (3) screening will identify some children who are or appear to be phenotypically normal; (4) screening might identify children with other conditions not originally targeted for screening; (5) screening could overwhelm an already limited capacity for genetic counseling and comprehensive care; (6) screening for fragile X syndrome, especially if carrier status is disclosed, increases the likelihood of negative self-concept, societal stigmatization, and insurance or employment discrimination; (7) screening will suggest risk in extended family members, raising ethical and legal issues (because they never consented to screening) and creating a communication burden for parents or expanding the scope of physician responsibility; and (8) screening for fragile X syndrome could heighten discrepancies in how men and women experience genetic risk or decide about testing. To address these concerns we recommend a national newborn screening research network; the development of models for informed decision-making; materials and approaches for helping families understand genetic information and communicating it to others; a national forum to address carrier testing and the disclosure of secondary or incidental findings; and public engagement of scientists, policy makers, ethicists, practitioners, and other citizens to discuss the desired aims of newborn screening and the characteristics of a system needed to achieve those aims.
Collapse
Affiliation(s)
- Donald B Bailey
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709-2194, USA.
| | | | | | | | | |
Collapse
|
33
|
Govaerts LCP, Smit AE, Saris JJ, VanderWerf F, Willemsen R, Bakker CE, De Zeeuw CI, Oostra BA. Exceptional good cognitive and phenotypic profile in a male carrying a mosaic mutation in the FMR1 gene. Clin Genet 2007; 72:138-44. [PMID: 17661818 DOI: 10.1111/j.1399-0004.2007.00829.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fragile X (FRAX) syndrome is a commonly inherited form of mental retardation resulting from the lack of expression of the fragile X mental retardation protein (FMRP). It is caused by a stretch of CGG repeats within the fragile X gene, which can be unstable in length as it is transmitted from generation to generation. Once the repeat exceeds a threshold length, the FMR1 gene is methylated and no protein is produced resulting in the fragile X phenotype. The consequences of FMRP absence in the mechanisms underlying mental retardation are unknown. We have identified a male patient in a classical FRAX family without the characteristic FRAX phenotype. His intelligence quotient (IQ) is borderline normal despite the presence of a mosaic pattern of a pre-mutation (25%), full mutation (60%) and a deletion (15%) in the FMR1 gene. The cognitive performance was determined at the age of 28 by the Raven test and his IQ was 81. However, FMRP expression studies in both hair roots and lymphocytes, determined at the same time as the IQ test, were within the affected male range. The percentage of conditioned responses after delay eyeblink conditioning was much higher than the average percentage measured in FRAX studies. Moreover, this patient showed no correlation between FMRP expression and phenotype and no correlation between DNA diagnostics and phenotype.
Collapse
Affiliation(s)
- L C P Govaerts
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
34
|
A unique case of reversion to normal size of a maternal premutation FMR1 allele in a normal boy. Eur J Hum Genet 2007; 16:209-14. [PMID: 17971832 DOI: 10.1038/sj.ejhg.5201949] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is caused mostly by expansion and subsequent methylation of the CGG repeat in the 5'UTR of the FMR1 gene, resulting in silencing of the gene, absence of FMRP and development of the FXS phenotype. The expansion also predisposes the CGG repeat and the flanking regions to further instability that may lead to mosaics between a full mutation and a premutation or, rarely, a normal or deleted allele. Here, we report on a 10-year-old boy with no FXS phenotype, who has a normal CGG tract, although he inherited the maternal expanded allele that causes FXS in his two brothers. Southern blotting demonstrated that the mother carries a premutation allele ( approximately 190 CGG), whereas the propositus shows a normal 5.2 kb fragment after HindIII digestion and a smaller 2.2 kb fragment after double HindIII-EagI digestion, without any apparent mosaicism in peripheral blood leukocytes. PCR and sequence analysis of the FMR1 5'UTR revealed an allele of 43 repeats, with two interspersed AGG triplets in position 10 and 25 and an exceptional CCG triplet in position 17. This latter creates an abnormal EagI site compatible with the smaller 2.2 kb fragment observed with Southern blotting. Haplotype analysis proved that the rearranged allele originated from the maternal expanded allele. To the best of our knowledge, this is the first non-mosaic case of reduction in the CGG tract of the FMR1 gene, resulting in a normal allele.
Collapse
|