1
|
Jin W, Jiang S, Liu X, He Y, Li T, Ma J, Chen Z, Lu X, Liu X, Shou W, Jin G, Ding J, Zhou Z. Disorganized chromatin hierarchy and stem cell aging in a male patient of atypical laminopathy-based progeria mandibuloacral dysplasia type A. Nat Commun 2024; 15:10046. [PMID: 39567511 PMCID: PMC11579472 DOI: 10.1038/s41467-024-54338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Studies of laminopathy-based progeria offer insights into aging-associated diseases and highlight the role of LMNA in chromatin organization. Mandibuloacral dysplasia type A (MAD) is a largely unexplored form of atypical progeria that lacks lamin A post-translational processing defects. Using iPSCs derived from a male MAD patient carrying homozygous LMNA p.R527C, premature aging phenotypes are recapitulated in multiple mesenchymal lineages, including mesenchymal stem cells (MSCs). Comparison with 26 human aging MSC expression datasets reveals that MAD-MSCs exhibit the highest similarity to senescent primary human MSCs. Lamina-chromatin interaction analysis reveals reorganization of lamina-associating domains (LADs) and repositioning of non-LAD binding peaks may contribute to the observed accelerated senescence. Additionally, 3D genome organization further supports hierarchical chromatin disorganization in MAD stem cells, alongside dysregulation of genes involved in epigenetic modification, stem cell fate maintenance, senescence, and geroprotection. Together, these findings suggest LMNA missense mutation is linked to chromatin alterations in an atypical progeroid syndrome.
Collapse
Affiliation(s)
- Wei Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Shaoshuai Jiang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xinyi Liu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yi He
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Tuo Li
- Department of Endocrinology, Changzheng Hospital, Shanghai, China
| | - Jingchun Ma
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Zhihong Chen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaomei Lu
- Dongguan Institute of Pediatrics, Dongguan Children's Hospital, Dongguan, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, China
| | - Weinian Shou
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guoxiang Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junjun Ding
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Zhongjun Zhou
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
2
|
Díaz-López EJ, Sánchez-Iglesias S, Castro AI, Cobelo-Gómez S, Prado-Moraña T, Araújo-Vilar D, Fernandez-Pombo A. Lipodystrophic Laminopathies: From Dunnigan Disease to Progeroid Syndromes. Int J Mol Sci 2024; 25:9324. [PMID: 39273270 PMCID: PMC11395136 DOI: 10.3390/ijms25179324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Lipodystrophic laminopathies are a group of ultra-rare disorders characterised by the presence of pathogenic variants in the same gene (LMNA) and other related genes, along with an impaired adipose tissue pattern and other features that are specific of each of these disorders. The most fascinating traits include their complex genotype-phenotype associations and clinical heterogeneity, ranging from Dunnigan disease, in which the most relevant feature is precisely adipose tissue dysfunction and lipodystrophy, to the other laminopathies affecting adipose tissue, which are also characterised by the presence of signs of premature ageing (Hutchinson Gilford-progeria syndrome, LMNA-atypical progeroid syndrome, mandibuloacral dysplasia types A and B, Nestor-Guillermo progeria syndrome, LMNA-associated cardiocutaneous progeria). This raises several questions when it comes to understanding how variants in the same gene can lead to similar adipose tissue disturbances and, at the same time, to such heterogeneous phenotypes and variable degrees of metabolic abnormalities. The present review aims to gather the molecular basis of adipose tissue impairment in lipodystrophic laminopathies, their main clinical aspects and recent therapeutic strategies. In addition, it also summarises the key aspects for their differential diagnosis.
Collapse
Affiliation(s)
- Everardo Josué Díaz-López
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Ana I Castro
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), 28029 Madrid, Spain
| | - Silvia Cobelo-Gómez
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Teresa Prado-Moraña
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Antia Fernandez-Pombo
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Odinammadu KO, Shilagardi K, Tuminelli K, Judge DP, Gordon LB, Michaelis S. The farnesyl transferase inhibitor (FTI) lonafarnib improves nuclear morphology in ZMPSTE24-deficient fibroblasts from patients with the progeroid disorder MAD-B. Nucleus 2023; 14:2288476. [PMID: 38050983 PMCID: PMC10730222 DOI: 10.1080/19491034.2023.2288476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
Several related progeroid disorders are caused by defective post-translational processing of prelamin A, the precursor of the nuclear scaffold protein lamin A, encoded by LMNA. Prelamin A undergoes farnesylation and additional modifications at its C-terminus. Subsequently, the farnesylated C-terminal segment is cleaved off by the zinc metalloprotease ZMPSTE24. The premature aging disorder Hutchinson Gilford progeria syndrome (HGPS) and a related progeroid disease, mandibuloacral dysplasia (MAD-B), are caused by mutations in LMNA and ZMPSTE24, respectively, that result in failure to process the lamin A precursor and accumulate permanently farnesylated forms of prelamin A. The farnesyl transferase inhibitor (FTI) lonafarnib is known to correct the aberrant nuclear morphology of HGPS patient cells and improves lifespan in children with HGPS. Importantly, and in contrast to a previous report, we show here that FTI treatment also improves the aberrant nuclear phenotypes in MAD-B patient cells with mutations in ZMPSTE24 (P248L or L425P). As expected, lonafarnib does not correct nuclear defects for cells with lamin A processing-proficient mutations. We also examine prelamin A processing in fibroblasts from two individuals with a prevalent laminopathy mutation LMNA-R644C. Despite the proximity of residue R644 to the prelamin A cleavage site, neither R644C patient cell line shows a prelamin A processing defect, and both have normal nuclear morphology. This work clarifies the prelamin A processing status and role of FTIs in a variety of laminopathy patient cells and supports the FDA-approved indication for the FTI Zokinvy for patients with processing-deficient progeroid laminopathies, but not for patients with processing-proficient laminopathies.
Collapse
Affiliation(s)
- Kamsi O. Odinammadu
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Khurts Shilagardi
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Daniel P. Judge
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Leslie B. Gordon
- The Progeria Research Foundation, Peabody, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Division of Genetics, Hasbro Children’s Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Saadi A, Navarro C, Ozalp O, Lourenco CM, Fayek R, Da Silva N, Chaouch A, Benahmed M, Kubisch C, Munnich A, Lévy N, Roll P, Pacha LA, Chaouch M, Lessel D, De Sandre-Giovannoli A. A recurrent homozygous LMNA missense variant p.Thr528Met causes atypical progeroid syndrome characterized by mandibuloacral dysostosis, severe muscular dystrophy, and skeletal deformities. Am J Med Genet A 2023; 191:2274-2289. [PMID: 37387251 DOI: 10.1002/ajmg.a.63335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Atypical progeroid syndromes (APS) are premature aging syndromes caused by pathogenic LMNA missense variants, associated with unaltered expression levels of lamins A and C, without accumulation of wild-type or deleted prelamin A isoforms, as observed in Hutchinson-Gilford progeria syndrome (HGPS) or HGPS-like syndromes. A specific LMNA missense variant, (p.Thr528Met), was previously identified in a compound heterozygous state in patients affected by APS and severe familial partial lipodystrophy, whereas heterozygosity was recently identified in patients affected by Type 2 familial partial lipodystrophy. Here, we report four unrelated boys harboring homozygosity for the p.Thr528Met, variant who presented with strikingly homogeneous APS clinical features, including osteolysis of mandibles, distal clavicles and phalanges, congenital muscular dystrophy with elevated creatine kinase levels, and major skeletal deformities. Immunofluorescence analyses of patient-derived primary fibroblasts showed a high percentage of dysmorphic nuclei with nuclear blebs and typical honeycomb patterns devoid of lamin B1. Interestingly, in some protrusions emerin or LAP2α formed aberrant aggregates, suggesting pathophysiology-associated clues. These four cases further confirm that a specific LMNA variant can lead to the development of strikingly homogeneous clinical phenotypes, in these particular cases a premature aging phenotype with major musculoskeletal involvement linked to the homozygous p.Thr528Met variant.
Collapse
Affiliation(s)
- Abdelkrim Saadi
- Service de neurologie, Etablissement Hospitalier Specialisé de Ben Aknoun, Université Benyoucef Benkhedda, Algiers, Algeria
- Laboratoire de Neurosciences, Service de neurologie, Centre Hospitalo Universitaire Mustapha Bacha, Université Benyoucef Benkhedda Alger, Algiers, Algeria
| | - Claire Navarro
- INSERM, MMG, Aix Marseille University, Marseille, France
- Neoflow Therapeutics, 61 boulevard des Dames, 13002, Marseille, France
| | - Ozge Ozalp
- Genetic Diagnosis Center, Adana City Training and Research Hospital University of Health Sciences, Adana, Turkey
| | - Charles Marques Lourenco
- Neurogenetics Unit-Inborn Errors of Metabolism Clinics, National Reference Center for Rare Diseases, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
- Department of Specialized Education, Personalized Medicine Area, DLE/Grupo Pardini, Rio de Janeiro, Brazil
| | - Racha Fayek
- INSERM, MMG, Aix Marseille University, Marseille, France
| | | | - Athmane Chaouch
- Service de neurophysiologie, Etablissement Hospitalier Specialisé, Algiers, Algeria
| | - Meryem Benahmed
- Service d'anatomo-pathologie, Centre Pierre Marie Curie, Algiers, Algeria
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arnold Munnich
- Department of Clinical Genetics, Institut de Recherche Necker Enfants Malades, Paris, France
| | - Nicolas Lévy
- INSERM, MMG, Aix Marseille University, Marseille, France
- Department of Medical Genetics, La Timone Hospital, APHM, Marseille, France
| | - Patrice Roll
- INSERM, MMG, Aix Marseille University, Marseille, France
- Cell Biology Laboratory, La Timone Hospital, APHM, Marseille, France
| | - Lamia Ali Pacha
- Laboratoire de Neurosciences, Service de neurologie, Centre Hospitalo Universitaire Mustapha Bacha, Université Benyoucef Benkhedda Alger, Algiers, Algeria
| | - Malika Chaouch
- Service de neurologie, Etablissement Hospitalier Specialisé de Ben Aknoun, Université Benyoucef Benkhedda, Algiers, Algeria
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Human Genetics, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Annachiara De Sandre-Giovannoli
- INSERM, MMG, Aix Marseille University, Marseille, France
- Department of Medical Genetics, La Timone Hospital, APHM, Marseille, France
- Biological Resource Center (CRB-TAC), La Timone Hospital, APHM, Marseille, France
| |
Collapse
|
5
|
Zhang X, Zhu J, Zhang J, Zhao H. Melanocyte stem cells and hair graying. J Cosmet Dermatol 2023; 22:1720-1723. [PMID: 36853923 DOI: 10.1111/jocd.15652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 03/01/2023]
Abstract
OBJECTIVES To explore the relationship between melanocyte stem cells in the hair follicle bulge and hair graying so as to fully understand their key role in the pathogenesis of hair graying. METHODS The published articles about "hair graying, hair color, pigmentation disorders" and "melanocyte stem cells, melanocyte" were searched and analyzed in PubMed to explore their relationship. RESULTS Melanocytes in hair bulb are involved in the pathogenesis of hair graying as well as the melanocyte stem cells in hair follicle bulge also play important roles in the formation of hair graying through some ways. CONCLUSION Loss of melanocyte stem cells in hair follicle bulge is one of the main reasons of hair graying, and more researches are needed to explain the underlying mechanisms of ectopic differentiation of melanocyte stem cells in different individual.
Collapse
Affiliation(s)
- Xiaojiao Zhang
- Department of Dermatology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jinyu Zhu
- Department of Dermatology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jiezhi Zhang
- Department of Dermatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hengguang Zhao
- Department of Dermatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Araújo-Vilar D, Fernández-Pombo A, Cobelo-Gómez S, Castro AI, Sánchez-Iglesias S. Lipodystrophy-associated progeroid syndromes. Hormones (Athens) 2022; 21:555-571. [PMID: 35835948 DOI: 10.1007/s42000-022-00386-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/29/2022] [Indexed: 01/07/2023]
Abstract
With the exception of HIV-associated lipodystrophy, lipodystrophy syndromes are rare conditions characterized by a lack of adipose tissue, which is not generally recovered. As a consequence, an ectopic deposition of lipids frequently occurs, which usually leads to insulin resistance, atherogenic dyslipidemia, and hepatic steatosis. These disorders include certain accelerated aging syndromes or progeroid syndromes. Even though each of them has unique clinical features, most show common clinical characteristics that affect growth, skin and appendages, adipose tissue, muscle, and bone and, in some of them, life expectancy is reduced. Although the molecular bases of these Mendelian disorders are very diverse and not well known, genomic instability is frequent as a consequence of impairment of nuclear organization, chromatin structure, and DNA repair, as well as epigenetic dysregulation and mitochondrial dysfunction. In this review, the main clinical features of the lipodystrophy-associated progeroid syndromes will be described along with their causes and pathogenic mechanisms, and an attempt will be made to identify which of López-Otín's hallmarks of aging are present.
Collapse
Affiliation(s)
- David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine (Medicine Area), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS)-IDIS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain.
| | - Antía Fernández-Pombo
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine (Medicine Area), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS)-IDIS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Silvia Cobelo-Gómez
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine (Medicine Area), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS)-IDIS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Ana I Castro
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine (Medicine Area), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS)-IDIS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
7
|
Jang S, Ahn YH, Ko JM, Ko JS, Lim S, Kang HG. Case report: Focal segmental glomerulosclerosis in a pediatric atypical progeroid syndrome. Front Pediatr 2022; 10:1032653. [PMID: 36389384 PMCID: PMC9660256 DOI: 10.3389/fped.2022.1032653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Atypical progeroid syndrome (APS) is a rare type of progeroid syndrome mainly caused by heterozygous missense mutations in the LMNA (MIM 150330) gene. APS has heterogeneous clinical manifestations, and its kidney manifestations, particularly in children, are rarely documented. Here, we report the first pediatric case of APS with focal segmental glomerulosclerosis (FSGS). A 10-year-old boy with progeroid features was referred to the nephrology clinic because of hyperuricemia. He had dark skin, protruding eyes, and beaked nose and was very thin, suggesting lipodystrophy. He had been treated for recurrent urinary tract infection during infancy, and liver biopsy for persisting hepatitis showed steatohepatitis. He also had hypertrophic cardiomyopathy (HCMP) with mitral and tricuspid valve regurgitation. Genetic studies were performed considering his multisystem symptoms, and he was diagnosed as having APS according to exome sequencing findings (c.898G > C, p.Asp300His of LMNA). During the first visit to the nephrology clinic, he had minimal proteinuria (urine protein/creatinine ratio of 0.23 mg/mg), which worsened during follow-up. In three years, his urine protein/creatinine ratio and N-acetyl-b-D-glucosaminidase/creatinine ratio increased to 1.52 and 18.7, respectively. The kidney biopsy result was consistent with findings of FSGS, peri-hilar type, showing segmental sclerosis of 1 (5%) glomerulus out of 21 glomeruli. An angiotensin receptor blocker was added to manage his proteinuria. This is the first pediatric report of FSGS in an APS patient with confirmed LMNA defect, who manifested progeroid features, lipodystrophy, HCMP with heart valve dysfunction, and steatohepatitis. Our case suggests that screening for proteinuric nephropathy is essential for managing APS patients since childhood.
Collapse
Affiliation(s)
- Seoyun Jang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea
| | - Yo Han Ahn
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea.,Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea.,Rare Disease Center, Seoul National University Hospital, Seoul, South Korea
| | - Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Sojung Lim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea.,Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| |
Collapse
|
8
|
Lecaudey LA, Singh P, Sturmbauer C, Duenser A, Gessl W, Ahi EP. Transcriptomics unravels molecular players shaping dorsal lip hypertrophy in the vacuum cleaner cichlid, Gnathochromis permaxillaris. BMC Genomics 2021; 22:506. [PMID: 34225643 PMCID: PMC8256507 DOI: 10.1186/s12864-021-07775-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Teleosts display a spectacular diversity of craniofacial adaptations that often mediates ecological specializations. A considerable amount of research has revealed molecular players underlying skeletal craniofacial morphologies, but less is known about soft craniofacial phenotypes. Here we focus on an example of lip hypertrophy in the benthivorous Lake Tangnayika cichlid, Gnathochromis permaxillaris, considered to be a morphological adaptation to extract invertebrates out of the uppermost layer of mud bottom. We investigate the molecular and regulatory basis of lip hypertrophy in G. permaxillaris using a comparative transcriptomic approach. RESULTS We identified a gene regulatory network involved in tissue overgrowth and cellular hypertrophy, potentially associated with the formation of a locally restricted hypertrophic lip in a teleost fish species. Of particular interest were the increased expression level of apoda and fhl2, as well as reduced expression of cyp1a, gimap8, lama5 and rasal3, in the hypertrophic lip region which have been implicated in lip formation in other vertebrates. Among the predicted upstream transcription factors, we found reduced expression of foxp1 in the hypertrophic lip region, which is known to act as repressor of cell growth and proliferation, and its function has been associated with hypertrophy of upper lip in human. CONCLUSION Our results provide a genetic foundation for future studies of molecular players shaping soft and exaggerated, but locally restricted, craniofacial morphological changes in fish and perhaps across vertebrates. In the future, we advocate integrating gene regulatory networks of various craniofacial phenotypes to understand how they collectively govern trophic and behavioural adaptations.
Collapse
Affiliation(s)
- Laurène Alicia Lecaudey
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Anna Duenser
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Wolfgang Gessl
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| |
Collapse
|
9
|
Hayashi K, Yamamoto N, Takeuchi A, Miwa S, Igarashi K, Araki Y, Yonezawa H, Morinaga S, Asano Y, Tsuchiya H. Long-term survival in a patient with Hutchinson-Gilford progeria syndrome and osteosarcoma: A case report. World J Clin Cases 2021; 9:854-863. [PMID: 33585632 PMCID: PMC7852653 DOI: 10.12998/wjcc.v9.i4.854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare disease characterized by the rapid appearance of aging with an onset in childhood. Serious cardiovascular complications can be life-threatening events for affected patients and the cause of early death. Herein we report a HGPS patient with osteosarcoma hat was successfully managed and is alive 13 years after the diagnosis. This is the first report describing the detailed surgical procedure and long-term follow-up of osteosarcoma in a patient with HGPS.
CASE SUMMARY The patient was diagnosed with HGPS at 5 years of age with typical features and was referred to our department with a suspected bone tumor of the left proximal tibia at the age of 18. Open biopsy of the tibial bone tumor revealed a conventional fibroblastic osteosarcoma. We have developed and performed a freezing technique using liquid nitrogen for tumor reconstruction. This technique overcame the small size of the tibia for megaprosthesis and avoided amputation and limb salvage was achieved 13 years post-operatively. Although the patient had a number of surgical site complications, such as wound dehiscence, and superficial and deep infections due to vulnerable skin in HGPS, no recurrence or metastases were detected for 13 years, and she walks assisted by crutches. Her general health was good at the latest follow-up at 31 years of age.
CONCLUSION A HGPS patient with osteosarcoma was successfully managed and she was alive 13 years after the diagnosis.
Collapse
Affiliation(s)
- Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa 9208641, Japan
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa 9208641, Japan
| | - Akihiko Takeuchi
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa 9208641, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa 9208641, Japan
| | - Kentaro Igarashi
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa 9208641, Japan
| | - Yoshihiro Araki
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa 9208641, Japan
| | - Hirotaka Yonezawa
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa 9208641, Japan
| | - Sei Morinaga
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa 9208641, Japan
| | - Yohei Asano
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa 9208641, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa 9208641, Japan
| |
Collapse
|
10
|
Marcelot A, Worman HJ, Zinn-Justin S. Protein structural and mechanistic basis of progeroid laminopathies. FEBS J 2020; 288:2757-2772. [PMID: 32799420 DOI: 10.1111/febs.15526] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
Progeroid laminopathies are characterized by the premature appearance of certain signs of physiological aging in a subset of tissues. They are caused by mutations in genes coding for A-type lamins or lamin-binding proteins. Here, we review how different mutations causing progeroid laminopathies alter protein structure or protein-protein interactions and how these impact on mechanisms that protect cell viability and function. One group of progeroid laminopathies, which includes Hutchinson-Gilford progeria syndrome, is characterized by accumulation of unprocessed prelamin A or variants. These are caused by mutations in the A-type lamin gene (LMNA), altering prelamin A itself, or in ZMPSTE24, encoding an endoprotease involved in its processing. The abnormally expressed farnesylated proteins impact on various cellular processes that may contribute to progeroid phenotypes. Other LMNA mutations lead to the production of nonfarnesylated A-type lamin variants with amino acid substitutions in solvent-exposed hot spots located mainly in coil 1B and the immunoglobulin fold domain. Dominant missense mutations might reinforce interactions between lamin domains, thus giving rise to excessively stabilized filament networks. Recessive missense mutations in A-type lamins and barrier-to-autointegration factor (BAF) causing progeroid disorders are found at the interface between these interacting proteins. The amino acid changes decrease the binding affinity of A-type lamins for BAF, which may contribute to lamina disorganization, as well as defective repair of mechanically induced nuclear envelope rupture. Targeting these molecular alterations in A-type lamins and associated proteins identified through structural biology studies could facilitate the design of therapeutic strategies to treat patients with rare but severe progeroid laminopathies.
Collapse
Affiliation(s)
- Agathe Marcelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Howard J Worman
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette Cedex, France
| |
Collapse
|
11
|
Cenni V, Capanni C, Mattioli E, Schena E, Squarzoni S, Bacalini MG, Garagnani P, Salvioli S, Franceschi C, Lattanzi G. Lamin A involvement in ageing processes. Ageing Res Rev 2020; 62:101073. [PMID: 32446955 DOI: 10.1016/j.arr.2020.101073] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/05/2020] [Accepted: 04/11/2020] [Indexed: 12/29/2022]
Abstract
Lamin A, a main constituent of the nuclear lamina, is the major splicing product of the LMNA gene, which also encodes lamin C, lamin A delta 10 and lamin C2. Involvement of lamin A in the ageing process became clear after the discovery that a group of progeroid syndromes, currently referred to as progeroid laminopathies, are caused by mutations in LMNA gene. Progeroid laminopathies include Hutchinson-Gilford Progeria, Mandibuloacral Dysplasia, Atypical Progeria and atypical-Werner syndrome, disabling and life-threatening diseases with accelerated ageing, bone resorption, lipodystrophy, skin abnormalities and cardiovascular disorders. Defects in lamin A post-translational maturation occur in progeroid syndromes and accumulated prelamin A affects ageing-related processes, such as mTOR signaling, epigenetic modifications, stress response, inflammation, microRNA activation and mechanosignaling. In this review, we briefly describe the role of these pathways in physiological ageing and go in deep into lamin A-dependent mechanisms that accelerate the ageing process. Finally, we propose that lamin A acts as a sensor of cell intrinsic and environmental stress through transient prelamin A accumulation, which triggers stress response mechanisms. Exacerbation of lamin A sensor activity due to stably elevated prelamin A levels contributes to the onset of a permanent stress response condition, which triggers accelerated ageing.
Collapse
Affiliation(s)
- Vittoria Cenni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cristina Capanni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisabetta Mattioli
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Schena
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Squarzoni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge, University Hospital, Stockholm, Sweden
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Interdepartmental Center Alma Mater Research Institute on Global Challenges and Climate Changes, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
12
|
Magno S, Ceccarini G, Pelosini C, Ferrari F, Prodam F, Gilio D, Maffei M, Sessa MR, Barison A, Ciccarone A, Emdin M, Aimaretti G, Santini F. Atypical Progeroid Syndrome and Partial Lipodystrophy Due to LMNA Gene p.R349W Mutation. J Endocr Soc 2020; 4:bvaa108. [PMID: 32913962 PMCID: PMC7474543 DOI: 10.1210/jendso/bvaa108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 01/09/2023] Open
Abstract
Atypical progeroid syndrome (APS) comprises heterogeneous disorders characterized by variable degrees of fat loss, metabolic alterations, and comorbidities that affect skeleton, muscles, and/or the heart. We describe 3 patients that were referred to our center for the suspicion of lipodystrophy. They had precocious aging traits such as short stature, mandibular hypoplasia, beaked nose, and partial alopecia manifesting around 10 to 15 years of age recurrently associated with: (1) partial lipodystrophy; (2) proteinuric nephropathy; (3) heart disease (rhythm disorders, valvular abnormalities, and cardiomyopathy); and (4) sensorineural hearing impairment. In all patients, genetic testing revealed a missense heterozygous lamin A/C gene (LMNA) mutation c.1045 C > T (p.Arg349Trp). Ten patients with LMNA p.R349W mutation have been reported so far, all presenting with similar features, which represent the key pathological hallmarks of this subtype of APS. The associated kidney and cardiac complications occurring in the natural history of the disease may reduce life expectancy. Therefore, in these patients a careful and periodic cardiac and kidney function evaluation is required.
Collapse
Affiliation(s)
- Silvia Magno
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Caterina Pelosini
- Laboratories of Clinical Chemistry and Endocrinology of the University Hospital of Cisanello, Italy
| | - Federica Ferrari
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Flavia Prodam
- Department of Medical Sciences "Amedeo Avogadro" University of Novara, University of Piemonte Orientale, Division of Pediatrics, Novara, Italy
| | - Donatella Gilio
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Margherita Maffei
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy.,CNR Institute of Clinical Physiology, Pisa, Italy
| | - Maria Rita Sessa
- Laboratories of Clinical Chemistry and Endocrinology of the University Hospital of Cisanello, Italy
| | - Andrea Barison
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Michele Emdin
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Gianluca Aimaretti
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Kandhaya-Pillai R, Hisama FM, Bucks SA, Yarzar S, Korovou H, Martin GM, Oshima J. Novel LMNA mutations in Greek and Myanmar Patients with Progeroid Features and Cardiac Manifestations. ACTA ACUST UNITED AC 2020; 2:101-105. [PMID: 32954377 PMCID: PMC7500617 DOI: 10.31491/apt.2020.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Segmental progeroid syndromes are groups of genetic disorders with multiple features resembling accelerated aging. The International Registry of Werner Syndrome (Seattle, WA) recruits pedigrees of progeroid syndromes from all over the world. We identified two novel LMNA mutations, p.Asp300Gly in a patient from Myanmar, and p.Asn466Lys, in a patient from Greece. Both were referred to our Registry for the genetic diagnosis because of the accelerated aged-appearance and cardiac complications. LMNA mutations are the second most common genetic cause of progeroid syndromes after WRN mutations in our Registry. As the next generation sequencing becomes readily available, we expect to identify more cases of rare genetic diseases in the developing countries.
Collapse
Affiliation(s)
| | - Fuki M Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stephanie A Bucks
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Soe Yarzar
- Department of Medicine, University of Medicine 2, Yangon, Myanmar
| | | | - George M Martin
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Junko Oshima
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Saxena S, Kumar S. Pharmacotherapy to gene editing: potential therapeutic approaches for Hutchinson-Gilford progeria syndrome. GeroScience 2020; 42:467-494. [PMID: 32048129 PMCID: PMC7205988 DOI: 10.1007/s11357-020-00167-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), commonly called progeria, is an extremely rare disorder that affects only one child per four million births. It is characterized by accelerated aging in affected individuals leading to premature death at an average age of 14.5 years due to cardiovascular complications. The main cause of HGPS is a sporadic autosomal dominant point mutation in LMNA gene resulting in differently spliced lamin A protein known as progerin. Accumulation of progerin under nuclear lamina and activation of its downstream effectors cause perturbation in cellular morphology and physiology which leads to a systemic disorder that mainly impairs the cardiovascular system, bones, skin, and overall growth. Till now, no cure has been found for this catastrophic disorder; however, several therapeutic strategies are under development. The current review focuses on the overall progress in the field of therapeutic approaches for the management/cure of HGPS. We have also discussed the new disease models that have been developed for the study of this rare disorder. Moreover, we have highlighted the therapeutic application of extracellular vesicles derived from stem cells against aging and aging-related disorders and, therefore, suggest the same for the treatment of HGPS.
Collapse
Affiliation(s)
- Saurabh Saxena
- Department of Medical Laboratory Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India.
| | - Sanjeev Kumar
- Faculty of Technology and Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| |
Collapse
|
15
|
Looking at New Unexpected Disease Targets in LMNA-Linked Lipodystrophies in the Light of Complex Cardiovascular Phenotypes: Implications for Clinical Practice. Cells 2020; 9:cells9030765. [PMID: 32245113 PMCID: PMC7140635 DOI: 10.3390/cells9030765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/01/2020] [Accepted: 03/07/2020] [Indexed: 12/13/2022] Open
Abstract
Variants in LMNA, encoding A-type lamins, are responsible for laminopathies including muscular dystrophies, lipodystrophies, and progeroid syndromes. Cardiovascular laminopathic involvement is classically described as cardiomyopathy in striated muscle laminopathies, and arterial wall dysfunction and/or valvulopathy in lipodystrophic and/or progeroid laminopathies. We report unexpected cardiovascular phenotypes in patients with LMNA-associated lipodystrophies, illustrating the complex multitissular pathophysiology of the disease and the need for specific cardiovascular investigations in affected patients. A 33-year-old woman was diagnosed with generalized lipodystrophy and atypical progeroid syndrome due to the newly identified heterozygous LMNA p.(Asp136Val) variant. Her complex cardiovascular phenotype was associated with atherosclerosis, aortic valvular disease and left ventricular hypertrophy with rhythm and conduction defects. A 29-year-old woman presented with a partial lipodystrophy syndrome and a severe coronary atherosclerosis which required a triple coronary artery bypass grafting. She carried the novel heterozygous p.(Arg60Pro) LMNA variant inherited from her mother, affected with partial lipodystrophy and dilated cardiomyopathy. Different lipodystrophy-associated LMNA pathogenic variants could target cardiac vasculature and/or muscle, leading to complex overlapping phenotypes. Unifying pathophysiological hypotheses should be explored in several cell models including adipocytes, cardiomyocytes and vascular cells. Patients with LMNA-associated lipodystrophy should be systematically investigated with 24-h ECG monitoring, echocardiography and non-invasive coronary function testing.
Collapse
|
16
|
Grelet M, Blanck V, Sigaudy S, Philip N, Giuliano F, Khachnaoui K, Morel G, Grotto S, Sophie J, Poirsier C, Lespinasse J, Alric L, Calvas P, Chalhoub G, Layet V, Molin A, Colson C, Marsili L, Edery P, Lévy N, De Sandre-Giovannoli A. Outcomes of 4 years of molecular genetic diagnosis on a panel of genes involved in premature aging syndromes, including laminopathies and related disorders. Orphanet J Rare Dis 2019; 14:288. [PMID: 31829210 PMCID: PMC6907233 DOI: 10.1186/s13023-019-1189-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/30/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Segmental progeroid syndromes are a heterogeneous group of rare and often severe genetic disorders that have been studied since the twentieth century. These progeroid syndromes are defined as segmental because only some of the features observed during natural aging are accelerated. METHODS Since 2015, the Molecular Genetics Laboratory in Marseille La Timone Hospital proposes molecular diagnosis of premature aging syndromes including laminopathies and related disorders upon NGS sequencing of a panel of 82 genes involved in these syndromes. We analyzed the results obtained in 4 years on 66 patients issued from France and abroad. RESULTS Globally, pathogenic or likely pathogenic variants (ACMG class 5 or 4) were identified in about 1/4 of the cases; among these, 9 pathogenic variants were novel. On the other hand, the diagnostic yield of our panel was over 60% when the patients were addressed upon a nosologically specific clinical suspicion, excepted for connective tissue disorders, for which clinical diagnosis may be more challenging. Prenatal testing was proposed to 3 families. We additionally detected 16 variants of uncertain significance and reclassified 3 of them as benign upon segregation analysis in first degree relatives. CONCLUSIONS High throughput sequencing using the Laminopathies/ Premature Aging disorders panel allowed molecular diagnosis of rare disorders associated with premature aging features and genetic counseling for families, representing an interesting first-level analysis before whole genome sequencing may be proposed, as a future second step, by the National high throughput sequencing platforms ("Medicine France Genomics 2025" Plan), in families without molecular diagnosis.
Collapse
Affiliation(s)
- Maude Grelet
- Department of Medical Genetics, Assistance Publique Hopitaux de Marseille, Marseille, France
- Aix Marseille Univ, INSERM, MMG, Marseille, France
| | - Véronique Blanck
- Department of Medical Genetics, Assistance Publique Hopitaux de Marseille, Marseille, France
| | - Sabine Sigaudy
- Department of Medical Genetics, Assistance Publique Hopitaux de Marseille, Marseille, France
- Aix Marseille Univ, INSERM, MMG, Marseille, France
| | - Nicole Philip
- Department of Medical Genetics, Assistance Publique Hopitaux de Marseille, Marseille, France
- Aix Marseille Univ, INSERM, MMG, Marseille, France
| | | | | | - Godelieve Morel
- Hospices Civils de Lyon, Genetic Department and National HHT Reference Center, Femme-Mère-Enfants Hospital, F-69677 Bron, France
- Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France
| | - Sarah Grotto
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Julia Sophie
- Department of Medical Genetics, CHU Toulouse, Purpan Hospital, 31059 Toulouse, France
| | - Céline Poirsier
- Department of Genetics, Reims University Hospital, Reims, France
| | - James Lespinasse
- Department of Genetics, Centre Hospitalier de Chambéry- Hôtel-dieu, Chambery, France
| | - Laurent Alric
- Internal Medicine, CHU Toulouse, Rangueil Hospital, Toulouse 3 University Hospital Center, Toulouse, France
| | - Patrick Calvas
- Department of Medical Genetics, CHU Toulouse, Purpan Hospital, 31059 Toulouse, France
| | | | - Valérie Layet
- Department of Genetics, Le Havre Hospital, F76600 Le Havre, France
| | - Arnaud Molin
- Department of Genetics, CHU de Caen, Avenue de la Cote de Nacre, 14000 Caen, France
| | - Cindy Colson
- Department of Genetics, CHU de Caen, Avenue de la Cote de Nacre, 14000 Caen, France
| | - Luisa Marsili
- Department of Clinical Genetics, Lille University Hospital, CHU, Lille, France
| | - Patrick Edery
- Hospices Civils de Lyon, Genetic Department and National HHT Reference Center, Femme-Mère-Enfants Hospital, F-69677 Bron, France
- Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France
| | - Nicolas Lévy
- Department of Medical Genetics, Assistance Publique Hopitaux de Marseille, Marseille, France
- Aix Marseille Univ, INSERM, MMG, Marseille, France
- CRB-TAC (Biological Ressource Center-Tissues, DNA, Cells), Assistance Publique Hopitaux de Marseille, Marseille, France
| | - Annachiara De Sandre-Giovannoli
- Department of Medical Genetics, Assistance Publique Hopitaux de Marseille, Marseille, France
- Aix Marseille Univ, INSERM, MMG, Marseille, France
- CRB-TAC (Biological Ressource Center-Tissues, DNA, Cells), Assistance Publique Hopitaux de Marseille, Marseille, France
| |
Collapse
|
17
|
Foo MXR, Ong PF, Dreesen O. Premature aging syndromes: From patients to mechanism. J Dermatol Sci 2019; 96:58-65. [PMID: 31727429 DOI: 10.1016/j.jdermsci.2019.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022]
Abstract
Aging is an inevitable consequence of human life resulting in a gradual deterioration of cell, tissue and organismal function and an increased risk to develop chronic ailments. Premature aging syndromes, also known as progeroid syndromes, recapitulate many clinical features of normal aging and offer a unique opportunity to elucidate fundamental mechanisms that contribute to human aging. Progeroid syndromes can be broadly classified into those caused by perturbations of the nuclear lamina, a meshwork of proteins located underneath the inner nuclear membrane (laminopathies); and a second group that is caused by mutations that directly impair DNA replication and repair. We will focus mainly on laminopathies caused by incorrect processing of lamin A, an intermediate filament protein that resides at the nuclear periphery. Hutchinson-Gilford Progeria (HGPS) is an accelerated aging syndrome caused by a mutation in lamin A and one of the best studied laminopathies. HGPS patients exhibit clinical characteristics of premature aging, including alopecia, aberrant pigmentation, loss of subcutaneous fat and die in their teens as a result of atherosclerosis and cardiovascular complications. Here we summarize how cell- and mouse-based disease models provided mechanistic insights into human aging and discuss experimental strategies under consideration for the treatment of these rare genetic disorders.
Collapse
Affiliation(s)
- Mattheus Xing Rong Foo
- Cell Aging Laboratory, Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648 Singapore; Nanyang Technological University, Singapore
| | - Peh Fern Ong
- Cell Aging Laboratory, Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648 Singapore
| | - Oliver Dreesen
- Cell Aging Laboratory, Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648 Singapore; Nanyang Technological University, Singapore.
| |
Collapse
|
18
|
Toni L, Dušátková P, Novotná D, Zemková D, Průhová Š, Lebl J. Short stature in a boy with atypical progeria syndrome due to LMNA c.433G>A [p.(Glu145Lys)]: apparent growth hormone deficiency but poor response to growth hormone therapy. J Pediatr Endocrinol Metab 2019; 32:775-779. [PMID: 31199775 DOI: 10.1515/jpem-2019-0107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/31/2019] [Indexed: 01/02/2023]
Abstract
Background Hutchinson-Gilford progeria syndrome (HGPS) is a rare disease caused by pathogenic variants in the LMNA gene, which leads to premature aging. The median life expectancy is shortened to 13 years due to cardiovascular complications. Case report We present a boy born with a pathogenic LMNA variant c.433G > A, which causes atypical progeria syndrome (APS) and was previously described in one single patient. When investigated for poor growth prior to the diagnosis of APS, his laboratory tests revealed growth hormone (GH) deficiency and magnetic resonance imaging (MRI) of the midbrain showed partial empty sella. GH treatment had only a limited and transient effect. His first ischemic complication manifested at age 4.2 years; at the age of 7 years, he had a fatal haemorrhagic stroke. Conclusion To the best of our knowledge, this is the first patient with APS showing partial empty sella and GH deficiency that might have contributed to his poor growth. GH failed to improve long-term outcome.
Collapse
Affiliation(s)
- Ledjona Toni
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Praha, Czech Republic
| | - Petra Dušátková
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Praha, Czech Republic
| | - Dana Novotná
- Department of Paediatrics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Daniela Zemková
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Praha, Czech Republic
| | - Štěpánka Průhová
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Praha, Czech Republic
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Praha, Czech Republic
| |
Collapse
|
19
|
Romero-Bueno R, de la Cruz Ruiz P, Artal-Sanz M, Askjaer P, Dobrzynska A. Nuclear Organization in Stress and Aging. Cells 2019; 8:cells8070664. [PMID: 31266244 PMCID: PMC6678840 DOI: 10.3390/cells8070664] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
The eukaryotic nucleus controls most cellular processes. It is isolated from the cytoplasm by the nuclear envelope, which plays a prominent role in the structural organization of the cell, including nucleocytoplasmic communication, chromatin positioning, and gene expression. Alterations in nuclear composition and function are eminently pronounced upon stress and during premature and physiological aging. These alterations are often accompanied by epigenetic changes in histone modifications. We review, here, the role of nuclear envelope proteins and histone modifiers in the 3-dimensional organization of the genome and the implications for gene expression. In particular, we focus on the nuclear lamins and the chromatin-associated protein BAF, which are linked to Hutchinson–Gilford and Nestor–Guillermo progeria syndromes, respectively. We also discuss alterations in nuclear organization and the epigenetic landscapes during normal aging and various stress conditions, ranging from yeast to humans.
Collapse
Affiliation(s)
- Raquel Romero-Bueno
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Patricia de la Cruz Ruiz
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Marta Artal-Sanz
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain.
| | - Agnieszka Dobrzynska
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain.
| |
Collapse
|
20
|
Yanhua X, Suxian Z. Cerebral Haemorrhage in a Young Patient With Atypical Werner Syndrome Due to Mutations in LMNA. Front Endocrinol (Lausanne) 2018; 9:433. [PMID: 30123186 PMCID: PMC6085819 DOI: 10.3389/fendo.2018.00433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/13/2018] [Indexed: 12/28/2022] Open
Abstract
Introduction: Werner syndrome is a rare genetic disorder; classical Werner syndrome is caused by mutations in the WRN gene. However, recent research has shown that LMNA gene mutations can also cause premature ageing syndromes such as atypical Werner syndrome (AWS). AWS usually manifests as muscular damage, defects in the cardiac conduction system, lipoatrophy, diabetes, atherosclerosis, and premature ageing. Clinical presentation: A 24-year-old man presented with severe abdominal aortic and peripheral artery disease and cerebral haemorrhage. He was prescribed once-daily 20 mg atorvastatin. Another large cerebral haemorrhage occurred 8 months after discharge. Although he underwent minimally invasive intracranial haematoma surgery, paralysis set in. Molecular studies showed a missense mutation within exon 5 (c.898G>C) that caused amino acid aspartate 300 to be replaced by histidine (p.Asp300His) in the LMNA gene. The patient was diagnosed with AWS. Conclusions: Haemorrhagic stroke and progeroid features may be manifestations of LMNA-linked AWS. In such cases, the patient's family history and genetic background should be investigated. WRN and LMNA gene testing of the proband and the immediate family should be considered. This case report provides a deeper understanding of the role of LMNA mutations in AWS.
Collapse
Affiliation(s)
- Xiao Yanhua
- Affiliated Hospital of Guilin Medical College, Guilin, China
- Guilin People's Hospital, Guilin, China
| | - Zhou Suxian
- Affiliated Hospital of Guilin Medical College, Guilin, China
| |
Collapse
|
21
|
Frankel D, Delecourt V, Harhouri K, De Sandre-Giovannoli A, Lévy N, Kaspi E, Roll P. MicroRNAs in hereditary and sporadic premature aging syndromes and other laminopathies. Aging Cell 2018; 17:e12766. [PMID: 29696758 PMCID: PMC6052405 DOI: 10.1111/acel.12766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Hereditary and sporadic laminopathies are caused by mutations in genes encoding lamins, their partners, or the metalloprotease ZMPSTE24/FACE1. Depending on the clinical phenotype, they are classified as tissue‐specific or systemic diseases. The latter mostly manifest with several accelerated aging features, as in Hutchinson–Gilford progeria syndrome (HGPS) and other progeroid syndromes. MicroRNAs are small noncoding RNAs described as powerful regulators of gene expression, mainly by degrading target mRNAs or by inhibiting their translation. In recent years, the role of these small RNAs has become an object of study in laminopathies using in vitro or in vivo murine models as well as cells/tissues of patients. To date, few miRNAs have been reported to exert protective effects in laminopathies, including miR‐9, which prevents progerin accumulation in HGPS neurons. The recent literature has described the potential implication of several other miRNAs in the pathophysiology of laminopathies, mostly by exerting deleterious effects. This review provides an overview of the current knowledge of the functional relevance and molecular insights of miRNAs in laminopathies. Furthermore, we discuss how these discoveries could help to better understand these diseases at the molecular level and could pave the way toward identifying new potential therapeutic targets and strategies based on miRNA modulation.
Collapse
Affiliation(s)
- Diane Frankel
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Service de Biologie Cellulaire; Marseille France
| | | | | | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Département de Génétique Médicale; Marseille France
| | - Nicolas Lévy
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Département de Génétique Médicale; Marseille France
| | - Elise Kaspi
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Service de Biologie Cellulaire; Marseille France
| | - Patrice Roll
- Aix Marseille Univ; INSERM; MMG; Marseille France
- APHM, Hôpital la Timone; Service de Biologie Cellulaire; Marseille France
| |
Collapse
|
22
|
Jo SK, Lee JY, Lee Y, Kim CD, Lee JH, Lee YH. Three Streams for the Mechanism of Hair Graying. Ann Dermatol 2018; 30:397-401. [PMID: 30065578 PMCID: PMC6029974 DOI: 10.5021/ad.2018.30.4.397] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Hair graying is an obvious sign of human aging. Although graying has been investigated extensively, the mechanism remains unclear. Here, we reviewed previous studies on the mechanism of graying and seek to offer some new insights. The traditional view is that hair graying is caused by exhaustion of the pigmentary potential of the melanocytes of hair bulbs. Melanocyte dysfunction may be attributable to the effects of toxic reactive oxygen species on melanocyte nuclei and mitochondria. A recent study suggests that bulge melanocyte stem cells (MSCs) are the key cells in play. Graying may be caused by defective MSC self-maintenance, not by any deficiency in bulbar melanocytes. Our previous study suggested that graying may be principally attributable to active hair growth. Active hair growth may produce oxidative or genotoxic stress in hair bulge. These internal stress may cause eventually depletion of MSC in the hair follicles. Taken together, hair graying may be caused by MSC depletion by genotoxic stress in the hair bulge. Hair graying may also be sometimes caused by dysfunction of the melanocytes by oxidative stress in the hair bulb. In addition, hair graying may be attributable to MSC depletion by active hair growth.
Collapse
Affiliation(s)
- Seong Kyeong Jo
- Department of Anatomy, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ji Yeon Lee
- Department of Anatomy, Chungnam National University College of Medicine, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Chang Deok Kim
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Young Ho Lee
- Department of Anatomy, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
23
|
Burla R, La Torre M, Merigliano C, Vernì F, Saggio I. Genomic instability and DNA replication defects in progeroid syndromes. Nucleus 2018; 9:368-379. [PMID: 29936894 PMCID: PMC7000143 DOI: 10.1080/19491034.2018.1476793] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Progeroid syndromes induced by mutations in lamin A or in its interactors – named progeroid laminopathies – are model systems for the dissection of the molecular pathways causing physiological and premature aging. A large amount of data, based mainly on the Hutchinson Gilford Progeria syndrome (HGPS), one of the best characterized progeroid laminopathy, has highlighted the role of lamins in multiple DNA activities, including replication, repair, chromatin organization and telomere function. On the other hand, the phenotypes generated by mutations affecting genes directly acting on DNA function, as mutations in the helicases WRN and BLM or in the polymerase polδ, share many of the traits of progeroid laminopathies. These evidences support the hypothesis of a concerted implication of DNA function and lamins in aging. We focus here on these aspects to contribute to the comprehension of the driving forces acting in progeroid syndromes and premature aging.
Collapse
Affiliation(s)
- Romina Burla
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy.,b Istituto di Biologia e Patologia Molecolari del CNR , Rome , Italy
| | - Mattia La Torre
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy.,b Istituto di Biologia e Patologia Molecolari del CNR , Rome , Italy
| | - Chiara Merigliano
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy
| | - Fiammetta Vernì
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy
| | - Isabella Saggio
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy.,b Istituto di Biologia e Patologia Molecolari del CNR , Rome , Italy.,c Istituto Pasteur Fondazione Cenci Bolognetti , Rome , Italy
| |
Collapse
|
24
|
Guillín-Amarelle C, Fernández-Pombo A, Sánchez-Iglesias S, Araújo-Vilar D. Lipodystrophic laminopathies: Diagnostic clues. Nucleus 2018; 9:249-260. [PMID: 29557732 PMCID: PMC5973260 DOI: 10.1080/19491034.2018.1454167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/02/2017] [Accepted: 03/15/2018] [Indexed: 01/19/2023] Open
Abstract
The nuclear lamina is a complex reticular structure that covers the inner face of the nucleus membrane in metazoan cells. It is mainly formed by intermediate filaments called lamins, and exerts essential functions to maintain the cellular viability. Lamin A/C provides mechanical steadiness to the nucleus and regulates genetic machinery. Laminopathies are tissue-specific or systemic disorders caused by variants in LMNA gene (primary laminopathies) or in other genes encoding proteins which are playing some role in prelamin A maturation or in lamin A/C function (secondary laminopathies). Those disorders in which adipose tissue is affected are called laminopathic lipodystrophies and include type 2 familial partial lipodystrophy and certain premature aging syndromes. This work summarizes the main clinical features of these syndromes, their associated comorbidities and the clues for the differential diagnosis with other lipodystrophic disorders.
Collapse
Affiliation(s)
- Cristina Guillín-Amarelle
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - Antía Fernández-Pombo
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| |
Collapse
|
25
|
Serebryannyy L, Misteli T. Protein sequestration at the nuclear periphery as a potential regulatory mechanism in premature aging. J Cell Biol 2017; 217:21-37. [PMID: 29051264 PMCID: PMC5748986 DOI: 10.1083/jcb.201706061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022] Open
Abstract
Serebryannyy and Misteli provide a perspective on how protein sequestration at the inner nuclear membrane and nuclear lamina might influence aging. Despite the extensive description of numerous molecular changes associated with aging, insights into the driver mechanisms of this fundamental biological process are limited. Based on observations in the premature aging syndrome Hutchinson–Gilford progeria, we explore the possibility that protein regulation at the inner nuclear membrane and the nuclear lamina contributes to the aging process. In support, sequestration of nucleoplasmic proteins to the periphery impacts cell stemness, the response to cytotoxicity, proliferation, changes in chromatin state, and telomere stability. These observations point to the nuclear periphery as a central regulator of the aging phenotype.
Collapse
Affiliation(s)
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
26
|
Robin JD, Magdinier F. Physiological and Pathological Aging Affects Chromatin Dynamics, Structure and Function at the Nuclear Edge. Front Genet 2016; 7:153. [PMID: 27602048 PMCID: PMC4993774 DOI: 10.3389/fgene.2016.00153] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/08/2016] [Indexed: 01/29/2023] Open
Abstract
Lamins are intermediate filaments that form a complex meshwork at the inner nuclear membrane. Mammalian cells express two types of Lamins, Lamins A/C and Lamins B, encoded by three different genes, LMNA, LMNB1, and LMNB2. Mutations in the LMNA gene are associated with a group of phenotypically diverse diseases referred to as laminopathies. Lamins interact with a large number of binding partners including proteins of the nuclear envelope but also chromatin-associated factors. Lamins not only constitute a scaffold for nuclear shape, rigidity and resistance to stress but also contribute to the organization of chromatin and chromosomal domains. We will discuss here the impact of A-type Lamins loss on alterations of chromatin organization and formation of chromatin domains and how disorganization of the lamina contributes to the patho-physiology of premature aging syndromes.
Collapse
Affiliation(s)
- Jérôme D Robin
- IRCAN, CNRS UMR 7284/INSERM U1081, Faculté de Médecine Nice, France
| | | |
Collapse
|
27
|
Soria-Valles C, Carrero D, Gabau E, Velasco G, Quesada V, Bárcena C, Moens M, Fieggen K, Möhrcken S, Owens M, Puente DA, Asensio Ó, Loeys B, Pérez A, Benoit V, Wuyts W, Lévy N, Hennekam RC, De Sandre-Giovannoli A, López-Otín C. NovelLMNAmutations cause an aggressive atypical neonatal progeria without progerin accumulation. J Med Genet 2016; 53:776-785. [DOI: 10.1136/jmedgenet-2015-103695] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 05/12/2016] [Accepted: 05/26/2016] [Indexed: 11/04/2022]
|
28
|
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare premature aging disease presenting many features resembling the normal aging process. HGPS patients die before the age of 20 years due to cardiovascular problems and heart failure. HGPS is linked to mutations in the LMNA gene encoding the intermediate filament protein lamin A. Lamin A is a major component of the nuclear lamina, a scaffold structure at the nuclear envelope that defines mechanochemical properties of the nucleus and is involved in chromatin organization and epigenetic regulation. Lamin A is also present in the nuclear interior where it fulfills lamina-independent functions in cell signaling and gene regulation. The most common LMNA mutation linked to HGPS leads to mis-splicing of the LMNA mRNA and produces a mutant lamin A protein called progerin that tightly associates with the inner nuclear membrane and affects the dynamic properties of lamins. Progerin expression impairs many important cellular processes providing insight into potential disease mechanisms. These include changes in mechanosignaling, altered chromatin organization and impaired genome stability, and changes in signaling pathways, leading to impaired regulation of adult stem cells, defective extracellular matrix production and premature cell senescence. In this review, we discuss these pathways and their potential contribution to the disease pathologies as well as therapeutic approaches used in preclinical and clinical tests.
Collapse
Affiliation(s)
- Sandra Vidak
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Vienna Biocenter (VBC), Medical University Vienna, Dr. Bohr-Gasse 9/3, 1030, Vienna, Austria
| | - Roland Foisner
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Vienna Biocenter (VBC), Medical University Vienna, Dr. Bohr-Gasse 9/3, 1030, Vienna, Austria.
| |
Collapse
|
29
|
Seco-Cervera M, Spis M, García-Giménez JL, Ibañez-Cabellos JS, Velázquez-Ledesma A, Esmorís I, Bañuls S, Pérez-Machado G, Pallardó FV. Oxidative stress and antioxidant response in fibroblasts from Werner and atypical Werner syndromes. Aging (Albany NY) 2015; 6:231-45. [PMID: 24799429 PMCID: PMC4012939 DOI: 10.18632/aging.100649] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Werner Syndrome (WS, ICD-10 E34.8, ORPHA902) and Atypical Werner Syndrome (AWS, ICD-10 E34.8, ORPHA79474) are very rare inherited syndromes characterized by premature aging. While approximately 90% of WS individuals have any of a range of mutations in the WRN gene, there exists a clinical subgroup in which the mutation occurs in the LMNA/C gene in heterozygosity. Although both syndromes exhibit an age-related pleiotropic phenotype, AWS manifests the onset of the disease during childhood, while major symptoms in WS appear between the ages of 20 and 30. To study the molecular mechanisms of progeroid diseases provides a useful insight into the normal aging process. Main changes found were the decrease in Cu/Zn and Mn SOD activities in the three cell lines. In AWS, both mRNA SOD and protein levels were also decreased. Catalase and glutathione peroxidases decrease, mainly in AWS. Glutaredoxin (Grx) and thioredoxin (Trx) protein expression was lower in the three progeroid cell lines. Grx and Trx were subjected to post-transcriptional regulation, because protein expression was reduced although mRNA levels were not greatly affected in WS.
Collapse
Affiliation(s)
- Marta Seco-Cervera
- CIBERER. Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain
| | | | | | | | | | | | | | | | - Federico V Pallardó
- Department of Physiology, Medicine School, University of Valencia, Valencia. Spain
| |
Collapse
|
30
|
Bianchi A, Lanzuolo C. Into the chromatin world: Role of nuclear architecture in epigenome regulation. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.4.585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
31
|
Motegi SI, Yokoyama Y, Uchiyama A, Ogino S, Takeuchi Y, Yamada K, Hattori T, Hashizume H, Ishikawa Y, Goto M, Ishikawa O. First Japanese case of atypical progeroid syndrome/atypical Werner syndrome with heterozygous LMNA mutation. J Dermatol 2014; 41:1047-52. [PMID: 25327215 DOI: 10.1111/1346-8138.12657] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/04/2014] [Indexed: 01/08/2023]
Abstract
Atypical progeroid syndrome (APS), including atypical Werner syndrome (AWS), is a progeroid syndrome involving heterozygous mutations in the LMNA gene encoding the nuclear protein lamin A/C. We report the first Japanese case of APS/AWS with a LMNA mutation (p.D300N). A 53-year-old Japanese man had a history of recurrent severe cardiovascular diseases as well as brain infarction and hemorrhages. Although our APS/AWS patient had overlapping features with Werner syndrome (WS), such as high-pitched voice, scleroderma, lipoatrophy and atherosclerosis, several cardinal features of WS, including short stature, premature graying/alopecia, cataract, bird-like face, flat feet, hyperkeratosis on the soles and diabetes mellitus, were absent. In immunofluorescence staining and electron microscopic analyses of the patient's cultured fibroblasts, abnormal nuclear morphology, an increase in small aggregation of heterochromatin and a decrease in interchromatin granules in nuclei of fibroblasts were observed, suggesting that abnormal nuclear morphology and chromatin disorganization may be associated with the pathogenesis of APS/AWS.
Collapse
Affiliation(s)
- Sei-ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
p.Pro4Arg mutation in LMNA gene: a new atypical progeria phenotype without metabolism abnormalities. Gene 2014; 546:35-9. [PMID: 24861648 DOI: 10.1016/j.gene.2014.05.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/15/2013] [Accepted: 05/20/2014] [Indexed: 11/23/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a typical presenile disorder, with mutation in the LMNA gene. Besides HGPS, mutations in LMNA gene have also been reported in atypical progeroid syndrome (APS). The objective of the study was to investigate the phenotype and molecular basis of APS in a Chinese family. LMNA gene mutations were also reviewed to identify the phenotypic and pathogenic differences among APS. Two siblings in a non-consanguineous Chinese family with atypical progeria were reported. The clinical features were observed, including presenile manifestations such as bird-like facial appearance, generalized lipodystrophy involving the extremities and mottled hyperpigmentation on the trunk and extremities. A heterozygous mutation c.11C>G (p.Pro4Arg) of the LMNA gene was detected in the two patients. 28 different variants of the LMNA gene have been reported in APS families, spreading over almost all the 12 exons of the LMNA gene with some hot-spot regions. This is the first detailed description of an APS family without metabolism abnormalities. APS patients share most of the clinical features, but there may be some distinct features in different ethnic groups.
Collapse
|
33
|
|
34
|
Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N. WITHDRAWN: Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 2014:S1084-9521(14)00058-5. [PMID: 24685615 DOI: 10.1016/j.semcdb.2014.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/03/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.semcdb.2014.03.022. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Pierre Cau
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2).
| | - Claire Navarro
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Karim Harhouri
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Patrice Roll
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2)
| | - Sabine Sigaudy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3)
| | - Elise Kaspi
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2)
| | - Sophie Perrin
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Annachiara De Sandre-Giovannoli
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3)
| | - Nicolas Lévy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3).
| |
Collapse
|
35
|
Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N. Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 2014; 29:125-47. [PMID: 24662892 DOI: 10.1016/j.semcdb.2014.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lamin A-related progeroid syndromes are genetically determined, extremely rare and severe. In the past ten years, our knowledge and perspectives for these diseases has widely progressed, through the progressive dissection of their pathophysiological mechanisms leading to precocious and accelerated aging, from the genes mutations discovery until therapeutic trials in affected children. A-type lamins are major actors in several structural and functional activities at the nuclear periphery, as they are major components of the nuclear lamina. However, while this is usually poorly considered, they also play a key role within the rest of the nucleoplasm, whose defects are related to cell senescence. Although nuclear shape and nuclear envelope deformities are obvious and visible events, nuclear matrix disorganization and abnormal composition certainly represent the most important causes of cell defects with dramatic pathological consequences. Therefore, lamin-associated diseases should be better referred as laminopathies instead of envelopathies, this later being too restrictive, considering neither the key structural and functional roles of soluble lamins in the entire nucleoplasm, nor the nuclear matrix contribution to the pathophysiology of lamin-associated disorders and in particular in defective lamin A processing-associated aging diseases. Based on both our understanding of pathophysiological mechanisms and the biological and clinical consequences of progeria and related diseases, therapeutic trials have been conducted in patients and were terminated less than 10 years after the gene discovery, a quite fast issue for a genetic disease. Pharmacological drugs have been repurposed and used to decrease the toxicity of the accumulated, unprocessed and truncated prelaminA in progeria. To date, none of them may be considered as a cure for progeria and these clinical strategies were essentially designed toward reducing a subset of the most dramatic and morbid features associated to progeria. New therapeutic strategies under study, in particular targeting the protein expression pathway at the mRNA level, have shown a remarkable efficacy both in vitro in cells and in vivo in mice models. Strategies intending to clear the toxic accumulated proteins from the nucleus are also under evaluation. However, although exceedingly rare, improving our knowledge of genetic progeroid syndromes and searching for innovative and efficient therapies in these syndromes is of paramount importance as, even before they can be used to save lives, they may significantly (i) expand the affected childrens' lifespan and preserve their quality of life; (ii) improve our understanding of aging-related disorders and other more common diseases; and (iii) expand our fundamental knowledge of physiological aging and its links with major physiological processes such as those involved in oncogenesis.
Collapse
Affiliation(s)
- Pierre Cau
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France.
| | - Claire Navarro
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Karim Harhouri
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Patrice Roll
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Sabine Sigaudy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Elise Kaspi
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Sophie Perrin
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Annachiara De Sandre-Giovannoli
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Nicolas Lévy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France.
| |
Collapse
|
36
|
Abstract
Hutchinson–Gilford Progeria Syndrome and Werner syndrome, also known as childhood- and
adulthood-progeria, respectively, represent two of the best characterized human progeroid diseases
with clinical features mimicking physiological aging at an early age. The discovery of their genetic
basis has led to the identification of several gene mutations leading to a spectrum of progeroid
phenotypes ranging from moderate and mild–severe to very aggressive forms. In parallel, the
creation of disease registers and databases provided available data for the design of relatively
large-scale epidemiological studies, thereby allowing a better understanding of the nature and
frequency of the premature aging-associated signs and symptoms. The aim of this article is to review
the most recent findings concerning the epidemiology of premature aging disorders, their genetic
basis, and the most recent reports on the frequency of associated diseases.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
37
|
Kane MS, Lindsay ME, Judge DP, Barrowman J, Ap Rhys C, Simonson L, Dietz HC, Michaelis S. LMNA-associated cardiocutaneous progeria: an inherited autosomal dominant premature aging syndrome with late onset. Am J Med Genet A 2013; 161A:1599-611. [PMID: 23666920 DOI: 10.1002/ajmg.a.35971] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/11/2013] [Indexed: 11/10/2022]
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disorder caused by mutations in LMNA, which encodes the nuclear scaffold proteins lamin A and C. In HGPS and related progerias, processing of prelamin A is blocked at a critical step mediated by the zinc metalloprotease ZMPSTE24. LMNA-linked progerias can be grouped into two classes: (1) the processing-deficient, early onset "typical" progerias (e.g., HGPS), and (2) the processing-proficient "atypical" progeria syndromes (APS) that are later in onset. Here we describe a previously unrecognized progeria syndrome with prominent cutaneous and cardiovascular manifestations belonging to the second class. We suggest the name LMNA-associated cardiocutaneous progeria syndrome (LCPS) for this disorder. Affected patients are normal at birth but undergo progressive cutaneous changes in childhood and die in middle age of cardiovascular complications, including accelerated atherosclerosis, calcific valve disease, and cardiomyopathy. In addition, the proband demonstrated cancer susceptibility, a phenotype rarely described for LMNA-based progeria disorders. The LMNA mutation that caused LCPS in this family is a heterozygous c.899A>G (p.D300G) mutation predicted to alter the coiled-coil domain of lamin A/C. In skin fibroblasts isolated from the proband, the processing and levels of lamin A and C are normal. However, nuclear morphology is aberrant and rescued by treatment with farnesyltransferase inhibitors, as is also the case for HGPS and other laminopathies. Our findings advance knowledge of human LMNA progeria syndromes, and raise the possibility that typical and atypical progerias may converge upon a common mechanism to cause premature aging disease.
Collapse
Affiliation(s)
- Megan S Kane
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|