1
|
Gaudioso F, Meossi C, Pezzani L, Grilli F, Silipigni R, Russo S, Masciadri M, Vimercati A, Marchisio PG, Bedeschi MF, Milani D. A long way to syndromic short stature. Ital J Pediatr 2024; 50:192. [PMID: 39334216 PMCID: PMC11437795 DOI: 10.1186/s13052-024-01737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Silver-Russell Syndrome (SRS, MIM #180860) is a clinically and genetically heterogeneous disorder characterized by intrauterine and postnatal growth retardation; SRS is also accompanied by dysmorphic features such as triangular facial appearance, broad forehead, body asymmetry and significant feeding difficulties. The incidence is unknown but estimated at 1:30,000-100,000 live births. The diagnosis of SRS is guided by specific criteria described in the Netchine-Harbison clinical scoring system (NH-CSS). CASE PRESENTATION Hereby we describe four patients with syndromic short stature in whom, despite fitting the criteria for SRS genetic analysis (and one on them even meeting the clinical criteria for SRS), molecular analysis actually diagnosed a different syndrome. Some additional features such as hypotonia, microcephaly, developmental delay and/or intellectual disability, and family history of growth failure, were actually discordant with SRS in our cohort. CONCLUSIONS The clinical resemblance of other short stature syndromes with SRS poses a risk of diagnostic failure, in particular when clinical SRS only criteria are met, allowing SRS diagnosis in the absence of a positive result of a genetic test. The presence of additional features atypical for SRS diagnosis becomes a red flag for a more extensive and thorough analysis. The signs relevant to the differential diagnosis should be valued as much as possible since a correct diagnosis of these patients is the only way to provide the appropriate care pathway, a thorough genetic counselling, prognosis definition, follow up setting, appropriate monitoring and care of possible medical problems.
Collapse
Affiliation(s)
- Federica Gaudioso
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, 20122, Italy
| | - Camilla Meossi
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, 20122, Italy.
- Unità di Genetica medica, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Via della Commenda, 9, Milano, 20122, Italy.
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy.
| | - Lidia Pezzani
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, 20122, Italy
- Paediatric Unit, ASST Papa Giovanni XXIII, Bergamo, 24127, Italy
| | - Federico Grilli
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, 20122, Italy
| | - Rosamaria Silipigni
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Silvia Russo
- Experimental Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Via Ariosto 13, Milano, 20145, Italy
| | - Maura Masciadri
- Experimental Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Via Ariosto 13, Milano, 20145, Italy
| | - Alessandro Vimercati
- Experimental Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Via Ariosto 13, Milano, 20145, Italy
| | - Paola Giovanna Marchisio
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, 20122, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Maria Francesca Bedeschi
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, 20122, Italy
| | - Donatella Milani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, 20122, Italy
| |
Collapse
|
2
|
Kurup U, Lim DBN, Palau H, Maharaj AV, Ishida M, Davies JH, Storr HL. Approach to the Patient With Suspected Silver-Russell Syndrome. J Clin Endocrinol Metab 2024; 109:e1889-e1901. [PMID: 38888172 PMCID: PMC11403326 DOI: 10.1210/clinem/dgae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Silver-Russell syndrome (SRS) is a clinical diagnosis requiring the fulfillment of ≥ 4/6 Netchine-Harbison Clinical Scoring System (NH-CSS) criteria. A score of ≥ 4/6 NH-CSS (or ≥ 3/6 with strong clinical suspicion) warrants (epi)genetic confirmation, identifiable in ∼60% patients. The approach to the investigation and diagnosis of SRS is detailed in the only international consensus guidance, published in 2016. In the intervening years, the clinical, biochemical, and (epi)genetic characteristics of SRS have rapidly expanded, largely attributable to advancing molecular genetic techniques and a greater awareness of related disorders. The most common etiologies of SRS remain loss of methylation of chromosome 11p15 (11p15LOM) and maternal uniparental disomy of chromosome 7 (upd(7)mat). Rarer causes of SRS include monogenic pathogenic variants in imprinted (CDKN1C and IGF2) and non-imprinted (PLAG1 and HMGA2) genes. Although the age-specific NH-CSS can identify more common molecular causes of SRS, its use in identifying monogenic causes is unclear. Preliminary data suggest that NH-CSS is poor at identifying many of these cases. Additionally, there has been increased recognition of conditions with phenotypes overlapping with SRS that may fulfill NH-CSS criteria but have distinct genetic etiologies and disease trajectories. This group of conditions is frequently overlooked and under-investigated, leading to no or delayed diagnosis. Like SRS, these conditions are multisystemic disorders requiring multidisciplinary care and tailored management strategies. Early identification is crucial to improve outcomes and reduce the major burden of the diagnostic odyssey for patients and families. This article aims to enable clinicians to identify key features of rarer causes of SRS and conditions with overlapping phenotypes, show a logical approach to the molecular investigation, and highlight the differences in clinical management strategies.
Collapse
Affiliation(s)
- Uttara Kurup
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - David B N Lim
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Helena Palau
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Avinaash V Maharaj
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Miho Ishida
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Justin H Davies
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| |
Collapse
|
3
|
Mackay DJG, Gazdagh G, Monk D, Brioude F, Giabicani E, Krzyzewska IM, Kalish JM, Maas SM, Kagami M, Beygo J, Kahre T, Tenorio-Castano J, Ambrozaitytė L, Burnytė B, Cerrato F, Davies JH, Ferrero GB, Fjodorova O, Manero-Azua A, Pereda A, Russo S, Tannorella P, Temple KI, Õunap K, Riccio A, de Nanclares GP, Maher ER, Lapunzina P, Netchine I, Eggermann T, Bliek J, Tümer Z. Multi-locus imprinting disturbance (MLID): interim joint statement for clinical and molecular diagnosis. Clin Epigenetics 2024; 16:99. [PMID: 39090763 PMCID: PMC11295890 DOI: 10.1186/s13148-024-01713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Imprinting disorders are rare diseases resulting from altered expression of imprinted genes, which exhibit parent-of-origin-specific expression patterns regulated through differential DNA methylation. A subgroup of patients with imprinting disorders have DNA methylation changes at multiple imprinted loci, a condition referred to as multi-locus imprinting disturbance (MLID). MLID is recognised in most but not all imprinting disorders and is also found in individuals with atypical clinical features; the presence of MLID often alters the management or prognosis of the affected person. Some cases of MLID are caused by trans-acting genetic variants, frequently not in the patients but their mothers, which have counselling implications. There is currently no consensus on the definition of MLID, clinical indications prompting testing, molecular procedures and methods for epigenetic and genetic diagnosis, recommendations for laboratory reporting, considerations for counselling, and implications for prognosis and management. The purpose of this study is thus to cover this unmet need. METHODS A comprehensive literature search was conducted resulting in identification of more than 100 articles which formed the basis of discussions by two working groups focusing on clinical diagnosis (n = 12 members) and molecular testing (n = 19 members). Following eight months of preparations and regular online discussions, the experts from 11 countries compiled the preliminary documentation and determined the questions to be addressed during a face-to-face meeting which was held with the attendance of the experts together with four representatives of patient advocacy organisations. RESULTS In light of available evidence and expert consensus, we formulated 16 propositions and 8 recommendations as interim guidance for the clinical and molecular diagnosis of MLID. CONCLUSIONS MLID is a molecular designation, and for patients with MLID and atypical phenotypes, we propose the alternative term multi-locus imprinting syndrome. Due to the intrinsic variability of MLID, the guidelines underscore the importance of involving experts from various fields to ensure a confident approach to diagnosis, counselling, and care. The authors advocate for global, collaborative efforts in both basic and translational research to tackle numerous crucial questions that currently lack answers, and suggest reconvening within the next 3-5 years to evaluate the research advancements and update this guidance as needed.
Collapse
Affiliation(s)
| | - Gabriella Gazdagh
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, UK
| | - David Monk
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Frederic Brioude
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Eloise Giabicani
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Izabela M Krzyzewska
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Departments of Pediatrics and Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Jasmin Beygo
- Institut Für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Tiina Kahre
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Jair Tenorio-Castano
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Birutė Burnytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Justin H Davies
- Faculty of Medicine, University of Southampton, Southampton, UK
- Regional Centre for Paediatric Endocrinology, Faculty of Medicine, Southampton Children's Hospital, University of Southampton, Southampton, UK
| | - Giovanni Battista Ferrero
- Department of Clinical and Biological Science, School of Medicine, Centre for Hemoglobinopathies, AOU San Luigi Gonzaga, University of Turin, Turin, Italy
| | - Olga Fjodorova
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Africa Manero-Azua
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Arrate Pereda
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Silvia Russo
- IRCCS Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - Pierpaola Tannorella
- IRCCS Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - Karen I Temple
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, UK
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
- Institute of Genetics and Biophysics (IGB),"Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Eamonn R Maher
- Aston Medical School, Aston University, Birmingham, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
| | - Irène Netchine
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Thomas Eggermann
- Institute for Human Genetics and Genome Medicine. Faculty of Medicine, RWTH University Aachen, Aachen, Germany
| | - Jet Bliek
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Zeynep Tümer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Kim HY, Shin CH, Shin CH, Ko JM. Uncovering the phenotypic consequences of multi-locus imprinting disturbances using genome-wide methylation analysis in genomic imprinting disorders. PLoS One 2023; 18:e0290450. [PMID: 37594968 PMCID: PMC10437897 DOI: 10.1371/journal.pone.0290450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
Imprinted genes are regulated by DNA methylation of imprinted differentially methylated regions (iDMRs). An increasing number of patients with congenital imprinting disorders (IDs) exhibit aberrant methylation at multiple imprinted loci, multi-locus imprinting disturbance (MLID). We examined MLID and its possible impact on clinical features in patients with IDs. Genome-wide DNA methylation analysis (GWMA) using blood leukocyte DNA was performed on 13 patients with Beckwith-Wiedemann syndrome (BWS), two patients with Silver-Russell syndrome (SRS), and four controls. HumanMethylation850 BeadChip analysis for 77 iDMRs (809 CpG sites) identified three patients with BWS and one patient with SRS showing additional hypomethylation, other than the disease-related iDMRs, suggestive of MLID. Two regions were aberrantly methylated in at least two patients with BWS showing MLID: PPIEL locus (chromosome 1: 39559298 to 39559744), and FAM50B locus (chromosome 6: 3849096 to 3849469). All patients with BWS- and SRS-MLID did not show any other clinical characteristics associated with additional involved iDMRs. Exome analysis in three patients with BWS who exhibited multiple hypomethylation did not identify any causative variant related to MLID. This study indicates that a genome-wide approach can unravel MLID in patients with an apparently isolated ID. Patients with MLID showed only clinical features related to the original IDs. Long-term follow-up studies in larger cohorts are warranted to evaluate any possible phenotypic consequences of other disturbed imprinted loci.
Collapse
Affiliation(s)
- Hwa Young Kim
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Ho Shin
- Department of Orthopaedics, Division of Pediatric Orthopedics, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Division of Clinical Genetics, Seoul National University College of Medicine, Seoul, Korea
- Rare Disease Center, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
5
|
Mangiavacchi PM, Caldas-Bussiere MC, Mendonça MDS, Rumpf R, Lemos Júnior PES, Alves CS, Carneiro WDS, Dias AJB, Rios ÁFL. Multi-locus DNA methylation analysis of imprinted genes in cattle from somatic cell nuclear transfer. Theriogenology 2022; 186:95-107. [DOI: 10.1016/j.theriogenology.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
|
6
|
Ongoing Challenges in the Diagnosis of 11p15.5-Associated Imprinting Disorders. Mol Diagn Ther 2022; 26:263-272. [PMID: 35522427 DOI: 10.1007/s40291-022-00587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
The overgrowth disorder Beckwith-Wiedemann syndrome and the growth restriction disorder Silver-Russell syndrome have been described as 'mirror' syndromes, in both their clinical features and molecular causes. Clinically, their nonspecific features, focused around continuous variables of atypical growth, make it hard to set diagnostic thresholds that are pragmatic without potentially excluding some cases. Molecularly, both are imprinting disorders, classically associated with 'opposite' genetic and epigenetic changes to genes on chromosome 11p15, but both are associated with somatic mosaicism as well as an increasing range of alternative (epi)genetic changes to other genes, which make molecular diagnosis an increasingly complex process. In this Current Opinion, we explore how the understanding of Beckwith-Wiedemann syndrome and Silver-Russell syndrome has evolved in recent years, stretching the canonical 'mirror' designations in different ways for the two disorders and how this is changing clinical and molecular diagnosis. We suggest some possible directions of travel toward more timely and stratified diagnosis, so that patients can access the early interventions that are so critical for good outcome.
Collapse
|
7
|
Giabicani E, Pham A, Sélénou C, Sobrier ML, Andrique C, Lesieur J, Linglart A, Poliard A, Chaussain C, Netchine I. Dental pulp stem cells as a promising model to study imprinting diseases. Int J Oral Sci 2022; 14:19. [PMID: 35368018 PMCID: PMC8976849 DOI: 10.1038/s41368-022-00169-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/01/2023] Open
Abstract
Parental imprinting is an epigenetic process leading to monoallelic expression of certain genes depending on their parental origin. Imprinting diseases are characterized by growth and metabolic issues starting from birth to adulthood. They are mainly due to methylation defects in imprinting control region that drive the abnormal expression of imprinted genes. We currently lack relevant animal or cellular models to unravel the pathophysiology of growth failure in these diseases. We aimed to characterize the methylation of imprinting regions in dental pulp stem cells and during their differentiation in osteogenic cells (involved in growth regulation) to assess the interest of this cells in modeling imprinting diseases. We collected dental pulp stem cells from five controls and four patients (three with Silver-Russell syndrome and one with Beckwith-Wiedemann syndrome). Methylation analysis of imprinting control regions involved in these syndromes showed a normal profile in controls and the imprinting defect in patients. These results were maintained in dental pulp stem cells cultured under osteogenic conditions. Furthermore, we confirmed the same pattern in six other loci involved in imprinting diseases in humans. We also confirmed monoallelic expression of H19 (an imprinted gene) in controls and its biallelic expression in one patient. Extensive imprinting control regions methylation analysis shows the strong potential of dental pulp stem cells in modeling imprinting diseases, in which imprinting regions are preserved in culture and during osteogenic differentiation. This will allow to perform in vitro functional and therapeutic tests in cells derived from dental pulp stem cells and generate other cell-types.
Collapse
|
8
|
Grosvenor SE, Davies JH, Lever M, Sillibourne J, Mackay DJG, Temple IK. A patient with multilocus imprinting disturbance involving hypomethylation at 11p15 and 14q32, and phenotypic features of Beckwith-Wiedemann and Temple syndromes. Am J Med Genet A 2022; 188:1896-1903. [PMID: 35266280 PMCID: PMC9310769 DOI: 10.1002/ajmg.a.62717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
Beckwith‐Wiedemann syndrome (BWS) and Temple syndrome (TS) are classical imprinting disorders (IDs) with nonconfluent clinical features. We report here on a patient with clinical features of both syndromes, in whom epimutations were found at the BWS and TS imprinted regions, consistent with multilocus imprinting disturbance (MLID). This is the first case report of a patient with clinical features of both conditions who was found to have loss of methylation (LOM) of KCNQ1OT1: TSS‐DMR (ICR2) in the 11p15 imprinted region associated with BWS and LOM of MEG3: TSS‐DMR in the 14q32 imprinted region associated with TS. The report draws attention to the importance of testing for MLID as a cause of atypical clinical presentations of patients with IDs.
Collapse
Affiliation(s)
- Sarah E Grosvenor
- Human Development and Health, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK
| | - Justin H Davies
- Human Development and Health, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK.,Department of Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trusts, Southampton, UK
| | - Margaret Lever
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Julie Sillibourne
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Deborah J G Mackay
- Human Development and Health, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK.,Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | - I Karen Temple
- Human Development and Health, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK.,Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trusts, Southampton, UK
| |
Collapse
|
9
|
Mangiavacchi PM, Caldas-Bussiere MC, Mendonça MDS, Dias AJB, Rios ÁFL. Multi-locus imprinting disturbances of Beckwith-Wiedemann and Large offspring syndrome/Abnormal offspring syndrome: A brief review. Theriogenology 2021; 173:193-201. [PMID: 34399383 DOI: 10.1016/j.theriogenology.2021.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022]
Abstract
In vitro fertilization and somatic cell nuclear transfer are assisted reproduction technologies commonly used in humans and cattle, respectively. Despite advances in these technologies, molecular failures can occur, increasing the chance of the onset of imprinting disorders in the offspring. Large offspring syndrome/abnormal offspring syndrome (LOS/AOS) has been described in cattle and has features such as hypergrowth, malformation of organs, and skeletal and placental defects. In humans, Beckwith-Wiedemann syndrome (BWS) has phenotypic characteristics similar to those found in LOS/AOS. In both syndromes, disruption of genomic imprinting associated with loss of parental-specific expression and parental-specific epigenetic marks is involved in the molecular etiology. Changes in the imprinting pattern of these genes lead to loss of imprinting (LOI) due to gain or loss of methylation, inducing the emergence of these syndromes. Several studies have reported locus-specific alterations in these syndromes, such as hypomethylation in imprinting control region 2 (KvDMR1) in BWS and LOS/AOS. These LOI events can occur at multiple imprinted loci in the same affected individual, which are called multi-locus methylation defect (MLMD) events. Although the bovine species has been proposed as a developmental model for human imprinting disorders, there is little information on bovine imprinted genes in the literature, even the correlation of epimutation data with clinical characteristics. In this study, we performed a systematic review of all the multi-locus LOI events described in human BWS and LOS/AOS, in order to determine in which imprinted genes the largest changes in the pattern of DNA methylation and expression occur, helping to fill gaps for a better understanding of the etiology of both syndromes.
Collapse
Affiliation(s)
- Paula Magnelli Mangiavacchi
- Laboratory of Reproduction and Animal Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Maria Clara Caldas-Bussiere
- Laboratory of Reproduction and Animal Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Mariana da Silva Mendonça
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Angelo José Burla Dias
- Laboratory of Reproduction and Animal Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Álvaro Fabrício Lopes Rios
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
10
|
Pham A, Sobrier ML, Giabicani E, Le Jules Fernandes M, Mitanchez D, Brioude F, Netchine I. Screening of patients born small for gestational age with the Silver-Russell syndrome phenotype for DLK1 variants. Eur J Hum Genet 2021; 29:1756-1761. [PMID: 34276055 DOI: 10.1038/s41431-021-00927-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/11/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Silver-Russell syndrome (SRS) is a rare imprinting disorder associated with prenatal and postnatal growth retardation. Loss of methylation (LOM) on chromosome 11p15 is observed in 40 to 60% of patients and maternal uniparental disomy (mUPD) for chromosome 7 (upd(7)mat) in ~5 to 10%. Patients with LOM or mUPD 14q32 can present clinically as SRS. Delta like non-canonical Notch ligand 1 (DLK1) is one of the imprinted genes expressed from chromosome 14q32. Dlk1-null mice display fetal growth restriction (FGR) but no genetic defects of DLK1 have been described in human patients born small for gestational age (SGA). We screened a cohort of SGA patients with a SRS phenotype for DLK1 variants using a next-generation sequencing (NGS) approach to search for new molecular defects responsible for SRS. Patients born SGA with a clinical suspicion of SRS and normal methylation by molecular testing at the 11p15 or 14q32 loci and upd(7)mat were screened for DLK1 variants using targeted NGS. Among 132 patients, only two rare variants of DLK1 were identified (NM_003836.6:c.103 G > C (p.(Gly35Arg) and NM_003836.6: c.194 A > G p.(His65Arg)). Both variants were inherited from the mother of the patients, which does not favor a role in pathogenicity, as the mono-allelic expression of DLK1 is from the paternal-inherited allele. We did not identify any pathogenic variants in DLK1 in a large cohort of SGA patients with a SRS phenotype. DLK1 variants are not a common cause of SGA.
Collapse
Affiliation(s)
- Aurélie Pham
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, AP-HP, Hôpital Armand Trousseau, service de néonatologie, Paris, France
| | - Marie-Laure Sobrier
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, Paris, France
| | - Eloïse Giabicani
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, APHP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | | | - Delphine Mitanchez
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, Paris, France
| | - Fréderic Brioude
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, APHP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Irène Netchine
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, APHP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France.
| |
Collapse
|
11
|
Alhendi ASN, Lim D, McKee S, McEntagart M, Tatton-Brown K, Temple IK, Davies JH, Mackay DJG. Whole-genome analysis as a diagnostic tool for patients referred for diagnosis of Silver-Russell syndrome: a real-world study. J Med Genet 2021; 59:613-622. [PMID: 34135092 DOI: 10.1136/jmedgenet-2021-107699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/06/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Silver-Russell syndrome (SRS) is an imprinting disorder characterised by prenatal and postnatal growth restriction, but its clinical features are non-specific and its differential diagnosis is broad. Known molecular causes of SRS include imprinting disturbance, single nucleotide variant (SNV), CNV or UPD affecting several genes; however, up to 40% of individuals with a clinical diagnosis of SRS currently receive no positive molecular diagnosis. METHODS To determine whether whole-genome sequencing (WGS) could uncover pathogenic variants missed by current molecular testing, we analysed data of 72 participants recruited to the 100,000 Genomes Project within the clinical category of SRS. RESULTS In 20 participants (27% of the cohort) we identified genetic variants plausibly accounting for SRS. Coding SNVs were identified in genes including CDKN1C, IGF2, IGF1R and ORC1. Maternal-effect variants were found in mothers of five participants, including two participants with imprinting disturbance and one with multilocus imprinting disorder. Two regions of homozygosity were suggestive of UPD involving imprinted regions implicated in SRS and Temple syndrome, and three plausibly pathogenic CNVs were found, including a paternal deletion of PLAGL1. In 48 participants with no plausible pathogenic variant, unbiased analysis of SNVs detected a potential association with STX4. CONCLUSION WGS analysis can detect UPD, CNV and SNV and is potentially a valuable addition to diagnosis of SRS and related growth-restricting disorders.
Collapse
Affiliation(s)
- Ahmed S N Alhendi
- Human Genetics and Genomic Medicine, Faculty of Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Derek Lim
- Department of Clinical Genetics, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Shane McKee
- Department of Genetic Medicine, Belfast City Hospital, Belfast, UK
| | - Meriel McEntagart
- Department of Clinical Genetics, St George's Healthcare NHS Trust, London, UK
| | | | - I Karen Temple
- Human Genetics and Genomic Medicine, Faculty of Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Justin H Davies
- Human Genetics and Genomic Medicine, Faculty of Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Deborah J G Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK .,Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| |
Collapse
|
12
|
Strom SP, Hossain WA, Grigorian M, Li M, Fierro J, Scaringe W, Yen HY, Teguh M, Liu J, Gao H, Butler MG. A Streamlined Approach to Prader-Willi and Angelman Syndrome Molecular Diagnostics. Front Genet 2021; 12:608889. [PMID: 34046054 PMCID: PMC8148043 DOI: 10.3389/fgene.2021.608889] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Establishing or ruling out a molecular diagnosis of Prader–Willi or Angelman syndrome (PWS/AS) presents unique challenges due to the variety of different genetic alterations that can lead to these conditions. Point mutations, copy number changes, uniparental isodisomy (i-UPD) 15 of two subclasses (segmental or total isodisomy), uniparental heterodisomy (h-UPD), and defects in the chromosome 15 imprinting center can all cause PWS/AS. Here, we outline a combined approach using whole-exome sequencing (WES) and DNA methylation data with methylation-sensitive multiplex ligation-dependent probe amplification (MLPA) to establish both the disease diagnosis and the mechanism of disease with high sensitivity using current standard of care technology and improved efficiency compared to serial methods. The authors encourage the use of this approach in the clinical setting to confirm and establish the diagnosis and genetic defect which may account for the secondary genetic conditions that may be seen in those with isodisomy 15, impacting surveillance and counseling with more accurate recurrence risks. Other similarly affected individuals due to other gene disorders or cytogenetic anomalies such as Rett syndrome or microdeletions would also be identified with this streamlined approach.
Collapse
Affiliation(s)
| | - Waheeda A Hossain
- Department of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
| | | | - Mickey Li
- Fulgent Genetics, Temple City, CA, United States
| | | | | | - Hai-Yun Yen
- Fulgent Genetics, Temple City, CA, United States
| | | | - Joanna Liu
- Fulgent Genetics, Temple City, CA, United States
| | - Harry Gao
- Fulgent Genetics, Temple City, CA, United States
| | - Merlin G Butler
- Department of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
13
|
Pignata L, Sparago A, Palumbo O, Andreucci E, Lapi E, Tenconi R, Carella M, Riccio A, Cerrato F. Mosaic Segmental and Whole-Chromosome Upd(11)mat in Silver-Russell Syndrome. Genes (Basel) 2021; 12:genes12040581. [PMID: 33923683 PMCID: PMC8073375 DOI: 10.3390/genes12040581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Molecular defects altering the expression of the imprinted genes of the 11p15.5 cluster are responsible for the etiology of two congenital disorders characterized by opposite growth disturbances, Silver-Russell syndrome (SRS), associated with growth restriction, and Beckwith-Wiedemann syndrome (BWS), associated with overgrowth. At the molecular level, SRS and BWS are characterized by defects of opposite sign, including loss (LoM) or gain (GoM) of methylation at the H19/IGF2:intergenic differentially methylated region (H19/IGF2:IG-DMR), maternal or paternal duplication (dup) of 11p15.5, maternal (mat) or paternal (pat) uniparental disomy (upd), and gain or loss of function mutations of CDKN1C. However, while upd(11)pat is found in 20% of BWS cases and in the majority of them it is segmental, upd(11)mat is extremely rare, being reported in only two SRS cases to date, and in both of them is extended to the whole chromosome. Here, we report on two novel cases of mosaic upd(11)mat with SRS phenotype. The upd is mosaic and isodisomic in both cases but covers the entire chromosome in one case and is restricted to 11p14.1-pter in the other case. The segmental upd(11)mat adds further to the list of molecular defects of opposite sign in SRS and BWS, making these two imprinting disorders even more specular than previously described.
Collapse
Affiliation(s)
- Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (L.P.); (A.S.); (F.C.)
| | - Angela Sparago
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (L.P.); (A.S.); (F.C.)
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (O.P.); (M.C.)
| | - Elena Andreucci
- Medical Genetics Unit, Meyer Children’s Hospital, 50139 Firenze, Italy; (E.A.); (E.L.)
| | - Elisabetta Lapi
- Medical Genetics Unit, Meyer Children’s Hospital, 50139 Firenze, Italy; (E.A.); (E.L.)
| | - Romano Tenconi
- Department of Pediatrics, Clinical Genetics, Università di Padova, 35122 Padova, Italy;
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (O.P.); (M.C.)
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (L.P.); (A.S.); (F.C.)
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), 80131 Napoli, Italy
- Correspondence:
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (L.P.); (A.S.); (F.C.)
| |
Collapse
|
14
|
Clinical and Molecular Diagnosis of Beckwith-Wiedemann Syndrome with Single- or Multi-Locus Imprinting Disturbance. Int J Mol Sci 2021; 22:ijms22073445. [PMID: 33810554 PMCID: PMC8036922 DOI: 10.3390/ijms22073445] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a clinically and genetically heterogeneous overgrowth disease. BWS is caused by (epi)genetic defects at the 11p15 chromosomal region, which harbors two clusters of imprinted genes, IGF2/H19 and CDKN1C/KCNQ1OT1, regulated by differential methylation of imprinting control regions, H19/IGF2:IG DMR and KCNQ1OT1:TSS DMR, respectively. A subset of BWS patients show multi-locus imprinting disturbances (MLID), with methylation defects extended to other imprinted genes in addition to the disease-specific locus. Specific (epi)genotype-phenotype correlations have been defined in order to help clinicians in the classification of patients and referring them to a timely diagnosis and a tailored follow-up. However, specific phenotypic correlations have not been identified among MLID patients, thus causing a debate on the usefulness of multi-locus testing in clinical diagnosis. Finally, the high incidence of BWS monozygotic twins with discordant phenotypes, the high frequency of BWS among babies conceived by assisted reproductive technologies, and the female prevalence among BWS-MLID cases provide new insights into the timing of imprint establishment during embryo development. In this review, we provide an overview on the clinical and molecular diagnosis of single- and multi-locus BWS in pre- and post-natal settings, and a comprehensive analysis of the literature in order to define possible (epi)genotype-phenotype correlations in MLID patients.
Collapse
|
15
|
Fuke T, Nakamura A, Inoue T, Kawashima S, Hara KI, Matsubara K, Sano S, Yamazawa K, Fukami M, Ogata T, Kagami M. Role of Imprinting Disorders in Short Children Born SGA and Silver-Russell Syndrome Spectrum. J Clin Endocrinol Metab 2021; 106:802-813. [PMID: 33236057 PMCID: PMC7947753 DOI: 10.1210/clinem/dgaa856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND (Epi)genetic disorders associated with small-for-gestational-age with short stature (SGA-SS) include imprinting disorders (IDs). Silver-Russell syndrome (SRS) is a representative ID in SGA-SS and has heterogenous (epi)genetic causes. SUBJECTS AND METHODS To clarify the contribution of IDs to SGA-SS and the molecular and phenotypic spectrum of SRS, we recruited 269 patients with SGA-SS, consisting of 103 and 166 patients referred to us for genetic testing for SGA-SS and SRS, respectively. After excluding 20 patients with structural abnormalities detected by comparative genomic hybridization analysis using catalog array, 249 patients were classified into 3 subgroups based on the Netchine-Harbison clinical scoring system (NH-CSS), SRS diagnostic criteria. We screened various IDs by methylation analysis for differentially methylated regions (DMRs) related to known IDs. We also performed clinical analysis. RESULTS These 249 patients with SGA-SS were classified into the "SRS-compatible group" (n = 148), the "non-SRS with normocephaly or relative macrocephaly at birth group" (non-SRS group) (n = 94), or the "non-SRS with relative microcephaly at birth group" (non-SRS with microcephaly group) (n = 7). The 44.6% of patients in the "SRS-compatible group," 21.3% of patients in the "non-SRS group," and 14.3% in the "non-SRS with microcephaly group" had various IDs. Loss of methylation of the H19/IGF2:intergenic-DMR and uniparental disomy chromosome 7, being major genetic causes of SRS, was detected in 30.4% of patients in the "SRS-compatible group" and in 13.8% of patients in the "non-SRS group." CONCLUSION We clarified the contribution of IDs as (epi)genetic causes of SGA-SS and the molecular and phenotypic spectrum of SRS. Various IDs constitute underlying factors for SGA-SS, including SRS.
Collapse
Affiliation(s)
- Tomoko Fuke
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takanobu Inoue
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Sayaka Kawashima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kaori Isono Hara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shinichiro Sano
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazuki Yamazawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Medical Genetics Center, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Correspondence and Reprint Requests: Masayo Kagami, MD, PhD, Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2–10–1 Okura, Setagaya, Tokyo 157–8535, Japan. E-mail:
| |
Collapse
|
16
|
Schoorlemmer J, Macías-Redondo S, Strunk M, Ramos-Ruíz R, Calvo P, Benito R, Paules C, Oros D. Altered DNA methylation in human placenta after (suspected) preterm labor. Epigenomics 2020; 12:1769-1782. [PMID: 33107765 DOI: 10.2217/epi-2019-0346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The aim of this study was to determine if alterations in DNA methylation in the human placenta would support suspected preterm labor as a pathologic insult associated with diminished placental health. Methods: We evaluated placental DNA methylation at seven loci differentially methylated in placental pathologies using targeted bisulfite sequencing, in placentas associated with preterm labor (term birth after suspected preterm labor [n = 15] and preterm birth [n = 15]), and controls (n = 15). Results: DNA methylation levels at the NCAM1 and PLAGL1 loci in placentas associated with preterm labor did differ significantly (p < 0.05) from controls. Discussion: Specific alterations in methylation patterns indicative of an unfavourable placental environment are associated with preterm labor per se and not restricted to preterm birth.
Collapse
Affiliation(s)
- Jon Schoorlemmer
- Instituto Aragonés de Ciencias de la Salud (IACS) & Aragon Institute for Health Research (IIS Aragón), Zaragoza, Spain.,Placental pathophysiology & fetal programming research group, B05 DGA & GIIS-028 del IISA.,ARAID Foundation, Zaragoza, Spain
| | - Sofía Macías-Redondo
- Instituto Aragonés de Ciencias de la Salud (IACS) & Aragon Institute for Health Research (IIS Aragón), Zaragoza, Spain
| | - Mark Strunk
- Instituto Aragonés de Ciencias de la Salud (IACS), Sequencing & Functional Genomics, Aragon Biomedical Research Center (CIBA), Zaragoza, Spain
| | - Ricardo Ramos-Ruíz
- Unidad de Genómica, Fundación Parque Científico de Madrid, Madrid, Spain
| | - Pilar Calvo
- Placental pathophysiology & fetal programming research group, B05 DGA & GIIS-028 del IISA.,Aragon Institute for Health Research (IIS Aragón), Obstetrics Department, Hospital Clínico Universitario Zaragoza, Spain
| | - Rafael Benito
- Aragon Institute for Health Research (IIS Aragón), Microbiology Department, Hospital Clínico Universitario Zaragoza, Spain
| | - Cristina Paules
- Placental pathophysiology & fetal programming research group, B05 DGA & GIIS-028 del IISA.,Aragon Institute for Health Research (IIS Aragón), Obstetrics Department, Hospital Clínico Universitario Zaragoza, Spain
| | - Daniel Oros
- Placental pathophysiology & fetal programming research group, B05 DGA & GIIS-028 del IISA.,Aragon Institute for Health Research (IIS Aragón), Obstetrics Department, Hospital Clínico Universitario Zaragoza, Spain.,Red de Salud Materno Infantil y del Desarrollo (SAMID), RETICS, Instituto de Salud Carlos III (ISCIII), Subdirección General de Evaluación y Fomento de la Investigación, Fondo Europeo de Desarrollo Regional (FEDER), Spain
| |
Collapse
|
17
|
Papulino C, Chianese U, Nicoletti MM, Benedetti R, Altucci L. Preclinical and Clinical Epigenetic-Based Reconsideration of Beckwith-Wiedemann Syndrome. Front Genet 2020; 11:563718. [PMID: 33101381 PMCID: PMC7522569 DOI: 10.3389/fgene.2020.563718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
Epigenetics has achieved a profound impact in the biomedical field, providing new experimental opportunities and innovative therapeutic strategies to face a plethora of diseases. In the rare diseases scenario, Beckwith-Wiedemann syndrome (BWS) is a pediatric pathological condition characterized by a complex molecular basis, showing alterations in the expression of different growth-regulating genes. The molecular origin of BWS is associated with impairments in the genomic imprinting of two domains at the 11p15.5 chromosomal region. The first domain contains three different regions: insulin growth like factor gene (IGF2), H19, and abnormally methylated DMR1 region. The second domain consists of cell proliferation and regulating-genes such as CDKN1C gene encoding for cyclin kinase inhibitor its role is to block cell proliferation. Although most cases are sporadic, about 5-10% of BWS patients have inheritance characteristics. In the 11p15.5 region, some of the patients have maternal chromosomal rearrangements while others have Uniparental Paternal Disomy UPD(11)pat. Defects in DNA methylation cause alteration of genes and the genomic structure equilibrium leading uncontrolled cell proliferation, which is a typical tumorigenesis event. Indeed, in BWS patients an increased childhood tumor predisposition is observed. Here, we summarize the latest knowledge on BWS and focus on the impact of epigenetic alterations to an increased cancer risk development and to metabolic disorders. Moreover, we highlight the correlation between assisted reproductive technologies and this rare disease. We also discuss intriguing aspects of BWS in twinning. Epigenetic therapies in clinical trials have already demonstrated effectiveness in oncological and non-oncological diseases. In this review, we propose a potential "epigenetic-based" approaches may unveil new therapeutic options for BWS patients. Although the complexity of the syndrome is high, patients can be able to lead a normal life but tumor predispositions might impair life expectancy. In this sense epigenetic therapies should have a supporting role in order to guarantee a good prognosis.
Collapse
Affiliation(s)
- Chiara Papulino
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Nicoletti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
18
|
Need for a precise molecular diagnosis in Beckwith-Wiedemann and Silver-Russell syndrome: what has to be considered and why it is important. J Mol Med (Berl) 2020; 98:1447-1455. [PMID: 32839827 PMCID: PMC7524824 DOI: 10.1007/s00109-020-01966-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/10/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
Abstract Molecular diagnostic testing of the 11p15.5-associated imprinting disorders Silver-Russell and Beckwith-Wiedemann syndrome (SRS, BWS) is challenging due to the broad spectrum of molecular defects and their mosaic occurrence. Additionally, the decision on the molecular testing algorithm is hindered by their clinical heterogeneity. However, the precise identification of the type of defect is often a prerequisite for the clinical management and genetic counselling. Four major molecular alterations (epimutations, uniparental disomies, copy number variants, single nucleotide variants) have been identified, but their frequencies vary between SRS and BWS. Due to their molecular aetiology, epimutations in both disorders as well as upd(11)pat in BWS are particular prone to mosaicism which might additionally complicate the interpretation of testing results. We report on our experience of molecular analysis in a total cohort of 1448 patients referred for diagnostic testing of BWS and SRS, comprising a dataset from 737 new patients and from 711 cases from a recent study. Though the majority of positively tested patients showed the expected molecular results, we identified a considerable number of clinically unexpected molecular alterations as well as not yet reported changes and discrepant mosaic distributions. Additionally, the rate of multilocus imprinting disturbances among the patients with epimutations and uniparental diploidies could be further specified. Altogether, these cases show that comprehensive testing strategies have to be applied in diagnostic testing of SRS and BWS. The precise molecular diagnosis is required as the basis for a targeted management (e.g. ECG (electrocardiogram) and tumour surveillance in BWS, growth treatment in SRS). The molecular diagnosis furthermore provides the basis for genetic counselling. However, it has to be considered that recurrence risk calculation is determined by the phenotypic consequences of each molecular alteration and mechanism by which the alteration arose. Key messages The detection rates for the typical molecular defects of Beckwith-Wiedemann syndrome or Silver-Russell syndrome (BWS, SRS) are lower in routine cohorts than in clinically well-characterised ones. A broad spectrum of (unexpected) molecular alterations in both disorders can be identified. Multilocus imprinting disturbances (MLID) are less frequent in SRS than expected. The frequency of MLID and uniparental diploidy in BWS is confirmed. Mosaicism is a diagnostic challenge in BWS and SRS. The precise determination of the molecular defects affecting is the basis for a targeted clinical management and genetic counselling.
Collapse
|
19
|
Fontana L, Bedeschi MF, Cagnoli GA, Costanza J, Persico N, Gangi S, Porro M, Ajmone PF, Colapietro P, Santaniello C, Crippa M, Sirchia SM, Miozzo M, Tabano S. (Epi)genetic profiling of extraembryonic and postnatal tissues from female monozygotic twins discordant for Beckwith-Wiedemann syndrome. Mol Genet Genomic Med 2020; 8:e1386. [PMID: 32627967 PMCID: PMC7507324 DOI: 10.1002/mgg3.1386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background Beckwith–Wiedemann syndrome (BWS) is an overgrowth disorder caused by defects at the 11p15.5 imprinted region. Many cases of female monozygotic (MZ) twins discordant for BWS have been reported, but no definitive conclusions have been drawn regarding the link between epigenetic defects, twinning process, and gender. Here, we report a comprehensive characterization and follow‐up of female MZ twins discordant for BWS. Methods Methylation pattern at 11p15.5 and multilocus methylation disturbance (MLID) profiling were performed by pyrosequencing and MassARRAY in placental/umbilical cord samples and postnatal tissues. Whole‐exome sequencing was carried out to identify MLID causative mutations. X‐chromosome inactivation (XCI) was determined by HUMARA test. Results Both twins share KCNQ1OT1:TSS‐DMR loss of methylation (LOM) and MLID in blood and the epigenetic defect remained stable in the healthy twin over time. KCNQ1OT1:TSS‐DMRLOM was nonhomogeneously distributed in placental samples and the twins showed the same severely skewed XCI pattern. No MLID‐causative mutations were identified. Conclusion This is the first report on BWS‐discordant twins with methylation analyses extended to extraembryonic tissues. The results suggest that caution is required when attempting prenatal diagnosis in similar cases. Although the causative mechanism underlying LOM remains undiscovered, the XCI pattern and mosaic LOM suggest that both twinning and LOM/MLID occurred after XCI commitment.
Collapse
Affiliation(s)
- Laura Fontana
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Maria F Bedeschi
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Giulia A Cagnoli
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Jole Costanza
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nicola Persico
- Obstetrics and Gynecology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Department of ClinicalSciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Silvana Gangi
- NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Matteo Porro
- Pediatric Physical Medicine & Rehabilitation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Paola F Ajmone
- Child and AdolescentNeuropsychiatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Patrizia Colapietro
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Carlo Santaniello
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Milena Crippa
- Medical Cytogenetics& Human Molecular Genetics, Istituto Auxologico Italiano-IRCCS, Milano, Italy
| | - Silvia M Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Monica Miozzo
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Silvia Tabano
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Laboratory of Medical Genetics, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
20
|
DNA Methylation in the Diagnosis of Monogenic Diseases. Genes (Basel) 2020; 11:genes11040355. [PMID: 32224912 PMCID: PMC7231024 DOI: 10.3390/genes11040355] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
DNA methylation in the human genome is largely programmed and shaped by transcription factor binding and interaction between DNA methyltransferases and histone marks during gamete and embryo development. Normal methylation profiles can be modified at single or multiple loci, more frequently as consequences of genetic variants acting in cis or in trans, or in some cases stochastically or through interaction with environmental factors. For many developmental disorders, specific methylation patterns or signatures can be detected in blood DNA. The recent use of high-throughput assays investigating the whole genome has largely increased the number of diseases for which DNA methylation analysis provides information for their diagnosis. Here, we review the methylation abnormalities that have been associated with mono/oligogenic diseases, their relationship with genotype and phenotype and relevance for diagnosis, as well as the limitations in their use and interpretation of results.
Collapse
|
21
|
Abstract
Imprinting disorders are a group of congenital diseases caused by dysregulation of genomic imprinting, affecting prenatal and postnatal growth, neurocognitive development, metabolism and cancer predisposition. Aberrant expression of imprinted genes can be achieved through different mechanisms, classified into epigenetic - if not involving DNA sequence change - or genetic in the case of altered genomic sequence. Despite the underlying mechanism, the phenotype depends on the parental allele affected and opposite phenotypes may result depending on the involvement of the maternal or the paternal chromosome. Imprinting disorders are largely underdiagnosed because of the broad range of clinical signs, the overlap of presentation among different disorders, the presence of mild phenotypes, the mitigation of the phenotype with age and the limited availability of molecular techniques employed for diagnosis. This review briefly illustrates the currently known human imprinting disorders, highlighting endocrinological aspects of pediatric interest.
Collapse
Affiliation(s)
- Diana Carli
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy
| | - Evelise Riberi
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy
| | | | - Alessandro Mussa
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy,* Address for Correspondence: University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy Phone: +39-011-313-1985 E-mail:
| |
Collapse
|
22
|
Elbracht M, Mackay D, Begemann M, Kagan KO, Eggermann T. Disturbed genomic imprinting and its relevance for human reproduction: causes and clinical consequences. Hum Reprod Update 2020; 26:197-213. [DOI: 10.1093/humupd/dmz045] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Abstract
BACKGROUND
Human reproductive issues affecting fetal and maternal health are caused by numerous exogenous and endogenous factors, of which the latter undoubtedly include genetic changes. Pathogenic variants in either maternal or offspring DNA are associated with effects on the offspring including clinical disorders and nonviable outcomes. Conversely, both fetal and maternal factors can affect maternal health during pregnancy. Recently, it has become evident that mammalian reproduction is influenced by genomic imprinting, an epigenetic phenomenon that regulates the expression of genes according to their parent from whom they are inherited. About 1% of human genes are normally expressed from only the maternally or paternally inherited gene copy. Since numerous imprinted genes are involved in (embryonic) growth and development, disturbance of their balanced expression can adversely affect these processes.
OBJECTIVE AND RATIONALE
This review summarises current our understanding of genomic imprinting in relation to human ontogenesis and pregnancy and its relevance for reproductive medicine.
SEARCH METHODS
Literature databases (Pubmed, Medline) were thoroughly searched for the role of imprinting in human reproductive failure. In particular, the terms ‘multilocus imprinting disturbances, SCMC, NLRP/NALP, imprinting and reproduction’ were used in various combinations.
OUTCOMES
A range of molecular changes to specific groups of imprinted genes are associated with imprinting disorders, i.e. syndromes with recognisable clinical features including distinctive prenatal features. Whereas the majority of affected individuals exhibit alterations at single imprinted loci, some have multi-locus imprinting disturbances (MLID) with less predictable clinical features. Imprinting disturbances are also seen in some nonviable pregnancy outcomes, such as (recurrent) hydatidiform moles, which can therefore be regarded as a severe form of imprinting disorders. There is growing evidence that MLID can be caused by variants in the maternal genome altering the imprinting status of the oocyte and the embryo, i.e. maternal effect mutations. Pregnancies of women carrying maternal affect mutations can have different courses, ranging from miscarriages to birth of children with clinical features of various imprinting disorders.
WIDER IMPLICATIONS
Increasing understanding of imprinting disturbances and their clinical consequences have significant impacts on diagnostics, counselling and management in the context of human reproduction. Defining criteria for identifying pregnancies complicated by imprinting disorders facilitates early diagnosis and personalised management of both the mother and offspring. Identifying the molecular lesions underlying imprinting disturbances (e.g. maternal effect mutations) allows targeted counselling of the family and focused medical care in further pregnancies.
Collapse
Affiliation(s)
- Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Deborah Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Karl Oliver Kagan
- Obstetrics and Gynaecology, University Hospital of Tübingen, Tübingen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
23
|
Brioude F, Toutain A, Giabicani E, Cottereau E, Cormier-Daire V, Netchine I. Overgrowth syndromes - clinical and molecular aspects and tumour risk. Nat Rev Endocrinol 2019; 15:299-311. [PMID: 30842651 DOI: 10.1038/s41574-019-0180-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Overgrowth syndromes are a heterogeneous group of rare disorders characterized by generalized or segmental excessive growth commonly associated with additional features, such as visceromegaly, macrocephaly and a large range of various symptoms. These syndromes are caused by either genetic or epigenetic anomalies affecting factors involved in cell proliferation and/or the regulation of epigenetic markers. Some of these conditions are associated with neurological anomalies, such as cognitive impairment or autism. Overgrowth syndromes are frequently associated with an increased risk of cancer (embryonic tumours during infancy or carcinomas during adulthood), but with a highly variable prevalence. Given this risk, syndrome-specific tumour screening protocols have recently been established for some of these conditions. Certain specific clinical traits make it possible to discriminate between different syndromes and orient molecular explorations to determine which molecular tests to conduct, despite the syndromes having overlapping clinical features. Recent advances in molecular techniques using next-generation sequencing approaches have increased the number of patients with an identified molecular defect (especially patients with segmental overgrowth). This Review discusses the clinical and molecular diagnosis, tumour risk and recommendations for tumour screening for the most prevalent generalized and segmental overgrowth syndromes.
Collapse
Affiliation(s)
- Frédéric Brioude
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, AP-HP Hôpital Trousseau, Paris, France.
| | - Annick Toutain
- CHU de Tours, Hôpital Bretonneau, Service de Génétique, INSERM UMR1253, iBrain, Université de Tours, Faculté de Médecine, Tours, France
| | - Eloise Giabicani
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, AP-HP Hôpital Trousseau, Paris, France
| | - Edouard Cottereau
- CHU de Tours, Hôpital Bretonneau, Service de Génétique, Tours, France
| | - Valérie Cormier-Daire
- Service de génétique clinique, Université Paris Descartes-Sorbonne Paris Cité, INSERM UMR1163, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Irene Netchine
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, AP-HP Hôpital Trousseau, Paris, France
| |
Collapse
|
24
|
Carvalho CMB, Coban-Akdemir Z, Hijazi H, Yuan B, Pendleton M, Harrington E, Beaulaurier J, Juul S, Turner DJ, Kanchi RS, Jhangiani SN, Muzny DM, Gibbs RA, Stankiewicz P, Belmont JW, Shaw CA, Cheung SW, Hanchard NA, Sutton VR, Bader PI, Lupski JR. Interchromosomal template-switching as a novel molecular mechanism for imprinting perturbations associated with Temple syndrome. Genome Med 2019; 11:25. [PMID: 31014393 PMCID: PMC6480824 DOI: 10.1186/s13073-019-0633-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Background Intrachromosomal triplications (TRP) can contribute to disease etiology via gene dosage effects, gene disruption, position effects, or fusion gene formation. Recently, post-zygotic de novo triplications adjacent to copy-number neutral genomic intervals with runs of homozygosity (ROH) have been shown to result in uniparental isodisomy (UPD). The genomic structure of these complex genomic rearrangements (CGRs) shows a consistent pattern of an inverted triplication flanked by duplications (DUP-TRP/INV-DUP) formed by an iterative DNA replisome template-switching mechanism during replicative repair of a single-ended, double-stranded DNA (seDNA), the ROH results from an interhomolog or nonsister chromatid template switch. It has been postulated that these CGRs may lead to genetic abnormalities in carriers due to dosage-sensitive genes mapping within the copy-number variant regions, homozygosity for alleles at a locus causing an autosomal recessive (AR) disease trait within the ROH region, or imprinting-associated diseases. Methods Here, we report a family wherein the affected subject carries a de novo 2.2-Mb TRP followed by 42.2 Mb of ROH and manifests clinical features overlapping with those observed in association with chromosome 14 maternal UPD (UPD(14)mat). UPD(14)mat can cause clinical phenotypic features enabling a diagnosis of Temple syndrome. This CGR was then molecularly characterized by high-density custom aCGH, genome-wide single-nucleotide polymorphism (SNP) and methylation arrays, exome sequencing (ES), and the Oxford Nanopore long-read sequencing technology. Results We confirmed the postulated DUP-TRP/INV-DUP structure by multiple orthogonal genomic technologies in the proband. The methylation status of known differentially methylated regions (DMRs) on chromosome 14 revealed that the subject shows the typical methylation pattern of UPD(14)mat. Consistent with these molecular findings, the clinical features overlap with those observed in Temple syndrome, including speech delay. Conclusions These data provide experimental evidence that, in humans, triplication can lead to segmental UPD and imprinting disease. Importantly, genotype/phenotype analyses further reveal how a post-zygotically generated complex structural variant, resulting from a replication-based mutational mechanism, contributes to expanding the clinical phenotype of known genetic syndromes. Mechanistically, such events can distort transmission genetics resulting in homozygosity at a locus for which only one parent is a carrier as well as cause imprinting diseases. Electronic supplementary material The online version of this article (10.1186/s13073-019-0633-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA.
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA
| | - Hadia Hijazi
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA
| | | | | | | | - Sissel Juul
- Oxford Nanopore Technologies Inc, New York, NY, USA.,Oxford Nanopore Technologies Inc, San Francisco, CA, USA
| | | | | | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA.,Texas Children's Hospital, Houston, TX, USA
| | | | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
25
|
Kamińska K, Nalejska E, Kubiak M, Wojtysiak J, Żołna Ł, Kowalewski J, Lewandowska MA. Prognostic and Predictive Epigenetic Biomarkers in Oncology. Mol Diagn Ther 2019; 23:83-95. [PMID: 30523565 PMCID: PMC6394434 DOI: 10.1007/s40291-018-0371-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epigenetic patterns, such as DNA methylation, histone modifications, and non-coding RNAs, can be both driver factors and characteristic features of certain malignancies. Aberrant DNA methylation can lead to silencing of crucial tumor suppressor genes or upregulation of oncogene expression. Histone modifications and chromatin spatial organization, which affect transcription, regulation of gene expression, DNA repair, and replication, have been associated with multiple tumors. Certain microRNAs (miRNAs), mainly those that silence tumor suppressor genes and occur in a greater number of copies, have also been shown to promote oncogenesis. Multiple patterns of these epigenetic factors occur specifically in certain malignancies, which allows their potential use as biomarkers. This review presents examples of tests for each group of epigenetic factors that are currently available or in development for use in early cancer detection, prediction, prognosis, and response to treatment. The availability of blood-based biomarkers is noted, as they allow sampling invasiveness to be reduced and the sampling procedure to be simplified. The article stresses the role of epigenetics as a crucial element of future cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Ewelina Nalejska
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Kubiak
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Joanna Wojtysiak
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Łukasz Żołna
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Janusz Kowalewski
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marzena Anna Lewandowska
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland.
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
| |
Collapse
|
26
|
Finken MJJ, van der Steen M, Smeets CCJ, Walenkamp MJE, de Bruin C, Hokken-Koelega ACS, Wit JM. Children Born Small for Gestational Age: Differential Diagnosis, Molecular Genetic Evaluation, and Implications. Endocr Rev 2018; 39:851-894. [PMID: 29982551 DOI: 10.1210/er.2018-00083] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/21/2018] [Indexed: 12/25/2022]
Abstract
Children born small for gestational age (SGA), defined as a birth weight and/or length below -2 SD score (SDS), comprise a heterogeneous group. The causes of SGA are multifactorial and include maternal lifestyle and obstetric factors, placental dysfunction, and numerous fetal (epi)genetic abnormalities. Short-term consequences of SGA include increased risks of hypothermia, polycythemia, and hypoglycemia. Although most SGA infants show catch-up growth by 2 years of age, ∼10% remain short. Short children born SGA are amenable to GH treatment, which increases their adult height by on average 1.25 SD. Add-on treatment with a gonadotropin-releasing hormone agonist may be considered in early pubertal children with an expected adult height below -2.5 SDS. A small birth size increases the risk of later neurodevelopmental problems and cardiometabolic diseases. GH treatment does not pose an additional risk.
Collapse
Affiliation(s)
- Martijn J J Finken
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Manouk van der Steen
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Carolina C J Smeets
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Marie J E Walenkamp
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Christiaan de Bruin
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| | - Anita C S Hokken-Koelega
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| |
Collapse
|
27
|
Fontana L, Bedeschi MF, Maitz S, Cereda A, Faré C, Motta S, Seresini A, D'Ursi P, Orro A, Pecile V, Calvello M, Selicorni A, Lalatta F, Milani D, Sirchia SM, Miozzo M, Tabano S. Characterization of multi-locus imprinting disturbances and underlying genetic defects in patients with chromosome 11p15.5 related imprinting disorders. Epigenetics 2018; 13:897-909. [PMID: 30221575 PMCID: PMC6284780 DOI: 10.1080/15592294.2018.1514230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The identification of multilocus imprinting disturbances (MLID) appears fundamental to uncover molecular pathways underlying imprinting disorders (IDs) and to complete clinical diagnosis of patients. However, MLID genetic associated mechanisms remain largely unknown. To characterize MLID in Beckwith-Wiedemann (BWS) and Silver-Russell (SRS) syndromes, we profiled by MassARRAY the methylation of 12 imprinted differentially methylated regions (iDMRs) in 21 BWS and 7 SRS patients with chromosome 11p15.5 epimutations. MLID was identified in 50% of BWS and 29% of SRS patients as a maternal hypomethylation syndrome. By next-generation sequencing, we searched for putative MLID-causative mutations in genes involved in methylation establishment/maintenance and found two novel missense mutations possibly causative of MLID: one in NLRP2, affecting ADP binding and protein activity, and one in ZFP42, likely leading to loss of DNA binding specificity. Both variants were paternally inherited. In silico protein modelling allowed to define the functional effect of these mutations. We found that MLID is very frequent in BWS/SRS. In addition, since MLID-BWS patients in our cohort show a peculiar pattern of BWS-associated clinical signs, MLID test could be important for a comprehensive clinical assessment. Finally, we highlighted the possible involvement of ZFP42 variants in MLID development and confirmed NLRP2 as causative locus in BWS-MLID.
Collapse
Affiliation(s)
- L Fontana
- a Laboratory of Molecular Pathology, Department of Pathophysiology and Transplantation , Università degli Studi di Milano , Milano , Italy
| | - M F Bedeschi
- b Clinical Genetics Unit , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S Maitz
- c Clinical Pediatric, Genetics Unit , MBBM Foundation, San Gerardo Monza , Monza , Italy
| | - A Cereda
- d Medical Genetics Unit , Papa Giovanni XXIII Hospital , Bergamo , Italy
| | - C Faré
- e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S Motta
- e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - A Seresini
- f Medical Genetics Laboratory , Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico , Milano , Italy.,g Fondazione Grigioni per il Morbo di Parkinson , Milano , Italy
| | - P D'Ursi
- h Department of Biomedical Sciences National Research Council , Institute for Biomedical Technologies , Segrate , Italy
| | - A Orro
- h Department of Biomedical Sciences National Research Council , Institute for Biomedical Technologies , Segrate , Italy
| | - V Pecile
- i Medical Genetics Division , Institute for maternal and child health IRCCS Burlo Garofolo , Trieste , Italy
| | - M Calvello
- e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy.,j Division of Cancer Prevention and Genetics, IEO , European Institute of Oncology IRCCS , Milano , Italy
| | - A Selicorni
- k UOC Pediatria , ASST Lariana , Como , Italy
| | - F Lalatta
- b Clinical Genetics Unit , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - D Milani
- l Pediatric Highly Intensive Care Unit , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S M Sirchia
- m Medical Genetics, Department of Health Sciences , Università degli Studi di Milano , Milano , Italy
| | - M Miozzo
- a Laboratory of Molecular Pathology, Department of Pathophysiology and Transplantation , Università degli Studi di Milano , Milano , Italy.,e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S Tabano
- a Laboratory of Molecular Pathology, Department of Pathophysiology and Transplantation , Università degli Studi di Milano , Milano , Italy
| |
Collapse
|
28
|
Yeung KS, Ho MSP, Lee SL, Kan ASY, Chan KYK, Tang MHY, Mak CCY, Leung GKC, So PL, Pfundt R, Marshall CR, Scherer SW, Choufani S, Weksberg R, Hon-Yin Chung B. Paternal uniparental disomy of chromosome 19 in a pair of monochorionic diamniotic twins with dysmorphic features and developmental delay. J Med Genet 2018; 55:847-852. [PMID: 30007940 DOI: 10.1136/jmedgenet-2018-105328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/05/2018] [Accepted: 06/27/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND We report here clinical, cytogenetic and molecular data for a pair of monochorionic diamniotic twins with paternal isodisomy for chromosome 19. Both twins presented with dysmorphic features and global developmental delay. This represents, to our knowledge, the first individual human case of paternal uniparental disomy for chromosome 19 (UPD19). METHODS Whole-exome sequencing, together with conventional karyotype and SNP array analysis were performed along with genome-wide DNA methylation array for delineation of the underlying molecular defects. RESULTS Conventional karyotyping on amniocytes and lymphocytes showed normal karyotypes for both twins. Whole-exome sequencing did not identify any pathogenic sequence variants but >5000 homozygous exonic variants on chromosome 19, suggestive of UPD19. SNP arrays on blood and buccal DNA both showed paternal isodisomy for chromosome 19. Losses of imprinting for known imprinted genes on chromosome 19 were identified, including ZNF331, PEG3, ZIM2 and MIMT1. In addition, imprinting defects were also identified in genes located on other chromosomes, including GPR1-AS, JAKMP1 and NHP2L1. CONCLUSION Imprinting defects are the most likely cause for the dysmorphism and developmental delay in this first report of monozygotic twins with UPD19. However, epigenotype-phenotype correlation will require identification of additional individuals with UPD19 and further molecular analysis.
Collapse
Affiliation(s)
- Kit San Yeung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Matthew Sai Pong Ho
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - So Lun Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Department of Paediatrics and Adolescent Medicine, The Duchess of Kent Children's Hospital, Hong Kong
| | - Anita Sik Yau Kan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong.,Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Hong Kong
| | - Kelvin Yuen Kwong Chan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong.,Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Hong Kong
| | - Mary Hoi Yin Tang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Christopher Chun Yu Mak
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Gordon Ka Chun Leung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Po Lam So
- Department of Obstetrics and Gynecology, Tuen Mun Hospital, Hong Kong
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian R Marshall
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics and Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,McLaughlin Centre and Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sanaa Choufani
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science and Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Brian Hon-Yin Chung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Department of Paediatrics and Adolescent Medicine, The Duchess of Kent Children's Hospital, Hong Kong.,Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
29
|
Geoffron S, Abi Habib W, Chantot-Bastaraud S, Dubern B, Steunou V, Azzi S, Afenjar A, Busa T, Pinheiro Canton A, Chalouhi C, Dufourg MN, Esteva B, Fradin M, Geneviève D, Heide S, Isidor B, Linglart A, Morice Picard F, Naud-Saudreau C, Oliver Petit I, Philip N, Pienkowski C, Rio M, Rossignol S, Tauber M, Thevenon J, Vu-Hong TA, Harbison MD, Salem J, Brioude F, Netchine I, Giabicani E. Chromosome 14q32.2 Imprinted Region Disruption as an Alternative Molecular Diagnosis of Silver-Russell Syndrome. J Clin Endocrinol Metab 2018; 103:2436-2446. [PMID: 29659920 DOI: 10.1210/jc.2017-02152] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/07/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Silver-Russell syndrome (SRS) (mainly secondary to 11p15 molecular disruption) and Temple syndrome (TS) (secondary to 14q32.2 molecular disruption) are imprinting disorders with phenotypic (prenatal and postnatal growth retardation, early feeding difficulties) and molecular overlap. OBJECTIVE To describe the clinical overlap between SRS and TS and extensively study the molecular aspects of TS. PATIENTS We retrospectively collected data on 28 patients with disruption of the 14q32.2 imprinted region, identified in our center, and performed extensive molecular analysis. RESULTS Seventeen (60.7%) patients showed loss of methylation of the MEG3/DLK1 intergenic differentially methylated region by epimutation. Eight (28.6%) patients had maternal uniparental disomy of chromosome 14 and three (10.7%) had a paternal deletion in 14q32.2. Most patients (72.7%) had a Netchine-Harbison SRS clinical scoring system ≥4/6, and consistent with a clinical diagnosis of SRS. The mean age at puberty onset was 7.2 years in girls and 9.6 years in boys; 37.5% had premature pubarche. The body mass index of all patients increased before pubarche and/or the onset of puberty. Multilocus analysis identified multiple methylation defects in 58.8% of patients. We identified four potentially damaging genetic variants in genes encoding proteins involved in the establishment or maintenance of DNA methylation. CONCLUSIONS Most patients with 14q32.2 disruption fulfill the criteria for a clinical diagnosis of SRS. These clinical data suggest similar management of patients with TS and SRS, with special attention to their young age at the onset of puberty and early increase of body mass index.
Collapse
Affiliation(s)
- Sophie Geoffron
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Walid Abi Habib
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Sandra Chantot-Bastaraud
- APHP, Hôpital Armand Trousseau, Département de Génétique, UF de Génétique Chromosomique, Paris, France
| | - Béatrice Dubern
- Sorbonne Université, INSERM, UMRS U1166 (Eq 6) Nutriomics, Institut de Cardiométabolisme et Nutrition, APHP, Hôpital Armand Trousseau, Service de Nutrition et de Gastroentérologie Pédiatriques, Paris, France
| | - Virginie Steunou
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Salah Azzi
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Alexandra Afenjar
- Sorbonne Université, APHP, Hôpital Armand Trousseau, Département de Génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs et Déficiences Intellectuelles de Causes Rares, Paris, France
| | - Tiffanny Busa
- Assistance Publique des Hôpitaux de Marseille, Hôpital Timone Enfants, Centre de Référence Anomalies du Développement et Syndromes Malformatifs Provence Alpes Côte d'Azur, Département de Génétique Médicale et Génomique Fonctionnelle, Aix Marseille Université, Marseille cedex 7, France
| | - Ana Pinheiro Canton
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
- Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Christel Chalouhi
- APHP, Hôpital Necker-Enfants-Malades, Service de Pédiatrie Générale, Paris, France
| | - Marie-Noëlle Dufourg
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Blandine Esteva
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Mélanie Fradin
- Centre Hospitalier Universitaire (CHU) Hôpital Sud, Service de Génétique Clinique, Centre de Référence Maladies Rares Centre Labéllisé 'Anomalies du Développement'-Ouest, Rennes cedex 2, France
| | - David Geneviève
- Hôpital Arnaud de Villeneuve, Unité de Génétique Clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Montpellier, France
- INSERM U1183, Institute of Regenerative Medicine and Biotherapie, Montpellier University, CHU Montpellier, Montpellier cedex 5, France
| | - Solveig Heide
- APHP, Hôpital Armand Trousseau, Département de Génétique, UF de Génétique Chromosomique, Paris, France
| | - Bertrand Isidor
- CHU Nantes, Service de Génétique Médicale, Nantes cedex 1, France
| | - Agnès Linglart
- APHP, Bicêtre Paris Sud Hospital, Reference Center for Rare Mineral Metabolism Disorders (Filière OSCAR) and the Plateforme d'Expertise Paris Sud Maladies Rares, Le Kremlin Bicêtre, France
- APHP, Bicêtre Paris Sud Hospital, Department of Pediatric Endocrinology and Diabetology, Le Kremlin Bicêtre, France
- INSERM U1169, Bicêtre Paris Sud Hospital, Le Kremlin Bicêtre, Université Paris-Saclay, France
| | - Fanny Morice Picard
- CHU de Bordeaux, Hôpital Pellegrin-Enfants, Department of Pediatric Dermatology, National Centre for Rare Skin Disorders, Bordeaux cedex, France
| | - Catherine Naud-Saudreau
- Bretagne Sud Hospital Center, Pediatric Endocrinology and Diabetology, Lorient cedex, France
| | - Isabelle Oliver Petit
- CHU de Toulouse, Hôpital des Enfants, Unité d'Endocrinologie, Obésité, Maladies Osseuses, Génétique et Gynécologie Médicale, Toulouse cedex 9, France
| | - Nicole Philip
- Assistance Publique des Hôpitaux de Marseille, Hôpital Timone Enfants, Centre de Référence Anomalies du Développement et Syndromes Malformatifs Provence Alpes Côte d'Azur, Département de Génétique Médicale et Génomique Fonctionnelle, Aix Marseille Université, Marseille cedex 7, France
| | - Catherine Pienkowski
- CHU de Toulouse, Hôpital des Enfants, Unité d'Endocrinologie, Obésité, Maladies Osseuses, Génétique et Gynécologie Médicale, Toulouse cedex 9, France
| | - Marlène Rio
- APHP, Hôpital Necker-Enfants-Malades, Service de Génétique, Paris, France
- INSERM UMR 1163, Paris Descartes-Sorbonne Paris Cité Université, Institut Imagine, Paris, France
| | - Sylvie Rossignol
- Hôpitaux Universitaires de Strasbourg, Service de Pédiatrie, Strasbourg cedex, France
- INSERM U1112, Laboratoire de Génétique Médicale, Institut de Génétique Médicale d'Alsace, Faculté de Médecine de Strasbourg, Strasbourg cedex, France
| | - Maithé Tauber
- CHU de Toulouse, Hôpital des Enfants, Unité d'Endocrinologie, Obésité, Maladies Osseuses, Génétique et Gynécologie Médicale, Toulouse cedex 9, France
- INSERM U1043, Centre de Physiopathologie de Toulouse Purpan, Université Paul-Sabatier, Toulouse, France
- Centre de Référence du Syndrome de Prader Willi, Toulouse cedex 9, France
| | - Julien Thevenon
- CHU Dijon, Hôpital d'Enfants, Centre de Génétique et Centre de Référence "Anomalies du Développement et Syndromes Malformatifs," Dijon cedex, France
- CHU Grenoble-Alpes, Hôpital Couple-Enfants, Centre de Génétique, Centre de Référence "Anomalies du Développement et Syndromes Malformatifs," La Tronche, France
| | - Thuy-Ai Vu-Hong
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Madeleine D Harbison
- Icahn School of Medicine at Mount Sinai, Department of Pediatrics, New York, New York
| | - Jennifer Salem
- The MAGIC Foundation, Russell-Silver Syndrome/Small for Gestational Age Research & Education Fund, Warrenville, Illinois
| | - Frédéric Brioude
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Irène Netchine
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Eloïse Giabicani
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| |
Collapse
|
30
|
Brioude F, Kalish JM, Mussa A, Foster AC, Bliek J, Ferrero GB, Boonen SE, Cole T, Baker R, Bertoletti M, Cocchi G, Coze C, De Pellegrin M, Hussain K, Ibrahim A, Kilby MD, Krajewska-Walasek M, Kratz CP, Ladusans EJ, Lapunzina P, Le Bouc Y, Maas SM, Macdonald F, Õunap K, Peruzzi L, Rossignol S, Russo S, Shipster C, Skórka A, Tatton-Brown K, Tenorio J, Tortora C, Grønskov K, Netchine I, Hennekam RC, Prawitt D, Tümer Z, Eggermann T, Mackay DJG, Riccio A, Maher ER. Expert consensus document: Clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol 2018; 14:229-249. [PMID: 29377879 PMCID: PMC6022848 DOI: 10.1038/nrendo.2017.166] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS), a human genomic imprinting disorder, is characterized by phenotypic variability that might include overgrowth, macroglossia, abdominal wall defects, neonatal hypoglycaemia, lateralized overgrowth and predisposition to embryonal tumours. Delineation of the molecular defects within the imprinted 11p15.5 region can predict familial recurrence risks and the risk (and type) of embryonal tumour. Despite recent advances in knowledge, there is marked heterogeneity in clinical diagnostic criteria and care. As detailed in this Consensus Statement, an international consensus group agreed upon 72 recommendations for the clinical and molecular diagnosis and management of BWS, including comprehensive protocols for the molecular investigation, care and treatment of patients from the prenatal period to adulthood. The consensus recommendations apply to patients with Beckwith-Wiedemann spectrum (BWSp), covering classical BWS without a molecular diagnosis and BWS-related phenotypes with an 11p15.5 molecular anomaly. Although the consensus group recommends a tumour surveillance programme targeted by molecular subgroups, surveillance might differ according to the local health-care system (for example, in the United States), and the results of targeted and universal surveillance should be evaluated prospectively. International collaboration, including a prospective audit of the results of implementing these consensus recommendations, is required to expand the evidence base for the design of optimum care pathways.
Collapse
Affiliation(s)
- Frédéric Brioude
- Sorbonne Université, Pierre and Marie Curie-Paris VI University (UPMC) Université Paris 06, INSERM UMR_S938 Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, 26 Avenue du Docteur Arnold Netter, F-75012 Paris, France
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia and the Department of Pediatrics at the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
- Neonatal Intensive Care Unit, Department of Gynaecology and Obstetrics, Sant'Anna Hospital, Città della Salute e della Scienza di Torino, Corso Spezia 60, 10126 Torino, Italy
| | - Alison C Foster
- Birmingham Health Partners, West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham B15 2TG, UK
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jet Bliek
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, PO Box 7057 1007 MB Amsterdam, The Netherlands
| | - Giovanni Battista Ferrero
- Department of Public Health and Pediatric Sciences, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
| | - Susanne E Boonen
- Clinical Genetic Unit, Department of Pediatrics, Zealand University Hospital, Sygehusvej 10 4000 Roskilde, Denmark
| | - Trevor Cole
- Birmingham Health Partners, West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham B15 2TG, UK
| | - Robert Baker
- Beckwith-Wiedemann Support Group UK, The Drum and Monkey, Wonston, Hazelbury Bryan, Sturminster Newton, Dorset DT10 2EE, UK
| | - Monica Bertoletti
- Italian Association of Beckwith-Wiedemann syndrome (AIBWS) Piazza Turati, 3, 21029, Vergiate (VA), Italy
| | - Guido Cocchi
- Alma Mater Studiorum, Bologna University, Paediatric Department, Neonatology Unit, Via Massarenti 11, 40138 Bologna BO, Italy
| | - Carole Coze
- Aix-Marseille Univ et Assistance Publique Hôpitaux de Marseille (APHM), Hôpital d'Enfants de La Timone, Service d'Hématologie-Oncologie Pédiatrique, 264 Rue Saint Pierre, 13385 Marseille, France
| | - Maurizio De Pellegrin
- Pediatric Orthopaedic Unit IRCCS Ospedale San Raffaele, Milan, Via Olgettina Milano, 60, 20132 Milano MI, Italy
| | - Khalid Hussain
- Department of Paediatric Medicine, Division of Endocrinology, Sidra Medical and Research Center, Al Gharrafa Street, Ar-Rayyan, Doha, Qatar
| | - Abdulla Ibrahim
- Department of Plastic and Reconstructive Surgery, North Bristol National Health Service (NHS) Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Mark D Kilby
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Fetal Medicine Centre, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Edgbaston, Birmingham, B15 2TG, UK
| | | | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Strasse 1 30625, Hannover, Germany
| | - Edmund J Ladusans
- Department of Paediatric Cardiology, Royal Manchester Children's Hospital, Manchester, M13 8WL UK
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM Paseo de La Castellana, 261, 28046, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Yves Le Bouc
- Sorbonne Université, Pierre and Marie Curie-Paris VI University (UPMC) Université Paris 06, INSERM UMR_S938 Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, 26 Avenue du Docteur Arnold Netter, F-75012 Paris, France
| | - Saskia M Maas
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, PO Box 7057 1007 MB Amsterdam, The Netherlands
| | - Fiona Macdonald
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham, B15 2TG UK
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital and Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, L. Puusepa 2, 51014, Tartu, Estonia
| | - Licia Peruzzi
- European Society for Paediatric Nephrology (ESPN), Inherited Kidney Disorders Working Group
- AOU Città della Salute e della Scienza di Torino, Regina Margherita Children's Hospital, Turin, Italy
| | - Sylvie Rossignol
- Service de Pédiatrie, Hôpitaux Universitaires de Strasbourg, Laboratoire de Génétique Médicale, INSERM U1112 Avenue Molière 67098 STRASBOURG Cedex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 4 Rue Kirschleger, 67000 Strasbourg, France
| | - Silvia Russo
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano, Milan, Italy
| | - Caroleen Shipster
- Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, WC1N 3JH, UK
| | - Agata Skórka
- Department of Medical Genetics, The Children's Memorial Health Institute, 20, 04-730, Warsaw, Poland
- Department of Pediatrics, The Medical University of Warsaw, Zwirki i Wigury 63a, 02-091 Warszawa, Poland
| | - Katrina Tatton-Brown
- South West Thames Regional Genetics Service and St George's University of London and Institute of Cancer Research, London, SW17 0RE, UK
| | - Jair Tenorio
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM Paseo de La Castellana, 261, 28046, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Chiara Tortora
- Regional Center for CLP, Smile House, San Paolo University Hospital, Via Antonio di Rudinì, 8, 20142, Milan, Italy
| | - Karen Grønskov
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Irène Netchine
- Sorbonne Université, Pierre and Marie Curie-Paris VI University (UPMC) Université Paris 06, INSERM UMR_S938 Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, 26 Avenue du Docteur Arnold Netter, F-75012 Paris, France
| | - Raoul C Hennekam
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, Amsterdam, The Netherlands
| | - Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, D-55101, Mainz, Germany
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University of Aachen, Templergraben 55, 52062, Aachen, Germany
| | - Deborah J G Mackay
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Andrea Riccio
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Caserta and Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Via Pietro Castellino, 111,80131, Naples, Italy
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre and Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| |
Collapse
|
31
|
Begemann M, Rezwan FI, Beygo J, Docherty LE, Kolarova J, Schroeder C, Buiting K, Chokkalingam K, Degenhardt F, Wakeling EL, Kleinle S, González Fassrainer D, Oehl-Jaschkowitz B, Turner CLS, Patalan M, Gizewska M, Binder G, Bich Ngoc CT, Chi Dung V, Mehta SG, Baynam G, Hamilton-Shield JP, Aljareh S, Lokulo-Sodipe O, Horton R, Siebert R, Elbracht M, Temple IK, Eggermann T, Mackay DJG. Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring. J Med Genet 2018; 55:497-504. [PMID: 29574422 PMCID: PMC6047157 DOI: 10.1136/jmedgenet-2017-105190] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/16/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022]
Abstract
Background Genomic imprinting results from the resistance of germline epigenetic marks to reprogramming in the early embryo for a small number of mammalian genes. Genetic, epigenetic or environmental insults that prevent imprints from evading reprogramming may result in imprinting disorders, which impact growth, development, behaviour and metabolism. We aimed to identify genetic defects causing imprinting disorders by whole-exome sequencing in families with one or more members affected by multilocus imprinting disturbance. Methods Whole-exome sequencing was performed in 38 pedigrees where probands had multilocus imprinting disturbance, in five of whom maternal variants in NLRP5 have previously been found. Results We now report 15 further pedigrees in which offspring had disturbance of imprinting, while their mothers had rare, predicted-deleterious variants in maternal effect genes, including NLRP2, NLRP7 and PADI6. As well as clinical features of well-recognised imprinting disorders, some offspring had additional features including developmental delay, behavioural problems and discordant monozygotic twinning, while some mothers had reproductive problems including pregnancy loss. Conclusion The identification of 20 putative maternal effect variants in 38 families affected by multilocus imprinting disorders adds to the evidence that maternal genetic factors affect oocyte fitness and thus offspring development. Testing for maternal-effect genetic variants should be considered in families affected by atypical imprinting disorders.
Collapse
Affiliation(s)
- Matthias Begemann
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Faisal I Rezwan
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jasmin Beygo
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Louise E Docherty
- MRC Human Genetics Unit, The Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Julia Kolarova
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Christopher Schroeder
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karin Buiting
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kamal Chokkalingam
- Department of Diabetic Medicine, Nottingham University Hospital NHS Trust, Nottingham, UK
| | | | - Emma L Wakeling
- North West Thames Regional Genetics Service, London North West Healthcare NHS Trust, London, UK
| | | | | | | | - Claire L S Turner
- Peninsula Genetics Service, Royal Devon and Exeter Hospital, Exeter, UK
| | - Michal Patalan
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland
| | - Maria Gizewska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland
| | - Gerhard Binder
- Pediatric Endocrinology, University Children's Hospital, Tübingen, Germany
| | - Can Thi Bich Ngoc
- Department of Medical Genetics, Metabolism and Endocrinology, The National Children's Hospital, Hanoi, Vietnam
| | - Vu Chi Dung
- Department of Medical Genetics, Metabolism and Endocrinology, The National Children's Hospital, Hanoi, Vietnam
| | - Sarju G Mehta
- Department of Clinical Genetics, Cambridge University Hospitals Trust, Cambridge, UK
| | - Gareth Baynam
- School of Paediatrics and Child Health, The University of Western Australia, Perth, Western Australia, Australia.,Genetic Services of Western Australian and Western Australian Register of Developmental Anomalies, Perth, Western Australia, Australia
| | | | - Sara Aljareh
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Oluwakemi Lokulo-Sodipe
- Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Clinical Genetics Service, University Hospital, Southampton, UK
| | - Rachel Horton
- Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Clinical Genetics Service, University Hospital, Southampton, UK
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Isabel Karen Temple
- Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Clinical Genetics Service, University Hospital, Southampton, UK
| | - Thomas Eggermann
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
32
|
Mackay DJ, Temple IK. Human imprinting disorders: Principles, practice, problems and progress. Eur J Med Genet 2017; 60:618-626. [DOI: 10.1016/j.ejmg.2017.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/02/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022]
|
33
|
Grüters-Kieslich A, Reyes M, Sharma A, Demirci C, DeClue TJ, Lankes E, Tiosano D, Schnabel D, Jüppner H. Early-Onset Obesity: Unrecognized First Evidence for GNAS Mutations and Methylation Changes. J Clin Endocrinol Metab 2017; 102:2670-2677. [PMID: 28453643 PMCID: PMC5546863 DOI: 10.1210/jc.2017-00395] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/17/2017] [Indexed: 12/16/2022]
Abstract
Context Early-onset obesity, characteristic for disorders affecting the leptin-melanocortin pathway, is also observed in pseudohypoparathyroidism type 1A (PHP1A), a disorder caused by maternal GNAS mutations that disrupt expression or function of the stimulatory G protein α-subunit (Gsα). Mutations and/or epigenetic abnormalities at the same genetic locus are also the cause of pseudohypoparathyroidism type 1B (PHP1B). However, although equivalent biochemical and radiographic findings can be encountered in these related disorders caused by GNAS abnormalities, they are considered distinct clinical entities. Objectives To further emphasize the overlapping features between both disorders, we report the cases of several children, initially brought to medical attention because of unexplained early-onset obesity, in whom PHP1B or PHP1A was eventually diagnosed. Patients and Methods Search for GNAS methylation changes or mutations in cohorts of patients with early-onset obesity. Results Severe obesity had been noted in five infants, with a later diagnosis of PHP1B due to STX16 deletions and/or abnormal GNAS methylation. These findings prompted analysis of 24 unselected obese patients, leading to the discovery of inherited STX16 deletions in 2 individuals. Similarly, impressive early weight gains were noted in five patients, who initially lacked additional Albright hereditary osteodystrophy features but in whom PHP1A due to GNAS mutations involving exons encoding Gsα was diagnosed. Conclusions Obesity during the first year of life can be the first clinical evidence for PHP1B, expanding the spectrum of phenotypic overlap between PHP1A and PHP1B. Importantly, GNAS methylation abnormalities escape detection by targeted or genome-wide sequencing strategies, raising the question of whether epigenetic GNAS analyses should be considered for unexplained obesity.
Collapse
Affiliation(s)
- Annette Grüters-Kieslich
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
- Department of Pediatric Endocrinology and Diabetes, Charité-Universitätsmedizin, Berlin 10117, Germany
| | - Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Amita Sharma
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Cem Demirci
- Pediatric Endocrinology, Connecticut Children’s Medical Center, University of Connecticut School of Medicine, Farmington, Connecticut 06030
| | | | - Erwin Lankes
- Department of Pediatric Endocrinology and Diabetes, Charité-Universitätsmedizin, Berlin 10117, Germany
- Center for Chronically Sick Children, Charité-Universitätsmedizin, Berlin 10117, Germany
| | - Dov Tiosano
- Division of Pediatric Endocrinology, Meyer Children's Hospital, Rambam Health Care Campus, Haifa 31096, Israel
| | - Dirk Schnabel
- Department of Pediatric Endocrinology and Diabetes, Charité-Universitätsmedizin, Berlin 10117, Germany
- Center for Chronically Sick Children, Charité-Universitätsmedizin, Berlin 10117, Germany
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
34
|
Beygo J, Küchler A, Gillessen-Kaesbach G, Albrecht B, Eckle J, Eggermann T, Gellhaus A, Kanber D, Kordaß U, Lüdecke HJ, Purmann S, Rossier E, van de Nes J, van der Werf IM, Wenzel M, Wieczorek D, Horsthemke B, Buiting K. New insights into the imprinted MEG8-DMR in 14q32 and clinical and molecular description of novel patients with Temple syndrome. Eur J Hum Genet 2017. [PMID: 28635951 DOI: 10.1038/ejhg.2017.91] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The chromosomal region 14q32 contains several imprinted genes, which are expressed either from the paternal (DLK1 and RTL1) or the maternal (MEG3, RTL1as and MEG8) allele only. Imprinted expression of these genes is regulated by two differentially methylated regions (DMRs), the germline DLK1/MEG3 intergenic (IG)-DMR (MEG3/DLK1:IG-DMR) and the somatic MEG3-DMR (MEG3:TSS-DMR), which are methylated on the paternal and unmethylated on the maternal allele. Disruption of imprinting in the 14q32 region results in two clinically distinct imprinting disorders, Temple syndrome (TS14) and Kagami-Ogata syndrome (KOS14). Another DMR with a yet unknown function is located in intron 2 of MEG8 (MEG8-DMR, MEG8:Int2-DMR). In contrast to the IG-DMR and the MEG3-DMR, this somatic DMR is methylated on the maternal chromosome and unmethylated on the paternal chromosome. We have performed extensive methylation analyses by deep bisulfite sequencing of the IG-DMR, MEG3-DMR and MEG8-DMR in different prenatal tissues including amniotic fluid cells and chorionic villi. In addition, we have studied the methylation pattern of the MEG8-DMR in different postnatal tissues. We show that the MEG8-DMR is hypermethylated in each of 13 non-deletion TS14 patients (seven newly identified and six previously published patients), irrespective of the underlying molecular cause, and is always hypomethylated in the four patients with KOS14, who have different deletions not encompassing the MEG8-DMR itself. The size and the extent of the deletions and the resulting methylation pattern suggest that transcription starting from the MEG3 promoter may be necessary to establish the methylation imprint at the MEG8-DMR.
Collapse
Affiliation(s)
- Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Alma Küchler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | | | - Beate Albrecht
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Jonas Eckle
- Sozialpädiatrisches Zentrum, St. Elisabeth-Stiftung, Ravensburg, Germany
| | | | - Alexandra Gellhaus
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Essen, Essen, Germany
| | - Deniz Kanber
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ulrike Kordaß
- MVZ für Humangenetik und Molekularpathologie Rostock, Zweigstelle Greifswald, Greifswald, Germany
| | - Hermann-Josef Lüdecke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.,Institut für Humangenetik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Sabine Purmann
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - Eva Rossier
- Institut für Medizinische Genetik und angewandte Genomik, Universiät Tübingen, Tübingen, Germany.,Genetikum Stuttgart, Stuttgart, Germany
| | - Johannes van de Nes
- Institute of Neuropathology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.,Institute of Pathology, University of Bochum, Bochum, Germany
| | | | | | - Dagmar Wieczorek
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.,Institut für Humangenetik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
35
|
Wakeling EL, Brioude F, Lokulo-Sodipe O, O'Connell SM, Salem J, Bliek J, Canton APM, Chrzanowska KH, Davies JH, Dias RP, Dubern B, Elbracht M, Giabicani E, Grimberg A, Grønskov K, Hokken-Koelega ACS, Jorge AA, Kagami M, Linglart A, Maghnie M, Mohnike K, Monk D, Moore GE, Murray PG, Ogata T, Petit IO, Russo S, Said E, Toumba M, Tümer Z, Binder G, Eggermann T, Harbison MD, Temple IK, Mackay DJG, Netchine I. Diagnosis and management of Silver-Russell syndrome: first international consensus statement. Nat Rev Endocrinol 2017; 13:105-124. [PMID: 27585961 DOI: 10.1038/nrendo.2016.138] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This Consensus Statement summarizes recommendations for clinical diagnosis, investigation and management of patients with Silver-Russell syndrome (SRS), an imprinting disorder that causes prenatal and postnatal growth retardation. Considerable overlap exists between the care of individuals born small for gestational age and those with SRS. However, many specific management issues exist and evidence from controlled trials remains limited. SRS is primarily a clinical diagnosis; however, molecular testing enables confirmation of the clinical diagnosis and defines the subtype. A 'normal' result from a molecular test does not exclude the diagnosis of SRS. The management of children with SRS requires an experienced, multidisciplinary approach. Specific issues include growth failure, severe feeding difficulties, gastrointestinal problems, hypoglycaemia, body asymmetry, scoliosis, motor and speech delay and psychosocial challenges. An early emphasis on adequate nutritional status is important, with awareness that rapid postnatal weight gain might lead to subsequent increased risk of metabolic disorders. The benefits of treating patients with SRS with growth hormone include improved body composition, motor development and appetite, reduced risk of hypoglycaemia and increased height. Clinicians should be aware of possible premature adrenarche, fairly early and rapid central puberty and insulin resistance. Treatment with gonadotropin-releasing hormone analogues can delay progression of central puberty and preserve adult height potential. Long-term follow up is essential to determine the natural history and optimal management in adulthood.
Collapse
Affiliation(s)
- Emma L Wakeling
- North West Thames Regional Genetics Service, London North West Healthcare NHS Trust, Watford Road, Harrow HA1 3UJ, UK
| | - Frédéric Brioude
- AP-HP, Hôpitaux Universitaires Paris Est (AP-HP) Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, 26 avenue du Dr Arnold Netter, 75012 Paris, France
- Centre de Recherche Saint Antoine, INSERM UMR S938, 34 rue Crozatier, 75012 Paris, France
- Sorbonne Universities, UPMC UNIV Paris 06, 4 place Jussieu, 75005 Paris, France
| | - Oluwakemi Lokulo-Sodipe
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Susan M O'Connell
- Department of Paediatrics and Child Health, Cork University Hospital, Wilton, Cork T12 DC4A, Ireland
| | - Jennifer Salem
- MAGIC Foundation, 6645 W. North Avenue, Oak Park, Illinois 60302, USA
| | - Jet Bliek
- Academic Medical Centre, Department of Clinical Genetics, Laboratory for Genome Diagnostics, Meibergdreef 15, 1105AZ Amsterdam, Netherlands
| | - Ana P M Canton
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 5° andar sala 5340 (LIM25), 01246-000 São Paulo, SP, Brazil
| | - Krystyna H Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Justin H Davies
- Department of Paediatric Endocrinology, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK
| | - Renuka P Dias
- Institutes of Metabolism and Systems Research, Vincent Drive, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Vincent Drive, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Paediatric Endocrinology and Diabetes, Birmingham Children's Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham B4 6NH, UK
| | - Béatrice Dubern
- AP-HP, Hôpitaux Universitaires Paris Est (AP-HP) Hôpital des Enfants Armand Trousseau, Nutrition and Gastroenterology Department, 26 avenue du Dr Arnold Netter, 75012 Paris, France
- Trousseau Hospital, HUEP, APHP, UPMC, 75012 Paris, France
| | - Miriam Elbracht
- Insitute of Human Genetics, Technical University of Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Eloise Giabicani
- AP-HP, Hôpitaux Universitaires Paris Est (AP-HP) Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, 26 avenue du Dr Arnold Netter, 75012 Paris, France
- Centre de Recherche Saint Antoine, INSERM UMR S938, 34 rue Crozatier, 75012 Paris, France
- Sorbonne Universities, UPMC UNIV Paris 06, 4 place Jussieu, 75005 Paris, France
| | - Adda Grimberg
- Perelman School of Medicine, University of Pennsylvania, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Suite 11NW30, Philadelphia, Pennsylvania 19104, USA
| | - Karen Grønskov
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, 2600 Glostrup, Copenhagen, Denmark
| | - Anita C S Hokken-Koelega
- Erasmus University Medical Center, Pediatrics, Subdivision of Endocrinology, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Alexander A Jorge
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 5° andar sala 5340 (LIM25), 01246-000 São Paulo, SP, Brazil
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Ohkura, Setagayaku, Tokyo 157-8535, Japan
| | - Agnes Linglart
- APHP, Department of Pediatric Endocrinology, Reference Center for Rare Disorders of the Mineral Metabolism and Plateforme d'Expertise Paris Sud Maladies Rares, Hospital Bicêtre Paris Sud, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Mohamad Maghnie
- IRCCS Istituto Giannina Gaslini, University of Genova, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Klaus Mohnike
- Otto-von-Guericke University, Department of Pediatrics, Leipziger Street 44, 39120 Magdeburg, Germany
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Biomedical Research Institute, Gran via 199-203, Hospital Duran i Reynals, 08908, Barcelona, Spain
| | - Gudrun E Moore
- Fetal Growth and Development Group, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Philip G Murray
- Centre for Paediatrics and Child Health, Institute of Human Development, Royal Manchester Children's Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Isabelle Oliver Petit
- Pediatric Endocrinology, Genetic, Bone Disease &Gynecology Unit, Children's Hospital, TSA 70034, 31059 Toulouse, France
| | - Silvia Russo
- Instituto Auxologico Italiano, Cytogenetic and Molecular Genetic Laboratory, via Ariosto 13 20145 Milano, Italy
| | - Edith Said
- Department of Anatomy &Cell Biology, Centre for Molecular Medicine &Biobanking, Faculty of Medicine &Surgery, University of Malta, Msida MSD2090, Malta
- Section of Medical Genetics, Department of Pathology, Mater dei Hospital, Msida MSD2090, Malta
| | - Meropi Toumba
- IASIS Hospital, 8 Voriou Ipirou, 8036, Paphos, Cyprus
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, 2600 Glostrup, Copenhagen, Denmark
| | - Gerhard Binder
- University Children's Hospital, Pediatric Endocrinology, Hoppe-Seyler-Strasse 1, 72070 Tuebingen, Germany
| | - Thomas Eggermann
- Insitute of Human Genetics, Technical University of Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Madeleine D Harbison
- Mount Sinai School of Medicine, 5 E 98th Street #1192, New York, New York 10029, USA
| | - I Karen Temple
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Deborah J G Mackay
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Irène Netchine
- AP-HP, Hôpitaux Universitaires Paris Est (AP-HP) Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, 26 avenue du Dr Arnold Netter, 75012 Paris, France
- Centre de Recherche Saint Antoine, INSERM UMR S938, 34 rue Crozatier, 75012 Paris, France
- Sorbonne Universities, UPMC UNIV Paris 06, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
36
|
Grafodatskaya D, Choufani S, Basran R, Weksberg R. An Update on Molecular Diagnostic Testing of Human Imprinting Disorders. J Pediatr Genet 2016; 6:3-17. [PMID: 28180023 DOI: 10.1055/s-0036-1593840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 05/16/2016] [Indexed: 01/07/2023]
Abstract
Imprinted genes are expressed in a parent of origin manner. Dysregulation of imprinted genes expression causes various disorders associated with abnormalities of growth, neurodevelopment, and metabolism. Molecular mechanisms leading to imprinting disorders and strategies for their diagnosis are discussed in this review article.
Collapse
Affiliation(s)
- Daria Grafodatskaya
- Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Raveen Basran
- Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Soellner L, Begemann M, Mackay DJG, Grønskov K, Tümer Z, Maher ER, Temple IK, Monk D, Riccio A, Linglart A, Netchine I, Eggermann T. Recent Advances in Imprinting Disorders. Clin Genet 2016; 91:3-13. [PMID: 27363536 DOI: 10.1111/cge.12827] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 01/21/2023]
Abstract
Imprinting disorders (ImpDis) are a group of currently 12 congenital diseases with common underlying (epi)genetic etiologies and overlapping clinical features affecting growth, development and metabolism. In the last years it has emerged that ImpDis are characterized by the same types of mutations and epimutations, i.e. uniparental disomies, copy number variations, epimutations, and point mutations. Each ImpDis is associated with a specific imprinted locus, but the same imprinted region can be involved in different ImpDis. Additionally, even the same aberrant methylation patterns are observed in different phenotypes. As some ImpDis share clinical features, clinical diagnosis is difficult in some cases. The advances in molecular and clinical diagnosis of ImpDis help to circumvent these issues, and they are accompanied by an increasing understanding of the pathomechanism behind them. As these mechanisms have important roles for the etiology of other common conditions, the results in ImpDis research have a wider effect beyond the borders of ImpDis. For patients and their families, the growing knowledge contributes to a more directed genetic counseling of the families and personalized therapeutic approaches.
Collapse
Affiliation(s)
- L Soellner
- Department of Human Genetics, RWTH Aachen, Aachen, Germany
| | - M Begemann
- Department of Human Genetics, RWTH Aachen, Aachen, Germany
| | - D J G Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampton, Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - K Grønskov
- Clinical Genetic Clinic, Kennedy Center, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Z Tümer
- Clinical Genetic Clinic, Kennedy Center, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - E R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - I K Temple
- Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampton, Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - D Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program (PEBC), Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Hospital Duran i Reynals, Barcelona, Spain
| | - A Riccio
- DiSTABiF, Seconda Università degli Studi di Napoli, Caserta, Institute of Genetics and Biophysics - ABT, CNR, Napoli, Italy
| | - A Linglart
- Endocrinology and Diabetology for Children and Reference Center for Rare Disorders of Calcium and Phosphorus Metabolism, Bicêtre Paris Sud, APHP, INSERM U986, INSERM, Le Kremlin-Bicêtre, France
| | - I Netchine
- INSERM, CDR Saint-Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France.,Pediatric Endocrinology, Armand Trousseau Hospital, Paris, France
| | - T Eggermann
- Department of Human Genetics, RWTH Aachen, Aachen, Germany
| |
Collapse
|
38
|
Õunap K. Silver-Russell Syndrome and Beckwith-Wiedemann Syndrome: Opposite Phenotypes with Heterogeneous Molecular Etiology. Mol Syndromol 2016; 7:110-21. [PMID: 27587987 DOI: 10.1159/000447413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 12/13/2022] Open
Abstract
Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS) are 2 clinically opposite growth-affecting disorders belonging to the group of congenital imprinting disorders. The expression of both syndromes usually depends on the parental origin of the chromosome in which the imprinted genes reside. SRS is characterized by severe intrauterine and postnatal growth retardation with various additional clinical features such as hemihypertrophy, relative macrocephaly, fifth finger clinodactyly, and triangular facies. BWS is an overgrowth syndrome with many additional clinical features such as macroglossia, organomegaly, and an increased risk of childhood tumors. Both SRS and BWS are clinically and genetically heterogeneous, and for clinical diagnosis, different diagnostic scoring systems have been developed. Six diagnostic scoring systems for SRS and 4 for BWS have been previously published. However, neither syndrome has common consensus diagnostic criteria yet. Most cases of SRS and BWS are associated with opposite epigenetic or genetic abnormalities in the 11p15 chromosomal region leading to opposite imbalances in the expression of imprinted genes. SRS is also caused by maternal uniparental disomy 7, which is usually identified in 5-10% of the cases, and is therefore the first imprinting disorder that affects 2 different chromosomes. In this review, we describe in detail the clinical diagnostic criteria and scoring systems as well as molecular causes in both SRS and BWS.
Collapse
Affiliation(s)
- Katrin Õunap
- Department of Genetics, United Laboratories, Tartu University Hospital, and Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
39
|
Goto M, Kagami M, Nishimura G, Yamagata T. A patient with Temple syndrome satisfying the clinical diagnostic criteria of Silver-Russell syndrome. Am J Med Genet A 2016; 170:2483-5. [PMID: 27362607 PMCID: PMC5095869 DOI: 10.1002/ajmg.a.37827] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/16/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Masahide Goto
- Department of Pediatrics, Kitaibaraki Municipal General Hospital, Kitaibaraki, Japan.,Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Gen Nishimura
- Department of Pediatric Imaging, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Takanori Yamagata
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
40
|
Bens S, Kolarova J, Beygo J, Buiting K, Caliebe A, Eggermann T, Gillessen-Kaesbach G, Prawitt D, Thiele-Schmitz S, Begemann M, Enklaar T, Gutwein J, Haake A, Paul U, Richter J, Soellner L, Vater I, Monk D, Horsthemke B, Ammerpohl O, Siebert R. Phenotypic spectrum and extent of DNA methylation defects associated with multilocus imprinting disturbances. Epigenomics 2016; 8:801-16. [PMID: 27323310 DOI: 10.2217/epi-2016-0007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM To characterize the genotypic and phenotypic extent of multilocus imprinting disturbances (MLID). MATERIALS & METHODS We analyzed 37 patients with imprinting disorders (explorative cohort) for DNA methylation changes using the Infinium HumanMethylation450 BeadChip. For validation, three independent cohorts with imprinting disorders or cardinal features thereof were analyzed (84 patients with imprinting disorders, 52 with growth disorder, 81 with developmental delay). RESULTS In the explorative cohort 21 individuals showed array-based MLID with each one displaying an Angelman or Temple syndrome phenotype, respectively. Epimutations in ZDBF2 and FAM50B were associated with severe MLID regarding number of affected regions. By targeted analysis we identified methylation changes of ZDBF2 and FAM50B also in the three validation cohorts. CONCLUSION We corroborate epimutations in ZDBF2 and FAM50B as frequent changes in MLID whereas these rarely occur in other patients with cardinal features of imprinting disorders. Moreover, we show cell lineage specific differences in the genomic extent of FAM50B epimutation.
Collapse
Affiliation(s)
- Susanne Bens
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Julia Kolarova
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, D 45122 Essen, Germany
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, D 45122 Essen, Germany
| | - Almuth Caliebe
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital Aachen, D 52074 Aachen, Germany
| | | | - Dirk Prawitt
- Section of Molecular Pediatrics University Medical Centre of the Johannes Gutenberg-University Mainz, D 55131 Mainz, Germany
| | - Susanne Thiele-Schmitz
- Division of Experimental Paediatric Endocrinology & Diabetes, Department of Paediatrics, University of Lübeck, D 23562 Lübeck, Germany
| | - Matthias Begemann
- Institute of Human Genetics, University Hospital Aachen, D 52074 Aachen, Germany
| | - Thorsten Enklaar
- Section of Molecular Pediatrics University Medical Centre of the Johannes Gutenberg-University Mainz, D 55131 Mainz, Germany
| | - Jana Gutwein
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Andrea Haake
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Ulrike Paul
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Julia Richter
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Lukas Soellner
- Institute of Human Genetics, University Hospital Aachen, D 52074 Aachen, Germany
| | - Inga Vater
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - David Monk
- Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Cancer Epigenetic & Biology Program (PEBC), Catalan Institute of Oncology, Hospital Duran i Reynals Barcelona, Barcelona, ES 08907, Spain
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, D 45122 Essen, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, D 24105 Kiel, Germany
| |
Collapse
|
41
|
Sanchez-Delgado M, Riccio A, Eggermann T, Maher ER, Lapunzina P, Mackay D, Monk D. Causes and Consequences of Multi-Locus Imprinting Disturbances in Humans. Trends Genet 2016; 32:444-455. [PMID: 27235113 DOI: 10.1016/j.tig.2016.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022]
Abstract
Eight syndromes are associated with the loss of methylation at specific imprinted loci. There has been increasing evidence that these methylation defects in patients are not isolated events occurring at a given disease-associated locus but that some of these patients may have multi-locus imprinting disturbances (MLID) affecting additional imprinted regions. With the recent advances in technology, methylation profiling has revealed that imprinted loci represent only a small fraction of the methylation differences observed between the gametes. To figure out how imprinting anomalies occur at multiple imprinted domains, we have to understand the interplay between DNA methylation and histone modifications in the process of selective imprint protection during pre-implantation reprogramming, which, if disrupted, leads to these complex imprinting disorders (IDs).
Collapse
Affiliation(s)
- Marta Sanchez-Delgado
- Imprinting and Cancer group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain
| | - Andrea Riccio
- DiSTABiF, Seconda Università degli Studi di Napoli, Caserta; Institute of Genetics and Biophysics - ABT, CNR, Napoli, Italy
| | - Thomas Eggermann
- Institute of Human Genetics University Hospital Aachen, Aachen, Germany
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; CIBERER, Centro deInvestigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Deborah Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampton, Southampton, UK
| | - David Monk
- Imprinting and Cancer group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain.
| |
Collapse
|
42
|
Luk HM, Ivan Lo FM, Sano S, Matsubara K, Nakamura A, Ogata T, Kagami M. Silver-Russell syndrome in a patient with somatic mosaicism for upd(11)mat identified by buccal cell analysis. Am J Med Genet A 2016; 170:1938-41. [PMID: 27150791 PMCID: PMC5084779 DOI: 10.1002/ajmg.a.37679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/12/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Ho-Ming Luk
- Department of Health, Clinical Genetic Service, Hong Kong, SAR, China
| | - Fai-Man Ivan Lo
- Department of Health, Clinical Genetic Service, Hong Kong, SAR, China
| | - Shinichiro Sano
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
43
|
Ishida M. New developments in Silver-Russell syndrome and implications for clinical practice. Epigenomics 2016; 8:563-80. [PMID: 27066913 DOI: 10.2217/epi-2015-0010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Silver-Russell syndrome is a clinically and genetically heterogeneous disorder, characterized by prenatal and postnatal growth restriction, relative macrocephaly, body asymmetry and characteristic facial features. It is one of the imprinting disorders, which results as a consequence of aberrant imprinted gene expressions. Currently, maternal uniparental disomy of chromosome 7 accounts for approximately 10% of Silver-Russell syndrome cases, while ~50% of patients have hypomethylation at imprinting control region 1 at chromosome 11p15.5 locus, leaving ~40% of cases with unknown etiologies. This review aims to provide a comprehensive list of molecular defects in Silver-Russell syndrome reported to date and to highlight the importance of multiple-loci/tissue testing and trio (both parents and proband) screening. The epigenetic and phenotypic overlaps with other imprinting disorders will also be discussed.
Collapse
Affiliation(s)
- Miho Ishida
- University College London, Institute of Child Health, Genetics & Genomic Medicine programme, Genetics & Epigenetics in Health & Diseases Section, 30 Guilford Street, London, WC1N 1EH, UK
| |
Collapse
|
44
|
Russo S, Calzari L, Mussa A, Mainini E, Cassina M, Di Candia S, Clementi M, Guzzetti S, Tabano S, Miozzo M, Sirchia S, Finelli P, Prontera P, Maitz S, Sorge G, Calcagno A, Maghnie M, Divizia MT, Melis D, Manfredini E, Ferrero GB, Pecile V, Larizza L. A multi-method approach to the molecular diagnosis of overt and borderline 11p15.5 defects underlying Silver-Russell and Beckwith-Wiedemann syndromes. Clin Epigenetics 2016; 8:23. [PMID: 26933465 PMCID: PMC4772365 DOI: 10.1186/s13148-016-0183-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Multiple (epi)genetic defects affecting the expression of the imprinted genes within the 11p15.5 chromosomal region underlie Silver-Russell (SRS) and Beckwith-Wiedemann (BWS) syndromes. The molecular diagnosis of these opposite growth disorders requires a multi-approach flowchart to disclose known primary and secondary (epi)genetic alterations; however, up to 20 and 30 % of clinically diagnosed BWS and SRS cases remain without molecular diagnosis. The complex structure of the 11p15 region with variable CpG methylation and low-rate mosaicism may account for missed diagnoses. Here, we demonstrate the relevance of complementary techniques for the assessment of different CpGs and the importance of testing multiple tissues to increase the SRS and BWS detection rate. RESULTS Molecular testing of 147 and 450 clinically diagnosed SRS and BWS cases provided diagnosis in 34 SRS and 185 BWS patients, with 9 SRS and 21 BWS cases remaining undiagnosed and herein referred to as "borderline." A flowchart including complementary techniques and, when applicable, the analysis of buccal swabs, allowed confirmation of the molecular diagnosis in all borderline cases. Comparison of methylation levels by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) in borderline and control cases defined an interval of H19/IGF2:IG-DMR loss of methylation that was distinct between "easy to diagnose" and "borderline" cases, which were characterized by values ≤mean -3 standard deviations (SDs) compared to controls. Values ≥mean +1 SD at H19/IGF2: IG-DMR were assigned to borderline hypermethylated BWS cases and those ≤mean -2 SD at KCNQ1OT1: TSS-DMR to hypomethylated BWS cases; these were supported by quantitative pyrosequencing or Southern blot analysis. Six BWS cases suspected to carry mosaic paternal uniparental disomy of chromosome 11 were confirmed by SNP array, which detected mosaicism till 10 %. Regarding the clinical presentation, borderline SRS were representative of the syndromic phenotype, with exception of one patient, whereas BWS cases showed low frequency of the most common features except hemihyperplasia. CONCLUSIONS A conclusive molecular diagnosis was reached in borderline methylation cases, increasing the detection rate by 6 % for SRS and 5 % for BWS cases. The introduction of complementary techniques and additional tissue analyses into routine diagnostic work-up should facilitate the identification of cases undiagnosed because of mosaicism, a distinctive feature of epigenetic disorders.
Collapse
Affiliation(s)
- Silvia Russo
- Human Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Luciano Calzari
- Human Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Alessandro Mussa
- Department of Pediatric and Public Health Sciences, University of Turin, Torino, Italy
| | - Ester Mainini
- Human Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, Padova, Italy
| | - Stefania Di Candia
- Department of Pediatrics, San Raffaele Scientific Institute, Milano, Italy
| | - Maurizio Clementi
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, Padova, Italy
| | - Sara Guzzetti
- Human Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Silvia Tabano
- Division of Pathology - Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Monica Miozzo
- Division of Pathology - Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Silvia Sirchia
- Department of Health Sciences, University of Milan, Milano, Italy
| | - Palma Finelli
- Human Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Paolo Prontera
- Medical Genetics Unit, Department of Surgical and Biomedical Sciences, University of Perugia, Hospital "S. M. della Misericordia", Perugia, Italy
| | - Silvia Maitz
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, S. Gerardo Hospital, Monza, Italy
| | - Giovanni Sorge
- Department of Pediatrics and Medical Sciences, AO "Policlinico Vittorio Emanuele", Catania, Italy
| | - Annalisa Calcagno
- Pediatric Endocrine Unit, Department of Pediatrics, IRCCS, Children's Hospital Giannina Gaslini, Genova, Italy
| | - Mohamad Maghnie
- Pediatric Endocrine Unit, Department of Pediatrics, IRCCS, Children's Hospital Giannina Gaslini, Genova, Italy
| | - Maria Teresa Divizia
- Department of Medical Genetics, IRCCS, Children's Hospital Giannina Gaslini, Genova, Italy
| | - Daniela Melis
- Clinical Pediatric Genetics, Department of Pediatrics, University "Federico II", Napoli, Italy
| | - Emanuela Manfredini
- Medical Genetics Unit, Department of Laboratory Medicine, Niguarda Ca' Granda Hospital, Milano, Italy
| | | | - Vanna Pecile
- Institute for Maternal and Child Health, Foundation IRCCS Burlo Garofolo Institute, Trieste, Italy
| | - Lidia Larizza
- Human Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| |
Collapse
|
45
|
Rochtus A, Martin-Trujillo A, Izzi B, Elli F, Garin I, Linglart A, Mantovani G, Perez de Nanclares G, Thiele S, Decallonne B, Van Geet C, Monk D, Freson K. Genome-wide DNA methylation analysis of pseudohypoparathyroidism patients with GNAS imprinting defects. Clin Epigenetics 2016; 8:10. [PMID: 26819647 PMCID: PMC4728790 DOI: 10.1186/s13148-016-0175-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudohypoparathyroidism (PHP) is caused by (epi)genetic defects in the imprinted GNAS cluster. Current classification of PHP patients is hampered by clinical and molecular diagnostic overlaps. The European Consortium for the study of PHP designed a genome-wide methylation study to improve molecular diagnosis. METHODS The HumanMethylation 450K BeadChip was used to analyze genome-wide methylation in 24 PHP patients with parathyroid hormone resistance and 20 age- and gender-matched controls. Patients were previously diagnosed with GNAS-specific differentially methylated regions (DMRs) and include 6 patients with known STX16 deletion (PHP(Δstx16)) and 18 without deletion (PHP(neg)). RESULTS The array demonstrated that PHP patients do not show DNA methylation differences at the whole-genome level. Unsupervised clustering of GNAS-specific DMRs divides PHP(Δstx16) versus PHP(neg) patients. Interestingly, in contrast to the notion that all PHP patients share methylation defects in the A/B DMR while only PHP(Δstx16) patients have normal NESP, GNAS-AS1 and XL methylation, we found a novel DMR (named GNAS-AS2) in the GNAS-AS1 region that is significantly different in both PHP(Δstx16) and PHP(neg), as validated by Sequenom EpiTYPER in a larger PHP cohort. The analysis of 58 DMRs revealed that 8/18 PHP(neg) and 1/6 PHP(Δstx16) patients have multi-locus methylation defects. Validation was performed for FANCC and SVOPL DMRs. CONCLUSIONS This is the first genome-wide methylation study for PHP patients that confirmed that GNAS is the most significant DMR, and the presence of STX16 deletion divides PHP patients in two groups. Moreover, a novel GNAS-AS2 DMR affects all PHP patients, and PHP patients seem sensitive to multi-locus methylation defects.
Collapse
Affiliation(s)
- Anne Rochtus
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 911, 3000 Leuven, Belgium ; Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | | | - Benedetta Izzi
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 911, 3000 Leuven, Belgium
| | - Francesca Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| | - Intza Garin
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, 01009 Vitoria-Gasteiz, Spain
| | - Agnes Linglart
- Department of Pediatric Endocrinology and Diabetology for Children, APHP, Bicêtre Paris Sud, 94275 Le Kremlin Bicêtre, France ; Reference Center for Rare Disorders of the Mineral Metabolism and Plateforme d'Expertise Paris Sud, APHP, 94275 Le Kremlin Bicêtre, France
| | - Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, 01009 Vitoria-Gasteiz, Spain
| | - Suzanne Thiele
- Division of Experimental Paediatric Endocrinology and Diabetes, Department of Paediatrics, University of Luebeck, 23560 Luebeck, Germany
| | - Brigitte Decallonne
- Department of Clinical and Experimental Endocrinology, University of Leuven, 3000 Leuven, Belgium
| | - Chris Van Geet
- Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - David Monk
- Laboratory of Genomic Imprinting and Cancer, IDIBELL, 08908 Barcelona, Spain
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 911, 3000 Leuven, Belgium
| |
Collapse
|
46
|
Soellner L, Monk D, Rezwan FI, Begemann M, Mackay D, Eggermann T. Congenital imprinting disorders: Application of multilocus and high throughput methods to decipher new pathomechanisms and improve their management. Mol Cell Probes 2015; 29:282-90. [DOI: 10.1016/j.mcp.2015.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 12/17/2022]
|
47
|
Temple syndrome as a result of isolated hypomethylation of the 14q32 imprinted DLK1/MEG3 region. Am J Med Genet A 2015; 170A:170-5. [DOI: 10.1002/ajmg.a.37400] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/03/2015] [Indexed: 12/15/2022]
|
48
|
Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans. Nat Commun 2015; 6:8086. [PMID: 26323243 PMCID: PMC4568303 DOI: 10.1038/ncomms9086] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/16/2015] [Indexed: 01/20/2023] Open
Abstract
Human-imprinting disorders are congenital disorders of growth, development and metabolism, associated with disturbance of parent of origin-specific DNA methylation at imprinted loci across the genome. Some imprinting disorders have higher than expected prevalence of monozygotic twinning, of assisted reproductive technology among parents, and of disturbance of multiple imprinted loci, for which few causative trans-acting mutations have been found. Here we report mutations in NLRP5 in five mothers of individuals affected by multilocus imprinting disturbance. Maternal-effect mutations of other human NLRP genes, NLRP7 and NLRP2, cause familial biparental hydatidiform mole and multilocus imprinting disturbance, respectively. Offspring of mothers with NLRP5 mutations have heterogenous clinical and epigenetic features, but cases include a discordant monozygotic twin pair, individuals with idiopathic developmental delay and autism, and families affected by infertility and reproductive wastage. NLRP5 mutations suggest connections between maternal reproductive fitness, early zygotic development and genomic imprinting. Genomic imprinting disturbance can give rise to complex congenital disorders affecting growth, metabolism and behaviour. Here the authors report mutations in NLRP5, which suggests a connection between imprinting, maternal reproductive fitness and zygotic development.
Collapse
|
49
|
Maternal uniparental disomy of chromosome 20: a novel imprinting disorder of growth failure. Genet Med 2015; 18:309-15. [PMID: 26248010 DOI: 10.1038/gim.2015.103] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/19/2015] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Maternal uniparental disomy of chromosome 20 (UPD(20)mat) has been reported in only four patients, three of whom also had mosaicism for complete or partial trisomy of chromosome 20. We sought to evaluate the clinical significance of isolated UPD(20)mat in eight individuals. METHODS We evaluated phenotypic and genomic findings of a series of eight new patients with UPD(20)mat. RESULTS All eight individuals with UPD(20)mat had intrauterine growth restriction, short stature, and prominent feeding difficulties with failure to thrive. As a common feature, they often required gastric tube feeds. Genomic data in most patients are indicative of UPD as a result of trisomy rescue after meiosis II nondisjunction. CONCLUSION We describe the first natural history of the disorder and the results of therapeutic interventions, including the frequent requirement of direct gastric feedings only during the first few years of life, and propose that growth hormone supplementation is probably safe and effective for this condition. We suggest that UPD(20)mat can be regarded as a new imprinting disorder and its identification requires specialized molecular testing, which should be performed in patients with early-onset idiopathic isolated growth failure.Genet Med 18 4, 309-315.
Collapse
|
50
|
In Pursuit of New Imprinting Syndromes by Epimutation Screening in Idiopathic Neurodevelopmental Disorder Patients. BIOMED RESEARCH INTERNATIONAL 2015; 2015:341986. [PMID: 26106604 PMCID: PMC4461700 DOI: 10.1155/2015/341986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022]
Abstract
Alterations of epigenetic mechanisms, and more specifically imprinting modifications, could be responsible of neurodevelopmental disorders such as intellectual disability (ID) or autism together with other associated clinical features in many cases. Currently only eight imprinting syndromes are defined in spite of the fact that more than 200 genes are known or predicted to be imprinted. Recent publications point out that some epimutations which cause imprinting disorders may affect simultaneously different imprinted loci, suggesting that DNA-methylation may have been altered more globally. Therefore, we hypothesised that the detection of altered methylation patterns in known imprinting loci will indirectly allow identifying new syndromes due to epimutations among patients with unexplained ID. In a screening for imprinting alterations in 412 patients with syndromic ID/autism we found five patients with altered methylation in the four genes studied: MEG3, H19, KCNQ1OT1, and SNRPN. Remarkably, the cases with partial loss of methylation in KCNQ1OT1 and SNRPN present clinical features different to those associated with the corresponding imprinting syndromes, suggesting a multilocus methylation defect in accordance with our initial hypothesis. Consequently, our results are a proof of concept that the identification of epimutations in known loci in patients with clinical features different from those associated with known syndromes will eventually lead to the definition of new imprinting disorders.
Collapse
|