1
|
Huang Y, Wang J, Zeng L, Wang S, Zhang X. Case Report: A novel DLL4 variant in a neonate with Adams-Oliver syndrome. Front Pediatr 2025; 13:1532561. [PMID: 40098638 PMCID: PMC11911370 DOI: 10.3389/fped.2025.1532561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Adams-Oliver syndrome is a rare congenital disorder with six subtypes that have been identified. Subtypes 1, 3, 5, and 6 have an autosomal dominant inheritance pattern, whereas subtypes 2 and 4 have an autosomal recessive inheritance pattern. The clinical phenotype of Adams-Oliver syndrome is heterogeneous and can be accompanied by abnormalities in other organs, especially the cardiovascular system, such as cutis marmorata telangiectatica congenita, pulmonary hypertension, vascular abnormalities in other organs, and congenital heart defects. Herein, we report a case of Adams-Oliver syndrome caused by a de novo variant in DLL4. The patient was a neonate with clinical manifestations of skin defects who was diagnosed with Adams-Oliver syndrome on the basis of genetic testing.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Jin Wang
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Lingkong Zeng
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Shi Wang
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Xuechen Zhang
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Yang S, Lam JM. An Infant With Congenital Scalp, Nail, and Limb Anomalies. Pediatr Dermatol 2025; 42:407-409. [PMID: 39932114 DOI: 10.1111/pde.15815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 10/27/2024] [Indexed: 03/29/2025]
Affiliation(s)
- Sabrina Yang
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Joseph M Lam
- Department of Paediatrics, University of British Columbia, Vancouver, Canada
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Khatija Begum M, Vijayashree J, Bathina A, Gullipalli P. A Case Series of Aplasia Cutis Congenita and Its Management. Cureus 2025; 17:e80135. [PMID: 40190843 PMCID: PMC11971922 DOI: 10.7759/cureus.80135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
INTRODUCTION Aplasia cutis congenita is a rare condition characterized by a localized or widespread, complete or partial absence of skin at birth. In accordance with the pattern, location, underlying causes, and anomalies, Frieden divided aplasia cutis congenita into nine types. Approximately 80% of all lesions are found on the scalp. The purpose of this study is to describe uncommon instances of aplasia cutis congenita and how they are treated. MATERIALS AND METHODS Our study comprises six patients with aplasia cutis congenita belonging to either sex who attended to our dermatology outpatient department at Great Eastern Medical School and Hospital, Srikakulam during the 12-month study period from December 2023 to December 2024. This study was started after obtaining institutional ethical clearance. Patients with traumatic injuries were excluded from the study. All patients with congenital aplasia cutis were included in this study. All patients were treated with recombinant human platelet derived growth factor gel and hydrocolloid dressings for two weeks and a response was elicited. RESULTS We have encountered six newborns with aplasia cutis congenita in our study, out of which four (80%) were having aplasia cutis congenita of scalp (Group I) with no other congenital anomalies, fifth case (10%) was aplasia cutis congenita with epidermolysis bullosa and dystrophic nails (Group VI - Bart syndrome) and the sixth one (10%) had aplasia cutis congenita on lower extremities without epidermolysis bullosa (Group VII). One of the newborns was born to the mother who was taking methimazole in the first six weeks of gestation. Out of six, five babies had no consanguineous background, while one was born to parents with second-degree consanguinity. Most common site involved was the parietal region of the scalp (80%). The smallest lesion measured 0.5x0.5 cm, while the largest was 5x3x1 cm. All the lesions showed noticeable improvement after treatment with recombinant human platelet derived growth factor 0.01% gel twice daily along with hydrocolloid dressings for two weeks. CONCLUSION Aplasia cutis congenita, being a rare disorder with less incidence is clinically diagnosed and needs to be carefully evaluated for underlying etiologies alongside other congenital anomalies co-existing with it for better management. To conclude with, our study throws a light on conservative management of aplasia cutis congenita which gave promising results minimizing complications of surgical management.
Collapse
Affiliation(s)
- Mohammed Khatija Begum
- Dermatology, Venereology and Leprosy, Great Eastern Medical School And Hospital, Srikakulam, IND
| | - Jami Vijayashree
- Dermatology, Venereology and Leprosy, Great Eastern Medical School and Hospital, Srikakulam, IND
| | - Aruna Bathina
- Dermatology, Venereology and Leprosy, Great Eastern Medical School and Hospital, Srikakulam, IND
| | - Pallavi Gullipalli
- Dermatology, Venereology and Leprosy, Great Eastern Medical School and Hospital, Srikakulam, IND
| |
Collapse
|
4
|
Tsai Y, Yang Y. Outpatient management of large scalp aplasia cutis congenita without skull defect in a case of Adams-Oliver syndrome. Kaohsiung J Med Sci 2025; 41:e12935. [PMID: 39844688 PMCID: PMC11827536 DOI: 10.1002/kjm2.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Affiliation(s)
- Yu‐Ting Tsai
- Department of DermatologyKaoshiung Chang Gung Memorial HospitalKaohsiung CityTaiwan
| | - Yi‐Chien Yang
- Department of DermatologyKaoshiung Chang Gung Memorial HospitalKaohsiung CityTaiwan
| |
Collapse
|
5
|
Stanley P. Genetics of glycosylation in mammalian development and disease. Nat Rev Genet 2024; 25:715-729. [PMID: 38724711 DOI: 10.1038/s41576-024-00725-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 09/19/2024]
Abstract
Glycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system. This improved understanding of glycan synthesis and functions is paving the way for advances in the diagnosis and treatment of glycosylation-related diseases, including the development of glycoprotein therapeutics through glycosylation engineering.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Pillai MR, Pabolu C, R R, Chaudhary S, Sr K, Puthuran GV. Adams-Oliver syndrome associated with refractory glaucoma. J AAPOS 2024; 28:103950. [PMID: 38866321 DOI: 10.1016/j.jaapos.2024.103950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024]
Abstract
Adams-Oliver syndrome (AOS) is a rare inherited disorder characterized by aplasia cutis congenita, cutis marmorata telangiectatica congenita, and terminal limb defects. Ocular associations have been rarely reported. We report a 6-month-old boy with AOS associated with refractory glaucoma, megalocornea, and anterior polar cataract. To our knowledge, this is the first case of glaucoma to be reported in association with AOS.
Collapse
Affiliation(s)
- Manju R Pillai
- Department of Glaucoma services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Chinmayee Pabolu
- Department of Glaucoma services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Rajabharani R
- Department of General Ophthalmology, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Sameer Chaudhary
- Department of General Ophthalmology, Aravind Eye Hospital, Madurai, Tamil Nadu, India.
| | - Krishnadas Sr
- Department of Glaucoma services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | | |
Collapse
|
7
|
She QY, Zhu HL, Liu ZR, Huang WN. Membranous aplasia cutis congenita: A rare case report highlighting clinical presentation, genetic insights, and the need for comprehensive evaluation. Heliyon 2024; 10:e33742. [PMID: 39027568 PMCID: PMC11255487 DOI: 10.1016/j.heliyon.2024.e33742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/25/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Membranous aplasia cutis congenita (MACC) is the most common clinical subtype of aplasia cutis congenita (ACC). It is typified by a localized skin lesion devoid of hair and features a membranous surface. While most MACC individuals do not present with concurrent abnormalities, it can sometimes co-occur with additional physical anomalies and various malformation syndromes. Moreover, the underlying causes of MACC remain elusive. Case presentation We describe a case of a 6-month-old female infant diagnosed with MACC. The patient presented with a midline skin lesion on the occipital scalp, characterized by a glistening surface and a hair collar sign. Dermoscopic examination revealed specific features, including translucency, telangiectasia, and hypertrichosis. The infant had a history of patent foramen ovale, and further examination uncovered an asymptomatic ventricular septal defect. Whole exome sequencing revealed 20 gene variants relevant to the clinical phenotype of the patient, suggesting a possible association with MACC. Conclusion MACC is a rare and underreported condition, primarily diagnosed based on its distinctive clinical features. It is imperative to emphasize the significance of thorough evaluations in MACC patients, encompassing developmental, cardiac, neurological, and genetic assessments to facilitate early detection and the exclusion of potentially life-threatening comorbidities. Importantly, genetic characterization, as demonstrated in this case, contributes to our understanding of MACC's etiology and highlights the need for further research in this field.
Collapse
Affiliation(s)
- Qiu-Yun She
- Department of Dermatology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Hui-ling Zhu
- Department of Dermatology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Zhong-Rong Liu
- Department of Dermatology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Wei-Ning Huang
- Department of Dermatology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
8
|
Stanley KJ, Kalbfleisch KJ, Moran OM, Chaturvedi RR, Roifman M, Chen X, Manshaei R, Martin N, McDermott S, McNiven V, Myles-Reid D, Nield LE, Reuter MS, Schwartz MLB, Shannon P, Silver R, Somerville C, Teitelbaum R, Zahavich L, Bassett AS, Kim RH, Mital S, Chitayat D, Jobling RK. Expanding the phenotypic spectrum of NOTCH1 variants: clinical manifestations in families with congenital heart disease. Eur J Hum Genet 2024; 32:795-803. [PMID: 38778082 PMCID: PMC11219983 DOI: 10.1038/s41431-024-01629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Pathogenic variants in NOTCH1 are associated with non-syndromic congenital heart disease (CHD) and Adams-Oliver syndrome (AOS). The clinical presentation of individuals with damaging NOTCH1 variants is characterized by variable expressivity and incomplete penetrance; however, data on systematic phenotypic characterization are limited. We report the genotype and phenotype of a cohort of 33 individuals (20 females, 13 males; median age 23.4 years, range 2.5-68.3 years) from 11 families with causative NOTCH1 variants (9 inherited, 2 de novo; 9 novel), ascertained from a proband with CHD. We describe the cardiac and extracardiac anomalies identified in these 33 individuals, only four of whom met criteria for AOS. The most common CHD identified was tetralogy of Fallot, though various left- and right-sided lesions and septal defects were also present. Extracardiac anomalies identified include cutis aplasia (5/33), cutaneous vascular anomalies (7/33), vascular anomalies of the central nervous system (2/10), Poland anomaly (1/33), pulmonary hypertension (2/33), and structural brain anomalies (3/14). Identification of these findings in a cardiac proband cohort supports NOTCH1-associated CHD and NOTCH1-associated AOS lying on a phenotypic continuum. Our findings also support (1) Broad indications for NOTCH1 molecular testing (any familial CHD, simplex tetralogy of Fallot or hypoplastic left heart); (2) Cascade testing in all at-risk relatives; and (3) A thorough physical exam, in addition to cardiac, brain (structural and vascular), abdominal, and ophthalmologic imaging, in all gene-positive individuals. This information is important for guiding the medical management of these individuals, particularly given the high prevalence of NOTCH1 variants in the CHD population.
Collapse
Affiliation(s)
- Kaitlin J Stanley
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kelsey J Kalbfleisch
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Olivia M Moran
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rajiv R Chaturvedi
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maian Roifman
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Xin Chen
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Roozbeh Manshaei
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nicole Martin
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Simina McDermott
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Vanda McNiven
- Division of Genetics, Department of Pediatrics, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Diane Myles-Reid
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Lynne E Nield
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Miriam S Reuter
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marci L B Schwartz
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rachel Silver
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Cherith Somerville
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ronni Teitelbaum
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Laura Zahavich
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anne S Bassett
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Dalglish Family 22q Clinic, University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Raymond H Kim
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Fred A. Litwin Family Centre in Genetic Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Seema Mital
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rebekah K Jobling
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada.
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada.
- Genome Diagnostics, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
9
|
Dours L, Jeanne M, Srour M, Leducq S. A Child with a Congenital Aplasia of the Scalp: A Quiz. Acta Derm Venereol 2024; 104:adv39948. [PMID: 38881509 PMCID: PMC11196987 DOI: 10.2340/actadv.v104.39948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/24/2024] [Indexed: 06/18/2024] Open
Abstract
Abstract is missing (Quiz)
Collapse
Affiliation(s)
- Louis Dours
- Department of Dermatology and Reference Center for Rare Diseases and Vascular Malformations (MAGEC), University Hospital Center of Tours, Tours, France.
| | - Médéric Jeanne
- Department of Genetic, University Hospital Center of Tours, Tours, France; UMR 1253, iBrain, University of Tours, INSERM, Tours, France
| | - Maya Srour
- Department of Pediatric Neurology, University Hospital Center of Tours, Tours, France
| | - Sophie Leducq
- Department of Dermatology and Reference Center for Rare Diseases and Vascular Malformations (MAGEC), University Hospital Center of Tours, Tours, France
| |
Collapse
|
10
|
Elrod J, Fattouh M, Hagemann C, Königs I. Encephalocele as a rare complication of conservatively managed cranial aplasia cutis in a boy with Adams-Oliver syndrome. Pediatr Neonatol 2024; 65:312-313. [PMID: 38429208 DOI: 10.1016/j.pedneo.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 03/03/2024] Open
Affiliation(s)
- Julia Elrod
- Department of Pediatric Surgery, University Medical Centre Eppendorf, Hamburg, Germany; Department of Pediatric Surgery, University Medical Centre Mannheim, Mannheim, Germany
| | - Miriam Fattouh
- Department of Pediatric Surgery, University Medical Centre Eppendorf, Hamburg, Germany; Department of Paediatric Surgery, Burn Unit, Plastic and Reconstructive Surgery, Altona Children's Hospital, Hamburg, Germany
| | - Christian Hagemann
- Department of Paediatric Neurosurgery, Altona Children's Hospital, Hamburg, Germany
| | - Ingo Königs
- Department of Pediatric Surgery, University Medical Centre Eppendorf, Hamburg, Germany; Department of Paediatric Surgery, Burn Unit, Plastic and Reconstructive Surgery, Altona Children's Hospital, Hamburg, Germany.
| |
Collapse
|
11
|
Maddhesiya J, Mohapatra B. Understanding the Genetic and Non-Genetic Interconnections in the Aetiology of Syndromic Congenital Heart Disease: An Updated Review: Part 2. Curr Cardiol Rep 2024; 26:167-178. [PMID: 38358608 DOI: 10.1007/s11886-024-02020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE OF REVIEW Approximately 30% of syndromic cases diagnosed with CHD, which lure us to further investigate the molecular and clinical challenges behind syndromic CHD (sCHD). The aetiology of sCHD in a majority of cases remains enigmatic due to involvement of multiple factors, namely genetic, epigenetic and environmental modifiable risk factors for the development of the disease. Here, we aim to update the role of genetic contributors including chromosomal abnormalities, copy number variations (CNVs) and single gene mutations in cardiac specific genes, maternal lifestyle conditions, environmental exposures and epigenetic modifiers in causing CHD in different genetic syndromes. RECENT FINDINGS The exact aetiology of sCHD is still unknown. With the advancement of next-generation technologies including WGS, WES, transcriptome, proteome and methylome study, numerous novel genes and pathways have been identified. Moreover, our recent knowledge regarding epigenetic and environmental regulation during cardiogenesis is still evolving and may solve some of the mystery behind complex sCHD. Here, we focus to understand how the complex combination of genetic, environmental and epigenetic factors interact to interfere with developmental pathways, culminating into cardiac and extracardiac defects in sCHD.
Collapse
Affiliation(s)
- Jyoti Maddhesiya
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
12
|
Sullivan RT, Raj JU, Austin ED. Recent Advances in Pediatric Pulmonary Hypertension: Implications for Diagnosis and Treatment. Clin Ther 2023; 45:901-912. [PMID: 37517916 DOI: 10.1016/j.clinthera.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE Pediatric pulmonary hypertension (PH) is a condition characterized by elevated pulmonary arterial pressure, which has the potential to be life-limiting. The etiology of pediatric PH varies. When compared with adult cohorts, the etiology is often multifactorial, with contributions from prenatal, genetic, and developmental factors. This review aims to provide an up-to-date overview of the causes and classification of pediatric PH, describe current therapeutics in pediatric PH, and discuss upcoming and necessary research in pediatric PH. METHODS PubMed was searched for articles relating to pediatric pulmonary hypertension, with a particular focus on articles published within the past 10 years. Literature was reviewed for pertinent areas related to this topic. FINDINGS The evaluation and approach to pediatric PH are unique when compared with that of adults, in large part because of the different, often multifactorial, causes of the disease in children. Collaborative registry studies have found that the most common disease causes include developmental lung disease and subsets of pulmonary arterial hypertension, which includes genetic variants and PH associated with congenital heart disease. Treatment with PH-targeted therapies in pediatrics is often guided by extrapolation of adult data, small clinical studies in pediatrics, and/or expert consensus opinion. We review diagnostic considerations and treatment in some of the more common pediatric subpopulations of patients with PH, including developmental lung diseases, congenital heart disease, and trisomy 21. IMPLICATIONS The care of pediatric patients with PH requires consideration of unique pediatric-specific factors. With significant variability in disease etiology, ongoing efforts are needed to optimize treatment strategies based on disease phenotype and guide evidence-based practices.
Collapse
Affiliation(s)
- Rachel T Sullivan
- Department of Pediatrics, Division of Cardiology, Vanderbilt University Medical Center, Monroe Carrell Jr Children's Hospital, Nashville, Tennessee.
| | - J Usha Raj
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Eric D Austin
- Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University Medical Center, Monroe Carrell Jr Children's Hospital, Nashville, Tennessee
| |
Collapse
|
13
|
Nieto-Benito LM, Suárez-Fernández R, Campos-Domínguez M. A novel pathogenic variation of DOCK6 gene: the genotype-phenotype correlation in Adams-Oliver syndrome. Mol Biol Rep 2023; 50:5519-5521. [PMID: 37133614 DOI: 10.1007/s11033-023-08430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/04/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Adams-Oliver syndrome (AOS) (#614,219) is a multiple malformation disorder characterized by the presence of aplasia cutis congenita (ACC) and transverse terminal limb defects (TTLD). METHODS AND RESULTS We describe a confirmed case of AOS with a novel pathogenic variation in Dedicator Of Cytokinesis 6 (DOCK6) gene, with neurological abnormalities, characterized by the presence of a multiple malformation entity with extensive cardiological and neurological abnormalities. CONCLUSIONS In AOS, genotype-phenotype correlations have been described. DOCK6 mutations appear to be related with congenital cardiac and central nervous system malformations associated with intellectual disability, as illustrated in the present case.
Collapse
Affiliation(s)
- Lula Maria Nieto-Benito
- Department of Dermatology and Venereology, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, 46 Doctor Esquerdo St, 28007, Madrid, Spain.
| | - Ricardo Suárez-Fernández
- Department of Dermatology and Venereology, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, 46 Doctor Esquerdo St, 28007, Madrid, Spain
| | - Minia Campos-Domínguez
- Department of Dermatology and Venereology, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, 46 Doctor Esquerdo St, 28007, Madrid, Spain
- Laboratory of Immune-regulation, "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain
- Medical School, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Zaersabet M, Koochakkhani S, Sarmast Y, Salmani H. Homozygosity for a novel DOCK6 variant in an individual without aplasia cutis congenita of the scalp and terminal transverse limb defects. Clin Dysmorphol 2023; 32:84-87. [PMID: 36779775 DOI: 10.1097/mcd.0000000000000450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- Mona Zaersabet
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht
| | - Shabnaz Koochakkhani
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas
| | - Yeganeh Sarmast
- Department of Biology, Faculty of Sciences, Payame Noor University, Shahrekord
| | - Hamzeh Salmani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Okido MM, Ragazini CS, Duarte G, Coutinho CM, Marcolin AC. Severe Adams-Oliver Syndrome after Maternal COVID-19 Infection Could Be Another Effect of the SARS-CoV-2 Inflammatory Storm? Case Report. Fetal Pediatr Pathol 2023; 42:131-136. [PMID: 35414337 DOI: 10.1080/15513815.2022.2064018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background. Adams-Oliver syndrome is a congenital disease whose main findings are aplasia cutis congenita of the scalp and terminal transverse limb defects. The pathogenesis is unknown, but it is postulated that ischemic events in susceptible tissues cause the lesions in the embryonic period.Case report. We present a newborn with a severe phenotype of Adams-Oliver syndrome. The infant's mother had a SARS-CoV-2 infection in the first trimester of pregnancy. Prenatal ultrasound indicates a probable worsening of the disease after the first trimester.Conclusion. This study shows a previously unpublished severe AOS phenotype in a term newborn. There are some signs that the disease could have progressed beyond the first trimester, either spontaneously or by the inflammatory mechanisms of SARS-CoV-2.
Collapse
Affiliation(s)
- Marcos Masaru Okido
- Department of Obstetrics and Gynecology, University of São Paulo, Ribeirão Preto, Brazil
| | - Conrado Savio Ragazini
- Department of Obstetrics and Gynecology, University of São Paulo, Ribeirão Preto, Brazil
| | - Geraldo Duarte
- Department of Obstetrics and Gynecology, University of São Paulo, Ribeirão Preto, Brazil
| | | | | |
Collapse
|
16
|
Yang XF, Shi SW, Chen K. Case report: Recombinant human epidermal growth factor gel plus kangfuxin solution in the treatment of aplasia cutis congenita in a case with Adams-Oliver syndrome. Front Surg 2023; 9:1072021. [PMID: 36713669 PMCID: PMC9874222 DOI: 10.3389/fsurg.2022.1072021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023] Open
Abstract
Background Aplasia cutis congenita is a congenital disorder with the absence of skin, muscle and(or) bone. It usually affects the scalp. The presence of a large scalp defect can be potentially serious when complicated with hemorrhage and infection. Early healing of this condition is beneficial to improve the prognosis of infants. Study case A full-term newborn male was born with a round-shaped defect at the vertex of the scalp and skull (dimensions, 8 cm × 9 cm). The infant had a large deletion encompassing the 15.1 region of chromosome 15, including the DLL4 gene. Genetic testing was positive for Adams-Oliver syndrome (AOS). After two months of recombinant human epidermal growth factor gel combined with kangfuxin solution therapy, the skin defects of the scalp healed remarkably. The infant had regular follow-up appointments. At the age of 5 months, the defect became smaller, hairless, and showed good granulation tissue. At 2 years of age, the child's Gesell Developmental Schedules was 70. Conclusion Recombinant human epidermal growth factor gel combined with kangfuxin solution was a successful conservative treatment for an infant with a large scalp defect accompanied by AOS.
Collapse
Affiliation(s)
- Xiu-Fang Yang
- Department of Neonatology, Zhongshan Hospital Affiliated to Sun Yat-Sen University, Zhongshan, China,Correspondence: Xiu-Fang Yang
| | - Shang-Wen Shi
- Department of Neonatology, Zhongshan Hospital Affiliated to Sun Yat-Sen University, Zhongshan, China
| | - Kang Chen
- Molecular Inspection Center, Zhongshan Hospital Affiliated to Sun Yat-Sen University, Zhongshan, China
| |
Collapse
|
17
|
Kiselev LG, Bessolova NA, Kopylova MS, Babitskaya DA, Seledueva ED. Adams-Oliver syndrome. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2023. [DOI: 10.21508/1027-4065-2022-67-6-93-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The article presents the observation of a rare hereditary disease: Adams–Oliver syndrome. In a newborn girl in the postnatal period, a lesion of the distal extremities was revealed in the form of syndactyly of the proximal phalanges of 4–5 and 2–3 fingers, hypoplasia of the nail phalanges of 2–5 fingers of the left foot, fusion of the proximal phalanges and the absence of middle and nail phalanges of 2–3 fingers of the right foot, hypoplasia of the terminal phalanx and the absence of the nail plate of the 2nd finger of the left hand. In addition to malformations of the extremities, anomalies in the development of the skin on the scalp in the form of an area of aplasia and outgrowths, represented by sweat gland hyperplasia with a fibroepithelial outgrowth, were noted. Cardiac pathology was manifested by a heart rhythm disturbance of the type of sinus bradyarrhythmia. Adams–Oliver syndrome is a complex disease with phenotypic variability, which causes difficulties in clinical diagnosis.
Collapse
|
18
|
Adams-Oliver syndrome and associated complications: Report of a family in Colombia and review of the literature. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2022; 42:554-561. [PMID: 36511670 PMCID: PMC9773924 DOI: 10.7705/biomedica.6524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 12/14/2022]
Abstract
The Adams-Oliver syndrome is a rare congenital disorder characterized by aplasia cutis congenita of the scalp, terminal transverse limb defects, and congenital telangiectatic cutis marmorata. It can occur through different inheritance patterns: autosomal dominant, autosomal recessive, or de novo dominant mutations.
Although the Adams-Oliver syndrome is a rare disease, it is essential to know its clinical characteristics and inheritance patterns, to establish a correct diagnosis and its possible complications during follow-up.
In the present study, we describe the case of an adolescent with Adams-Oliver syndrome with an autosomal dominant inheritance pattern, pulmonary hypertension and plastic bronchitis, and several compromised family members.
Collapse
|
19
|
Cospain A, Rivera-Barahona A, Dumontet E, Gener B, Bailleul-Forestier I, Meyts I, Jouret G, Isidor B, Brewer C, Wuyts W, Moens L, Delafontaine S, Keung Lam WW, Van Den Bogaert K, Boogaerts A, Scalais E, Besnard T, Cogne B, Guissard C, Rollier P, Carre W, Bouvet R, Tarte K, Gómez-Carmona R, Lapunzina P, Odent S, Faoucher M, Dubourg C, Ruiz-Pérez VL, Devriendt K, Pasquier L, Pérez-Jurado LA. FOSL2 truncating variants in the last exon cause a neurodevelopmental disorder with scalp and enamel defects. Genet Med 2022; 24:2475-2486. [PMID: 36197437 DOI: 10.1016/j.gim.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE We aimed to investigate the molecular basis of a novel recognizable neurodevelopmental syndrome with scalp and enamel anomalies caused by truncating variants in the last exon of the gene FOSL2, encoding a subunit of the AP-1 complex. METHODS Exome sequencing was used to identify genetic variants in all cases, recruited through Matchmaker exchange. Gene expression in blood was analyzed using reverse transcription polymerase chain reaction. In vitro coimmunoprecipitation and proteasome inhibition assays in transfected HEK293 cells were performed to explore protein and AP-1 complex stability. RESULTS We identified 11 individuals from 10 families with mostly de novo truncating FOSL2 variants sharing a strikingly similar phenotype characterized by prenatal growth retardation, localized cutis scalp aplasia with or without skull defects, neurodevelopmental delay with autism spectrum disorder, enamel hypoplasia, and congenital cataracts. Mutant FOSL2 messenger RNAs escaped nonsense-mediated messenger RNA decay. Truncated FOSL2 interacts with c-JUN, thus mutated AP-1 complexes could be formed. CONCLUSION Truncating variants in the last exon of FOSL2 associate a distinct clinical phenotype by altering the regulatory degradation of the AP-1 complex. These findings reveal a new role for FOSL2 in human pathology.
Collapse
Affiliation(s)
- Auriane Cospain
- Service de Génétique Clinique, Centre de Référence CLAD-Ouest, ERN ITHACA, CHU, Rennes, France; Laboratoire de Génétique Moléculaire et Génomique, CHU, Rennes, France.
| | - Ana Rivera-Barahona
- Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Erwan Dumontet
- Laboratoire d'Immunologie - Thérapie Cellulaire et Hématopoïèse, CHU, Rennes, France
| | - Blanca Gener
- Department of Genetics, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Isabelle Bailleul-Forestier
- Department of Pediatric Dentistry, Competence Center of Rare Oral Diseases, Faculty of Odontology, Paul Sabatier University, CHU, Toulouse, France
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Paediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Guillaume Jouret
- National Center of Genetics (NCG), Laboratoire National de Santé (LNS), Dudelange, Luxemburg
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Carole Brewer
- Department of Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Wim Wuyts
- Department of Medical Genetics, University of Antwerp and University Hospital of Antwerp, Edegem, Belgium
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Selket Delafontaine
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Paediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Wayne Wing Keung Lam
- South East of Scotland Clinical Genetics Service, Western General Hospital, Edinburgh, United Kingdom
| | - Kris Van Den Bogaert
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Anneleen Boogaerts
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Emmanuel Scalais
- Department of Pediatric Neurology, Centre Hospitalier de Luxembourg, Luxemburg
| | - Thomas Besnard
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Benjamin Cogne
- Service de Génétique Médicale, CHU de Nantes, Nantes, France; Institut du Thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
| | - Christophe Guissard
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Paul Rollier
- Service de Génétique Clinique, Centre de Référence CLAD-Ouest, ERN ITHACA, CHU, Rennes, France; Laboratoire de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Wilfrid Carre
- Laboratoire de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Regis Bouvet
- Laboratoire de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Karin Tarte
- Laboratoire d'Immunologie - Thérapie Cellulaire et Hématopoïèse, CHU, Rennes, France
| | - Ricardo Gómez-Carmona
- Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Lapunzina
- Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Sylvie Odent
- Service de Génétique Clinique, Centre de Référence CLAD-Ouest, ERN ITHACA, CHU, Rennes, France; Univ Rennes, CNRS, IGDR, UMR 6290, Rennes, France
| | - Marie Faoucher
- Laboratoire de Génétique Moléculaire et Génomique, CHU, Rennes, France; Univ Rennes, CNRS, IGDR, UMR 6290, Rennes, France
| | - Christele Dubourg
- Laboratoire de Génétique Moléculaire et Génomique, CHU, Rennes, France; Univ Rennes, CNRS, IGDR, UMR 6290, Rennes, France
| | - Víctor L Ruiz-Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Koen Devriendt
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Laurent Pasquier
- Service de Génétique Clinique, Centre Référence Déficiences des Intellectuelles de Cause Rares, CHU, Rennes, France
| | - Luis A Pérez-Jurado
- Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; Servicio de Genética, Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
20
|
Meyer BI, Williams PJ, Hanif AM, Lenhart PD, Hubbard GB, Jain N. PROLIFERATIVE RETINOPATHY IN A 13-YEAR-OLD WITH ADAMS-OLIVER SYNDROME. Retin Cases Brief Rep 2022; 16:762-765. [PMID: 33323896 DOI: 10.1097/icb.0000000000001073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
PURPOSE Adams-Oliver syndrome is a rare, inherited disorder of embryologic development that affects multiple systems. Ocular manifestations have been poorly characterized because of the low prevalence and high mortality of the disease when it is associated with internal organ and/or ophthalmic manifestations. We present a case of Adams-Oliver syndrome in a 13-year-old patient whose multimodal retinal imaging findings helped direct management. METHODS Single patient case report reviewing medical records and imaging. RESULTS Visual acuity upon presentation was 20/40 in each eye. Ultra-widefield fluorescein angiography revealed peripheral nonperfusion with terminal vascular bulbs, and leakage from a temporal fibrovascular complex in the left eye. Fundus autofluorescence imaging showed hyperautofluorescence associated with optic disc drusen and the fibrovascular complex. Treatment with targeted laser photocoagulation was associated with regression of the neovascularization. CONCLUSION Retinal manifestations of Adams-Oliver syndrome as observed with ultra-widefield fundus imaging may resemble those of familial exudative vitreoretinopathy and retinopathy of prematurity. Treatment of avascular retina with panretinal photocoagulation can be considered.
Collapse
Affiliation(s)
- Benjamin I Meyer
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| | | | | | | | | | | |
Collapse
|
21
|
Suresh S, Dix D, Wang L, Blydt-Hansen TD. High urinary CXCL10/Cr with onset of Burkitt lymphoma in a pediatric kidney transplant recipient. Pediatr Transplant 2022; 26:e14354. [PMID: 35869900 DOI: 10.1111/petr.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/08/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Urinary CXCL10/Cr is a promising diagnostic tool for early detection of TCMR in pediatric transplant recipients, and most studies focus on its utility in the context of localized allograft inflammation thus far. Other sources of inflammation that may be detected by CXCL10 are less clear. METHODS We present a case review of a patient with BL, who was enrolled in a prospective trial of urinary CXCL10 monitoring. To evaluate the potential confounding, we tested for association of CXCL10/Cr and EBV viral load in a prospective cohort of pediatric transplant recipients with serial testing for urinary CXCL10/Cr. RESULTS This report describes a 15-year-old boy, 3.5 years post-transplant with chronic EBV viremia, stable kidney function and no history of rejection. Urinary CXCL10/Cr level increased acutely to 79.43 ng/mmol, 0.8 months prior to onset of BL, identified by a surge in EBV viral load. In a national cohort of 97 pediatric kidney transplant recipients, there was no association between urinary CXCL10/Cr with EBV viral loads when comparing periods of pre-viremia (5.8 ± 9.2 ng/mmol) to active viremia (4.0 ± 5.3 ng/mmol) and periods of active viremia (7.1 ± 8.9 ng/mmol) to post-viremia (4.4 ± 9.8 ng/mmol). CONCLUSIONS Acute rise in urinary CXCL10/Cr was associated with onset of graft-associated BL. We were not able to confirm a general association of EBV viral load and urinary CXCL10. As non-invasive monitoring is implemented using biomarkers like CXCL10 in the clinic, attention will be needed to identify other uncommon, potential sources of CXCL10 elevation.
Collapse
Affiliation(s)
- Shwetha Suresh
- The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - David Dix
- Oncology, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Li Wang
- Pathology & Laboratory Medicine, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Tom D Blydt-Hansen
- Department of Nephrology, BC Children's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Lukas M, Harald G, Sanz J, Trippel M, Sabina G, Jochen R. Cutaneous squamous cell carcinoma in an autosomal-recessive Adams-Oliver syndrome patient with a novel frameshift pathogenic variant in the EOGT gene. Am J Med Genet A 2022; 188:3318-3323. [PMID: 36059114 PMCID: PMC9826191 DOI: 10.1002/ajmg.a.62961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/20/2022] [Accepted: 07/16/2022] [Indexed: 01/31/2023]
Abstract
Aplasia cutis congenita (ACC) of the scalp and terminal transverse limb defects (TTLD) are the characteristic findings of Adams-Oliver syndrome (AOS). The variable clinical spectrum further includes cardiac, neurologic, renal, and ophthalmological findings. Associated genes in AOS are in the Notch and the CDC42/Rac1 signaling pathways. Both autosomal-dominant and autosomal-recessive inheritances have been reported, the latter with pathogenic variants in DOCK6 or EOGT. The EOGT-associated recessive type of AOS has been postulated to present a more favorable prognosis. We here report a 12-year-old girl from a refugee family of Iraq with consanguineous parents. She was born with a severe phenotype of AOS presenting a large ACC of the scalp with an underlying skull defect, which was often infected and inflamed. Afterward, additional ulceration developed. Furthermore, the girl showed microcephaly, TTLD on both hands and feet, and neurological findings: spastic paresis, epilepsy and suspicion of intellectual deficit. Molecular genetic analysis (next-generation sequencing) revealed a novel frameshift mutation in the EOGT gene in Exon 13 in homozygous constellation: c.1013dupA p.(Asn338Lysfs*24). A biopsy within an ulceration at the scalp ACC showed a cutaneous squamous cell carcinoma (cSCC) with local invasive growth into the dura, the meninges, and the cortex. Treatment including surgical resection and focal irradiation was not curative and the girl deceased 6 months after initial diagnosis. This report on a patient with AOS and an autosomal-recessive EOGT gene variant dying of a local aggressive cSCC at an ACC lesion shows that close monitoring of ACC is essential.
Collapse
Affiliation(s)
- Meyer‐Landolt Lukas
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, InselspitalUniversity Hospital, University of BernBernSwitzerland
| | - Gaspar Harald
- Department of Human Genetics, InselspitalBern University Hospital, University of BernBernSwitzerland,Present address:
Medical Genetics MainzMainzGermany
| | - Javier Sanz
- Department of Human Genetics, InselspitalBern University Hospital, University of BernBernSwitzerland
| | | | - Gallati Sabina
- Department of Human Genetics, InselspitalBern University Hospital, University of BernBernSwitzerland
| | - Rössler Jochen
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, InselspitalUniversity Hospital, University of BernBernSwitzerland
| |
Collapse
|
23
|
Tian H, Chu F, Li Y, Xu M, Li W, Li C. Synergistic effects of rare variants of ARHGAP31 and FBLN1 in vitro in terminal transverse limb defects. Front Genet 2022; 13:946854. [PMID: 36176297 PMCID: PMC9513373 DOI: 10.3389/fgene.2022.946854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Aplasia cutis congenita (ACC) and terminal transverse limb defects (TTLDs) are the most common features of Adams-Oliver syndrome (AOS). ARHGAP31 is one of the causative genes for autosomal dominant forms of AOS, meanwhile its variants may only cause isolated TTLD. Here, we report a proband presented with apparent TTLD but not ACC. Methods: Whole exome sequencing (WES) and Sanger sequencing were applied to identify causative genes. Expression vectors were constructed for transfections in mammalian cell cultures followed by biochemical and functional analysis including immunoblotting, immunofluorescence staining, and cell counting kit-8 assay. Results: WES and Sanger sequencing suggested that the proband inherited rare ARHGAP31 variant [c.2623G > A (p.Glu875Lys)] and a rare FBLN1 variant [c.1649G > A (p.Arg550His)] from one of her asymptomatic parents, respectively. Given FBLN1 variation has also been linked to syndactyly, we suspected that the two genes together contributed to the TTLD phenotype and explored their possible roles in vitro. Mutant FBLN1 showed reduced expression resulted from impaired protein stability, whereas ARHGAP31 protein expression was unaltered by mutation. Functional assays showed that only in the co-transfected group of two mutants cell viability was decreased, cell proliferation was impaired, and apoptosis was activated. Cdc42 activity was declined by both ARHGAP31 mutation and FBLN1 mutation alone, and the two together. Furthermore, the MAPK/ERK pathway was only activated by two mutants co-transfected group compared with two wild-type transfections. Conclusion: We report a case carrying two rare variants of limb defects associated genes, ARHGAP31 and FBLN1, and provide in vitro evidence that synergistic disruption of cellular functions attributed by the two mutants may potentiate the penetrance of clinical manifestations, expanding our knowledge of clinical complexity of causal gene interactions in TTLD and other genetic disorders.
Collapse
Affiliation(s)
- Hong Tian
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hong Tian, ; Chuanzhou Li,
| | - Fan Chu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingjie Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengmeng Xu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjiao Li
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hong Tian, ; Chuanzhou Li,
| |
Collapse
|
24
|
Gagliani EK, Gutzwiller LM, Kuang Y, Odaka Y, Hoffmeister P, Hauff S, Turkiewicz A, Harding-Theobald E, Dolph PJ, Borggrefe T, Oswald F, Gebelein B, Kovall RA. A Drosophila Su(H) model of Adams-Oliver Syndrome reveals cofactor titration as a mechanism underlying developmental defects. PLoS Genet 2022; 18:e1010335. [PMID: 35951645 PMCID: PMC9398005 DOI: 10.1371/journal.pgen.1010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 08/23/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Notch signaling is a conserved pathway that converts extracellular receptor-ligand interactions into changes in gene expression via a single transcription factor (CBF1/RBPJ in mammals; Su(H) in Drosophila). In humans, RBPJ variants have been linked to Adams-Oliver syndrome (AOS), a rare autosomal dominant disorder characterized by scalp, cranium, and limb defects. Here, we found that a previously described Drosophila Su(H) allele encodes a missense mutation that alters an analogous residue found in an AOS-associated RBPJ variant. Importantly, genetic studies support a model that heterozygous Drosophila with the AOS-like Su(H) allele behave in an opposing manner to heterozygous flies with a Su(H) null allele, due to a dominant activity of sequestering either the Notch co-activator or the antagonistic Hairless co-repressor. Consistent with this model, AOS-like Su(H) and Rbpj variants have decreased DNA binding activity compared to wild type proteins, but these variants do not significantly alter protein binding to the Notch co-activator or the fly and mammalian co-repressors, respectively. Taken together, these data suggest a cofactor sequestration mechanism underlies AOS phenotypes associated with RBPJ variants, whereby the AOS-associated RBPJ allele encodes a protein with compromised DNA binding activity that retains cofactor binding, resulting in Notch target gene dysregulation. Adams-Oliver Syndrome (AOS) is a rare disease defined by missing skin/skull tissue, limb malformations, and cardiovascular abnormalities. Human genetic studies have revealed that ~40% of AOS patients inherit dominant mutations within specific genes in the Notch signaling pathway. Notch signaling is a highly conserved cell-to-cell communication pathway found in all metazoans and plays crucial roles during embryogenesis and tissue homeostasis in organisms from Drosophila (fruit-flies) to mammals. The Notch receptor converts cell-to-cell interactions into a Notch signal that enters the nucleus and activates target genes by binding to a highly conserved transcription factor. Here, we took advantage of the unexpected finding that a previously described dominant allele in the Drosophila Notch pathway transcription factor contains a missense variant in an analogous residue found in a family with AOS. Using this novel animal model of AOS along with biochemical DNA binding, protein-protein interaction, and transcriptional reporter assays, we found that this transcription factor variant selectively compromises DNA binding but not binding to the Notch signal nor binding to other proteins in the Notch pathway. Taken together with prior human genetic studies, these data suggest AOS phenotypes associated with variants in the Notch pathway transcription factor are caused by a dominant mechanism that sequesters the Notch signal, leading to Notch target gene dysregulation.
Collapse
Affiliation(s)
- Ellen K. Gagliani
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Lisa M. Gutzwiller
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yi Kuang
- Graduate program in Molecular and Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Yoshinobu Odaka
- Biology Department, University of Cincinnati Blue Ash College, Cincinnati, Ohio, United States of America
| | - Phillipp Hoffmeister
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine, Ulm, Germany
| | - Stefanie Hauff
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine, Ulm, Germany
| | | | - Emily Harding-Theobald
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Patrick J. Dolph
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Franz Oswald
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine, Ulm, Germany
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (BG); (RAK)
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (BG); (RAK)
| |
Collapse
|
25
|
Taha F, Southgate L. Molecular genetics of pulmonary hypertension in children. Curr Opin Genet Dev 2022; 75:101936. [PMID: 35772304 PMCID: PMC9763127 DOI: 10.1016/j.gde.2022.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/20/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022]
Abstract
Until recently, the molecular aetiology of paediatric pulmonary hypertension (PH) was relatively poorly understood. While the TGF-β/BMP pathway was recognised as central to disease progression, genetic analyses in children were largely confined to targeted screening of risk genes in small cohorts, with clinical management extrapolated from adult data. In recent years, next-generation sequencing has highlighted notable differences in the genetic architecture underlying childhood-onset cases, with a higher genetic burden in children partly explained by comorbidities such as congenital heart disease. Here, we review recent genetic advances in paediatric PH and highlight important risk factors such as dysregulation of the transcription factors SOX17 and TBX4. Given the poorer prognosis in paediatric cases, molecular diagnosis offers a vital tool to enhance clinical care of children with PH.
Collapse
Affiliation(s)
- Fatima Taha
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK.
| |
Collapse
|
26
|
Zhu VZ, Hansen-Kiss E, Hecht JT, Payne PE. Adams-Oliver Syndrome: Vestigial Tail and Genetics Update. Arch Plast Surg 2022; 49:517-522. [PMID: 35919556 PMCID: PMC9340189 DOI: 10.1055/s-0042-1751107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Adams-Oliver syndrome is a well-recognized autosomal dominant disorder for which mutations in six genes are etiologic, but account for only one-third of the cases. We report a patient with two genetic disorders; Adams-Oliver and Xp22.33 deletion syndromes, as well as a vestigial pseudotail. The presence of a pseudotail has not previously been reported in either of these genetic conditions. Absence of a molecular etiology underlying Adams-Oliver syndrome confirms that there are additional genetic causes to be identified.
Collapse
Affiliation(s)
- Victor Z Zhu
- Division of Plastic Surgery, Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Emily Hansen-Kiss
- University of Texas Health Science Center School of Dentistry, Houston, Texas.,Shriners Hospitals for Children, Houston, Texas
| | - Jacqueline T Hecht
- University of Texas Health Science Center School of Dentistry, Houston, Texas.,University of Texas Health Science Center McGovern Medical School, Houston, Texas.,Shriners Hospitals for Children, Houston, Texas
| | - Phileemon E Payne
- Shriners Hospitals for Children, Houston, Texas.,The Craniofacial and Plastic Surgery Center, Houston, Texas
| |
Collapse
|
27
|
Cutis marmorata telangiectatica congenita being caused by postzygotic GNA11 mutations. Eur J Med Genet 2022; 65:104472. [DOI: 10.1016/j.ejmg.2022.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 11/19/2022]
|
28
|
Tripodi GD, Dickerman DI, LeMosy EK, Davis LS. Trichorhinophalangeal syndrome type II associated with aplasia cutis congenita in a neonate. Pediatr Dermatol 2022; 39:481-482. [PMID: 35181938 DOI: 10.1111/pde.14934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Abstract
Aplasia cutis congenita (ACC) was diagnosed in a newborn with dysmorphic facial features, oligodactyly of the bilateral feet, and hip instability. The neonate's clinical abnormalities in addition to genetic testing confirmed a diagnosis of trichorhinophalangeal syndrome (TRPS) type II. The possibility of concurrent Adams-Oliver syndrome (AOS) is raised.
Collapse
Affiliation(s)
| | | | - Ellen K LeMosy
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | |
Collapse
|
29
|
A case of Adams-Oliver syndrome associated with c.3190_3191del and c.4491 + 1G > T mutations in the DOCK6 gene. Meta Gene 2022. [DOI: 10.1016/j.mgene.2021.100988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Lo PW, Okajima T. Eogt-catalyzed O-GlcNAcylation. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2033.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Pei-Wen Lo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| | - Tetsuya Okajima
- Institute for Glyco-core Research (iGCORE), Nagoya University
| |
Collapse
|
31
|
Affiliation(s)
- Pei-Wen Lo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| |
Collapse
|
32
|
Yang SA, Salazar JL, Li-Kroeger D, Yamamoto S. Functional Studies of Genetic Variants Associated with Human Diseases in Notch Signaling-Related Genes Using Drosophila. Methods Mol Biol 2022; 2472:235-276. [PMID: 35674905 PMCID: PMC9396741 DOI: 10.1007/978-1-0716-2201-8_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rare variants in the many genes related to Notch signaling cause diverse Mendelian diseases that affect myriad organ systems. In addition, genome- and exome-wide association studies have linked common and rare variants in Notch-related genes to common diseases and phenotypic traits. Moreover, somatic mutations in these genes have been observed in many types of cancer, some of which are classified as oncogenic and others as tumor suppressive. While functional characterization of some of these variants has been performed through experimental studies, the number of "variants of unknown significance" identified in patients with diverse conditions keeps increasing as high-throughput sequencing technologies become more commonly used in the clinic. Furthermore, as disease gene discovery efforts identify rare variants in human genes that have yet to be linked to a disease, the demand for functional characterization of variants in these "genes of unknown significance" continues to increase. In this chapter, we describe a workflow to functionally characterize a rare variant in a Notch signaling related gene that was found to be associated with late-onset Alzheimer's disease. This pipeline involves informatic analysis of the variant of interest using diverse human and model organism databases, followed by in vivo experiments in the fruit fly Drosophila melanogaster. The protocol described here can be used to study variants that affect amino acids that are not conserved between human and fly. By "humanizing" the almondex gene in Drosophila with mutant alleles and heterologous genomic rescue constructs, a missense variant in TM2D3 (TM2 Domain Containing 3) was shown to be functionally damaging. This, and similar approaches, greatly facilitate functional interpretations of genetic variants in the human genome and propel personalized medicine.
Collapse
Affiliation(s)
- Sheng-An Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - David Li-Kroeger
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
33
|
Overexpression of DOCK6 in oral squamous cell cancer promotes cellular migration and invasion and is associated with poor prognosis. Arch Oral Biol 2021; 133:105297. [PMID: 34742001 DOI: 10.1016/j.archoralbio.2021.105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We aimed to identify the role of DOCK6 in oral squamous cell cancer (OSCC) in this study. DESIGN DOCK6 expression in OSCC was analyzed using TCGA and GEO datasets and was verified by quantitative real-time PCR, Western blotting, and immunohistochemistry. Statistical analyses were performed to evaluate the relationships between DOCK6 expression and the clinicopathological characteristics of OSCC patients. Wound healing and Transwell assays were performed to assess OSCC cell migration and invasion, respectively. STRING and GO analyses and gene set enrichment analysis were used to identify DOCK6-interacting proteins, their functions and their potential pathways. RESULTS DOCK6 was significantly upregulated at both the mRNA and protein levels in OSCC tissues (all P < 0.05). DOCK6 levels were positively correlated with age (P < 0.05), lymph node metastasis status (P < 0.001), clinical stage (P < 0.001), differentiation (P < 0.05), and poor clinical outcome (P < 0.05) in OSCC patients. Furthermore, univariate and multivariate analyses revealed that high DOCK6 expression (P < 0.01) and clinical stage III-IV (P < 0.05) might serve as independent prognostic factors for OSCC patients. Functionally, DOCK6 silencing significantly suppressed OSCC cell migration and invasion (all P < 0.05). Ten proteins that interact with DOCK6, more than ten functions related to cancer, and more than six pathways related to DOCK6 in OSCC were identified via bioinformatic methods. CONCLUSION DOCK6 is upregulated in OSCC, is associated with a poor prognosis in OSCC patients and increases OSCC cells migration and invasion. These findings suggest that DOCK6 may be a potential therapeutic target with prognostic implication in patients with OSCC.
Collapse
|
34
|
De Zoysa P, Toubat O, Harvey D, Choi J, Kumar SR. Murine Model of Cardiac Defects Observed in Adams-Oliver Syndrome Driven by Delta-Like Ligand-4 Haploinsufficiency. Stem Cells Dev 2021; 30:611-621. [PMID: 33899511 DOI: 10.1089/scd.2021.0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Heterozygous loss-of-function mutation in Delta-like ligand-4 (Dll4) is an important cause of Adams-Oliver syndrome (AOS). Cardiac defects, in particular outflow tract (OFT) alignment defects, are observed in about one-fourth of patients with this syndrome. The mechanism underlying this genotype-phenotype correlation has not yet been established. Dll4-mediated Notch signaling is known to play a crucial role in second heart field (SHF) progenitor cell proliferation. We hypothesized that the depletion of the SHF progenitor pool of cells due to partial loss of Dll4 is responsible for the OFT alignment defects seen in AOS. To demonstrate this, we studied Dll4 expression by murine SHF progenitor cells around E9.5, a crucial time-point in SHF biology. We used SHF-specific (Islet1-Cre) conditional knockout of Dll4 to bypass the early embryonic lethality seen in global Dll4 heterozygotes. Dll4-mediated Notch signaling is critically required for SHF proliferation such that Dll4 knockout results in a 33% reduction in proliferation and a fourfold increase in apoptosis in SHF cells, leading to a 56% decline in the size of the SHF progenitor pool. A reduction in SHF cells available for incorporation into the developing heart leads to underdevelopment of the SHF-derived right ventricle and OFT. Similar to the clinical syndrome, 32% of SHF-specific Dll4 heterozygotes demonstrate foreshortened and misaligned OFT, resulting in a double outlet right ventricle. Our murine model provides a molecular mechanism to explain the cardiac defects observed in AOS and establishes a novel clinical role for Dll4-mediated Notch signaling in SHF progenitor biology.
Collapse
Affiliation(s)
- Prashan De Zoysa
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California, USA
| | - Omar Toubat
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California, USA
| | - Drayton Harvey
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California, USA
| | - Jongkyu Choi
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California, USA.,Department of Medicine, and Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California, USA
| | - S Ram Kumar
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
35
|
Guasto A, Cormier-Daire V. Signaling Pathways in Bone Development and Their Related Skeletal Dysplasia. Int J Mol Sci 2021; 22:4321. [PMID: 33919228 PMCID: PMC8122623 DOI: 10.3390/ijms22094321] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Bone development is a tightly regulated process. Several integrated signaling pathways including HH, PTHrP, WNT, NOTCH, TGF-β, BMP, FGF and the transcription factors SOX9, RUNX2 and OSX are essential for proper skeletal development. Misregulation of these signaling pathways can cause a large spectrum of congenital conditions categorized as skeletal dysplasia. Since the signaling pathways involved in skeletal dysplasia interact at multiple levels and have a different role depending on the time of action (early or late in chondrogenesis and osteoblastogenesis), it is still difficult to precisely explain the physiopathological mechanisms of skeletal disorders. However, in recent years, significant progress has been made in elucidating the mechanisms of these signaling pathways and genotype-phenotype correlations have helped to elucidate their role in skeletogenesis. Here, we review the principal signaling pathways involved in bone development and their associated skeletal dysplasia.
Collapse
Affiliation(s)
- Alessandra Guasto
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
| | - Valérie Cormier-Daire
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
- Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, Service de Génétique Clinique, AP-HP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| |
Collapse
|
36
|
Suarez E, Bertoli MJ, Eloy JD, Shah SP. Case report and review of literature of a rare congenital disorder: Adams-Oliver syndrome. BMC Anesthesiol 2021; 21:117. [PMID: 33858352 PMCID: PMC8048247 DOI: 10.1186/s12871-021-01339-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adams-Oliver syndrome is characterized by the combination of congenital scalp defects and terminal transverse limb defects. In some instances, cardiovascular malformations and orofacial malformations have been observed. Little is written with regards to the anesthetic management and airway concerns of patients with Adams-Oliver syndrome. CASE PRESENTATION A five-year-old female with Adams-Oliver syndrome presented for repeat lower extremity surgery. Airway exam was significant for dysmorphic features, such as hypertelorism, deviated jaw, and retrognathia. Video laryngoscope was utilized for intubation due to the patients retrognathic jaw, cranial deformities, and facial dysmorphism. A vein finder with ultrasound guidance was needed to place the peripheral intravenous line due to her history of difficult intravenous access. The patient was successfully intubated with slight cricoid pressure applied to direct the endotracheal tube smoothly. Surgery and recovery were both unremarkable. CONCLUSIONS Due to varying presentations of Adams-Oliver syndrome, anesthetic and airway management considerations should be carefully assessed prior to surgery. Anesthesiologists must take into consideration possible orofacial abnormalities that may make intubation difficult. Amniotic band syndrome and other limb defects could potentially impact intravenous access as well.
Collapse
Affiliation(s)
- Edwin Suarez
- Department of Internal Medicine, White River Medical Center, Batesville, Arkansas, USA
| | - Mia J Bertoli
- Rutgers New Jersey Medical School, New Jersey, Newark, USA
| | - Jean Daniel Eloy
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Shridevi Pandya Shah
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, New Jersey, USA.
| |
Collapse
|
37
|
Stubbs MJ, Coppo P, Cheshire C, Veyradier A, Dufek S, Levine AP, Thomas M, Patel V, Connolly JO, Hubank M, Benhamou Y, Galicier L, Poullin P, Kleta R, Gale DP, Stanescu H, Scully MA. Identification of a novel genetic locus associated with immune mediated thrombotic thrombocytopenic purpura. Haematologica 2021; 107:574-582. [PMID: 33596643 PMCID: PMC8883548 DOI: 10.3324/haematol.2020.274639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 12/05/2022] Open
Abstract
Immune thrombotic thrombocytopenic purpura (iTTP) is an ultra-rare, life-threatening disorder, mediated through severe ADAMTS13 deficiency causing multi-system micro-thrombi formation, and has specific human leukocyte antigen associations. We undertook a large genome-wide association study to investigate additional genetically distinct associations in iTTP. We compared two iTTP patient cohorts with controls, following standardized genome-wide quality control procedures for single-nucleotide polymorphisms and imputed HLA types. Associations were functionally investigated using expression quantitative trait loci (eQTL), and motif binding prediction software. Independent associations consistent with previous findings in iTTP were detected at the HLA locus and in addition a novel association was detected on chromosome 3 (rs9884090, P=5.22x10-10, odds ratio 0.40) in the UK discovery cohort. Meta-analysis, including the French replication cohort, strengthened the associations. The haploblock containing rs9884090 is associated with reduced protein O-glycosyltransferase 1 (POGLUT1) expression (eQTL P<0.05), and functional annotation suggested a potential causative variant (rs71767581). This work implicates POGLUT1 in iTTP pathophysiology and suggests altered post-translational modification of its targets may influence disease susceptibility.
Collapse
Affiliation(s)
- Matthew J Stubbs
- Haemostasis Research Unit, UCL (London, UK); Department of Renal Medicine.
| | - Paul Coppo
- Centre de Référence des Microangiopathies Thrombotiques, Hôpital Saint-Antoine (Paris, France)
| | | | - Agnès Veyradier
- Department d'Hematologie, Centre de Référence des Microangiopathies Thrombotiques, Hôpital Lariboisière (Paris, France)
| | | | | | - Mari Thomas
- Haemostasis Research Unit, UCL (London, UK); National Institute for Health Research Cardiometabolic Programme, UCLH/UCL Cardiovascular BRC (London, UK)
| | | | | | | | - Ygal Benhamou
- Centre de Référence des Microangiopathies Thrombotiques, Hôpital Saint-Antoine (Paris, France)
| | - Lionel Galicier
- Centre de Référence des Microangiopathies Thrombotiques, Hôpital Saint-Antoine (Paris, France)
| | - Pascale Poullin
- Centre de Référence des Microangiopathies Thrombotiques, Hôpital Saint-Antoine (Paris, France)
| | | | | | | | - Marie A Scully
- Haemostasis Research Unit, UCL (London, UK); National Institute for Health Research Cardiometabolic Programme, UCLH/UCL Cardiovascular BRC (London, UK)
| |
Collapse
|
38
|
Barua R, Mizuno K, Tashima Y, Ogawa M, Takeuchi H, Taguchi A, Okajima T. Bioinformatics and Functional Analyses Implicate Potential Roles for EOGT and L-fringe in Pancreatic Cancers. Molecules 2021; 26:molecules26040882. [PMID: 33562410 PMCID: PMC7915272 DOI: 10.3390/molecules26040882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Notch signaling receptors, ligands, and their downstream target genes are dysregulated in pancreatic ductal adenocarcinoma (PDAC), suggesting a role of Notch signaling in pancreatic tumor development and progression. However, dysregulation of Notch signaling by post-translational modification of Notch receptors remains poorly understood. Here, we analyzed the Notch-modifying glycosyltransferase involved in the regulation of the ligand-dependent Notch signaling pathway. Bioinformatic analysis revealed that the expression of epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine (EOGT) and Lunatic fringe (LFNG) positively correlates with a subset of Notch signaling genes in PDAC. The lack of EOGT or LFNG expression inhibited the proliferation and migration of Panc-1 cells, as observed by the inhibition of Notch activation. EOGT expression is significantly increased in the basal subtype, and low expression of both EOGT and LFNG predicts better overall survival in PDAC patients. These results imply potential roles for EOGT- and LFNG-dependent Notch signaling in PDAC.
Collapse
Affiliation(s)
- Rashu Barua
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
| | - Kazuyuki Mizuno
- Division of Molecular Diagnostics, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (K.M.); (A.T.)
| | - Yuko Tashima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
| | - Mitsutaka Ogawa
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
| | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (K.M.); (A.T.)
- Division of Advanced Cancer Diagnostics, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
- Correspondence: ; Tel.: +81-52-744-2068; Fax: +81-52-744-2069
| |
Collapse
|
39
|
Schnabel F, Kamphausen SB, Funke R, Kaulfuß S, Wollnik B, Zenker M. Aplasia cutis congenita in a CDC42-related developmental phenotype. Am J Med Genet A 2020; 185:850-855. [PMID: 33283961 DOI: 10.1002/ajmg.a.62009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 11/09/2022]
Abstract
Cell division cycle 42 (CDC42) is a small Rho GTPase, which serves as a fundamental intracellular signal node regulating actin cytoskeletal dynamics and several other integral cellular processes. CDC42-associated disorders encompass a broad clinical spectrum including Takenouchi-Kosaki syndrome, autoinflammatory syndromes and neurodevelopmental phenotypes mimicking RASopathies. Dysregulation of CDC42 signaling by genetic defects in either DOCK6 or ARHGAP31 is also considered to play a role in the pathogenesis of Adams-Oliver syndrome (AOS). Here, we report a mother and her child carrying the previously reported pathogenic CDC42 variant c.511G>A (p.Glu171Lys). Both affected individuals presented with short stature, distinctive craniofacial features, pectus deformity as well as heart and eye anomalies, similar to the recently described Noonan syndrome-like phenotype associated with this variant. Remarkably, one of the patients additionally exhibited aplasia cutis congenita of the scalp. Multi-gene panel sequencing of the known AOS-causative genes and whole exome sequencing revealed no second pathogenic variant in any disease-associated gene explaining the aplasia cutis phenotype in our patient. This observation further expands the phenotypic spectrum of CDC42-associated disorders and underscores the role of CDC42 dysregulation in the pathogenesis of aplasia cutis congenita.
Collapse
Affiliation(s)
- Franziska Schnabel
- Institute of Human Genetics, University Medical Center, Göttingen, Germany
| | | | - Rudolf Funke
- Department of Neuropediatrics, Sozialpädiatrisches Zentrum, Kassel, Germany
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines To Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| |
Collapse
|
40
|
Chessa MA, Filippi F, Patrizi A, Vollono L, Sechi A, D'Ercole M, Leuzzi M, Virdi A, Neri I. Aplasia cutis: clinical, dermoscopic findings and management in 45 children. J Eur Acad Dermatol Venereol 2020; 34:e724-e726. [PMID: 32346876 DOI: 10.1111/jdv.16542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- M A Chessa
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - F Filippi
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - A Patrizi
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - L Vollono
- Dermatology Unit, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Rome, Italy
| | - A Sechi
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - M D'Ercole
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - M Leuzzi
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - A Virdi
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - I Neri
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
41
|
Diagnostic Clue in a Neonate with Amniotic Band Sequence. Case Rep Pediatr 2020; 2020:8892492. [PMID: 33062364 PMCID: PMC7547359 DOI: 10.1155/2020/8892492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/01/2020] [Accepted: 09/19/2020] [Indexed: 11/18/2022] Open
Abstract
Amniotic band syndrome (ABS) is a set of congenital malformations that mainly affect the limbs and more rarely the skull, face, chest, and abdomen. Two main hypotheses have been proposed to explain the nature of the disorder: an intrinsic and extrinsic factor. We report a newborn with ABS presenting with several malformations involving both hands and foot. In this case, the malformative event localized at the hands and right foot without involvement of any other internal organs and is asymmetric which leads us to suppose the extrinsic factor as cause of the ABS.
Collapse
|
42
|
Abstract
Congenital heart disease (CHD) is the most common major congenital anomaly with an incidence of ∼1% of live births and is a significant cause of birth defect-related mortality. The genetic mechanisms underlying the development of CHD are complex and remain incompletely understood. Known genetic causes include all classes of genetic variation including chromosomal aneuploidies, copy number variants, and rare and common single-nucleotide variants, which can be either de novo or inherited. Among patients with CHD, ∼8%-12% have a chromosomal abnormality or aneuploidy, between 3% and 25% have a copy number variation, and 3%-5% have a single-gene defect in an established CHD gene with higher likelihood of identifying a genetic cause in patients with nonisolated CHD. These genetic variants disrupt or alter genes that play an important role in normal cardiac development and in some cases have pleiotropic effects on other organs. This work reviews some of the most common genetic causes of CHD as well as what is currently known about the underlying mechanisms.
Collapse
Affiliation(s)
| | - Wendy K Chung
- Department of Pediatrics
- Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
43
|
Intracranial calcifications in childhood: Part 2. Pediatr Radiol 2020; 50:1448-1475. [PMID: 32642802 DOI: 10.1007/s00247-020-04716-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023]
Abstract
This article is the second of a two-part series on intracranial calcification in childhood. In Part 1, the authors discussed the main differences between physiological and pathological intracranial calcification. They also outlined histological intracranial calcification characteristics and how these can be detected across different neuroimaging modalities. Part 1 emphasized the importance of age at presentation and intracranial calcification location and proposed a comprehensive neuroimaging approach toward the differential diagnosis of the causes of intracranial calcification. Pathological intracranial calcification can be divided into infectious, congenital, endocrine/metabolic, vascular, and neoplastic. In Part 2, the chief focus is on discussing endocrine/metabolic, vascular, and neoplastic intracranial calcification etiologies of intracranial calcification. Endocrine/metabolic diseases causing intracranial calcification are mainly from parathyroid and thyroid dysfunction and inborn errors of metabolism, such as mitochondrial disorders (MELAS, or mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes; Kearns-Sayre; and Cockayne syndromes), interferonopathies (Aicardi-Goutières syndrome), and lysosomal disorders (Krabbe disease). Specific noninfectious causes of intracranial calcification that mimic TORCH (toxoplasmosis, other [syphilis, varicella-zoster, parvovirus B19], rubella, cytomegalovirus, and herpes) infections are known as pseudo-TORCH. Cavernous malformations, arteriovenous malformations, arteriovenous fistulas, and chronic venous hypertension are also known causes of intracranial calcification. Other vascular-related causes of intracranial calcification include early atherosclerosis presentation (children with risk factors such as hyperhomocysteinemia, familial hypercholesterolemia, and others), healed hematoma, radiotherapy treatment, old infarct, and disorders of the microvasculature such as COL4A1- and COL4A2-related diseases. Intracranial calcification is also seen in several pediatric brain tumors. Clinical and familial information such as age at presentation, maternal exposure to teratogens including viruses, and association with chromosomal abnormalities, pathogenic genes, and postnatal infections facilitates narrowing the differential diagnosis of the multiple causes of intracranial calcification.
Collapse
|
44
|
Gratton R, Tricarico PM, Moltrasio C, Lima Estevão de Oliveira AS, Brandão L, Marzano AV, Zupin L, Crovella S. Pleiotropic Role of Notch Signaling in Human Skin Diseases. Int J Mol Sci 2020; 21:E4214. [PMID: 32545758 PMCID: PMC7353046 DOI: 10.3390/ijms21124214] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Notch signaling orchestrates the regulation of cell proliferation, differentiation, migration and apoptosis of epidermal cells by strictly interacting with other cellular pathways. Any disruption of Notch signaling, either due to direct mutations or to an aberrant regulation of genes involved in the signaling route, might lead to both hyper- or hypo-activation of Notch signaling molecules and of target genes, ultimately inducing the onset of skin diseases. The mechanisms through which Notch contributes to the pathogenesis of skin diseases are multiple and still not fully understood. So far, Notch signaling alterations have been reported for five human skin diseases, suggesting the involvement of Notch in their pathogenesis: Hidradenitis Suppurativa, Dowling Degos Disease, Adams-Oliver Syndrome, Psoriasis and Atopic Dermatitis. In this review, we aim at describing the role of Notch signaling in the skin, particularly focusing on the principal consequences associated with its alterations in these five human skin diseases, in order to reorganize the current knowledge and to identify potential cellular mechanisms in common between these pathologies.
Collapse
Affiliation(s)
- Rossella Gratton
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Paola Maura Tricarico
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.M.); (A.V.M.)
| | | | - Lucas Brandão
- Department of Pathology, Federal University of Pernambuco, Recife 50670-901, Brazil;
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.M.); (A.V.M.)
| | - Luisa Zupin
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
| | - Sergio Crovella
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
45
|
Alzahem T, Alsalamah AK, Mura M, Alsulaiman SM. A novel variant in DOCK6 gene associated with Adams-Oliver syndrome type 2. Ophthalmic Genet 2020; 41:377-380. [PMID: 32498638 DOI: 10.1080/13816810.2020.1776339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Adams-Oliver syndrome (AOS) is a rare, inherited multi-systemic malformation syndrome characterized by a combination of aplasia cutis congenita and transverse terminal limb defects along with variable involvement of the central nervous system, eyes, and cardiovascular system. AOS can be inherited as both autosomal-dominant and recessive traits. Pathogenic variants in the DOCK6, ARHGAP31, EOGT, RBPJ, DLL4, and NOTCH1 genes have been associated with AOS. PURPOSE To report a novel homozygous variant in the DOCK6 gene associated with Adams-Oliver syndrome type 2. MATERIALS AND METHODS Case report. RESULTS We report a case of a 4-month-old male who presented with microcephaly, global developmental delay, truncal hypotonia, and limb reduction defects. Ophthalmic examination revealed bilateral nystagmus and retinal detachment with mild cataractous changes in addition to retrolental plaque in the left eye. Next generation sequencing analysis identified a novel homozygous frameshift likely pathogenic variant (c.1269_1285dup (p.Arg429Glnfs*32)) in the DOCK6 gene. The constellation of the clinical findings and the genetic mutation were consistent with a diagnosis of AOS type 2. CONCLUSION The discovery of this new likely pathogenic variant enriches the genotypic spectrum of DOCK6 gene and contributes to genetic diagnosis and counseling of families with AOS. Neurologic and ocular findings appear to be consistent with AOS type 2 for which multidisciplinary clinical evaluation is crucial.
Collapse
Affiliation(s)
- Tariq Alzahem
- Vitreoretinal Division, King Khaled Eye Specialist Hospital , Riyadh, Saudi Arabia.,Ophthalmology Department, King Saud University , Riyadh, Saudi Arabia
| | - Abrar K Alsalamah
- Vitreoretinal Division, King Khaled Eye Specialist Hospital , Riyadh, Saudi Arabia
| | - Marco Mura
- Vitreoretinal Division, King Khaled Eye Specialist Hospital , Riyadh, Saudi Arabia
| | | |
Collapse
|
46
|
Huang S, Yang L, Zhao L, Xu R, Wu Y. Novel In-Frame Deletion Mutation in NOTCH1 in a Chinese Sporadic Case of Adams-Oliver Syndrome. DNA Cell Biol 2020; 39:783-789. [PMID: 32129674 DOI: 10.1089/dna.2019.5200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adams-Oliver syndrome (AOS) is a rare hereditary disorder characterized by aplasia cutis congenita (ACC) and terminal transverse limb defects. The etiology of AOS has remained largely unknown, although mutations in the notch receptor 1 (NOTCH1) gene are most common genetic alteration associated with this disease. In this study, we aimed to identify the case of a 6-year-old boy, who presented with large ACC of the scalp and aortic valve stenosis, suggesting the possibility of AOS. Whole-exome sequencing identified a novel, de novo, in-frame deletion in the NOTCH1 gene (NOTCH1 c.1292_1294del, p.Asn431del) in the patient. The p.Asn431del variant was evaluated by several in silico analyses, which predicted that the mutant was likely to be pathogenic. In addition, molecular modeling with the PyMOL Molecular Graphics System suggested that the NOTCH1-N431del destabilizes calcium ion chelation, leading to decreased receptor-ligand binding efficiency. Quantitative reverse transcription PCR showed further significant downregulation of the Notch target genes, hes-related family bHLH transcription factor with YRPW motif 1 (HEY1) and hes family bHLH transcription factor 1 (HES1), suggesting that this mutation causes disease through dysregulation of the Notch signaling pathway. Our study provides evidence that the NOTCH1-N431del mutation is responsible for this case of AOS. To our knowledge, this is the first report of a patient with AOS caused by NOTCH1 mutation in Asia, and this information will be useful for providing the family with genetic counseling that can help to guide their future plans.
Collapse
Affiliation(s)
- Suqiu Huang
- Department of Pediatric Cardiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Ling Yang
- Department of Pediatric Cardiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Liqing Zhao
- Department of Pediatric Cardiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Rang Xu
- Scientific Research Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yurong Wu
- Department of Pediatric Cardiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
47
|
Wehrens KM, De Jongh F, Ter Laak MP, Cornips EM, Van der Hulst R. Treatment of a Large Skull Defect and Brain Herniation in a Newborn With Adams-Oliver Syndrome. Cureus 2020; 12:e7047. [PMID: 32211278 PMCID: PMC7083258 DOI: 10.7759/cureus.7047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Adams-Oliver syndrome (AOS) is a rare congenital disorder characterised by a wide variety of clinical expression ranging from the occurrence of aplasia cutis congenita (ACC), transverse limb defects, and cutis marmorata telangiectica to extensive lethal anomalies. In this article, we present the conservative and surgical management of a male newborn infant diagnosed with AOS. Surgical treatment included wound management, the removal of protruding brain, and treatment of cerebrospinal fluid (CSF) leakage. After spontaneous reepithelization of the wounds, conservative treatment was chosen instead of reconstruction with an occipital flap; this was continued until the total healing of the dermal defect after eight months, during which the patient was continuously treated with antibiotics. At 17 months, the child was in good physical condition with a three-month development delay in comparison with infants of his age and no evidence of neurological deficit.
Collapse
Affiliation(s)
- Kim M Wehrens
- Plastic Surgery, Haaglanden Medisch Centrum, The Hague, NLD
| | - Frank De Jongh
- Plastic Surgery, Haaglanden Medisch Centrum, The Hague, NLD
| | - M P Ter Laak
- Neurosurgery, Maastricht University Medical Center, Maastricht, NLD
| | - E M Cornips
- Neurosurgery, Maastricht University Medical Center, Maastricht, NLD
| | | |
Collapse
|
48
|
Urata Y, Takeuchi H. Effects of Notch glycosylation on health and diseases. Dev Growth Differ 2019; 62:35-48. [PMID: 31886522 DOI: 10.1111/dgd.12643] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Notch signaling is an evolutionarily conserved signaling pathway and is essential for cell-fate specification in metazoans. Dysregulation of Notch signaling results in various human diseases, including cardiovascular defects and cancer. In 2000, Fringe, a known regulator of Notch signaling, was discovered as a Notch-modifying glycosyltransferase. Since then, glycosylation-a post-translational modification involving literal sugars-on the Notch extracellular domain has been noted as a critical mechanism for the regulation of Notch signaling. Additionally, the presence of diverse O-glycans decorating Notch receptors has been revealed in the extracellular domain epidermal growth factor-like (EGF) repeats. Here, we concisely summarize the recent studies in the human diseases associated with aberrant Notch glycosylation.
Collapse
Affiliation(s)
- Yusuke Urata
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
49
|
Genetics of Congenital Heart Disease. Biomolecules 2019; 9:biom9120879. [PMID: 31888141 PMCID: PMC6995556 DOI: 10.3390/biom9120879] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Congenital heart disease (CHD) is one of the most common birth defects. Studies in animal models and humans have indicated a genetic etiology for CHD. About 400 genes have been implicated in CHD, encompassing transcription factors, cell signaling molecules, and structural proteins that are important for heart development. Recent studies have shown genes encoding chromatin modifiers, cilia related proteins, and cilia-transduced cell signaling pathways play important roles in CHD pathogenesis. Elucidating the genetic etiology of CHD will help improve diagnosis and the development of new therapies to improve patient outcomes.
Collapse
|
50
|
Ablondi M, Eriksson S, Tetu S, Sabbioni A, Viklund Å, Mikko S. Genomic Divergence in Swedish Warmblood Horses Selected for Equestrian Disciplines. Genes (Basel) 2019; 10:E976. [PMID: 31783652 PMCID: PMC6947233 DOI: 10.3390/genes10120976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 01/12/2023] Open
Abstract
The equestrian sport horse Swedish Warmblood (SWB) originates from versatile cavalry horses. Most modern SWB breeders have specialized their breeding either towards show jumping or dressage disciplines. The aim of this study was to explore the genomic structure of SWB horses to evaluate the presence of genomic subpopulations, and to search for signatures of selection in subgroups of SWB with high or low breeding values (EBVs) for show jumping. We analyzed high density genotype information from 380 SWB horses born in the period 2010-2011, and used Principal Coordinates Analysis and Discriminant Analysis of Principal Components to detect population stratification. Fixation index and Cross Population Extended Haplotype Homozygosity scores were used to scan the genome for potential signatures of selection. In accordance with current breeding practice, this study highlights the development of two separate breed subpopulations with putative signatures of selection in eleven chromosomes. These regions involve genes with known function in, e.g., mentality, endogenous reward system, development of connective tissues and muscles, motor control, body growth and development. This study shows genetic divergence, due to specialization towards different disciplines in SWB horses. This latter evidence can be of interest for SWB and other horse studbooks encountering specialized breeding.
Collapse
Affiliation(s)
- Michela Ablondi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (M.A.); (A.S.)
| | - Susanne Eriksson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| | - Sasha Tetu
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| | - Alberto Sabbioni
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (M.A.); (A.S.)
| | - Åsa Viklund
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| | - Sofia Mikko
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| |
Collapse
|