1
|
Di Caprio A, Rossi C, Bertucci E, Bedetti L, Bertoncelli N, Miselli F, Corso L, Bondi C, Iughetti L, Berardi A, Lugli L. Fetal hepatic calcification in severe KAT6A (Arboleda-Tham) syndrome. Eur J Med Genet 2024; 67:104906. [PMID: 38143025 DOI: 10.1016/j.ejmg.2023.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Arboleda-Tham syndrome (ARTHS, MIM 616268) is a rare genetic disease, due to a pathogenic variant of Lysine (K) Acetyltransferase 6A (KAT6A) with autosomal dominant inheritance. Firstly described in 2015, ARTHS is one of the more common causes of undiagnosed syndromic intellectual disability. Due to extreme phenotypic variability, ARTHS clinical diagnosis is challenging, mostly at early stage of the disease. Moreover, because of the wide and unspecific spectrum of ARTHS, identification of the syndrome during prenatal life rarely occurs. Therefore, reported cases of KAT6A syndrome have been identified primarily through clinical or research exome sequencing in a gene-centric approach. In order to expands the genotypic and phenotypic spectrum of ARTHS, we describe prenatal and postnatal findings in a patient with a novel frameshift KAT6A pathogenic variant, displaying a severe phenotype with previously unreported clinical features.
Collapse
Affiliation(s)
- Antonella Di Caprio
- Post-graduate School of Pediatrics, Department of Medical and Surgical Sciences for Mother, Children and Adults, University of Modena and Reggio Emilia, Italy.
| | - Cecilia Rossi
- Neonatology Unit, Mother-Child Department, University Hospital of Modena, Italy.
| | - Emma Bertucci
- Obstetric-Gynecology Unit, Mother-Child Department, University Hospital of Modena, Italy.
| | - Luca Bedetti
- Neonatology Unit, Mother-Child Department, University Hospital of Modena, Italy.
| | - Natascia Bertoncelli
- Neonatology Unit, Mother-Child Department, University Hospital of Modena, Italy.
| | - Francesca Miselli
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Italy.
| | - Lucia Corso
- Post-graduate School of Pediatrics, Department of Medical and Surgical Sciences for Mother, Children and Adults, University of Modena and Reggio Emilia, Italy.
| | - Carolina Bondi
- Post-graduate School of Pediatrics, Department of Medical and Surgical Sciences for Mother, Children and Adults, University of Modena and Reggio Emilia, Italy.
| | - Lorenzo Iughetti
- Pediatric Unit, Mother-Child Department, University Hospital of Modena, Italy.
| | - Alberto Berardi
- Neonatology Unit, Mother-Child Department, University Hospital of Modena, Italy.
| | - Licia Lugli
- Neonatology Unit, Mother-Child Department, University Hospital of Modena, Italy.
| |
Collapse
|
2
|
Ai Q, Jiang L, Chen Y, Yao X, Yin J, Chen S. A case of KAT6A syndrome with a newly discovered mutation in the KAT6A gene, mainly manifested as bone marrow failure syndrome. Hematology 2023; 28:2182159. [PMID: 36880793 DOI: 10.1080/16078454.2023.2182159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Objective: The clinical and genetic characteristics of a child with inherited bone marrow failure syndrome as prominent clinical manifestations and special facial features were analyzed, and the etiology and mechanism were explored in, combination with clinical practice. Methods: Blood samples and clinical information were collected separately from the proband and their biological parents. The pathogenic variant was verified using next-generation sequencing technology screening, and the candidate variable sites were confirmed by using Sanger sequencing among all members of the family. Results: A heterozygous nonsense mutation in exon 17 of KAT6A (NM_006766), c.4177G > T (p.E1393*) predicted to cause truncation within the acidic domain of the protein was identified. Pedigree analysis did not reveal any variation in this locus between the proband's father and mother. No report of this pathogenic variant was found in a literature search of domestic and foreign databases, indicating that it is a newly discovered mutation. According to the guidelines of the American College of Medical Genetics, the variation was preliminarily determined to be a pathogenic. The newly discovered heterozygous mutation in KAT6A may be the cause of the disease in this child. Additionally, inherited bone marrow failure syndrome is a prominent manifestation. Conclusion: This study not only provides us with an in-depth understanding of this rare syndrome but also deepens our understanding of the function of KAT6A.
Collapse
Affiliation(s)
- Qi Ai
- Department of Hematology & Oncology, Tianjin Children's Hospital, Tianjin, People's Republic of China
| | - Lihua Jiang
- Department of Hematology & Oncology, Tianjin Children's Hospital, Tianjin, People's Republic of China
| | - Yun Chen
- Department of Hematology & Oncology, Tianjin Children's Hospital, Tianjin, People's Republic of China
| | - Xiuyun Yao
- Department of Hematology & Oncology, Tianjin Children's Hospital, Tianjin, People's Republic of China
| | - Jing Yin
- Department of Rheumatology & Immunology, Tianjin Children's Hospital, Tianjin, People's Republic of China
| | - Sen Chen
- Department of Hematology & Oncology, Tianjin Children's Hospital, Tianjin, People's Republic of China
| |
Collapse
|
3
|
Saghi M, InanlooRahatloo K, Alavi A, Kahrizi K, Najmabadi H. Intellectual disability associated with craniofacial dysmorphism due to POLR3B mutation and defect in spliceosomal machinery. BMC Med Genomics 2022; 15:89. [PMID: 35436926 PMCID: PMC9014605 DOI: 10.1186/s12920-022-01237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Intellectual disability (ID) is a clinically important disease and a most prevalent neurodevelopmental disorder. The etiology and pathogenesis of ID are poorly recognized. Exome sequencing revealed a homozygous missense mutation in the POLR3B gene in a consanguineous family with three Intellectual disability with craniofacial anomalies patients. POLR3B gene encoding the second largest subunit of RNA polymerase III. Methods We performed RNA sequencing on blood samples to obtain insights into the biological pathways influenced by POLR3B mutation. We applied the results of our RNA-Seq analysis to several gene ontology programs such as ToppGene, Enrichr, KEGG. Results A significant decrease in expression of several spliceosomal RNAs, ribosomal proteins, and transcription factors was detected in the affected, compared to unaffected, family members. Conclusions We hypothesize that POLR3B mutation dysregulates the expression of some important transcription factors, ribosomal and spliceosomal genes, and impairments in protein synthesis and splicing mediated in part by transcription factors such as FOXC2 and GATA1 contribute to impaired neuronal function and concurrence of intellectual disability and craniofacial anomalies in our patients. Our study highlights the emerging role of the spliceosome and ribosomal proteins in intellectual disability. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01237-5.
Collapse
Affiliation(s)
- Mostafa Saghi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
4
|
Bae S, Yang A, Kim J, Lee HJ, Park HK. Identification of a novel KAT6A variant in an infant presenting with facial dysmorphism and developmental delay: a case report and literature review. BMC Med Genomics 2021; 14:297. [PMID: 34930245 PMCID: PMC8686292 DOI: 10.1186/s12920-021-01148-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/13/2021] [Indexed: 11/27/2022] Open
Abstract
Background Arboleda-Tham syndrome (ARTHS), caused by a pathogenic variant of KAT6A, is an autosomal dominant inherited genetic disorder characterized by various degrees of developmental delay, dysmorphic facial appearance, cardiac anomalies, and gastrointestinal problems.
Case presentation A baby presented multiple facial deformities including a high arched and cleft palate, with philtral ridge and vermilion indentation, a prominent nasal bridge, a thin upper lip, low-set ears, an epicanthal fold, and cardiac malformations. Whole exome sequencing (WES) revealed a heterozygous nonsense mutation in exon 8 of the KAT6A gene (c.1312C>T, p.[Arg438*]) at 2 months of age. After a diagnosis of ARTHS, an expressive language delay was observed during serial assessments of developmental milestones. Conclusions In this study, we describe a case with a novel KAT6A variant first identified in Korea. This case broadens the scope of clinical features of ARTHS and emphasizes that WES is necessary for early diagnosis in patients with dysmorphic facial appearances, developmental delay, and other congenital abnormalities. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01148-x.
Collapse
Affiliation(s)
- Soyoung Bae
- Department of Pediatrics, Hanyang University Medical Center, Hanyang University College of Medicine, 222-1, Wangshimri-ro, Sungdong-gu, Seoul, 04763, Republic of Korea
| | - Aram Yang
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jinsup Kim
- Department of Pediatrics, Hanyang University Medical Center, Hanyang University College of Medicine, 222-1, Wangshimri-ro, Sungdong-gu, Seoul, 04763, Republic of Korea.
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University Medical Center, Hanyang University College of Medicine, 222-1, Wangshimri-ro, Sungdong-gu, Seoul, 04763, Republic of Korea
| | - Hyun Kyung Park
- Department of Pediatrics, Hanyang University Medical Center, Hanyang University College of Medicine, 222-1, Wangshimri-ro, Sungdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
5
|
Jiang M, Yang L, Wu J, Xiong F, Li J. A de novo heterozygous variant in KAT6A is associated with a newly named neurodevelopmental disorder Arboleda-Tham syndrome-a case report. Transl Pediatr 2021; 10:1748-1754. [PMID: 34295791 PMCID: PMC8261581 DOI: 10.21037/tp-21-206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/26/2021] [Indexed: 01/21/2023] Open
Abstract
Arboleda-Tham syndrome (OMIM#616268) is a newly named neurodevelopmental disorder, which is an autosomal dominant hereditary disease characterized by genetic variants. The clinical manifestations include global developmental delay, primary microcephaly, and craniofacial dysmorphism, as well as more varied features such as feeding difficulties, cardiac defects, and ocular anomalies. Currently, due to restricted knowledge of Arboleda-Tham syndrome and less specific pathological manifestations, it is difficult to diagnose at the early stages of the disease. Here, we present a case with obvious growth retardation and intellectual disability, accompanied by other manifestations including dysmorphic features of the ears, facial dysmorphism, right cryptorchidism, and inguinal hernia. Routine laboratory tests including blood-urine tandem mass spectrometry, urine gas chromatographic mass spectrometry, karyotype, echocardiography, automatic auditory brainstem responses, serum levels of calcium, phosphorus, vitamin D, creatine kinase (CK), and CK isoenzyme (CK-MB), and brain magnetic resonance imaging showed negative results. A de novo heterozygous variant in KAT6A, c.57delA (p.Val20*), was detected by trio-based whole exome sequencing and subsequent validation by Sanger sequencing in the patient, which was absent in both the parents. The patient received rehabilitation and nutritional intervention. The testis reduction and orchiopexy was scheduled when he was 1 year old. Our report extends the phenotype-genotype map of Arboleda-Tham syndrome, and also expands the mutant spectrum of the KAT6A gene. Moreover, this case emphasizes the timely conduction of whole exome sequencing for the early diagnosis of Arboleda-Tham syndrome, and spares patients from meaningless examinations and ineffective treatments.
Collapse
Affiliation(s)
- Mingyan Jiang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Lianlian Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Jinhui Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Fei Xiong
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Jinrong Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
McNulty SN, Evenson MJ, Riley M, Yoest JM, Corliss MM, Heusel JW, Duncavage EJ, Pfeifer JD. A Next-Generation Sequencing Test for Severe Congenital Neutropenia: Utility in a Broader Clinicopathologic Spectrum of Disease. J Mol Diagn 2020; 23:200-211. [PMID: 33217554 DOI: 10.1016/j.jmoldx.2020.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/24/2020] [Accepted: 10/22/2020] [Indexed: 10/24/2022] Open
Abstract
Severe congenital neutropenia (SCN) is a collection of diverse disorders characterized by chronically low absolute neutrophil count in the peripheral blood, increased susceptibility to infection, and a significant predisposition to the development of myeloid malignancies. SCN can be acquired or inherited. Inherited forms have been linked to variants in a group of diverse genes involved in the neutrophil-differentiation process. Variants that promote resistance to treatment have also been identified. Thus, genetic testing is important for the diagnosis, prognosis, and management of SCN. Herein we describe clinically validated assay developed for assessing patients with suspected SCN. The assay is performed from a whole-exome backbone. Variants are called across all coding exons, and results are filtered to focus on 48 genes that are clinically relevant to SCN. Validation results indicated 100% analytical sensitivity and specificity for the detection of constitutional variants among the 48 reportable genes. To date, 34 individuals have been referred for testing (age range: birth to 67 years). Several pathogenic and likely pathogenic variants have been identified, including one in a patient with late-onset disease. The pattern of cases referred for testing suggests that this assay has clinical utility in a broader spectrum of patients beyond those in the pediatric population who have classic early-onset symptoms characteristic of SCN.
Collapse
Affiliation(s)
- Samantha N McNulty
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Evenson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Meaghan Riley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri; Summit Pathology, Loveland, Colorado
| | - Jennifer M Yoest
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Meagan M Corliss
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Jonathan W Heusel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - John D Pfeifer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
7
|
Wiesel-Motiuk N, Assaraf YG. The key roles of the lysine acetyltransferases KAT6A and KAT6B in physiology and pathology. Drug Resist Updat 2020; 53:100729. [PMID: 33130515 DOI: 10.1016/j.drup.2020.100729] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Histone modifications and more specifically ε-lysine acylations are key epigenetic regulators that control chromatin structure and gene transcription, thereby impacting on various important cellular processes and phenotypes. Furthermore, lysine acetylation of many non-histone proteins is involved in key cellular processes including transcription, DNA damage repair, metabolism, cellular proliferation, mitosis, signal transduction, protein folding, and autophagy. Acetylation affects protein functions through multiple mechanisms including regulation of protein stability, enzymatic activity, subcellular localization, crosstalk with other post-translational modifications as well as regulation of protein-protein and protein-DNA interactions. The paralogous lysine acetyltransferases KAT6A and KAT6B which belong to the MYST family of acetyltransferases, were first discovered approximately 25 years ago. KAT6 acetyltransferases acylate both histone H3 and non-histone proteins. In this respect, KAT6 acetyltransferases play key roles in regulation of transcription, various developmental processes, maintenance of hematopoietic and neural stem cells, regulation of hematopoietic cell differentiation, cell cycle progression as well as mitosis. In the current review, we discuss the physiological functions of the acetyltransferases KAT6A and KAT6B as well as their functions under pathological conditions of aberrant expression, leading to several developmental syndromes and cancer. Importantly, both upregulation and downregulation of KAT6 proteins was shown to play a role in cancer formation, progression, and therapy resistance, suggesting that they can act as oncogenes or tumor suppressors. We also describe reciprocal regulation of expression between KAT6 proteins and several microRNAs as well as their involvement in cancer formation, progression and resistance to therapy.
Collapse
Affiliation(s)
- Naama Wiesel-Motiuk
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
8
|
Giles AC, Grill B. Roles of the HUWE1 ubiquitin ligase in nervous system development, function and disease. Neural Dev 2020; 15:6. [PMID: 32336296 PMCID: PMC7184716 DOI: 10.1186/s13064-020-00143-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Huwe1 is a highly conserved member of the HECT E3 ubiquitin ligase family. Here, we explore the growing importance of Huwe1 in nervous system development, function and disease. We discuss extensive progress made in deciphering how Huwe1 regulates neural progenitor proliferation and differentiation, cell migration, and axon development. We highlight recent evidence indicating that Huwe1 regulates inhibitory neurotransmission. In covering these topics, we focus on findings made using both vertebrate and invertebrate in vivo model systems. Finally, we discuss extensive human genetic studies that strongly implicate HUWE1 in intellectual disability, and heighten the importance of continuing to unravel how Huwe1 affects the nervous system.
Collapse
Affiliation(s)
- Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, 33458, USA
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, 33458, USA.
| |
Collapse
|
9
|
Marji FP, Hall JA, Anstadt E, Madan-Khetarpal S, Goldstein JA, Losee JE. A Novel Frameshift Mutation in KAT6A Is Associated with Pancraniosynostosis. J Pediatr Genet 2020; 10:81-84. [PMID: 33552646 DOI: 10.1055/s-0040-1710330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
Abstract
De novo heterozygous mutations in the KAT6A gene give rise to a distinct intellectual disability syndrome, with features including speech delay, cardiac anomalies, craniofacial dysmorphisms, and craniosynostosis. Here, we reported a 16-year-old girl with a novel pathogenic variant of the KAT6A gene. She is the first case to possess pancraniosynostosis, a rare suture fusion pattern, affecting all her major cranial sutures. The diagnosis of KAT6A syndrome is established via recognition of its inherent phenotypic features and the utilization of whole exome sequencing. Thorough craniofacial evaluation is imperative, craniosynostosis may require operative intervention, the delay of which may be detrimental.
Collapse
Affiliation(s)
- Fady P Marji
- Department of Plastic Surgery and Reconstructive Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jennifer A Hall
- Department of Plastic Surgery and Reconstructive Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Erin Anstadt
- Department of Plastic Surgery and Reconstructive Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Suneeta Madan-Khetarpal
- Department of Genetics, Center for Clinical Genetics and Genomics, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jesse A Goldstein
- Department of Plastic Surgery and Reconstructive Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Joseph E Losee
- Department of Plastic Surgery and Reconstructive Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
10
|
Urreizti R, Lopez-Martin E, Martinez-Monseny A, Pujadas M, Castilla-Vallmanya L, Pérez-Jurado LA, Serrano M, Natera-de Benito D, Martínez-Delgado B, Posada-de-la-Paz M, Alonso J, Marin-Reina P, O'Callaghan M, Grinberg D, Bermejo-Sánchez E, Balcells S. Five new cases of syndromic intellectual disability due to KAT6A mutations: widening the molecular and clinical spectrum. Orphanet J Rare Dis 2020; 15:44. [PMID: 32041641 PMCID: PMC7011274 DOI: 10.1186/s13023-020-1317-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pathogenic variants of the lysine acetyltransferase 6A or KAT6A gene are associated with a newly identified neurodevelopmental disorder characterized mainly by intellectual disability of variable severity and speech delay, hypotonia, and heart and eye malformations. Although loss of function (LoF) mutations were initially reported as causing this disorder, missense mutations, to date always involving serine residues, have recently been associated with a form of the disorder without cardiac involvement. RESULTS In this study we present five new patients, four with truncating mutations and one with a missense change and the only one not presenting with cardiac anomalies. The missense change [p.(Gly359Ser)], also predicted to affect splicing by in silico tools, was functionally tested in the patient's lymphocyte RNA revealing a splicing effect for this allele that would lead to a frameshift and premature truncation. CONCLUSIONS An extensive revision of the clinical features of these five patients revealed high concordance with the 80 cases previously reported, including developmental delay with speech delay, feeding difficulties, hypotonia, a high bulbous nose, and recurrent infections. Other features present in some of these five patients, such as cryptorchidism in males, syndactyly, and trigonocephaly, expand the clinical spectrum of this syndrome.
Collapse
Affiliation(s)
- Roser Urreizti
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain. .,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain. .,Present address: Neurometabolic Unit, Hospital Sant Joan de Déu, Barcelona, Spain.
| | - Estrella Lopez-Martin
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Antonio Martinez-Monseny
- Department of Genetic and Molecular Medicine and Pediatric Rare Diseases Institute (IPER), Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Montse Pujadas
- Genetics Unit, University Pompeu Fabra, Hospital del Mar Research Institute IMIM, Barcelona, Spain
| | - Laura Castilla-Vallmanya
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Luis Alberto Pérez-Jurado
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Genetics Unit, University Pompeu Fabra, Hospital del Mar Research Institute IMIM, Barcelona, Spain.,Women's and Children's Hospital, South Australian Health and Medical Research Institute and The University of Adelaide, Adelaide, Australia
| | - Mercedes Serrano
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Beatriz Martínez-Delgado
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Manuel Posada-de-la-Paz
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Javier Alonso
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Purificación Marin-Reina
- Dysmorpholgy and Clinical Genetics, Division of Neonatology, Neonatal Research Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Mar O'Callaghan
- Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Eva Bermejo-Sánchez
- Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
11
|
Srivastava S, Love-Nichols JA, Dies KA, Ledbetter DH, Martin CL, Chung WK, Firth HV, Frazier T, Hansen RL, Prock L, Brunner H, Hoang N, Scherer SW, Sahin M, Miller DT. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet Med 2019; 21:2413-2421. [PMID: 31182824 PMCID: PMC6831729 DOI: 10.1038/s41436-019-0554-6] [Citation(s) in RCA: 405] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose For neurodevelopmental disorders (NDDs), etiological evaluation can
be a diagnostic odyssey involving numerous genetic tests, underscoring the need
to develop a streamlined algorithm maximizing molecular diagnostic yield for
this clinical indication. Our objective was to compare the yield of exome
sequencing (ES) with that of chromosomal microarray (CMA), the current
first-tier test for NDDs. Methods We performed a PubMed scoping review and meta-analysis investigating
the diagnostic yield of ES for NDDs as the basis of a consensus development
conference. We defined NDD as global developmental delay, intellectual
disability, and/or autism spectrum disorder. The consensus development
conference included input from genetics professionals, pediatric neurologists,
and developmental behavioral pediatricians. Results After applying strict inclusion/exclusion criteria, we identified 30
articles with data on molecular diagnostic yield in individuals with isolated
NDD, or NDD plus associated conditions (such as Rett-like features). Yield of ES
was 36% overall, 31% for isolated NDD, and 53% for the NDD plus associated
conditions. ES yield for NDDs is markedly greater than previous studies of CMA
(15–20%). Conclusion Our review demonstrates that ES consistently outperforms CMA for
evaluation of unexplained NDDs. We propose a diagnostic algorithm placing ES at
the beginning of the evaluation of unexplained NDDs.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jamie A Love-Nichols
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kira A Dies
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David H Ledbetter
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Christa L Martin
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA.,SFARI, Simons Foundation, New York, NY, USA
| | - Helen V Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Robin L Hansen
- MIND Institute, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Lisa Prock
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Developmental Medicine Center, Boston Children's Hospital, Boston, MA, USA
| | - Han Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,The Netherlands; Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ny Hoang
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, ON, Canada.,Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.,McLaughlin Centre and Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mustafa Sahin
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - David T Miller
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | | |
Collapse
|
12
|
Kennedy J, Goudie D, Blair E, Chandler K, Joss S, McKay V, Green A, Armstrong R, Lees M, Kamien B, Hopper B, Tan TY, Yap P, Stark Z, Okamoto N, Miyake N, Matsumoto N, Macnamara E, Murphy JL, McCormick E, Hakonarson H, Falk MJ, Li D, Blackburn P, Klee E, Babovic-Vuksanovic D, Schelley S, Hudgins L, Kant S, Isidor B, Cogne B, Bradbury K, Williams M, Patel C, Heussler H, Duff-Farrier C, Lakeman P, Scurr I, Kini U, Elting M, Reijnders M, Schuurs-Hoeijmakers J, Wafik M, Blomhoff A, Ruivenkamp CAL, Nibbeling E, Dingemans AJM, Douine ED, Nelson SF, Hempel M, Bierhals T, Lessel D, Johannsen J, Arboleda VA, Newbury-Ecob R. KAT6A Syndrome: genotype-phenotype correlation in 76 patients with pathogenic KAT6A variants. Genet Med 2019; 21:850-860. [PMID: 30245513 PMCID: PMC6634310 DOI: 10.1038/s41436-018-0259-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/26/2018] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Pathogenic variants in KAT6A have recently been identified as a cause of syndromic developmental delay. Within 2 years, the number of patients identified with pathogenic KAT6A variants has rapidly expanded and the full extent and variability of the clinical phenotype has not been reported. METHODS We obtained data for patients with KAT6A pathogenic variants through three sources: treating clinicians, an online family survey distributed through social media, and a literature review. RESULTS We identified 52 unreported cases, bringing the total number of published cases to 76. Our results expand the genotypic spectrum of pathogenic variants to include missense and splicing mutations. We functionally validated a pathogenic splice-site variant and identified a likely hotspot location for de novo missense variants. The majority of clinical features in KAT6A syndrome have highly variable penetrance. For core features such as intellectual disability, speech delay, microcephaly, cardiac anomalies, and gastrointestinal complications, genotype- phenotype correlations show that late-truncating pathogenic variants (exons 16-17) are significantly more prevalent. We highlight novel associations, including an increased risk of gastrointestinal obstruction. CONCLUSION Our data expand the genotypic and phenotypic spectrum for individuals with genetic pathogenic variants in KAT6A and we outline appropriate clinical management.
Collapse
Affiliation(s)
- Joanna Kennedy
- Clinical Genetics, University Hospitals Bristol, Southwell St, Bristol, UK
- University of Bristol, Bristol, UK
| | - David Goudie
- Clinical Genetics, Ninewells Hospital & Medical School, Dundee, UK
| | - Edward Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Clinical Genetics, Churchill Hospital, Headington, Oxford, UK
| | - Kate Chandler
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester Foundation NHS Trust, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Shelagh Joss
- West of Scotland Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Victoria McKay
- Cheshire & Merseyside Regional Genetics Service, Liverpool Women's NHS Foundation Trust, Crown Street, Liverpool, UK
| | - Andrew Green
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Ruth Armstrong
- East Anglian Medical Genetics Service, Addenbrooke's Hospital, Cambridge, UK
| | - Melissa Lees
- Clinical Genetics, Great Ormond Street Hospital NHS Trust, London, UK
| | | | | | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Patrick Yap
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- Genetic Health Service New Zealand, Auckland, New Zealand
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center, Osaka, Japan
- Research Institute for Maternal and Child Health, Osaka Medical Center, Osaka, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ellen Macnamara
- National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | | | - Elizabeth McCormick
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marni J Falk
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Eric Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Dusica Babovic-Vuksanovic
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Susan Schelley
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Louanne Hudgins
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Sarina Kant
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Benjamin Cogne
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Kimberley Bradbury
- Clinical Genetics Guys and St Thomas' NHS Foundation Trust, Guys Hospital, London, UK
| | - Mark Williams
- Molecular Diagnostics, Mater Group, South Brisbane, Queensland, Australia
| | - Chirag Patel
- Genetic Health Queensland, Herston, Brisbane, Queensland, Australia
| | - Helen Heussler
- Child Development Service, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | | | - Phillis Lakeman
- Academic Medical Center, Department of Clinical Genetics, Amsterdam, The Netherlands
| | - Ingrid Scurr
- Clinical Genetics, University Hospitals Bristol, Southwell St, Bristol, UK
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Clinical Genetics, Churchill Hospital, Headington, Oxford, UK
| | - Mariet Elting
- Klinisch Geneticus, VU Medisch centrum, Amsterdam, The Netherlands
| | - Margot Reijnders
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, The Netherlands
| | | | - Mohamed Wafik
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Clinical Genetics, Churchill Hospital, Headington, Oxford, UK
| | - Anne Blomhoff
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Esther Nibbeling
- Department of Genetics, University of Groningen, Groningen, The Netherlands
| | | | - Emilie D Douine
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Stanley F Nelson
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jessika Johannsen
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| | - Ruth Newbury-Ecob
- Clinical Genetics, University Hospitals Bristol, Southwell St, Bristol, UK.
- University of Bristol, Bristol, UK.
| |
Collapse
|
13
|
Alkhateeb A, Alazaizeh W. A Novel De Novo Frameshift Mutation in KAT6A Identified by Whole Exome Sequencing. J Pediatr Genet 2019; 8:10-14. [PMID: 30775047 PMCID: PMC6375718 DOI: 10.1055/s-0038-1676649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022]
Abstract
Intellectual disability is a common condition with multiple etiologies. The number of monogenic causes has increased steadily in recent years due to the implementation of next generation sequencing. Here, we describe a 2-year-old boy with global developmental delay and intellectual disability. The child had feeding difficulties since birth. He had delayed motor skills and muscular hypotonia. Brain magnetic resonance imaging revealed diffuse white matter loss and thinning of the corpus callosum. Banded karyotype and comparative genomic hybridization (CGH) array were normal. Whole exome sequencing revealed a novel de novo frameshift mutation c.3390delA (p.Lys1130Asnfs*4) in KAT6A gene (NM_006766.4). The heterozygous mutation was confirmed by Sanger sequencing in the patient and its absence in his parents. KAT6A that encodes a histone acetyltransferase has been recently found to be associated with a neurodevelopmental disorder autosomal dominant mental retardation 32 (OMIM: no. 616268). Features of this disorder are nonspecific, which makes it difficult to characterize the condition based on the clinical symptoms alone. Therefore, our findings confirm the utility of whole exome sequencing to quickly and reliably identify the etiology of such conditions.
Collapse
Affiliation(s)
- Asem Alkhateeb
- Department of Biotechnology and Genetics, Jordan University of Science and Technology, Irbid, Jordan
| | | |
Collapse
|
14
|
Smith HS, Swint JM, Lalani SR, Yamal JM, de Oliveira Otto MC, Castellanos S, Taylor A, Lee BH, Russell HV. Clinical Application of Genome and Exome Sequencing as a Diagnostic Tool for Pediatric Patients: a Scoping Review of the Literature. Genet Med 2019; 21:3-16. [PMID: 29760485 DOI: 10.1038/s41436-018-0024-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Availability of clinical genomic sequencing (CGS) has generated questions about the value of genome and exome sequencing as a diagnostic tool. Analysis of reported CGS application can inform uptake and direct further research. This scoping literature review aims to synthesize evidence on the clinical and economic impact of CGS. METHODS PubMed, Embase, and Cochrane were searched for peer-reviewed articles published between 2009 and 2017 on diagnostic CGS for infant and pediatric patients. Articles were classified according to sample size and whether economic evaluation was a primary research objective. Data on patient characteristics, clinical setting, and outcomes were extracted and narratively synthesized. RESULTS Of 171 included articles, 131 were case reports, 40 were aggregate analyses, and 4 had a primary economic evaluation aim. Diagnostic yield was the only consistently reported outcome. Median diagnostic yield in aggregate analyses was 33.2% but varied by broad clinical categories and test type. CONCLUSION Reported CGS use has rapidly increased and spans diverse clinical settings and patient phenotypes. Economic evaluations support the cost-saving potential of diagnostic CGS. Multidisciplinary implementation research, including more robust outcome measurement and economic evaluation, is needed to demonstrate clinical utility and cost-effectiveness of CGS.
Collapse
Affiliation(s)
- Hadley Stevens Smith
- Baylor College of Medicine, The University of Texas School of Public Health, Houston, Texas, USA
| | - J Michael Swint
- The University of Texas School of Public Health, The Center for Clinical Research and Evidence-Based Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Seema R Lalani
- Baylor College of Medicine, Baylor Genetics Laboratory, Houston, Texas, USA
| | - Jose-Miguel Yamal
- The University of Texas School of Public Health, Houston, Texas, USA
| | | | | | - Amy Taylor
- Texas Medical Center Library, Houston, Texas, USA
| | | | - Heidi V Russell
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
15
|
Han JY, Jang W, Park J, Kim M, Kim Y, Lee IG. Diagnostic approach with genetic tests for global developmental delay and/or intellectual disability: Single tertiary center experience. Ann Hum Genet 2018; 83:115-123. [PMID: 30402882 DOI: 10.1111/ahg.12294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 01/24/2023]
Abstract
The child with global developmental delay (GDD)/intellectual disability (ID) is deserving of the appropriate evaluation available for improving the health and well-being of patients and their families. To better elucidate the diagnostic approach of genetic tests for patients with GDD and/or ID, we evaluated the results in a cohort of 75 patients with clinical features of GDD and/or ID who were referred for diagnostic workup. A total of 75 children were investigated for GDD or ID in the pediatric neurology department. Ten patients (13%, 10/75) with a clinically recognizable syndrome were diagnosed by single-gene analysis. Next, chromosomal microarray was performed as a first-tier test, and 25 patients (33%, 25/75) showed structural abnormalities. Then, two fragile X syndrome (3%, 2/75) were confirmed by FMR1 gene fragment analysis. Thirty-eight remaining patients received a gene panel by next-generation sequencing. Eight patients were found to have an underlying genetic etiology: CHD8, ZDHHC9, MBD5, CACNA1H, SMARCB1, FOXP1, NSD1, and PAX6. As a result, 45 patients (60%, 45/75) had been diagnosed by genetic tests. Among 30 undiagnosed patients, brain structural abnormalities related to GDD/ID were observed in eight patients (11%, 8/75). However, in 22 patients (29%, 22/75), the causes of GDD/ID remained uncertain. A genetic diagnostic approach of GDD/ID by sequential molecular analysis can help in the planning of treatment, assigning the risk of occurrence in siblings, and providing emotional relief for the family.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woori Jang
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joonhong Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In Goo Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
16
|
Trinh J, Hüning I, Yüksel Z, Baalmann N, Imhoff S, Klein C, Rolfs A, Gillessen-Kaesbach G, Lohmann K. A KAT6A variant in a family with autosomal dominantly inherited microcephaly and developmental delay. J Hum Genet 2018; 63:997-1001. [DOI: 10.1038/s10038-018-0469-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/12/2018] [Accepted: 04/30/2018] [Indexed: 11/09/2022]
|
17
|
HUWE1 variants cause dominant X-linked intellectual disability: a clinical study of 21 patients. Eur J Hum Genet 2017; 26:64-74. [PMID: 29180823 DOI: 10.1038/s41431-017-0038-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 01/03/2023] Open
Abstract
Whole-gene duplications and missense variants in the HUWE1 gene (NM_031407.6) have been reported in association with intellectual disability (ID). Increased gene dosage has been observed in males with non-syndromic mild to moderate ID with speech delay. Missense variants reported previously appear to be associated with severe ID in males and mild or no ID in obligate carrier females. Here, we report the largest cohort of patients with HUWE1 variants, consisting of 14 females and 7 males, with 15 different missense variants and one splice site variant. Clinical assessment identified common clinical features consisting of moderate to profound ID, delayed or absent speech, short stature with small hands and feet and facial dysmorphism consisting of a broad nasal tip, deep set eyes, epicanthic folds, short palpebral fissures, and a short philtrum. We describe for the first time that females can be severely affected, despite preferential inactivation of the affected X chromosome. Three females with the c.329 G > A p.Arg110Gln variant, present with a phenotype of mild ID, specific facial features, scoliosis and craniosynostosis, as reported previously in a single patient. In these females, the X inactivation pattern appeared skewed in favour of the affected transcript. In summary, HUWE1 missense variants may cause syndromic ID in both males and females.
Collapse
|
18
|
Abstract
Severe congenital neutropenias are a heterogeneous group of rare haematological diseases characterized by impaired maturation of neutrophil granulocytes. Patients with severe congenital neutropenia are prone to recurrent, often life-threatening infections beginning in their first months of life. The most frequent pathogenic defects are autosomal dominant mutations in ELANE, which encodes neutrophil elastase, and autosomal recessive mutations in HAX1, whose product contributes to the activation of the granulocyte colony-stimulating factor (G-CSF) signalling pathway. The pathophysiological mechanisms of these conditions are the object of extensive research and are not fully understood. Furthermore, severe congenital neutropenias may predispose to myelodysplastic syndromes or acute myeloid leukaemia. Molecular events in the malignant progression include acquired mutations in CSF3R (encoding G-CSF receptor) and subsequently in other leukaemia-associated genes (such as RUNX1) in a majority of patients. Diagnosis is based on clinical manifestations, blood neutrophil count, bone marrow examination and genetic and immunological analyses. Daily subcutaneous G-CSF administration is the treatment of choice and leads to a substantial increase in blood neutrophil count, reduction of infections and drastic improvement of quality of life. Haematopoietic stem cell transplantation is the alternative treatment. Regular clinical assessments (including yearly bone marrow examinations) to monitor treatment course and detect chromosomal abnormalities (for example, monosomy 7 and trisomy 21) as well as somatic pre-leukaemic mutations are recommended.
Collapse
Affiliation(s)
- Julia Skokowa
- Department of Hematology, Oncology, Clinical Immunology, University of Tübingen, Tübingen, Germany
| | - David C Dale
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Ivo P Touw
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cornelia Zeidler
- Department of Hematology and Oncology, Medical School Hannover, Hannover, Germany
| | - Karl Welte
- University Children's Hospital, Department of General Pediatrics and Pediatric Hematology and Oncology, Hoppe-Seyler-Str. 1, Tübingen 72076, Germany
| |
Collapse
|
19
|
Abstract
Neutropenia, usually defined as a blood neutrophil count <1·5 × 109 /l, is a common medical problem for children and adults. There are many causes for neutropenia, and at each stage in life the clinical pattern of causes and consequences differs significantly. I recommend utilizing the age of the child and clinical observations for the preliminary diagnosis and primary management. In premature infants, neutropenia is quite common and contributes to the risk of sepsis with necrotizing enterocolitis. At birth and for the first few months of life, neutropenia is often attributable to isoimmune or alloimmune mechanisms and predisposes to the risk of severe bacterial infections. Thereafter when a child is discovered to have neutropenia, often associated with relatively minor symptoms, it is usually attributed to autoimmune disorder or viral infection. The congenital neutropenia syndromes are usually recognized when there are recurrent infections, the neutropenia is severe and there are congenital anomalies suggesting a genetic disorder. This review focuses on the key clinical finding and laboratory tests for diagnosis with commentaries on treatment, particularly the use of granulocyte colony-stimulating factor to treat childhood neutropenia.
Collapse
Affiliation(s)
- David C Dale
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|