1
|
MacIsaac MF, Mattia A, Montes LA, Adair A, Crisp TO, Fritz A, Rottgers SA, Halsey JN. Healthcare Transition to Adulthood in Patients with 22q11.2 Deletion Syndrome: A Comprehensive Literature Review and Transition Framework. Cleft Palate Craniofac J 2025:10556656251331392. [PMID: 40223294 DOI: 10.1177/10556656251331392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is a complex genetic disorder characterized by a wide range of comorbidities requiring multidisciplinary care across the lifespan. As patients transition from pediatric to adult care, they face significant challenges, particularly with managing emerging psychiatric conditions such as schizophrenia, anxiety, and depression, alongside ongoing medical concerns involving cardiology, endocrinology, immunology, and other specialties. However, there is a lack of standardized transition protocols specifically designed for individuals with 22q11.2DS, leaving both caregivers and healthcare providers frustrated by inadequate coordination and communication during this critical period. This review addresses these gaps by presenting a framework for transition planning, drawing on existing literature and clinical practices. A comprehensive review used PubMed, Embase, and Web of Science to explore topics such as healthcare transitions, neuropsychiatric and cognitive developments, education, employment, social-sexual health, and caregiver challenges. Based on the findings, specialty-specific resources were developed and refined through a multidisciplinary 22q11.2DS clinic team. These resources include transfer passports summarizing key medical information for adult providers, transition readiness assessments, and customized transition manuals. The proposed framework emphasizes early and ongoing preparation for transitions, collaboration among providers, and patient-centered care to promote independence. The goal is to equip families and healthcare professionals with practical tools and strategies to support seamless care continuity, improve outcomes, and address the complex needs of individuals with 22q11.2DS as they navigate adulthood. This work contributes to the growing body of knowledge on healthcare transitions and highlights the need for continued research and tailored guidelines for this population.
Collapse
Affiliation(s)
- Molly F MacIsaac
- Division of Plastic and Reconstructive Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | | | - Luis A Montes
- Department of Pediatric Medicine, Johns Hopkins All Children's Hospital, Sarasota, FL, USA
| | - Ann Adair
- Division of Plastic and Reconstructive Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Taryl O Crisp
- Division of Plastic and Reconstructive Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Alyssa Fritz
- Department of Psychology, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - S Alex Rottgers
- Division of Plastic and Reconstructive Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jordan N Halsey
- Division of Plastic and Reconstructive Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| |
Collapse
|
2
|
Tanham M, Chen R, Warren N, Heussler H, Scott JG. The effectiveness and tolerability of pharmacotherapy for psychosis in 22q11.2 Deletion Syndrome: A systematic review. Aust N Z J Psychiatry 2024; 58:393-403. [PMID: 38383990 DOI: 10.1177/00048674241233118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
OBJECTIVE The 22q11.2 Deletion Syndrome (22q11.2DS) is the most common microdeletion in humans with over 180 phenotypic expressions. Approximately 30-40% of affected individuals will develop psychosis and 25% meet the criteria for schizophrenia. Despite this, pharmacotherapy for managing psychosis in 22q11.2DS is poorly understood and 22q11.2DS psychosis is frequently labelled as treatment resistant. The objectives of this paper are to evaluate the effectiveness and tolerability of pharmacotherapy for 22q11.2DS psychosis and evaluate the evidence for treatment resistance. METHOD A systematic search was performed using CINAHL, The Cochrane Library (Cochrane Database of Systematic Reviews; Cochrane Central Register of Controlled Trials and Cochrane Clinical Answers), EMBASE, PsycINFO, PubMed, Scopus and Web of Science Core Collection from inception to December 2022. It yielded 39 case reports, 6 case series and 1 retrospective study which met the inclusion criteria. RESULTS Based on the current literature, individuals with 22q11.2DS psychosis experience a greater rate of medical co-morbidities such as cardiac arrhythmias, seizures and movement disorders, which complicate pharmacotherapy. Poor tolerability rather than poor clinical response motivates the switching of antipsychotics, which may explain the labelling of treatment resistance in the literature. CONCLUSION There are insufficient data to recommend a single antipsychotic for 22q11.2DS psychosis. Nonetheless, with proactive management of co-morbidities, antipsychotic medication in 22q11.2DS psychosis is an effective treatment commonly resulting in improvement in quality of life.
Collapse
Affiliation(s)
- Maya Tanham
- Child and Youth Mental Health Service, Children's Health Queensland, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Renee Chen
- Child and Youth Mental Health Service, Children's Health Queensland, Brisbane, QLD, Australia
| | - Nicola Warren
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Metro South Addictions and Mental Health Service, Woolloongabba, QLD, Australia
| | - Helen Heussler
- Child Development Program, Children's Health Queensland, Brisbane, QLD, Australia
- Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | - James G Scott
- Child and Youth Mental Health Service, Children's Health Queensland, Brisbane, QLD, Australia
- Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
- Child and Youth Mental Health, Queensland Centre for Mental Health Research, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Genovese AC, Butler MG. Behavioral and Psychiatric Disorders in Syndromic Autism. Brain Sci 2024; 14:343. [PMID: 38671997 PMCID: PMC11048128 DOI: 10.3390/brainsci14040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Syndromic autism refers to autism spectrum disorder diagnosed in the context of a known genetic syndrome. The specific manifestations of any one of these syndromic autisms are related to a clinically defined genetic syndrome that can be traced to certain genes and variants, genetic deletions, or duplications at the chromosome level. The genetic mutations or defects in single genes associated with these genetic disorders result in a significant elevation of risk for developing autism relative to the general population and are related to recurrence with inheritance patterns. Additionally, these syndromes are associated with typical behavioral characteristics or phenotypes as well as an increased risk for specific behavioral or psychiatric disorders and clinical findings. Knowledge of these associations helps guide clinicians in identifying potentially treatable conditions that can help to improve the lives of affected patients and their families.
Collapse
Affiliation(s)
- Ann C. Genovese
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | | |
Collapse
|
4
|
Legrand A, Moyal M, Deschamps C, Louveau C, Iftimovici A, Krebs MO, Héron B, Keren B, Afenjar A, Chaumette B. Catatonia and genetic variant in GABA receptor: A case report involving GABRB2. Schizophr Res 2024; 263:191-193. [PMID: 37517920 DOI: 10.1016/j.schres.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/02/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Affiliation(s)
- Adrien Legrand
- GHU PARIS Psychiatrie & Neurosciences, Sainte-Anne Hospital, F-75014 Paris, France
| | - Mylène Moyal
- GHU PARIS Psychiatrie & Neurosciences, Sainte-Anne Hospital, F-75014 Paris, France
| | - Claire Deschamps
- Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Cécile Louveau
- GHU PARIS Psychiatrie & Neurosciences, Sainte-Anne Hospital, F-75014 Paris, France
| | - Anton Iftimovici
- GHU PARIS Psychiatrie & Neurosciences, Sainte-Anne Hospital, F-75014 Paris, France; Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM U1266, Paris, France
| | - Marie-Odile Krebs
- GHU PARIS Psychiatrie & Neurosciences, Sainte-Anne Hospital, F-75014 Paris, France; Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM U1266, Paris, France
| | - Benedicte Héron
- Department of Pediatric Neurology, Armand Trousseau Hospital, AP-HP.Sorbonne University, Paris, France
| | - Boris Keren
- Department of medical genetics, Pitié-Salpêtrière Hospital, AP-HP.Sorbonne University, Paris, France
| | - Alexandra Afenjar
- APHP Sorbonne University, Reference Center for Intellectual Disabilities From Rare Causes, Department of Genetics and Medical Embryology, Armand Trousseau Hospital, F-75012 Paris, France
| | - Boris Chaumette
- GHU PARIS Psychiatrie & Neurosciences, Sainte-Anne Hospital, F-75014 Paris, France; Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM U1266, Paris, France; Department of Psychiatry, McGill University, Montreal, Canada.
| |
Collapse
|
5
|
Mallien AS, Brandwein C, Vasilescu AN, Leenaars C, Bleich A, Inta D, Hirjak D, Gass P. A systematic scoping review of rodent models of catatonia: Clinical correlations, translation and future approaches. Schizophr Res 2024; 263:109-121. [PMID: 37524635 DOI: 10.1016/j.schres.2023.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Catatonia is a psychiatric disorder, which subsumes a plethora of affective, motor and behavioral symptoms. In the last two decades, the number of behavioral and neuroimaging studies on catatonia has steadily increased. The majority of behavioral and neuroimaging studies in psychiatric patients suggested aberrant higher-order frontoparietal networks which, on the biochemical level, are insufficiently modulated by gamma-aminobutyric acid (GABA)-ergic and glutamatergic transmission. However, the pathomechanisms of catatonic symptoms have rarely been studied using rodent models. Here, we performed a scoping review of literature available on PubMed for studies on rodent models of catatonia. We sought to identify what we could learn from pre-clinical animal models of catatonia-like symptoms, their underlying neuronal correlates, and the complex molecular (i.e. genes and neurotransmitter) mechanisms by which its modulation exerts its effects. What becomes evident is that although many transgenic models present catatonia-like symptoms, they have not been used to better understand the pathophysiological mechanisms underlying catatonia so far. However, the identified neuronal correlates of catatonia-like symptoms correlate to a great extent with findings from neuroscience research in psychiatric patients. This points us towards fundamental cortical-striatal-thalamocortical and associated networks modulated by white matter inflammation as well as aberrant dopaminergic, GABAergic, and glutamatergic neurotransmission that is involved in catatonia. Therefore, this scoping review opens up the possibility of finally using transgenic models to help with identifying novel target mechanisms for the development of new drugs for the treatment of catatonia.
Collapse
Affiliation(s)
- Anne S Mallien
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Christiane Brandwein
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Andrei-Nicolae Vasilescu
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Cathalijn Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany; Department for Health Evidence, Radboud University Medical Centre, 6600 Nijmegen, The Netherlands
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Dragos Inta
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Hirjak D, Brandt GA, Peretzke R, Fritze S, Meyer-Lindenberg A, Maier-Hein KH, Neher PF. Microstructural white matter biomarkers of symptom severity and therapy outcome in catatonia: Rationale, study design and preliminary clinical data of the whiteCAT study. Schizophr Res 2024; 263:160-168. [PMID: 37236889 DOI: 10.1016/j.schres.2023.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
The number of magnetic resonance imaging (MRI) studies on neuronal correlates of catatonia has dramatically increased in the last 10 years, but conclusive findings on white matter (WM) tracts alterations underlying catatonic symptoms are still lacking. Therefore, we conduct an interdisciplinary longitudinal MRI study (whiteCAT) with two main objectives: First, we aim to enroll 100 psychiatric patients with and 50 psychiatric patients without catatonia according to ICD-11 who will undergo a deep phenotyping approach with an extensive battery of demographic, psychopathological, psychometric, neuropsychological, instrumental and diffusion MRI assessments at baseline and 12 weeks follow-up. So far, 28 catatonia patients and 40 patients with schizophrenia or other primary psychotic disorders or mood disorders without catatonia have been studied cross-sectionally. 49 out of 68 patients have completed longitudinal assessment, so far. Second, we seek to develop and implement a new method for semi-automatic fiber tract delineation using active learning. By training supportive machine learning algorithms on the fly that are custom tailored to the respective analysis pipeline used to obtain the tractogram as well as the WM tract of interest, we plan to streamline and speed up this tedious and error-prone task while at the same time increasing reproducibility and robustness of the extraction process. The goal is to develop robust neuroimaging biomarkers of symptom severity and therapy outcome based on WM tracts underlying catatonia. If our MRI study is successful, it will be the largest longitudinal study to date that has investigated WM tracts in catatonia patients.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Geva A Brandt
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robin Peretzke
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Klaus H Maier-Hein
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Heidelberg, Germany; Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Medical Center Heidelberg, Germany
| | - Peter F Neher
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Heidelberg, Germany
| |
Collapse
|
7
|
Beach SR, Luccarelli J, Praschan N, Fusunyan M, Fricchione GL. Molecular and immunological origins of catatonia. Schizophr Res 2024; 263:169-177. [PMID: 36966063 PMCID: PMC10517087 DOI: 10.1016/j.schres.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/27/2023]
Abstract
Catatonia occurs secondary to both primary psychiatric and neuromedical etiologies. Emerging evidence suggests possible linkages between causes of catatonia and neuroinflammation. These include obvious infectious and inflammatory etiologies, common neuromedical illnesses such as delirium, and psychiatric entities such as depression and autism-spectrum disorders. Symptoms of sickness behavior, thought to be a downstream effect of the cytokine response, are common in many of these etiologies and overlap significantly with symptoms of catatonia. Furthermore, there are syndromes that overlap with catatonia that some would consider variants, including neuroleptic malignant syndrome (NMS) and akinetic mutism, which may also have neuroinflammatory underpinnings. Low serum iron, a common finding in NMS and malignant catatonia, may be caused by the acute phase response. Cellular hits involving either pathogen-associated molecular patterns (PAMP) danger signals or the damage-associated molecular patterns (DAMP) danger signals of severe psychosocial stress may set the stage for a common pathway immunoactivation state that could lower the threshold for a catatonic state in susceptible individuals. Immunoactivation leading to dysfunction in the anterior cingulate cortex (ACC)/mid-cingulate cortex (MCC)/medial prefrontal cortex (mPFC)/paralimbic cortico-striato-thalamo-cortical (CSTC) circuit, involved in motivation and movement, may be particularly important in generating the motor and behavioral symptoms of catatonia.
Collapse
Affiliation(s)
- Scott R Beach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - James Luccarelli
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Nathan Praschan
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Mark Fusunyan
- Department of Psychiatry, Santa Clara Valley Medical Center, San Jose, CA, USA
| | - Gregory L Fricchione
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Fricchione G. Brain evolution and the meaning of catatonia - An update. Schizophr Res 2024; 263:139-150. [PMID: 36754715 DOI: 10.1016/j.schres.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Back in 2004, in a chapter titled "Brain Evolution and the Meaning of Catatonia", a case was made that the syndrome's core meaning is embedded in millions of years of vertebrate brain evolution. (Fricchione, 2004) In this update, advances over the last almost 20 years, in catatonia theory and research in particular, and pertinent neuropsychiatry in general, will be applied to this question of meaning. The approach will rely heavily on a number of thought leaders, including Nicos Tinbergen, Paul MacLean, John Bowlby, M. Marsel Mesulam, Bruce McEwen and Karl Friston. Their guidance will be supplemented with a selected survey of 21sty century neuropsychiatry, neurophysiology, molecular biology, neuroimaging and neurotherapeutics as applied to the catatonic syndrome. In an attempt to address the question of the meaning of the catatonic syndrome in human life, we will employ two conceptual networks representing the intersubjectivity of the quantitative conceptual network of physical terms and the subjectivity of the qualitative conceptual network of mental and spiritual terms. In the process, a common referent providing extensional identity may emerge (Goodman, 1991). The goal of this exercise is to enhance our attunement with the experience of patients suffering with catatonia. A deeper understanding of catatonia's origins in brain evolution and of the challenges of individual epigenetic development in the setting of environmental events coupled with appreciation of what has been described as the most painful mammalian condition, that of separation, has the potential to foster greater efforts on the part of clinicians to diagnose and treat patients who present with catatonia. In addition, in this ancient and extreme tactic, evolved to provide safety from extreme survival threat, one can speculate what is at the core of human fear and the challenge it presents to all of us. And when the biology, psychology and sociology of catatonia are examined, the nature of solutions to the challenge may emerge.
Collapse
Affiliation(s)
- Gregory Fricchione
- Benson-Henry Institute for Mind Body Medicine Division of Psychiatry and Medicine Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Termini K, Anand E, Hickox T, Richter LD, Smith JR. Manifestation of Catatonia in an Adolescent With 22q11.2 Syndrome. J Am Acad Child Adolesc Psychiatry 2023; 62:1281-1286. [PMID: 37391128 PMCID: PMC10753029 DOI: 10.1016/j.jaac.2023.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
In this Letter to the Editor, we present a case of 22q11.2 deletion syndrome that was diagnosed in an adolescent girl after the onset of acute catatonic symptoms. We discuss the challenges in diagnosing catatonia in children and patients with comorbid neurodevelopmental disorders (NDDs), especially in the setting of recent traumatic exposure. We then review treatment strategies in this patient population and conclude with our recommendations regarding genetic workup in acute catatonia. The patient and guardians have reviewed this article and provided informed consent for its publication. In addition, the authors used the CARE guidelines and checklist in writing this report (Supplement 1, available online).
Collapse
Affiliation(s)
| | - Ekta Anand
- Vanderbilt University, Nashville, Tennessee
| | | | | | - Joshua Ryan Smith
- Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Kennedy Center, Nashville, Tennessee.
| |
Collapse
|
10
|
Perlman P, Vorstman J, Hoang N, Summers J, Baribeau D, Cunningham J, Mulsant BH. Support to caregivers who have received genetic information about neurodevelopmental and psychiatric vulnerability in their young children: A narrative review. Clin Genet 2023. [PMID: 37098443 DOI: 10.1111/cge.14349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/27/2023]
Abstract
Diagnosis of pathogenic genetic variants associated with neurodevelopmental and psychiatric disorders (NPDs) is increasingly made early in life. This narrative review focuses on the need for, and provision of, psychological supports following genetic diagnosis. We conducted a literature search of publications on how caregivers are informed about the NPD vulnerability associated with genetic variants, challenges and unmet needs when receiving this information, and whether psychological supports are provided. Given its early recognition, the 22q11.2 deletion has been studied thoroughly for two decades, providing generalizable insights. This literature indicates the complex caregivers' needs related to learning about potential NPD vulnerabilities associated with a genetic variant, include how to communicate the diagnosis, how to identify early signs of NPDs, how to deal with stigma and a lack of medical expertise outside of specialized genetics clinics. With one exception, no publications describe psychotherapeutic support provided to parents. In the absence of support, caregivers struggle with several unmet needs regarding potential longer-term NPD implications of a genetic diagnosis. The field needs to go beyond explaining genetic diagnoses and associated vulnerabilities, and develop approaches to support caregivers with communicating and managing NPD implications across the child's lifespan.
Collapse
Affiliation(s)
- Polina Perlman
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Vorstman
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ny Hoang
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jane Summers
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Danielle Baribeau
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Jessie Cunningham
- SickKids Hospital Library, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Benoit H Mulsant
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Centre for Addition and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Hauptman AJ, Cohen D, Dhossche D, Raffin M, Wachtel L, Ferrafiat V. Catatonia in neurodevelopmental disorders: assessing catatonic deterioration from baseline. Lancet Psychiatry 2023; 10:228-234. [PMID: 36708735 DOI: 10.1016/s2215-0366(22)00436-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 01/27/2023]
Abstract
Despite the inclusion of catatonia as a specifier of autism spectrum disorder in DSM-5, we-a team of child and adolescent neuropsychiatrists who specialise in paediatric catatonia and neurodevelopmental disorders-have identified a number of issues with the diagnosis and clinical management of catatonia in our patients. In this Personal View, we summarise the literature regarding catatonia in people with neurodevelopmental disorders, including autism spectrum disorder, describe our concerns, and offer a novel approach to addressing important issues with current diagnostic and treatment paradigms. We emphasise the need for a measure to diagnose and monitor people with catatonia and their history of neurodevelopmental disorders. This measure should consider previous complex and underlying motor, medical, functional, and neurobehavioural symptoms. We propose two concepts for understanding catatonia that relate to the baseline status of an individual: the personalised score at baseline, an estimate of premorbid neurobehavioral and motor symptoms, and the catatonic deterioration from baseline, an estimate of current features that are due to catatonia rather than an underlying neurodevelopmental disorder. We hope this measure will provide a practical tool for clinicians and researchers working with this underserved and high-risk population.
Collapse
Affiliation(s)
- Aaron J Hauptman
- Neurobehavioral Unit, Department of Psychiatry, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - David Cohen
- Institute of Intelligence Systems and Robotics, Sorbonne University, Paris, France; Pitié-Salpêtrière Hospital, Public Assistance-Paris Hospital, Institute of Child and Adolescent Developmental Pathologies, Paris, France
| | - Dirk Dhossche
- Inland Northwest Behavioral Health, Spokane, WA, USA
| | - Marie Raffin
- Pitié-Salpêtrière Hospital, Public Assistance-Paris Hospital, Institute of Child and Adolescent Developmental Pathologies, Paris, France
| | - Lee Wachtel
- Neurobehavioral Unit, Department of Psychiatry, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Vladimir Ferrafiat
- Reference Center for Inborn Errors of Metabolism and Reference Center for Intellectual Disabilities of Rare Causes, La Timone University Hospital, Public Assistance-Marseille Hospital, Marseille, France.
| |
Collapse
|
12
|
Boot E, Óskarsdóttir S, Loo JCY, Crowley TB, Orchanian-Cheff A, Andrade DM, Arganbright JM, Castelein RM, Cserti-Gazdewich C, de Reuver S, Fiksinski AM, Klingberg G, Lang AE, Mascarenhas MR, Moss EM, Nowakowska BA, Oechslin E, Palmer L, Repetto GM, Reyes NGD, Schneider M, Silversides C, Sullivan KE, Swillen A, van Amelsvoort TAMJ, Van Batavia JP, Vingerhoets C, McDonald-McGinn DM, Bassett AS. Updated clinical practice recommendations for managing adults with 22q11.2 deletion syndrome. Genet Med 2023; 25:100344. [PMID: 36729052 DOI: 10.1016/j.gim.2022.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 02/03/2023] Open
Abstract
This review aimed to update the clinical practice guidelines for managing adults with 22q11.2 deletion syndrome (22q11.2DS). The 22q11.2 Society recruited expert clinicians worldwide to revise the original clinical practice guidelines for adults in a stepwise process according to best practices: (1) a systematic literature search (1992-2021), (2) study selection and synthesis by clinical experts from 8 countries, covering 24 subspecialties, and (3) formulation of consensus recommendations based on the literature and further shaped by patient advocate survey results. Of 2441 22q11.2DS-relevant publications initially identified, 2344 received full-text review, with 2318 meeting inclusion criteria (clinical care relevance to 22q11.2DS) including 894 with potential relevance to adults. The evidence base remains limited. Thus multidisciplinary recommendations represent statements of current best practice for this evolving field, informed by the available literature. These recommendations provide guidance for the recognition, evaluation, surveillance, and management of the many emerging and chronic 22q11.2DS-associated multisystem morbidities relevant to adults. The recommendations also address key genetic counseling and psychosocial considerations for the increasing numbers of adults with this complex condition.
Collapse
Affiliation(s)
- Erik Boot
- Advisium, 's Heeren Loo Zorggroep, Amersfoort, The Netherlands; The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands.
| | - Sólveig Óskarsdóttir
- Department of Pediatric Rheumatology and Immunology, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Joanne C Y Loo
- The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Terrence Blaine Crowley
- 22q and You Center, Clinical Genetics Center, and Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ani Orchanian-Cheff
- Library and Information Services, and The Institute of Education Research (TIER), University Health Network, Toronto, Ontario, Canada
| | - Danielle M Andrade
- Adult Genetic Epilepsy Program, Toronto Western Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Jill M Arganbright
- Division of Otolaryngology, Children's Mercy Hospital and University of Missouri Kansas City School of Medicine, Kansas City, MO
| | - René M Castelein
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Steven de Reuver
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ania M Fiksinski
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands; Department of Pediatric Psychology, University Medical Centre, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | | | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Maria R Mascarenhas
- Division of Gastroenterology and 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA
| | | | | | - Erwin Oechslin
- Toronto Adult Congenital Heart Disease Program, Peter Munk Cardiac Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Lisa Palmer
- The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Gabriela M Repetto
- Rare Diseases Program, Institute for Sciences and Innovation in Medicine, Facultad de Medicina Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Nikolai Gil D Reyes
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Maude Schneider
- Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Candice Silversides
- Toronto ACHD Program, Mount Sinai and Toronto General Hospitals, University of Toronto, Toronto, Ontario, Canada
| | - Kathleen E Sullivan
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA; Division of Allergy and Immunology and 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ann Swillen
- Center for Human Genetics, University Hospital UZ Leuven, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Jason P Van Batavia
- Department of Surgery, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA; Division of Urology and 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Claudia Vingerhoets
- Advisium, 's Heeren Loo Zorggroep, Amersfoort, The Netherlands; Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Donna M McDonald-McGinn
- 22q and You Center, Clinical Genetics Center, and Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA; Department of Human Biology and Medical Genetics, Sapienza University, Rome, Italy.
| | - Anne S Bassett
- The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Mental Health and Division of Cardiology, Department of Medicine, and Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
von Scheibler EN, van Eeghen AM, de Koning TJ, Kuijf ML, Zinkstok JR, Müller AR, van Amelsvoort TA, Boot E. Parkinsonism in Genetic Neurodevelopmental Disorders: A Systematic Review. Mov Disord Clin Pract 2022; 10:17-31. [PMID: 36699000 PMCID: PMC9847320 DOI: 10.1002/mdc3.13577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/25/2022] [Accepted: 08/16/2022] [Indexed: 01/28/2023] Open
Abstract
Background With advances in clinical genetic testing, associations between genetic neurodevelopmental disorders and parkinsonism are increasingly recognized. In this review, we aimed to provide a comprehensive overview of reports on parkinsonism in genetic neurodevelopmental disorders and summarize findings related to genetic diagnosis, clinical features and proposed disease mechanisms. Methods A systematic literature review was conducted in PubMed and Embase on June 15, 2021. Search terms for parkinsonism and genetic neurodevelopmental disorders, using generic terms and the Human Phenotype Ontology, were combined. Study characteristics and descriptive data were extracted from the articles using a modified version of the Cochrane Consumers and Communication Review Group's data extraction template. The protocol was registered in PROSPERO (CRD42020191035). Results The literature search yielded 208 reports for data-extraction, describing 69 genetic disorders in 422 patients. The five most reported from most to least frequent were: 22q11.2 deletion syndrome, beta-propeller protein-associated neurodegeneration, Down syndrome, cerebrotendinous xanthomatosis, and Rett syndrome. Notable findings were an almost equal male to female ratio, an early median age of motor onset (26 years old) and rigidity being more common than rest tremor. Results of dopaminergic imaging and response to antiparkinsonian medication often supported the neurodegenerative nature of parkinsonism. Moreover, neuropathology results showed neuronal loss in the majority of cases. Proposed disease mechanisms included aberrant mitochondrial function and disruptions in neurotransmitter metabolism, endosomal trafficking, and the autophagic-lysosomal and ubiquitin-proteasome system. Conclusion Parkinsonism has been reported in many GNDs. Findings from this study may provide clues for further research and improve management of patients with GNDs and/or parkinsonism.
Collapse
Affiliation(s)
- Emma N.M.M. von Scheibler
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands
| | - Agnies M. van Eeghen
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Emma Children's HospitalUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tom J. de Koning
- Department of GeneticsUniversity of GroningenGroningenThe Netherlands,Expertise Centre Movement Disorders GroningenUniversity Medical Centre GroningenGroningenThe Netherlands,Pediatrics, Department of Clinical SciencesLund UniversityLundSweden
| | - Mark L. Kuijf
- Department of NeurologyMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Janneke R. Zinkstok
- Department of PsychiatryRadoud University Medical CentreNijmegenThe Netherlands,Karakter child and adolescent psychiatryNijmegenThe Netherlands,Department of Psychiatry and Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Annelieke R. Müller
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Emma Children's HospitalUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Erik Boot
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands,The Dalglish Family 22q ClinicUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
14
|
Moore S, Amatya DN, Chu MM, Besterman AD. Catatonia in autism and other neurodevelopmental disabilities: a state-of-the-art review. NPJ MENTAL HEALTH RESEARCH 2022; 1:12. [PMID: 38609506 PMCID: PMC10955936 DOI: 10.1038/s44184-022-00012-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/26/2022] [Indexed: 04/14/2024]
Abstract
Individuals with neurodevelopmental disabilities (NDDs) may be at increased risk for catatonia, which can be an especially challenging condition to diagnose and treat. There may be symptom overlap between catatonia and NDD-associated behaviors, such as stereotypies. The diagnosis of catatonia should perhaps be adjusted to address symptom overlap and to include extreme behaviors observed in patients with NDDs, such as severe self-injury. Risk factors for catatonia in individuals with NDDs may include trauma and certain genetic variants, such as those that disrupt SHANK3. Common etiologic features between neurodevelopmental disabilities and catatonia, such as excitatory/inhibitory imbalance and neuroimmune dysfunction, may partially account for comorbidity. New approaches leveraging genetic testing and neuroimmunologic evaluation may allow for more precise diagnoses and effective treatments.
Collapse
Affiliation(s)
- Shavon Moore
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
- Rady Children's Hospital San Diego, Division of Behavioral Health Services, San Diego, CA, USA
| | - Debha N Amatya
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
- UCLA Semel Institute of Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Michael M Chu
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
- Rady Children's Hospital San Diego, Division of Behavioral Health Services, San Diego, CA, USA
- Children's Hospital of Orange County, Division of Child and Adolescent Psychiatry, Orange, CA, USA
- University of California Irvine, Department of Psychiatry, Irvine, CA, USA
| | - Aaron D Besterman
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA.
- Rady Children's Hospital San Diego, Division of Behavioral Health Services, San Diego, CA, USA.
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA.
| |
Collapse
|
15
|
Zingela Z, Stroud L, Cronje J, Fink M, Van Wyk S. A prospective descriptive study on prevalence of catatonia and correlates in an acute mental health unit in Nelson Mandela Bay, South Africa. PLoS One 2022; 17:e0264944. [PMID: 35259194 PMCID: PMC8903294 DOI: 10.1371/journal.pone.0264944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/20/2022] [Indexed: 12/29/2022] Open
Abstract
Catatonia is a psychomotor abnormality caused by neurological, medical or severe psychiatric disorders and substances. Its prevalence ranges from less than 10% to just above 60%. Diagnosis may be influenced by the screening tools used. Screening of new admissions to a mental health unit for catatonia was undertaken using three instruments to determine prevalence of catatonia. Participants ranged from age 16 years and over. Recruitment took place from September 2020 to August 2021. The setting was a mental health unit within a general hospital in Nelson Mandela Metro, South Africa. Five assessors were trained by the principal investigator to apply the Bush Francis Screening Instrument (BFCSI), the Bush Francis Catatonia Rating Scale (BFCRS), and the Diagnostic and Statistical Manual 5 (DSM-5), to assess participants. Clinical and demographic data were collected using a specially designed datasheet. Data analysis was performed to identify significant associations between presence or absence of catatonia and clinical and demographic data. Up to 241 participants were screened and 44 (18.3%) had catatonia. All 44 cases were identified through the BFCSI while the DSM-5 identified only 16 (6.6%%) of the 44 cases even though the remaining 28 (63.6%) participants still required treatment for catatonic symptoms. The DSM-5 diagnostic criteria excluded staring, which was the commonest sign of catatonia identified through the BFCSI [n = 33 (75%)]. Close to half (21; 47.7%) of those with catatonia on the BFCSI had schizophrenia. The rest had bipolar disorder (12; 27.3%), substance-induced psychotic disorder (7; 15.9%) and no specified diagnosis in one (1; 2.6%). The BFCSI was very effective at identifying catatonia while the DSM-5 was inadequate, missing close to 64% (28 of 44) of cases. Predictors of catatonia in this sample were a younger age and being male. A prevalence of 18.3%, indicates that assessment for catatonia should be routinely conducted in this and similar settings.
Collapse
Affiliation(s)
| | | | - Johan Cronje
- Nelson Mandela University, Gqeberha, South Africa
| | - Max Fink
- Stony Brook University, New York, NY, United States of America
| | - Stephan Van Wyk
- Department of Psychiatry and Human Behavioural Sciences, Walter Sisulu University, Mthatha, South Africa
- Nelson Mandela Academic Hospital, Mthatha, South Africa
| |
Collapse
|
16
|
Neurological manifestation of 22q11.2 deletion syndrome. Neurol Sci 2022; 43:1695-1700. [DOI: 10.1007/s10072-021-05825-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/10/2021] [Indexed: 11/25/2022]
|
17
|
Ishizuka K, Tachibana M, Inada T. Possible Commonalities of Clinical Manifestations Between Dystonia and Catatonia. Front Psychiatry 2022; 13:876678. [PMID: 35573366 PMCID: PMC9098969 DOI: 10.3389/fpsyt.2022.876678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Kanako Ishizuka
- Health Support Center, Nagoya Institute of Technology, Nagoya, Japan
| | - Masako Tachibana
- Department of Psychiatry, Nagoya University Hospital, Nagoya, Japan
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
18
|
Abstract
Catatonia was first described by Karl Ludwig Kahlbaum in 1874, occurring in association with other psychiatric and medical disorders. However, in the nineteenth century the disorder was incorrectly classified as a subtype of schizophrenia. This misclassification persisted until the publication of DSM-5 in 2013 when important changes were incorporated. Although the etiology is unknown, disrupted gamma-aminobutyric acid has been proposed as the underlying pathophysiological mechanism. Key symptoms can be identified under 3 clinical domains: motor, speech, and behavioral. Benzodiazepines and electroconvulsive therapy are the only known effective treatments. Timely recognition and treatment have important outcome, and sometimes lifesaving, implications.
Collapse
Affiliation(s)
- Neera Ghaziuddin
- University of Michigan, University of Michigan Medical Center, 4250 Plymouth Road, Ann Arbor, MI 48109, USA.
| | - Laura Andersen
- Department of Psychiatry, University of Michigan, 1500 E Medical Center Drive, Ann Arbor, MI 48108, USA
| | - Mohammad Ghaziuddin
- University of Michigan, University of Michigan Medical Center, 4250 Plymouth Road, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Hasoglu T, Waxmonsky JG, Baweja R. Recurrent mania in an adolescent with velocardiofacial syndrome and treatment challenges. Bipolar Disord 2020; 22:876-878. [PMID: 32960492 DOI: 10.1111/bdi.12992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Tuna Hasoglu
- Department of Psychiatry and Behavior Health, Penn State University College of Medicine, Hershey, PA, USA
| | - James G Waxmonsky
- Department of Psychiatry and Behavior Health, Penn State University College of Medicine, Hershey, PA, USA
| | - Raman Baweja
- Department of Psychiatry and Behavior Health, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
20
|
Ghaziuddin N, Andersen L, Ghaziuddin M. Catatonia in Patients with Autism Spectrum Disorder. Child Adolesc Psychiatr Clin N Am 2020; 29:443-454. [PMID: 32471594 DOI: 10.1016/j.chc.2020.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Catatonia was first described by Karl Ludwig Kahlbaum in 1874, occurring in association with other psychiatric and medical disorders. However, in the nineteenth century the disorder was incorrectly classified as a subtype of schizophrenia. This misclassification persisted until the publication of DSM-5 in 2013 when important changes were incorporated. Although the etiology is unknown, disrupted gamma-aminobutyric acid has been proposed as the underlying pathophysiological mechanism. Key symptoms can be identified under 3 clinical domains: motor, speech, and behavioral. Benzodiazepines and electroconvulsive therapy are the only known effective treatments. Timely recognition and treatment have important outcome, and sometimes lifesaving, implications.
Collapse
Affiliation(s)
- Neera Ghaziuddin
- University of Michigan, University of Michigan Medical Center, 4250 Plymouth Road, Ann Arbor, MI 48109, USA.
| | - Laura Andersen
- Department of Psychiatry, University of Michigan, 1500 E Medical Center Drive, Ann Arbor, MI 48108, USA
| | - Mohammad Ghaziuddin
- University of Michigan, University of Michigan Medical Center, 4250 Plymouth Road, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Mancini V, Zöller D, Schneider M, Schaer M, Eliez S. Abnormal Development and Dysconnectivity of Distinct Thalamic Nuclei in Patients With 22q11.2 Deletion Syndrome Experiencing Auditory Hallucinations. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:875-890. [PMID: 32620531 DOI: 10.1016/j.bpsc.2020.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Several studies in patients with schizophrenia have demonstrated an abnormal thalamic volume and thalamocortical connectivity. Specifically, hyperconnectivity with somatosensory areas has been related to the presence of auditory hallucinations (AHs). The 22q11.2 deletion syndrome is a neurogenetic disorder conferring proneness to develop schizophrenia, and deletion carriers (22qdel carriers) experience hallucinations to a greater extent than the general population. METHODS We acquired 442 consecutive magnetic resonance imaging scans from 120 22qdel carriers and 110 control subjects every 3 years (age range: 8-35 years). The volume of thalamic nuclei was obtained with FreeSurfer and was compared between 22qdel carriers and control subjects and between 22qdel carriers with and without AHs. In a subgroup of 76 22qdel carriers, we evaluated the functional connectivity between thalamic nuclei affected in patients experiencing AHs and cortical regions. RESULTS As compared with control subjects, 22qdel carriers had lower and higher volumes of nuclei involved in sensory processing and cognitive functions, respectively. 22qdel carriers with AHs had a smaller volume of the medial geniculate nucleus, with deviant trajectories showing a steeper volume decrease from childhood with respect to those without AHs. Moreover, we showed an aberrant development of nuclei intercalated between the prefrontal cortex and hippocampus (the anteroventral and medioventral reuniens nuclei) and hyperconnectivity of the medial geniculate nucleus and anteroventral nucleus with the auditory cortex and Wernicke's area. CONCLUSIONS The increased connectivity of the medial geniculate nucleus and anteroventral nucleus to the auditory cortex might be interpreted as a lack of maturation of thalamocortical connectivity. Overall, our findings point toward an aberrant development of thalamic nuclei and an immature pattern of connectivity with temporal regions in relation to AHs.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Daniela Zöller
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Clinical Psychology Unit for Developmental and Intellectual Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Department of Neuroscience, Center for Contextual Psychiatry, Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Marie Schaer
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
22
|
Kohlenberg TM, Trelles MP, McLarney B, Betancur C, Thurm A, Kolevzon A. Psychiatric illness and regression in individuals with Phelan-McDermid syndrome. J Neurodev Disord 2020; 12:7. [PMID: 32050889 PMCID: PMC7014655 DOI: 10.1186/s11689-020-9309-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/23/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a genetic condition characterized by intellectual disability, speech and language deficits, hypotonia, autism spectrum disorder, and epilepsy. PMS is caused by 22q13.33 deletions or mutations affecting SHANK3, which codes for a critical scaffolding protein in excitatory synapses. SHANK3 variants are also known to be associated with an increased risk for regression, as well as for psychiatric disorders, including bipolar disorder and catatonia. This study aimed to further describe these phenomena in PMS and to explore any relationship between psychiatric illness and regression after early childhood. METHODS Thirty-eight people with PMS were recruited to this study through the Phelan-McDermid Syndrome Foundation based on caregiver report of distinct development of psychiatric symptoms. Caregivers completed a clinician-administered semi-structured interview focused on eliciting psychiatric symptomatology. Data from the PMS International Registry were used to confirm genetic diagnoses of participants and to provide a larger sample for comparison. RESULTS The mean age of the 38 participants was 24.7 years (range = 13 to 50; SD = 10.06). Females (31 of 38 cases; 82%) and sequence variants (15 of 38 cases; 39%) were over-represented in this sample, compared to base rates in the PMS International Registry. Onset of psychiatric symptoms occurred at a mean age of 15.4 years (range = 7 to 32), with presentations marked by prominent disturbances of mood. Enduring substantial loss of functional skills after onset of psychiatric changes was seen in 25 cases (66%). Symptomst indicative of catatonia occurred in 20 cases (53%). Triggers included infections, changes in hormonal status, and stressful life events. CONCLUSIONS This study confirms that individuals with PMS are at risk of developing severe neuropsychiatric illness in adolescence or early adulthood, including bipolar disorder, catatonia, and lasting regression of skills. These findings should increase the awareness of these phenotypes and lead to earlier diagnosis and the implementation of appropriate interventions. Our findings also highlight the importance of genetic testing in the work-up of individuals with intellectual disability and acute psychiatric illness or regression. Future research is needed to clarify the prevalence and nature of psychiatric disorders and regression among larger unbiased samples of individuals with PMS.
Collapse
Affiliation(s)
- Teresa M Kohlenberg
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA.
| | - M Pilar Trelles
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Fricchione G, Beach S. Cingulate-basal ganglia-thalamo-cortical aspects of catatonia and implications for treatment. HANDBOOK OF CLINICAL NEUROLOGY 2019; 166:223-252. [PMID: 31731912 DOI: 10.1016/b978-0-444-64196-0.00012-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The catatonic syndrome is an example of a multifactorial neurobehavioral disorder that causes much morbidity and mortality but also has the potential to unlock the mystery of how motivation and movement interact to produce behavior. In this chapter, an attempt is made to understand better the catatonic syndrome through the lens of neurobiology and neuropathophysiology updated by recent studies in molecular biology, genomics, inflammasomics, neuroimaging, neural network theory, and neuropsychopathology. This will result in a neurostructural model for the catatonic syndrome that centers on paralimbic regions including the anterior and midcingulate cortices, as they interface with striatal and thalamic nodes in the salience decision-making network. Examination of neurologic disorders like the abulic syndrome, which includes in its extreme catatonic form, akinetic mutism, will identify the cingulate cortex and paralimbic neighbors as regions of interest. This exploration has the potential to unlock mysteries of the brain cascade from motivation to movement and to clarify catatonia therapeutics. Such a synthesis may also help us discern meaning inherent in this complex neurobehavioral syndrome.
Collapse
Affiliation(s)
- Gregory Fricchione
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Scott Beach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Walther S, Stegmayer K, Wilson JE, Heckers S. Structure and neural mechanisms of catatonia. Lancet Psychiatry 2019; 6:610-619. [PMID: 31196794 PMCID: PMC6790975 DOI: 10.1016/s2215-0366(18)30474-7] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/30/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
Catatonia is a psychomotor syndrome associated with several psychiatric and medical conditions. Psychomotor signs range from stupor to agitation, and include pathognomonic features such as verbigeration and waxy flexibility. Disturbances of volition led to the classification of catatonia as a subtype of schizophrenia, but changes in nosology now recognise the high prevalence in mood disorders, overlap with delirium, and comorbidity with medical conditions. Initial psychometric studies have revealed three behavioural factors, but the structure of catatonia is still unknown. Evidence from brain imaging studies of patients with psychotic disorders indicates increased neural activity in premotor areas in patients with hypokinetic catatonia. However, whether this localised hyperactivity is due to corticocortical inhibition or excess activity of inhibitory corticobasal ganglia loops is unclear. Current treatment of catatonia relies on benzodiazepines and electroconvulsive therapy-both effective, yet unspecific in their modes of action. Longitudinal research and treatment studies, with neuroimaging and brain stimulation techniques, are needed to advance our understanding of catatonia.
Collapse
Affiliation(s)
- Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Jo Ellen Wilson
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
25
|
Rogers JP, Pollak TA, Blackman G, David AS. Catatonia and the immune system: a review. Lancet Psychiatry 2019; 6:620-630. [PMID: 31196793 PMCID: PMC7185541 DOI: 10.1016/s2215-0366(19)30190-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 12/13/2022]
Abstract
Catatonia is a psychomotor disorder featuring stupor, posturing, and echophenomena. This Series paper examines the evidence for immune dysregulation in catatonia. Activation of the innate immune system is associated with mutism, withdrawal, and psychomotor retardation, which constitute the neurovegetative features of catatonia. Evidence is sparse and conflicting for acute-phase activation in catatonia, and whether this feature is secondary to immobility is unclear. Various viral, bacterial, and parasitic infections have been associated with catatonia, but it is primarily linked to CNS infections. The most common cause of autoimmune catatonia is N-methyl-D-aspartate receptor (NMDAR) encephalitis, which can account for the full spectrum of catatonic features. Autoimmunity appears to cause catatonia less by systemic inflammation than by the downstream effects of specific actions on extracellular antigens. The specific association with NMDAR encephalitis supports a hypothesis of glutamatergic hypofunction in catatonia.
Collapse
Affiliation(s)
- Jonathan P Rogers
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and Maudsley National Health Service Foundation Trust, Bethlem Royal Hospital, UK.
| | - Thomas A Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and Maudsley National Health Service Foundation Trust, Bethlem Royal Hospital, UK
| | - Graham Blackman
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and Maudsley National Health Service Foundation Trust, Bethlem Royal Hospital, UK
| | - Anthony S David
- Institute of Mental Health, University College London, London, UK
| |
Collapse
|
26
|
Boot E, Bassett AS, Marras C. 22q11.2 Deletion Syndrome-Associated Parkinson's Disease. Mov Disord Clin Pract 2019; 6:11-16. [PMID: 30746410 PMCID: PMC6335527 DOI: 10.1002/mdc3.12687] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/21/2018] [Accepted: 09/09/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11.2DS) is a multisystem condition associated with an increased risk of early-onset Parkinson's disease (PD). METHODS We review the clinical, neuroimaging, and neuropathological observations, as well as diagnostic challenges, of PD in 22q11.2DS. We conducted a search of PubMed up until June 1, 2018 and personal files to identify relevant publications. RESULTS 22q11.2DS-associated PD is responsible for approximately 0.5% of early-onset PD. The hallmark motor symptoms and neuropathology of PD, and typical findings of reduced striatal dopamine transporter binding with molecular imaging, are present in 22q11.2DS-associated PD. Mean age at PD onset in 22q11.2DS is relatively young (∼40 years). Patients with 22q11.2DS-associated PD show a good response to levodopa. CONCLUSIONS Further recognition of 22q11.2DS and study of PD in people with 22q11.2DS could provide insights into the mechanisms that cause PD in the general population. 22q11.2DS may serve as an identifiable PD model to study prodromal PD and disease-modifying treatments.
Collapse
Affiliation(s)
- Erik Boot
- The Dalglish Family 22q Clinic for Adults, and Department of PsychiatryUniversity Health NetworkTorontoOntarioCanada
- ‘s Heeren Loo ZorggroepAmersfoortThe Netherlands
- Department of Nuclear Medicine, Academic Medical CenterAmsterdamThe Netherlands
| | - Anne S. Bassett
- The Dalglish Family 22q Clinic for Adults, and Department of PsychiatryUniversity Health NetworkTorontoOntarioCanada
- Toronto General Hospital Research Institute and Division of Cardiology, Department of MedicineUniversity Health NetworkTorontoOntarioCanada
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Connie Marras
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease ResearchToronto Western Hospital and University of TorontoTorontoOntarioCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|