1
|
Pujol-Gualdo N, Sánchez-Mora C, Ramos-Quiroga JA, Ribasés M, Soler Artigas M. Integrating genomics and transcriptomics: Towards deciphering ADHD. Eur Neuropsychopharmacol 2021; 44:1-13. [PMID: 33495110 DOI: 10.1016/j.euroneuro.2021.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable condition that represents the most common neurodevelopmental disorder in childhood, persisting into adulthood in around 40-65% of the cases. ADHD is characterised by age-inappropriate symptoms of inattention, impulsivity, and hyperactivity. Mounting evidence points towards ADHD having a strong genetic component and the first genome-wide significant findings have recently been reported. However, the functional characterization of variants unravelled by genome-wide association studies (GWAS) is challenging. Likewise, gene expression profiling studies have also been undertaken and novel integrative approaches combining genomic and transcriptomic data are starting to be conducted, which offers an exciting way that might provide a more informative insight towards the genetic architecture of ADHD. In this review, we summarised current knowledge on genomics, transcriptomics and integrative approaches in ADHD, focusing on GWAS and GWAS meta-analyses (GWAS-MA)- as genomics analyses- microarray and RNA-seq- as transcriptomics analyses-, and studies integrating genomics and transcriptomics data. In addition, current strengths and limitations of such approaches are discussed and further research avenues are proposed in order to face unsolved issues. Although important progress has been made, there is still a long way ahead to elucidate the biological mechanisms of ADHD, which eventually may lead to more personalized approaches in the future. Large- scale research efforts and new technological and statistical approaches are envisaged as important means towards deciphering ADHD in the upcoming years.
Collapse
Affiliation(s)
- Natàlia Pujol-Gualdo
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain.
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
Bordoni L, Petracci I, Calleja-Agius J, Lalor JG, Gabbianelli R. NURR1 Alterations in Perinatal Stress: A First Step towards Late-Onset Diseases? A Narrative Review. Biomedicines 2020; 8:E584. [PMID: 33302583 PMCID: PMC7764589 DOI: 10.3390/biomedicines8120584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Perinatal life represents a delicate phase of development where stimuli of all sorts, coming to or from the mother, can influence the programming of the future baby's health. These stimuli may have consequences that persist throughout adulthood. Nuclear receptor related 1 protein (NURR1), a transcription factor with a critical role in the development of the dopaminergic neurons in the midbrain, mediates the response to stressful environmental stimuli in the perinatal period. During pregnancy, low-grade inflammation triggered by maternal obesity, hyperinsulinemia or vaginal infections alters NURR1 expression in human gestational tissues. A similar scenario is triggered by exposure to neurotoxic compounds, which are associated with NURR1 epigenetic deregulation in the offspring, with potential intergenerational effects. Since these alterations have been associated with an increased risk of developing late-onset diseases in children, NURR1, alone, or in combination with other molecular markers, has been proposed as a new prognostic tool and a potential therapeutic target for several pathological conditions. This narrative review describes perinatal stress associated with NURR1 gene deregulation, which is proposed here as a mediator of late-onset consequences of early life events.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Irene Petracci
- School of Advanced Studies, University of Camerino, 62032 Camerino, Italy;
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta;
| | - Joan G. Lalor
- School of Nursing and Midwifery, Trinity College Dublin, 24 D’Olier Street, Dublin 2, Ireland;
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| |
Collapse
|
3
|
De novo variants of NR4A2 are associated with neurodevelopmental disorder and epilepsy. Genet Med 2020; 22:1413-1417. [PMID: 32366965 PMCID: PMC7394879 DOI: 10.1038/s41436-020-0815-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE This study characterizes the clinical and genetic features of nine unrelated patients with de novo variants in the NR4A2 gene. METHODS Variants were identified and de novo origins were confirmed through trio exome sequencing in all but one patient. Targeted RNA sequencing was performed for one variant to confirm its splicing effect. Independent discoveries were shared through GeneMatcher. RESULTS Missense and loss-of-function variants in NR4A2 were identified in patients from eight unrelated families. One patient carried a larger deletion including adjacent genes. The cases presented with developmental delay, hypotonia (six cases), and epilepsy (six cases). De novo status was confirmed for eight patients. One variant was demonstrated to affect splicing and result in expression of abnormal transcripts likely subject to nonsense-mediated decay. CONCLUSION Our study underscores the importance of NR4A2 as a disease gene for neurodevelopmental disorders and epilepsy. The identified variants are likely causative of the seizures and additional developmental phenotypes in these patients.
Collapse
|
4
|
Jeon SG, Yoo A, Chun DW, Hong SB, Chung H, Kim JI, Moon M. The Critical Role of Nurr1 as a Mediator and Therapeutic Target in Alzheimer's Disease-related Pathogenesis. Aging Dis 2020; 11:705-724. [PMID: 32489714 PMCID: PMC7220289 DOI: 10.14336/ad.2019.0718] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/18/2019] [Indexed: 01/16/2023] Open
Abstract
Several studies have revealed that the transcription factor nuclear receptor related 1 (Nurr1) plays several roles not only in the regulation of gene expression related to dopamine synthesis, but also in alternative splicing, and miRNA targeting. Moreover, it regulates cognitive functions and protects against inflammation-induced neuronal death. In particular, the role of Nurr1 in the pathogenesis of Parkinson's disease (PD) has been well investigated; for example, it has been shown that it restores behavioral and histological impairments in PD models. Although many studies have evaluated the connection between Nurr1 and PD pathogenesis, the role of Nurr1 in Alzheimer's disease (AD) remain to be studied. There have been several studies describing Nurr1 protein expression in the AD brain. However, only a few studies have examined the role of Nurr1 in the context of AD. Therefore, in this review, we highlight the overall effects of Nurr1 under the neuropathologic conditions related to AD. Furthermore, we suggest the possibility of using Nurr1 as a therapeutic target for AD or other neurodegenerative disorders.
Collapse
Affiliation(s)
- Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Anji Yoo
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Dong Wook Chun
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sang Bum Hong
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Hyunju Chung
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Jin-il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| |
Collapse
|
5
|
NURR1 deficiency is associated to ADHD-like phenotypes in mice. Transl Psychiatry 2019; 9:207. [PMID: 31455763 PMCID: PMC6712038 DOI: 10.1038/s41398-019-0544-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/09/2019] [Accepted: 07/17/2019] [Indexed: 01/10/2023] Open
Abstract
The transcription factor NURR1 regulates the dopamine (DA) signaling pathway and exerts a critical role in the development of midbrain dopaminergic neurons (mDA). NURR1 alterations have been linked to DA-associated brain disorders, such as Parkinson's disease and schizophrenia. However, the association between NURR1 defects and the attention-deficit hyperactivity disorder (ADHD), a DA-associated brain disease characterized by hyperactivity, impulsivity and inattention, has never been demonstrated. To date, a comprehensive murine model of ADHD truly reflecting the whole complex human psychiatric disorder still does not exist. NURR1-knockout (NURR1-KO) mice have been reported to exhibit increased spontaneous locomotor activity, but their complete characterization is still lacking. In the present study a wide-ranging test battery was used to perform a comprehensive analysis of the behavioral phenotype of the male NURR1-KO mice. As a result, their hyperactive phenotype was confirmed, while their impulsive behavior was reported for the first time. On the other hand, no anxiety and alterations in motor coordination, sociability and memory were observed. Also, the number of mDA expressing tyrosine hydroxylase, a rate-limiting enzyme of catecholamines biosynthesis, and DA level in brain were not impaired in NURR1-KO mice. Finally, hyperactivity has been shown to be recovered by treatment with methylphenidate, the first line psychostimulant drug used for ADHD. Overall, our study suggests that the NURR1 deficient male mouse may be a satisfactory model to study some ADHD behavioral phenotypes and to test the clinical efficacy of potential therapeutic agents.
Collapse
|
6
|
Sánchez-Mora C, Soler Artigas M, Garcia-Martínez I, Pagerols M, Rovira P, Richarte V, Corrales M, Fadeuilhe C, Padilla N, de la Cruz X, Franke B, Arias-Vásquez A, Casas M, Ramos-Quiroga JA, Ribasés M. Epigenetic signature for attention-deficit/hyperactivity disorder: identification of miR-26b-5p, miR-185-5p, and miR-191-5p as potential biomarkers in peripheral blood mononuclear cells. Neuropsychopharmacology 2019; 44:890-897. [PMID: 30568281 PMCID: PMC6461896 DOI: 10.1038/s41386-018-0297-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/21/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent neurodevelopmental disorders in childhood and persists into adulthood in 40-65% of cases. Given the polygenic and heterogeneous architecture of the disorder and the limited overlap between genetic studies, there is a growing interest in epigenetic mechanisms, such as microRNAs, that modulate gene expression and may contribute to the phenotype. We attempted to clarify the role of microRNAs in ADHD at a molecular level through the first genome-wide integrative study of microRNA and mRNA profiles in peripheral blood mononuclear cells of medication-naive individuals with ADHD and healthy controls. We identified 79 microRNAs showing aberrant expression levels in 56 ADHD cases and 69 controls, with three of them, miR-26b-5p, miR-185-5p, and miR-191-5p, being highly predictive for diagnostic status in an independent dataset of 44 ADHD cases and 46 controls. Investigation of downstream microRNA-mediated mechanisms underlying the disorder, which was focused on differentially expressed, experimentally validated target genes of the three highly predictive microRNAs, provided evidence for aberrant myo-inositol signaling in ADHD and indicated an enrichment of genes involved in neurological disease and psychological disorders. Our comprehensive study design reveals novel microRNA-mRNA expression profiles aberrant in ADHD, provides novel insights into microRNA-mediated mechanisms contributing to the disorder, and highlights promising candidate peripheral biomarkers.
Collapse
Affiliation(s)
- Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Iris Garcia-Martínez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Mireia Pagerols
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Paula Rovira
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Montse Corrales
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Christian Fadeuilhe
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Natàlia Padilla
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier de la Cruz
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alejandro Arias-Vásquez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Miguel Casas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Josep-Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Barkley RA, Smith KM, Fischer M. ADHD risk genes involved in dopamine signaling and metabolism are associated with reduced estimated life expectancy at young adult follow-up in hyperactive and control children. Am J Med Genet B Neuropsychiatr Genet 2019; 180:175-185. [PMID: 30637915 DOI: 10.1002/ajmg.b.32711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
ADHD is associated with an elevated risk of mortality and reduced estimated life expectancy (ELE) by adulthood. Reduced life expectancy is substantially related to the trait of behavioral disinhibition; a correlate of both ADHD and of several dopamine genes related to dopamine signaling and metabolism. We therefore hypothesized that several ADHD risk genes related to dopamine might also be predictive of reduced ELE. Using a longitudinal study of 131 hyperactive children and 71 control cases followed to young adulthood, we examined whether several polymorphisms involving DRD4, DAT1, and DBH were related to ELE. The homozygous 9/9 allele of DAT1 and the heterozygous allele of DBH TaqI were associated with 5- and 2-year reductions, respectively, in total ELE. They did not operate on ELE through any relationships to ADHD specifically or behavioral disinhibition more generally. Instead, they showed links to alcohol use (DBH), reduced education, smoking, and reduced exercise (DAT1) employed in the computation of ELE. We conclude that polymorphisms of two dopamine genes are linked to reductions in ELE independently of their association with ADHD.
Collapse
Affiliation(s)
- Russell A Barkley
- This research was originally conducted at the Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Karen Müller Smith
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana
| | | |
Collapse
|
8
|
Guo Y, Luo C, Tu G, Li C, Liu Y, Liu W, Lam Yung KK, Mo Z. Rhynchophylline Downregulates Phosphorylated cAMP Response Element Binding Protein, Nuclear Receptor-related-1, and Brain-derived Neurotrophic Factor Expression in the Hippocampus of Ketamine-induced Conditioned Place Preference Rats. Pharmacogn Mag 2018; 14:81-86. [PMID: 29576706 PMCID: PMC5858247 DOI: 10.4103/pm.pm_90_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 03/31/2017] [Indexed: 02/04/2023] Open
Abstract
Background: Addiction to ketamine is becoming a serious public health issues, for which there exists no effective treatment. Rhynchophylline (Rhy) is an alkaloid extracted from certain Uncaria species that is well known for both its potent anti-addictive and neuroprotective properties. Increasing evidence supports the contributions of cAMP response element binding protein (CREB), nuclear receptor-related-1 (Nurr1), and brain-derived neurotrophic factor (BDNF) in modulating neural and behavioral plasticity which was induced by addictive drugs. Objective: To investigate the effects of Rhy on the behavior and the levels of phosphorylated CREB (p-CREB), Nurr1, and BDNF in the hippocampus of ketamine-induced conditioned place preference (CPP) rats. Materials and Methods: CPP paradigm was used to establish the model of ketamine-dependent rats and to evaluate the effect of Rhy on ketamine dependence. The expressions of p-CREB, Nurr1, and BDNF were tested by Western blotting and immunohistochemistry. Results: We observed that Rhy can reverse the behavior preference induced by ketamine CPP training. At the same time, expression of p-CREB, Nurr1, and BDNF, which was significantly increased by ketamine, was restored in the Rhy -treated group. Conclusion: This study indicates that Rhy can reverse the reward effect induced by ketamine in rats and the mechanism can probably be related to regulate the hippocampal protein expression of p-CREB, Nurr1, and BDNF. SUMMARY P-CREB, Nurr1 and BDNF play an important role in the formation of ketamine-induced place preference in rats Rhynchophylline reversed the expression of p-CREB, Nurr1 and BDNF which was activated by ketamine in the hippocampus Rhynchophylline demonstrates the potential effect of mediates ketamine induced rewarding effect.
Abbreviations used: Rhy: Rhynchophylline; CREB: cAMP response element binding protein; Nurr1: Nuclear receptor-related-1; BDNF: Brain-derived neurotrophic factor; CPP: Conditioned place preference; NMDA: N-methyl-D-aspartic acid; METH: Methamphetamine; CNS: Central nervous system; PFA: Paraformaldehyde; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; LTP: long-term potentiation.
Collapse
Affiliation(s)
- Youli Guo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Pharmacy, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou, China
| | - Chaohua Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Genghong Tu
- Department of Pathophysiology, Guangdong Province Key Laboratory of Functional Proteomics, Southern Medical University, Guangzhou, China
| | - Chan Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yi Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhixian Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Methylphenidate and Atomoxetine-Responsive Prefrontal Cortical Genetic Overlaps in "Impulsive" SHR/NCrl and Wistar Rats. Behav Genet 2017; 47:564-580. [PMID: 28744604 DOI: 10.1007/s10519-017-9861-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/07/2017] [Indexed: 01/24/2023]
Abstract
Impulsivity, the predisposition to act prematurely without foresight, is associated with a number of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). Identifying genetic underpinnings of impulsive behavior may help decipher the complex etiology and neurobiological factors of disorders marked by impulsivity. To identify potential genetic factors of impulsivity, we examined common differentially expressed genes (DEGs) in the prefrontal cortex (PFC) of adolescent SHR/NCrl and Wistar rats, which showed marked decrease in preference for the large but delayed reward, compared with WKY/NCrl rats, in the delay discounting task. Of these DEGs, we examined drug-responsive transcripts whose mRNA levels were altered following treatment (in SHR/NCrl and Wistar rats) with drugs that alleviate impulsivity, namely, the ADHD medications methylphenidate and atomoxetine. Prefrontal cortical genetic overlaps between SHR/NCrl and Wistar rats in comparison with WKY/NCrl included genes associated with transcription (e.g., Btg2, Fos, Nr4a2), synaptic plasticity (e.g., Arc, Homer2), and neuron apoptosis (Grik2, Nmnat1). Treatment with methylphenidate and/or atomoxetine increased choice of the large, delayed reward in SHR/NCrl and Wistar rats and changed, in varying degrees, mRNA levels of Nr4a2, Btg2, and Homer2, genes with previously described roles in neuropsychiatric disorders characterized by impulsivity. While further studies are required, we dissected potential genetic factors that may influence impulsivity by identifying genetic overlaps in the PFC of "impulsive" SHR/NCrl and Wistar rats. Notably, these are also drug-responsive transcripts which may be studied further as biomarkers to predict response to ADHD drugs, and as potential targets for the development of treatments to improve impulsivity.
Collapse
|
10
|
Daimon CM, Jasien JM, Wood WH, Zhang Y, Becker KG, Silverman JL, Crawley JN, Martin B, Maudsley S. Hippocampal Transcriptomic and Proteomic Alterations in the BTBR Mouse Model of Autism Spectrum Disorder. Front Physiol 2015; 6:324. [PMID: 26635614 PMCID: PMC4656818 DOI: 10.3389/fphys.2015.00324] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/27/2015] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorders (ASD) are complex heterogeneous neurodevelopmental disorders of an unclear etiology, and no cure currently exists. Prior studies have demonstrated that the black and tan, brachyury (BTBR) T+ Itpr3tf/J mouse strain displays a behavioral phenotype with ASD-like features. BTBR T+ Itpr3tf/J mice (referred to simply as BTBR) display deficits in social functioning, lack of communication ability, and engagement in stereotyped behavior. Despite extensive behavioral phenotypic characterization, little is known about the genes and proteins responsible for the presentation of the ASD-like phenotype in the BTBR mouse model. In this study, we employed bioinformatics techniques to gain a wide-scale understanding of the transcriptomic and proteomic changes associated with the ASD-like phenotype in BTBR mice. We found a number of genes and proteins to be significantly altered in BTBR mice compared to C57BL/6J (B6) control mice controls such as BDNF, Shank3, and ERK1, which are highly relevant to prior investigations of ASD. Furthermore, we identified distinct functional pathways altered in BTBR mice compared to B6 controls that have been previously shown to be altered in both mouse models of ASD, some human clinical populations, and have been suggested as a possible etiological mechanism of ASD, including “axon guidance” and “regulation of actin cytoskeleton.” In addition, our wide-scale bioinformatics approach also discovered several previously unidentified genes and proteins associated with the ASD phenotype in BTBR mice, such as Caskin1, suggesting that bioinformatics could be an avenue by which novel therapeutic targets for ASD are uncovered. As a result, we believe that informed use of synergistic bioinformatics applications represents an invaluable tool for elucidating the etiology of complex disorders like ASD.
Collapse
Affiliation(s)
- Caitlin M Daimon
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Joan M Jasien
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - William H Wood
- Gene Expression and Genomics Unit, National Institutes of Health Baltimore, MD, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institutes of Health Baltimore, MD, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institutes of Health Baltimore, MD, USA
| | - Jill L Silverman
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health Bethesda, MD, USA ; MIND Institute, University of California Davis School of Medicine Sacramento, CA, USA
| | - Jacqueline N Crawley
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health Bethesda, MD, USA ; MIND Institute, University of California Davis School of Medicine Sacramento, CA, USA
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA ; Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp Antwerp, Belgium ; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp Antwerpen, Belgium
| |
Collapse
|
11
|
Lee YA, Goto Y. Habenula and ADHD: Convergence on time. Neurosci Biobehav Rev 2013; 37:1801-9. [DOI: 10.1016/j.neubiorev.2013.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/27/2013] [Accepted: 07/11/2013] [Indexed: 12/11/2022]
|
12
|
Correlations of gene expression with ratings of inattention and hyperactivity/impulsivity in Tourette syndrome: a pilot study. BMC Med Genomics 2012; 5:49. [PMID: 23110997 PMCID: PMC3497583 DOI: 10.1186/1755-8794-5-49] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 10/09/2012] [Indexed: 12/04/2022] Open
Abstract
Background Inattentiveness, impulsivity and hyperactivity are the primary behaviors associated with attention-deficit hyperactivity disorder (ADHD). Previous studies showed that peripheral blood gene expression signatures can mirror central nervous system disease. Tourette syndrome (TS) is associated with inattention (IA) and hyperactivity/impulsivity (HI) symptoms over 50% of the time. This study determined if gene expression in blood correlated significantly with IA and/or HI rating scale scores in participants with TS. Methods RNA was isolated from the blood of 21 participants with TS, and gene expression measured on Affymetrix human U133 Plus 2.0 arrays. To identify the genes that correlated with Conners’ Parents Ratings of IA and HI ratings of symptoms, an analysis of covariance (ANCOVA) was performed, controlling for age, gender and batch. Results There were 1201 gene probesets that correlated with IA scales, 1625 that correlated with HI scales, and 262 that correlated with both IA and HI scale scores (P<0.05, |Partial correlation (rp)|>0.4). Immune, catecholamine and other neurotransmitter pathways were associated with IA and HI behaviors. A number of the identified genes (n=27) have previously been reported in ADHD genetic studies. Many more genes correlated with either IA or HI scales alone compared to those that correlated with both IA and HI scales. Conclusions These findings support the concept that the pathophysiology of ADHD and/or its subtypes in TS may involve the interaction of multiple genes. These preliminary data also suggest gene expression may be useful for studying IA and HI symptoms that relate to ADHD in TS and perhaps non-TS participants. These results will need to be confirmed in future studies.
Collapse
|
13
|
Prenatal immune activation interacts with genetic Nurr1 deficiency in the development of attentional impairments. J Neurosci 2012; 32:436-51. [PMID: 22238080 DOI: 10.1523/jneurosci.4831-11.2012] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prenatal exposure to infection has been linked to increased risk of neurodevelopmental brain disorders, and recent evidence implicates altered dopaminergic development in this association. However, since the relative risk size of prenatal infection appears relatively small with respect to long-term neuropsychiatric outcomes, it is likely that this prenatal insult interacts with other factors in shaping the risk of postnatal brain dysfunctions. In the present study, we show that the neuropathological consequences of prenatal viral-like immune activation are exacerbated in offspring with genetic predisposition to dopaminergic abnormalities induced by mutations in Nurr1, a transcription factor highly essential for normal dopaminergic development. We combined a mouse model of heterozygous genetic deletion of Nurr1 with a model of prenatal immune challenge by the viral mimetic poly(I:C) (polyriboinosinic polyribocytidilic acid). In our gene-environment interaction model, we demonstrate that the combination of the genetic and environmental factors not only exerts additive effects on locomotor hyperactivity and sensorimotor gating deficits, but further produces synergistic effects in the development of impaired attentional shifting and sustained attention. We further demonstrate that the combination of the two factors is necessary to trigger maldevelopment of prefrontal cortical and ventral striatal dopamine systems. Our findings provide evidence for specific gene-environment interactions in the emergence of enduring attentional impairments and neuronal abnormalities pertinent to dopamine-associated brain disorders such as schizophrenia and attention deficit/hyperactivity disorder, and further emphasize a critical role of abnormal dopaminergic development in these etiopathological processes.
Collapse
|
14
|
Carrey N, Wilkinson M. A review of psychostimulant-induced neuroadaptation in developing animals. Neurosci Bull 2011; 27:197-214. [PMID: 21614102 DOI: 10.1007/s12264-011-1004-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The effects of clinically relevant doses of commonly prescribed stimulants methylphenidate (MPH), d-amphetamine (d-AMPH), and dl-AMPH or mixed amphetamine salts (MAS) such as Adderall, on short- and long-term gene neuroadaptations in developing animals have not been widely investigated. In the present review, the effects of oral stimulant administration were compared with those of the subcutaneous or intra-peritoneal route. A selective set of studies between 1979 and 2010, which incorporated in their design developmental period, clinically relevant doses of stimulants, and repeated daily doses were reviewed. These studies indicate that neuroadaptation to chronic stimulants includes blunting of stimulated immediate early gene expression, sensitivity of younger (prepubertal) brain to smaller dosages of stimulants, and the persistence of some effects, especially behavioral neuroadaptations, into adulthood. In addition, oral amphetamines (MAS) have more profound effects than does oral MPH. Further animal developmental studies are required to understand potential long-term neuroadaptations to low, daily oral doses of stimulants. Implications for clinical practice were also discussed.
Collapse
Affiliation(s)
- Normand Carrey
- Department of Psychiatry, IWK Health Centre, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
15
|
Schneider T, Ilott N, Brolese G, Bizarro L, Asherson PJE, Stolerman IP. Prenatal exposure to nicotine impairs performance of the 5-choice serial reaction time task in adult rats. Neuropsychopharmacology 2011; 36:1114-25. [PMID: 21289608 PMCID: PMC3077278 DOI: 10.1038/npp.2010.249] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 12/08/2010] [Accepted: 12/08/2010] [Indexed: 01/08/2023]
Abstract
Cigarette smoking is associated with a wide variety of adverse reproductive outcomes, including increased infant mortality and decreased birth weight. Prenatal exposure to tobacco smoke, of which nicotine is a major teratogenic component, has also been linked to the acceleration of the risk for different psychiatric disorders, including conduct disorder and attention deficit hyperactivity disorder (ADHD). Whether this increased risk is influenced by the direct effects of gestational nicotine exposure on the developing fetus remains uncertain. In this study we provide experimental evidence for the effects of prenatal nicotine exposure on measures of attention and impulsivity in adult male rats. Offspring of females exposed during pregnancy to 0.06 mg/ml nicotine solution as the only source of water (daily consumption: 69.6±1.4 ml/kg; nicotine blood level: 96.0±31.9 ng/ml) had lower birth weight and delayed sensorimotor development measured by negative geotaxis, righting reflex, and grip strength. In the 5-choice serial reaction time test, adult rats showed increased numbers of anticipatory responses and omissions errors, more variable response times, and lower accuracy with evidence of delayed learning of the task demands when the 1 s stimulus duration was introduced. In contrast, prenatal nicotine exposure had no effect on exploratory locomotion or delay-discounting test. Prenatal nicotine exposure increased expression of the D5 dopamine receptor gene in the striatum, but did not change expression of other dopamine-related genes (DRD4, DAT1, NR4A2, and TH) in either the striatum or the prefrontal cortex. These data suggest a direct effect of prenatal nicotine exposure on important aspects of attention, inhibitory control, or learning later in life.
Collapse
|
16
|
Tavares L, Alves PM, Ferreira RB, Santos CN. Comparison of different methods for DNA-free RNA isolation from SK-N-MC neuroblastoma. BMC Res Notes 2011; 4:3. [PMID: 21211020 PMCID: PMC3050700 DOI: 10.1186/1756-0500-4-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 01/06/2011] [Indexed: 02/02/2023] Open
Abstract
Background RNA quality and quantity are important factors for ensuring the accuracy of gene expression analysis and other RNA-based downstream applications. Extraction of high quality nucleic acids is difficult from neuronal cells and brain tissues as they are particularly rich in lipids. In addition, most common RNA extraction methods are phenol-based, resulting in RNA that may be incompatible with downstream applications such as gene expression. Findings In this work, a comparative analysis of the RNA quality obtained from SK-N-MC cells was performed using six commonly used RNA isolation kits: two phenol-based kits and four non-phenol based kits. The non-phenol based kits tested AxyPrep Multisource Total RNA Miniprep, RNeasy® Mini, EasySpin and Ilustra RNAspin Mini RNA Isolation, all performed well and resulted in the isolation of high quality RNA, as evaluated by A260/A280. The RNA extracted with AxyPrep Multisource Total RNA Miniprep, RNeasy® Mini and EasySpin provided the highest RNA yields. In particular, the RNA isolated by AxyPrep Multisource Total RNA Miniprep Kit did not show any detectable genomic DNA contamination even without previous DNase treatment or after RNA direct PCR amplification using universal 18S primers. Conclusions The RNA extracted from SK-N-MC cells with AxyPrep Multisource Total RNA Miniprep Kit was superior with respect to the RNA quality and concentration. This kit does not use aggressive organic solvents and RNA free of genomic DNA was isolated without the need for DNase treatment.
Collapse
|
17
|
Akiyama K, Isao T, Ide S, Ishikawa M, Saito A. mRNA expression of the Nurr1 and NGFI-B nuclear receptor families following acute and chronic administration of methamphetamine. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1957-66. [PMID: 18930103 DOI: 10.1016/j.pnpbp.2008.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 08/23/2008] [Accepted: 09/24/2008] [Indexed: 11/19/2022]
Abstract
Nur-related 1 (Nurr1) and nerve growth factor inducible-B (NGFI-B) constitute closely related subgroups of the nuclear receptor superfamily. One to three hours after 4 mg/kg acute methamphetamine (METH) administration, the levels of Nurr1 mRNA were significantly higher in the prelimbic (PrL), primary motor (M1) and primary somatosensory (S1) cortices and ventral tegmental area (VTA), as compared with the basal level. Pretreatment with 0.5 mg/kg of SCH23390 prevented the acute METH-induced increase in Nurr1 mRNA levels in these brain regions. One to three hours after 4-mg/kg acute METH administration, the levels of NGFI-B mRNA increased significantly in the PrL, M1, S1, striatum, and nucleus accumbens core (AcbC). Pretreatment with either 0.5 mg/kg of MK-801 or 0.5 mg/kg of SCH23390 prevented the acute METH-induced increase in NGFI-B mRNA levels in these brain regions. The levels of mRNAs were determined 3 h after a challenge injection of either saline or 4 mg/kg METH at the three-week withdrawal point in rats which had previously been exposed to either saline or METH (4 mg/kg/day) for 2 weeks. After the saline challenge, the group chronically exposed to METH displayed significantly higher levels of Nurr1 mRNA in the PrL, S1 and VTA, and of NGFI-B mRNA in the PrL, M1, S1, striatum and AcbC than did the group chronically treated with saline. The groups chronically exposed to METH failed to increase Nurr1 mRNA in the VTA, and NGFI-B mRNA in the AcbC, when challenged with 4 mg/kg METH. These results suggest that Nurr1 and NGFI-B mRNA play differential roles upon exposure to METH.
Collapse
Affiliation(s)
- Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan.
| | | | | | | | | |
Collapse
|
18
|
Choi KH, Elashoff M, Higgs BW, Song J, Kim S, Sabunciyan S, Diglisic S, Yolken RH, Knable MB, Torrey EF, Webster MJ. Putative psychosis genes in the prefrontal cortex: combined analysis of gene expression microarrays. BMC Psychiatry 2008; 8:87. [PMID: 18992145 PMCID: PMC2585075 DOI: 10.1186/1471-244x-8-87] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 11/07/2008] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Recent studies have shown similarities between schizophrenia and bipolar disorder in phenotypes and in genotypes, and those studies have contributed to an ongoing re-evaluation of the traditional dichotomy between schizophrenia and bipolar disorder. Bipolar disorder with psychotic features may be closely related to schizophrenia and therefore, psychosis may be an alternative phenotype compared to the traditional diagnosis categories. METHODS We performed a cross-study analysis of 7 gene expression microarrays that include both psychosis and non-psychosis subjects. These studies include over 400 microarray samples (163 individual subjects) on 3 different Affymetrix microarray platforms. RESULTS We found that 110 transcripts are differentially regulated (p < 0.001) in psychosis after adjusting for confounding variables with a multiple regression model. Using a quantitative PCR, we validated a set of genes such as up-regulated metallothioneins (MT1E, MT1F, MT1H, MT1K, MT1X, MT2A and MT3) and down-regulated neuropeptides (SST, TAC1 and NPY) in the dorsolateral prefrontal cortex of psychosis patients. CONCLUSION This study demonstrates the advantages of cross-study analysis in detecting consensus changes in gene expression across multiple microarray studies. Differential gene expression between individuals with and without psychosis suggests that psychosis may be a useful phenotypic variable to complement the traditional diagnosis categories.
Collapse
Affiliation(s)
- Kwang Ho Choi
- Stanley Laboratory of Brain Research, 9800 Medical Center Dr. Bldg 2C, Rockville, MD 20850, USA.
| | | | | | - Jonathan Song
- Stanley Laboratory of Brain Research, 9800 Medical Center Dr. Bldg 2C, Rockville, MD 20850, USA
| | - Sanghyeon Kim
- Stanley Laboratory of Brain Research, 9800 Medical Center Dr. Bldg 2C, Rockville, MD 20850, USA
| | - Sarven Sabunciyan
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University, School of Medicine, 600 North Wolfe Street, Blalock 1105, Baltimore, MD 21287, USA
| | - Suad Diglisic
- Stanley Laboratory of Brain Research, 9800 Medical Center Dr. Bldg 2C, Rockville, MD 20850, USA
| | - Robert H Yolken
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University, School of Medicine, 600 North Wolfe Street, Blalock 1105, Baltimore, MD 21287, USA
| | - Michael B Knable
- Stanley Medical Research Institute, 8401 Connecticut Ave, Suite 200, Chevy Chase, MD 20815, USA
| | - E Fuller Torrey
- Stanley Medical Research Institute, 8401 Connecticut Ave, Suite 200, Chevy Chase, MD 20815, USA
| | - Maree J Webster
- Stanley Laboratory of Brain Research, 9800 Medical Center Dr. Bldg 2C, Rockville, MD 20850, USA
| |
Collapse
|
19
|
Blum K, Chen ALC, Braverman ER, Comings DE, Chen TJH, Arcuri V, Blum SH, Downs BW, Waite RL, Notaro A, Lubar J, Williams L, Prihoda TJ, Palomo T, Oscar-Berman M. Attention-deficit-hyperactivity disorder and reward deficiency syndrome. Neuropsychiatr Dis Treat 2008; 4:893-918. [PMID: 19183781 PMCID: PMC2626918 DOI: 10.2147/ndt.s2627] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Molecular genetic studies have identified several genes that may mediate susceptibility to attention deficit hyperactivity disorder (ADHD). A consensus of the literature suggests that when there is a dysfunction in the "brain reward cascade," especially in the dopamine system, causing a low or hypo-dopaminergic trait, the brain may require dopamine for individuals to avoid unpleasant feelings. This high-risk genetic trait leads to multiple drug-seeking behaviors, because the drugs activate release of dopamine, which can diminish abnormal cravings. Moreover, this genetic trait is due in part to a form of a gene (DRD(2) A1 allele) that prevents the expression of the normal laying down of dopamine receptors in brain reward sites. This gene, and others involved in neurophysiological processing of specific neurotransmitters, have been associated with deficient functions and predispose individuals to have a high risk for addictive, impulsive, and compulsive behavioral propensities. It has been proposed that genetic variants of dopaminergic genes and other "reward genes" are important common determinants of reward deficiency syndrome (RDS), which we hypothesize includes ADHD as a behavioral subtype. We further hypothesize that early diagnosis through genetic polymorphic identification in combination with DNA-based customized nutraceutical administration to young children may attenuate behavioral symptoms associated with ADHD. Moreover, it is concluded that dopamine and serotonin releasers might be useful therapeutic adjuncts for the treatment of other RDS behavioral subtypes, including addictions.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pan T, Zhu W, Zhao H, Deng H, Xie W, Jankovic J, Le W. Nurr1 deficiency predisposes to lactacystin-induced dopaminergic neuron injury in vitro and in vivo. Brain Res 2008; 1222:222-9. [PMID: 18579122 DOI: 10.1016/j.brainres.2008.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 05/09/2008] [Accepted: 05/09/2008] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) has been proposed to result from a combination of genetic susceptibility and environmental exposure. Dysfunction of the ubiquitin-proteasome system (UPS) has been implicated in neuron degeneration and in pathogenesis of PD. Nurr1, a member of nuclear receptor superfamily, is a potential susceptibility gene for PD. In this in vitro and in vivo study, we investigated whether Nurr1 deficiency may predispose to environmental proteasome inhibitors-induced neuron injury. We found that lactacystin, an irreversible proteasome inhibitor, caused greater injury to SH-SY5Y cells that Nurr1 expression has been suppressed by small interference RNA (siRNA). On the contrary, the Nurr1 overexpressed SH-SY5Y cells by Nurr1 expression vector transfection rescued the lactacystin-induced injury. In vivo, stereotactic microinjection with lactacystin into right median forebrain bundle (MFB) of mice caused significant inhibition of the proteasome activity in both Nurr1 knock out heterozygous (Nurr1 +/-) mice and their littermate wild-type (Nurr1 +/+) mice. At same time, we found that there was a severer loss of tyrosine hydroxylase (TH)-positive neurons in substantia nigra (SN) and greater reduction of striatal dopamine (DA) levels in Nurr1 +/- mice as compared with that in Nurr1 +/+ mice. Furthermore, lactacystin-induced increase of cleaved PARP, cleaved caspase3 and p53 and decrease of bcl-2 in SN was significantly enhanced in Nurr1 +/- mice. These findings suggest that reduction in Nurr1 expression increases susceptibility to DAergic neuron injury induced by UPS impairment.
Collapse
Affiliation(s)
- Tianhong Pan
- Parkinson's Disease Research Laboratory, Baylor College of Medicine, 6501 Fannin Street, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Volpicelli F, Caiazzo M, Greco D, Consales C, Leone L, Perrone-Capano C, Colucci D'Amato L, di Porzio U. Bdnf gene is a downstream target of Nurr1 transcription factor in rat midbrain neurons in vitro. J Neurochem 2007; 102:441-53. [PMID: 17506860 DOI: 10.1111/j.1471-4159.2007.04494.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transcription factor Nurr1 is essential for the generation of midbrain dopaminergic neurons (mDA). Only a few Nurr1-regulated genes have so far been identified and it remains unclear how Nurr1 influences the development and function of dopaminergic neurons. To identify novel Nurr1 target genes we have used genome-wide expression profiling in rat midbrain primary cultures, enriched in dopaminergic neurons, following up-regulation of Nurr1 expression by depolarization. In this study we demonstrate that following depolarization the hyperexpression of Nurr1 and the brain derived neurotrophic factor (BDNF) are phospholipase C- and protein kinase C-dependent. We show that Bdnf, which encodes a neurotrophin involved also in the phenotypic maturation of mDA neurons, is a novel Nurr1 target gene. By RNA interference experiments we show that a decreased Nurr1 expression is followed by tyrosine hydroxylase and BDNF mRNA and protein down-regulation. Reporter gene assay experiments performed on midbrain primary cultures using four Bdnf promoter constructs show that Bdnf is a direct target gene of Nurr1. Taken together, our findings suggest that Nurr1 might also influence the development and the function of midbrain dopaminergic neurons via direct regulation of Bdnf expression.
Collapse
Affiliation(s)
- Floriana Volpicelli
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Developmental Neurobiology, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Le-Niculescu H, Balaraman Y, Patel S, Tan J, Sidhu K, Jerome RE, Edenberg HJ, Kuczenski R, Geyer MA, Nurnberger JI, Faraone SV, Tsuang MT, Niculescu AB. Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:129-58. [PMID: 17266109 DOI: 10.1002/ajmg.b.30481] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identifying genes for schizophrenia through classical genetic approaches has proven arduous. Here, we present a comprehensive convergent analysis that translationally integrates brain gene expression data from a relevant pharmacogenomic mouse model (involving treatments with a psychomimetic agent - phencyclidine (PCP), and an anti-psychotic - clozapine), with human genetic linkage data and human postmortem brain data, as a Bayesian strategy of cross validating findings. Topping the list of candidate genes, we have three genes involved in GABA neurotransmission (GABRA1, GABBR1, and GAD2), one gene involved in glutamate neurotransmission (GRIA2), one gene involved in neuropeptide signaling (TAC1), two genes involved in synaptic function (SYN2 and KCNJ4), six genes involved in myelin/glial function (CNP, MAL, MBP, PLP1, MOBP and GFAP), and one gene involved in lipid metabolism (LPL). These data suggest that schizophrenia is primarily a disorder of brain functional and structural connectivity, with GABA neurotransmission playing a prominent role. These findings may explain the EEG gamma band abnormalities detected in schizophrenia. The analysis also revealed other high probability candidates genes (neurotransmitter signaling, other structural proteins, ion channels, signal transduction, regulatory enzymes, neuronal migration/neurite outgrowth, clock genes, transcription factors, RNA regulatory genes), pathways and mechanisms of likely importance in pathophysiology. Some of the pathways identified suggest possible avenues for augmentation pharmacotherapy of schizophrenia with other existing agents, such as benzodiazepines, anticonvulsants and lipid modulating agents. Other pathways are new potential targets for drug development. Lastly, a comparison with our earlier work on bipolar disorder illuminates the significant molecular overlap between schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- H Le-Niculescu
- Laboratory of Neurophenomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kumar RA, Leach S, Bonaguro R, Chen J, Yokom DW, Abrahams BS, Seaver L, Schwartz CE, Dobyns W, Brooks-Wilson A, Simpson EM. Mutation and evolutionary analyses identify NR2E1-candidate-regulatory mutations in humans with severe cortical malformations. GENES BRAIN AND BEHAVIOR 2006; 6:503-16. [PMID: 17054721 PMCID: PMC2040186 DOI: 10.1111/j.1601-183x.2006.00277.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear receptor 2E1 (NR2E1) is expressed in human fetal and adult brains; however, its role in human brain–behavior development is unknown. Previously, we have corrected the cortical hypoplasia and behavioral abnormalities in Nr2e1−/− mice using a genomic clone spanning human NR2E1, which bolsters the hypothesis that NR2E1 may similarly play a role in human cortical and behavioral development. To test the hypothesis that humans with abnormal brain–behavior development may have null or hypomorphic NR2E1 mutations, we undertook the first candidate mutation screen of NR2E1 by sequencing its entire coding region, untranslated, splice site, proximal promoter and evolutionarily conserved non-coding regions in 56 unrelated patients with cortical disorders, namely microcephaly. We then genotyped the candidate mutations in 325 unrelated control subjects and 15 relatives. We did not detect any coding region changes in NR2E1; however, we identified seven novel candidate regulatory mutations that were absent from control subjects. We used in silico tools to predict the effects of these candidate mutations on neural transcription factor binding sites (TFBS). Four candidate mutations were predicted to alter TFBS. To facilitate the present and future studies of NR2E1, we also elucidated its molecular evolution, genetic diversity, haplotype structure and linkage disequilibrium by sequencing an additional 94 unaffected humans representing Africa, the Americas, Asia, Europe, the Middle East and Oceania, as well as great apes and monkeys. We detected strong purifying selection, low genetic diversity, 21 novel polymorphisms and five common haplotypes at NR2E1. We conclude that protein-coding changes in NR2E1 do not contribute to cortical and behavioral abnormalities in the patients examined here, but that regulatory mutations may play a role.
Collapse
Affiliation(s)
- R A Kumar
- Centre for Molecular Medicine and Therapeutics and Child & Family Research InstituteVancouver, Canada
- Department of Medical Genetics, University of British ColumbiaVancouver, Canada
| | - S Leach
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer AgencyVancouver, Canada
| | - R Bonaguro
- Centre for Molecular Medicine and Therapeutics and Child & Family Research InstituteVancouver, Canada
| | - J Chen
- Centre for Molecular Medicine and Therapeutics and Child & Family Research InstituteVancouver, Canada
| | - D W Yokom
- Centre for Molecular Medicine and Therapeutics and Child & Family Research InstituteVancouver, Canada
| | - B S Abrahams
- Centre for Molecular Medicine and Therapeutics and Child & Family Research InstituteVancouver, Canada
| | - L Seaver
- Center for Molecular Studies, J.C. Self Research Institute, Greenwood Genetic CenterGreenwood, SC, USA
| | - C E Schwartz
- Center for Molecular Studies, J.C. Self Research Institute, Greenwood Genetic CenterGreenwood, SC, USA
| | - W Dobyns
- University of ChicagoChicago, IL, USA
| | - A Brooks-Wilson
- Department of Medical Genetics, University of British ColumbiaVancouver, Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer AgencyVancouver, Canada
| | - E M Simpson
- Centre for Molecular Medicine and Therapeutics and Child & Family Research InstituteVancouver, Canada
- Department of Medical Genetics, University of British ColumbiaVancouver, Canada
- Corresponding author: Elizabeth M. Simpson, 3020 980 West 28 Ave, Vancouver, BC, Canada V5Z 4H4. E-mail:
| |
Collapse
|
24
|
Leo D, di Porzio U, Racagni G, Riva MA, Fumagalli F, Perrone-Capano C. Chronic cocaine administration modulates the expression of transcription factors involved in midbrain dopaminergic neuron function. Exp Neurol 2006; 203:472-80. [PMID: 17070804 DOI: 10.1016/j.expneurol.2006.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 08/30/2006] [Accepted: 08/31/2006] [Indexed: 10/24/2022]
Abstract
Chronic cocaine use leads to pronounced alterations in neuronal functions in brain circuits associated with reward. In the present study, we examined in the rat midbrain the effects of acute, subchronic (5 days) and chronic cocaine treatments (14 days) on the gene expression of transcription factors involved in the development and maintenance of dopaminergic neurons. We show that chronic, but not acute or subchronic, cocaine administration downregulates Nurr1 and Pitx3 transcripts whereas En1 transcripts are upregulated. Conversely, Lmx1b and En2 transcripts are not affected by the drug treatment, indicating that the modulation of the midbrain transcription factors analyzed is highly selective. Interestingly, modification of the gene expression for these transcription factors persists in midbrain as long as two weeks after the last drug administration, suggesting that it may account for some of the enduring alterations in midbrain dopaminergic circuits associated with chronic cocaine use.
Collapse
Affiliation(s)
- D Leo
- Institute of Genetics and Biophysics A. Buzzati Traverso, CNR, Via Pietro Castellino, 111, 80131-Naples, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Eells JB, Misler JA, Nikodem VM. Reduced tyrosine hydroxylase and GTP cyclohydrolase mRNA expression, tyrosine hydroxylase activity, and associated neurochemical alterations in Nurr1-null heterozygous mice. Brain Res Bull 2006; 70:186-95. [PMID: 16782508 DOI: 10.1016/j.brainresbull.2006.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 05/05/2006] [Accepted: 05/06/2006] [Indexed: 10/24/2022]
Abstract
The nuclear receptor Nurr1 is essential for the development of midbrain dopamine neurons and appears to be an important regulator of dopamine levels as adult Nurr1-null heterozygous (+/-) mice have reduced mesolimbic/mesocortical dopamine levels. The mechanism(s) through which reduced Nurr1 expression affects dopamine levels has not been determined. Quantitative real-time PCR revealed a significant reduction in tyrosine hydroxylase (TH) and GTP cyclohydrolase (GTPCH) mRNA in ventral midbrain of +/- mice as compared to wild-type mice (+/+). The effect on TH expression was only observed at birth, while reduced GTP cyclohydrolase was also observed in the adult ventral tegemental area. No differences in dopamine transporter, vesicular monoamine transporter, dopamine D2 receptor or aromatic amino acid decarboxylase were observed. Since TH and GTPCH are both involved in dopamine synthesis, regulation of in vivo TH activity was measured in these mice. In vivo TH activity was reduced in nucleus accumbens and striatum of the +/- mice (24.7% and 15.7% reduction, respectively). In the striatum, gamma-butyrolactone exacerbated differences on +/- striatal TH activity (29.8% reduction) while haloperidol equalized TH activity between the +/+ and +/-. TH activity in the nucleus accumbens was significantly reduced in all conditions measured. Furthermore, dopamine levels in the striatum of +/- mice were significantly reduced after inhibition of dopamine synthesis or after haloperidol treatment but not under basal conditions while dopamine levels in the nucleus accumbens were reduced under basal conditions. Based on these data the +/- genotype results in changes in gene expression and impairs dopamine synthesis which can affect the maintenance of dopamine levels, although with differential effects between mesolimbic/mesocortical and nigrostriatal dopamine neurons. Together, these data suggest that Nurr1 may function to modify TH and GTPCH expression and dopamine synthesis.
Collapse
Affiliation(s)
- Jeffrey B Eells
- National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|