1
|
van Elst T, Sgarlata GM, Schüßler D, Tiley GP, Poelstra JW, Scheumann M, Blanco MB, Aleixo-Pais IG, Rina Evasoa M, Ganzhorn JU, Goodman SM, Hasiniaina AF, Hending D, Hohenlohe PA, Ibouroi MT, Iribar A, Jan F, Kappeler PM, Le Pors B, Manzi S, Olivieri G, Rakotonanahary AN, Rakotondranary SJ, Rakotondravony R, Ralison JM, Ranaivoarisoa JF, Randrianambinina B, Rasoloarison RM, Rasoloharijaona S, Rasolondraibe E, Teixeira H, Zaonarivelo JR, Louis EE, Yoder AD, Chikhi L, Radespiel U, Salmona J. Integrative taxonomy clarifies the evolution of a cryptic primate clade. Nat Ecol Evol 2025; 9:57-72. [PMID: 39333396 PMCID: PMC11726463 DOI: 10.1038/s41559-024-02547-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Global biodiversity is under accelerating threats, and species are succumbing to extinction before being described. Madagascar's biota represents an extreme example of this scenario, with the added complication that much of its endemic biodiversity is cryptic. Here we illustrate best practices for clarifying cryptic diversification processes by presenting an integrative framework that leverages multiple lines of evidence and taxon-informed cut-offs for species delimitation, while placing special emphasis on identifying patterns of isolation by distance. We systematically apply this framework to an entire taxonomically controversial primate clade, the mouse lemurs (genus Microcebus, family Cheirogaleidae). We demonstrate that species diversity has been overestimated primarily due to the interpretation of geographic variation as speciation, potentially biasing inference of the underlying processes of evolutionary diversification. Following a revised classification, we find that crypsis within the genus is best explained by a model of morphological stasis imposed by stabilizing selection and a neutral process of niche diversification. Finally, by clarifying species limits and defining evolutionarily significant units, we provide new conservation priorities, bridging fundamental and applied objectives in a generalizable framework.
Collapse
Affiliation(s)
- Tobias van Elst
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Gabriele M Sgarlata
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- Department of Evolution and Ecology, University of California, Davis, CA, USA.
| | - Dominik Schüßler
- Institute of Biology and Chemistry, University of Hildesheim, Hildesheim, Germany.
| | - George P Tiley
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biology, Duke University, Durham, NC, USA
| | - Jelmer W Poelstra
- Department of Biology, Duke University, Durham, NC, USA
- Molecular and Cellular Imaging Center, The Ohio State University, Columbus, OH, USA
| | - Marina Scheumann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Isa G Aleixo-Pais
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Mamy Rina Evasoa
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga, Madagascar
| | - Jörg U Ganzhorn
- Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Steven M Goodman
- Field Museum of Natural History, Chicago, IL, USA
- Association Vahatra, Antananarivo, Madagascar
| | - Alida F Hasiniaina
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
- School for International Training, Antananarivo, Madagascar
| | - Daniel Hending
- John Krebs Field Station, Department of Biology, University of Oxford, Wytham, UK
| | - Paul A Hohenlohe
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Mohamed T Ibouroi
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Université de La Réunion, Saint-Denis de La Réunion, France
| | - Amaia Iribar
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300 Université Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France
| | - Fabien Jan
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Peter M Kappeler
- Department Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University Göttingen, Göttingen, Germany
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | | | - Sophie Manzi
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300 Université Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France
| | - Gillian Olivieri
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
- University of Warwick, Coventry, UK
| | - Ando N Rakotonanahary
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga, Madagascar
| | - S Jacques Rakotondranary
- Mention Anthropobiologie et Développement Durable, Faculté des Sciences, Université d'Antananarivo, Antananarivo, Madagascar
| | - Romule Rakotondravony
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga, Madagascar
- Ecole Doctorale Ecosystèmes Naturels (EDEN), Université de Mahajanga, Mahajanga, Madagascar
| | - José M Ralison
- Département de Biologie Animale, Université d'Antananarivo, Antananarivo, Madagascar
| | - J Freddy Ranaivoarisoa
- Mention Anthropobiologie et Développement Durable, Faculté des Sciences, Université d'Antananarivo, Antananarivo, Madagascar
| | - Blanchard Randrianambinina
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga, Madagascar
- Ecole Doctorale Ecosystèmes Naturels (EDEN), Université de Mahajanga, Mahajanga, Madagascar
| | - Rodin M Rasoloarison
- Department Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University Göttingen, Göttingen, Germany
| | | | | | - Helena Teixeira
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS, IFREMER, Université de Nouvelle-Calédonie), Saint-Denis de La Réunion, France
| | - John R Zaonarivelo
- Département des Sciences de la Nature et de l'Environnement, Université d'Antsiranana, Antsiranana, Madagascar
| | - Edward E Louis
- Madagascar Biodiversity Partnership, Antananarivo, Madagascar
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA
| | - Lounès Chikhi
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300 Université Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jordi Salmona
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300 Université Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
2
|
van Elst T, Schüßler D, Rakotondravony R, Rovanirina VST, Veillet A, Hohenlohe PA, Ratsimbazafy JH, Rasoloarison RM, Rasoloharijaona S, Randrianambinina B, Ramilison ML, Yoder AD, Louis EE, Radespiel U. Diversification processes in Gerp's mouse lemur demonstrate the importance of rivers and altitude as biogeographic barriers in Madagascar's humid rainforests. Ecol Evol 2023; 13:e10254. [PMID: 37408627 PMCID: PMC10318617 DOI: 10.1002/ece3.10254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/23/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
Madagascar exhibits exceptionally high levels of biodiversity and endemism. Models to explain the diversification and distribution of species in Madagascar stress the importance of historical variability in climate conditions which may have led to the formation of geographic barriers by changing water and habitat availability. The relative importance of these models for the diversification of the various forest-adapted taxa of Madagascar has yet to be understood. Here, we reconstructed the phylogeographic history of Gerp's mouse lemur (Microcebus gerpi) to identify relevant mechanisms and drivers of diversification in Madagascar's humid rainforests. We used restriction site associated DNA (RAD) markers and applied population genomic and coalescent-based techniques to estimate genetic diversity, population structure, gene flow and divergence times among M. gerpi populations and its two sister species M. jollyae and M. marohita. Genomic results were complemented with ecological niche models to better understand the relative barrier function of rivers and altitude. We show that M. gerpi diversified during the late Pleistocene. The inferred ecological niche, patterns of gene flow and genetic differentiation in M. gerpi suggest that the potential for rivers to act as biogeographic barriers depended on both size and elevation of headwaters. Populations on opposite sides of the largest river in the area with headwaters that extend far into the highlands show particularly high genetic differentiation, whereas rivers with lower elevation headwaters have weaker barrier functions, indicated by higher migration rates and admixture. We conclude that M. gerpi likely diversified through repeated cycles of dispersal punctuated by isolation to refugia as a result of paleoclimatic fluctuations during the Pleistocene. We argue that this diversification scenario serves as a model of diversification for other rainforest taxa that are similarly limited by geographic factors. In addition, we highlight conservation implications for this critically endangered species, which faces extreme habitat loss and fragmentation.
Collapse
Affiliation(s)
- Tobias van Elst
- Institute of ZoologyUniversity of Veterinary Medicine Hannover, FoundationHannoverGermany
| | - Dominik Schüßler
- Research Group Vegetation Ecology and Nature Conservation, Institute of Biology and ChemistryUniversity of HildesheimHildesheimGermany
| | - Romule Rakotondravony
- Ecole Doctorale Ecosystèmes Naturels (EDEN)University of MahajangaMahajangaMadagascar
- Faculté des Sciences, de Technologies et de l'EnvironnementUniversity of MahajangaMahajangaMadagascar
| | - Valisoa S. T. Rovanirina
- Faculté des Sciences, de Technologies et de l'EnvironnementUniversity of MahajangaMahajangaMadagascar
| | - Anne Veillet
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowIdahoUSA
| | - Paul A. Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowIdahoUSA
| | | | | | - Solofonirina Rasoloharijaona
- Ecole Doctorale Ecosystèmes Naturels (EDEN)University of MahajangaMahajangaMadagascar
- Faculté des Sciences, de Technologies et de l'EnvironnementUniversity of MahajangaMahajangaMadagascar
| | - Blanchard Randrianambinina
- Ecole Doctorale Ecosystèmes Naturels (EDEN)University of MahajangaMahajangaMadagascar
- Faculté des Sciences, de Technologies et de l'EnvironnementUniversity of MahajangaMahajangaMadagascar
| | - Miarisoa L. Ramilison
- Faculté des Sciences, de Technologies et de l'EnvironnementUniversity of MahajangaMahajangaMadagascar
- Department of Primate Behavior and EcologyCentral Washington UniversityEllensburgWashingtonUSA
| | - Anne D. Yoder
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Edward E. Louis
- Grewcock Center for Conservation and ResearchOmaha's Henry Doorly Zoo and AquariumOmahaNebraskaUSA
| | - Ute Radespiel
- Institute of ZoologyUniversity of Veterinary Medicine Hannover, FoundationHannoverGermany
| |
Collapse
|
3
|
Shao Y, Zhou L, Li F, Zhao L, Zhang BL, Shao F, Chen JW, Chen CY, Bi X, Zhuang XL, Zhu HL, Hu J, Sun Z, Li X, Wang D, Rivas-González I, Wang S, Wang YM, Chen W, Li G, Lu HM, Liu Y, Kuderna LFK, Farh KKH, Fan PF, Yu L, Li M, Liu ZJ, Tiley GP, Yoder AD, Roos C, Hayakawa T, Marques-Bonet T, Rogers J, Stenson PD, Cooper DN, Schierup MH, Yao YG, Zhang YP, Wang W, Qi XG, Zhang G, Wu DD. Phylogenomic analyses provide insights into primate evolution. Science 2023; 380:913-924. [PMID: 37262173 DOI: 10.1126/science.abn6919] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2023] [Indexed: 06/03/2023]
Abstract
Comparative analysis of primate genomes within a phylogenetic context is essential for understanding the evolution of human genetic architecture and primate diversity. We present such a study of 50 primate species spanning 38 genera and 14 families, including 27 genomes first reported here, with many from previously less well represented groups, the New World monkeys and the Strepsirrhini. Our analyses reveal heterogeneous rates of genomic rearrangement and gene evolution across primate lineages. Thousands of genes under positive selection in different lineages play roles in the nervous, skeletal, and digestive systems and may have contributed to primate innovations and adaptations. Our study reveals that many key genomic innovations occurred in the Simiiformes ancestral node and may have had an impact on the adaptive radiation of the Simiiformes and human evolution.
Collapse
Affiliation(s)
- Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Long Zhou
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fang Li
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Institute of Animal Sex and Development, ZhejiangWanli University, Ningbo 315100, China
| | - Lan Zhao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | | | - Chun-Yan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xupeng Bi
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Lin Zhuang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
| | | | - Jiang Hu
- Grandomics Biosciences, Beijing 102206, China
| | - Zongyi Sun
- Grandomics Biosciences, Beijing 102206, China
| | - Xin Li
- Grandomics Biosciences, Beijing 102206, China
| | - Depeng Wang
- Grandomics Biosciences, Beijing 102206, China
| | | | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun-Mei Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510070, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hui-Meng Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lukas F K Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA 92122, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA 92122, USA
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Jin Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - George P Tiley
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Japan Monkey Centre, Inuyama, Aichi 484-0081, Japan
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | | - Yong-Gang Yao
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Guang Qi
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
4
|
Poelstra JW, Montero BK, Lüdemann J, Yang Z, Rakotondranary SJ, Hohenlohe P, Stetter N, Ganzhorn JU, Yoder AD. RADseq data reveal a lack of admixture in a mouse lemur contact zone contrary to previous microsatellite results. Proc Biol Sci 2022; 289:20220596. [PMID: 35946151 PMCID: PMC9364002 DOI: 10.1098/rspb.2022.0596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microsatellites have been a workhorse of evolutionary genetic studies for decades and are still commonly in use for estimating signatures of genetic diversity at the population and species level across a multitude of taxa. Yet, the very high mutation rate of these loci is a double-edged sword, conferring great sensitivity at shallow levels of analysis (e.g. paternity analysis) but yielding considerable uncertainty for deeper evolutionary comparisons. For the present study, we used reduced representation genome-wide data (restriction site-associated DNA sequencing (RADseq)) to test for patterns of interspecific hybridization previously characterized using microsatellite data in a contact zone between two closely related mouse lemur species in Madagascar (Microcebus murinus and Microcebus griseorufus). We revisit this system by examining populations in, near, and far from the contact zone, including many of the same individuals that had previously been identified as hybrids with microsatellite data. Surprisingly, we find no evidence for admixed nuclear ancestry. Instead, re-analyses of microsatellite data and simulations suggest that previously inferred hybrids were false positives and that the program NewHybrids can be particularly sensitive to erroneously inferring hybrid ancestry. Combined with results from coalescent-based analyses and evidence for local syntopic co-occurrence, we conclude that the two mouse lemur species are in fact completely reproductively isolated, thus providing a new understanding of the evolutionary rate whereby reproductive isolation can be achieved in a primate.
Collapse
Affiliation(s)
- Jelmer W. Poelstra
- Department of Biology, Duke University, Durham, NC 27708, USA,Molecular and Cellular Imaging Center, Ohio State University, Wooster, OH 44691, USA
| | - B. Karina Montero
- Institute of Zoology, Department of Animal Ecology and Conservation, Universität Hamburg, Hamburg, 20146, Germany
| | - Jan Lüdemann
- Institute of Zoology, Department of Animal Ecology and Conservation, Universität Hamburg, Hamburg, 20146, Germany
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - S. Jacques Rakotondranary
- Institute of Zoology, Department of Animal Ecology and Conservation, Universität Hamburg, Hamburg, 20146, Germany,Anthropobiologie et Développement Durable, Faculté des Sciences, Université d'Antananarivo, PO Box 906, Antananarivo 101, Madagascar
| | - Paul Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Nadine Stetter
- Institute of Zoology, Department of Animal Ecology and Conservation, Universität Hamburg, Hamburg, 20146, Germany,Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Jörg U. Ganzhorn
- Institute of Zoology, Department of Animal Ecology and Conservation, Universität Hamburg, Hamburg, 20146, Germany
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
5
|
Tiley GP, van Elst T, Teixeira H, Schüßler D, Salmona J, Blanco MB, Ralison JM, Randrianambinina B, Rasoloarison RM, Stahlke AR, Hohenlohe PA, Chikhi L, Louis EE, Radespiel U, Yoder AD. Population genomic structure in Goodman's mouse lemur reveals long-standing separation of Madagascar's Central Highlands and eastern rainforests. Mol Ecol 2022; 31:4901-4918. [PMID: 35880414 DOI: 10.1111/mec.16632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 06/25/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
Madagascar's Central Highlands are largely composed of grasslands, interspersed with patches of forest. The historical perspective was that Madagascar's grasslands had anthropogenic origins, but emerging evidence suggests that grasslands were a component of the pre-human Central Highlands vegetation. Consequently, there is now vigorous debate regarding the extent to which these grasslands have expanded due to anthropogenic pressures. Here, we shed light on the temporal dynamics of Madagascar's vegetative composition by conducting a population genomic investigation of Goodman's mouse lemur (Microcebus lehilahytsara; Cheirogaleidae). These small-bodied primates occur both in Madagascar's eastern rainforests and in the Central Highlands, making them a valuable indicator species. Population divergences among forest-dwelling mammals will reflect changes to their habitat, including fragmentation, whereas patterns of post-divergence gene flow can reveal formerly wooded migration corridors. To explore these patterns, we used RADseq data to infer population genetic structure, demographic models of post-divergence gene flow, and population size change through time. The results offer evidence that open habitats are an ancient component of the Central Highlands, and that wide-spread forest fragmentation occurred naturally during a period of decreased precipitation near the Last Glacial Maximum. Models of gene flow suggest that migration across the Central Highlands has been possible from the Pleistocene through the recent Holocene via riparian corridors. Though our findings support the hypothesis that Central Highland grasslands predate human arrival, we also find evidence for human-mediated population declines. This highlights the extent to which species imminently threatened by human-mediated deforestation may already be vulnerable from paleoclimatic conditions.
Collapse
Affiliation(s)
- George P Tiley
- Department of Biology, Duke University, Durham, NC, USA.,Royal Botanic Gardens Kew, Richmond, UK
| | - Tobias van Elst
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Helena Teixeira
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Dominik Schüßler
- Research Group Vegetation Ecology and Nature Conservation, Institute of Biology and Chemistry, University of Hildesheim, Hildesheim, Germany
| | - Jordi Salmona
- CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
| | | | - José M Ralison
- Département de Biologie Animale, Université d'Antananarivo, Antananarivo, Madagascar
| | - Blanchard Randrianambinina
- Group d'Etude et de Recherche sur les Primates de Madagascar (GERP), Antananarivo, Madagascar.,Faculté des Sciences, University of Mahajanga, Mahajanga, Madagascar
| | - Rodin M Rasoloarison
- Département de Biologie Animale, Université d'Antananarivo, Antananarivo, Madagascar.,Group d'Etude et de Recherche sur les Primates de Madagascar (GERP), Antananarivo, Madagascar
| | - Amanda R Stahlke
- Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Paul A Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Lounès Chikhi
- CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France.,Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Edward E Louis
- Grewcock Center for Conservation and Research, Omaha's Henry Doorly Zoo and Aquarium, Omaha, NE, USA
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
Teixeira H, van Elst T, Ramsay MS, Rakotondravony R, Salmona J, Yoder AD, Radespiel U. RADseq Data Suggest Occasional Hybridization between Microcebus murinus and M. ravelobensis in Northwestern Madagascar. Genes (Basel) 2022; 13:913. [PMID: 35627298 PMCID: PMC9140448 DOI: 10.3390/genes13050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
The occurrence of natural hybridization has been reported in a wide range of organisms, including primates. The present study focuses on the endemic lemurs of Madagascar, primates for which only a few species occur in sympatry or parapatry with congeners, thereby creating limited opportunity for natural hybridization. This study examines RADseq data from 480 individuals to investigate whether the recent expansion of Microcebus murinus towards the northwest and subsequent secondary contact with Microcebus ravelobensis has resulted in the occurrence of hybridization between the two species. Admixture analysis identified one individual with 26% of nuclear admixture, which may correspond to an F2- or F3-hybrid. A composite-likelihood approach was subsequently used to test the fit of alternative phylogeographic scenarios to the genomic data and to date introgression. The simulations yielded support for low levels of gene flow (2Nm0 = 0.063) between the two species starting before the Last Glacial Maximum (between 54 and 142 kyr). Since M. murinus most likely colonized northwestern Madagascar during the Late Pleistocene, the rather recent secondary contact with M. ravelobensis has likely created the opportunity for occasional hybridization. Although reproductive isolation between these distantly related congeners is not complete, it is effective in maintaining species boundaries.
Collapse
Affiliation(s)
- Helena Teixeira
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (H.T.); (T.v.E.); (M.S.R.)
| | - Tobias van Elst
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (H.T.); (T.v.E.); (M.S.R.)
| | - Malcolm S. Ramsay
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (H.T.); (T.v.E.); (M.S.R.)
- Department of Anthropology, University of Toronto, 19 Russell St., Toronto, ON M5S 2S2, Canada
| | - Romule Rakotondravony
- Ecole Doctorale Ecosystèmes Naturels (EDEN), University of Mahajanga, 5 Rue Georges V—Immeuble KAKAL, Mahajanga Be, B.P. 652, Mahajanga 401, Madagascar;
- Faculté des Sciences, de Technologies et de l’Environnement, University of Mahajanga, 5 Rue Georges V—Immeuble KAKAL, Mahajanga Be, B.P. 652, Mahajanga 401, Madagascar
| | - Jordi Salmona
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France;
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA;
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (H.T.); (T.v.E.); (M.S.R.)
| |
Collapse
|
7
|
Evidence of MHC class I and II influencing viral and helminth infection via the microbiome in a non-human primate. PLoS Pathog 2021; 17:e1009675. [PMID: 34748618 PMCID: PMC8601626 DOI: 10.1371/journal.ppat.1009675] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/18/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023] Open
Abstract
Until recently, the study of major histocompability complex (MHC) mediated immunity has focused on the direct link between MHC diversity and susceptibility to parasite infection. However, MHC genes can also influence host health indirectly through the sculpting of the bacterial community that in turn shape immune responses. We investigated the links between MHC class I and II gene diversity gut microbiome diversity and micro- (adenovirus, AdV) and macro- (helminth) parasite infection probabilities in a wild population of non-human primates, mouse lemurs of Madagascar. This setup encompasses a plethora of underlying interactions between parasites, microbes and adaptive immunity in natural populations. Both MHC classes explained shifts in microbiome composition and the effect was driven by a few select microbial taxa. Among them were three taxa (Odoribacter, Campylobacter and Prevotellaceae-UCG-001) which were in turn linked to AdV and helminth infection status, correlative evidence of the indirect effect of the MHC via the microbiome. Our study provides support for the coupled role of MHC diversity and microbial flora as contributing factors of parasite infection. The selective pressure of the major histocompatibility complex (MHC) on microbial communities, and the potential role of this interaction in driving parasite resistance has been largely neglected. Using a natural population of the primate Microcebus griseorufus, we provide correlative evidence of two outstanding findings: that MHCI and MHCII diversity shapes the composition of the gut microbiota; and that select taxa associated with MHC diversity predicted adenovirus and helminth infection status. Our study highlights the importance of incorporating the microbiome when investigating parasite-mediated MHC selection.
Collapse
|
8
|
Teixeira H, Salmona J, Arredondo A, Mourato B, Manzi S, Rakotondravony R, Mazet O, Chikhi L, Metzger J, Radespiel U. Impact of model assumptions on demographic inferences: the case study of two sympatric mouse lemurs in northwestern Madagascar. BMC Ecol Evol 2021; 21:197. [PMID: 34727890 PMCID: PMC8561976 DOI: 10.1186/s12862-021-01929-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Quaternary climate fluctuations have been acknowledged as major drivers of the geographical distribution of the extraordinary biodiversity observed in tropical biomes, including Madagascar. The main existing framework for Pleistocene Malagasy diversification assumes that forest cover was strongly shaped by warmer Interglacials (leading to forest expansion) and by cooler and arid glacials (leading to forest contraction), but predictions derived from this scenario for forest-dwelling animals have rarely been tested with genomic datasets. RESULTS We generated genomic data and applied three complementary demographic approaches (Stairway Plot, PSMC and IICR-simulations) to infer population size and connectivity changes for two forest-dependent primate species (Microcebus murinus and M. ravelobensis) in northwestern Madagascar. The analyses suggested major demographic changes in both species that could be interpreted in two ways, depending on underlying model assumptions (i.e., panmixia or population structure). Under panmixia, the two species exhibited larger population sizes across the Last Glacial Maximum (LGM) and towards the African Humid Period (AHP). This peak was followed by a population decline in M. ravelobensis until the present, while M. murinus may have experienced a second population expansion that was followed by a sharp decline starting 3000 years ago. In contrast, simulations under population structure suggested decreasing population connectivity between the Last Interglacial and the LGM for both species, but increased connectivity during the AHP exclusively for M. murinus. CONCLUSION Our study shows that closely related species may differ in their responses to climatic events. Assuming that Pleistocene climatic conditions in the lowlands were similar to those in the Malagasy highlands, some demographic dynamics would be better explained by changes in population connectivity than in population size. However, changes in connectivity alone cannot be easily reconciled with a founder effect that was shown for M. murinus during its colonization of the northwestern Madagascar in the late Pleistocene. To decide between the two alternative models, more knowledge about historic forest dynamics in lowland habitats is necessary. Altogether, our study stresses that demographic inferences strongly depend on the underlying model assumptions. Final conclusions should therefore be based on a comparative evaluation of multiple approaches.
Collapse
Affiliation(s)
- Helena Teixeira
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
| | - Jordi Salmona
- Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 118 Route de Narbonne, Bât. 4R1, 31062, Toulouse cedex 9, France
| | - Armando Arredondo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
- Université de Toulouse, Institut National des Sciences Appliquées, Institut de Mathématiques de Toulouse, Toulouse, France
| | - Beatriz Mourato
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Sophie Manzi
- Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 118 Route de Narbonne, Bât. 4R1, 31062, Toulouse cedex 9, France
| | - Romule Rakotondravony
- Ecole Doctorale Ecosystèmes Naturels (EDEN), University of Mahajanga, 5 Rue Georges V - Immeuble KAKAL, Mahajanga Be, B.P. 652, 401, Mahajanga, Madagascar
- Faculté des Sciences, de Technologies et de l'Environnement, University of Mahajanga, 5 Rue Georges V - Immeuble KAKAL, Mahajanga Be, B.P. 652, 401, Mahajanga, Madagascar
| | - Olivier Mazet
- Université de Toulouse, Institut National des Sciences Appliquées, Institut de Mathématiques de Toulouse, Toulouse, France
| | - Lounès Chikhi
- Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 118 Route de Narbonne, Bât. 4R1, 31062, Toulouse cedex 9, France
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Julia Metzger
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17p, 30559, Hannover, Germany
- Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
9
|
Teixeira H, Montade V, Salmona J, Metzger J, Bremond L, Kasper T, Daut G, Rouland S, Ranarilalatiana S, Rakotondravony R, Chikhi L, Behling H, Radespiel U. Past environmental changes affected lemur population dynamics prior to human impact in Madagascar. Commun Biol 2021; 4:1084. [PMID: 34526636 PMCID: PMC8443640 DOI: 10.1038/s42003-021-02620-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
Quaternary climatic changes have been invoked as important drivers of species diversification worldwide. However, the impact of such changes on vegetation and animal population dynamics in tropical regions remains debated. To overcome this uncertainty, we integrated high-resolution paleoenvironmental reconstructions from a sedimentary record covering the past 25,000 years with demographic inferences of a forest-dwelling primate species (Microcebus arnholdi), in northern Madagascar. Result comparisons suggest that climate changes through the African Humid Period (15.2 - 5.5 kyr) strongly affected the demographic dynamics of M. arnholdi. We further inferred a population decline in the last millennium which was likely shaped by the combination of climatic and anthropogenic impacts. Our findings demonstrate that population fluctuations in Malagasy wildlife were substantial prior to a significant human impact. This provides a critical knowledge of climatically driven, environmental and ecological changes in the past, which is essential to better understand the dynamics and resilience of current biodiversity.
Collapse
Affiliation(s)
- Helena Teixeira
- grid.412970.90000 0001 0126 6191Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Vincent Montade
- grid.7450.60000 0001 2364 4210University of Goettingen, Department of Palynology and Climate Dynamics, Untere Karspüle 2, 37073 Goettingen, Germany ,grid.462058.d0000 0001 2188 7059ISEM, Université Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, Montpellier, France
| | - Jordi Salmona
- grid.15781.3a0000 0001 0723 035XCNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Julia Metzger
- grid.412970.90000 0001 0126 6191Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany ,grid.419538.20000 0000 9071 0620Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Laurent Bremond
- grid.462058.d0000 0001 2188 7059ISEM, Université Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, Montpellier, France
| | - Thomas Kasper
- grid.9613.d0000 0001 1939 2794Friedrich-Schiller-University Jena, Department of Physical Geography, Loebdergraben 32, 07743 Jena, Germany
| | - Gerhard Daut
- grid.9613.d0000 0001 1939 2794Friedrich-Schiller-University Jena, Department of Physical Geography, Loebdergraben 32, 07743 Jena, Germany
| | - Sylvie Rouland
- grid.462058.d0000 0001 2188 7059ISEM, Université Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, Montpellier, France
| | - Sandratrinirainy Ranarilalatiana
- grid.440419.c0000 0001 2165 5629Université d’Antananarivo, Faculté des Sciences, Mention Biologie et Ecologie Végétale, Laboratoire de Palynologie Appliquée, B.P 905 - 101, Antananarivo, Madagascar
| | - Romule Rakotondravony
- Ecole Doctorale Ecosystèmes Naturels (EDEN), University of Mahajanga, 5 Rue Georges V - Immeuble KAKAL, Mahajanga Be, B.P. 652, Mahajanga, 401 Madagascar ,Faculté des Sciences, de Technologies et de l’Environnement, University of Mahajanga, 5 Rue Georges V - Immeuble KAKAL, Mahajanga Be, B.P. 652, Mahajanga, 401 Madagascar
| | - Lounès Chikhi
- grid.418346.c0000 0001 2191 3202Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, P-2780-156 Oeiras, Portugal ,grid.4399.70000000122879528Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 118 route de Narbonne, Bât. 4R1, 31062 Toulouse cedex 9, France
| | - Hermann Behling
- grid.7450.60000 0001 2364 4210University of Goettingen, Department of Palynology and Climate Dynamics, Untere Karspüle 2, 37073 Goettingen, Germany
| | - Ute Radespiel
- grid.412970.90000 0001 0126 6191Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| |
Collapse
|
10
|
Poelstra JW, Salmona J, Tiley GP, Schüßler D, Blanco MB, Andriambeloson JB, Bouchez O, Campbell CR, Etter PD, Hohenlohe PA, Hunnicutt KE, Iribar A, Johnson EA, Kappeler PM, Larsen PA, Manzi S, Ralison JM, Randrianambinina B, Rasoloarison RM, Rasolofoson DW, Stahlke AR, Weisrock DW, Williams RC, Chikhi L, Louis EE, Radespiel U, Yoder AD. Cryptic Patterns of Speciation in Cryptic Primates: Microendemic Mouse Lemurs and the Multispecies Coalescent. Syst Biol 2020; 70:203-218. [PMID: 32642760 DOI: 10.1093/sysbio/syaa053] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Mouse lemurs (Microcebus) are a radiation of morphologically cryptic primates distributed throughout Madagascar for which the number of recognized species has exploded in the past two decades. This taxonomic revision has prompted understandable concern that there has been substantial oversplitting in the mouse lemur clade. Here, we investigate mouse lemur diversity in a region in northeastern Madagascar with high levels of microendemism and predicted habitat loss. We analyzed RADseq data with multispecies coalescent (MSC) species delimitation methods for two pairs of sister lineages that include three named species and an undescribed lineage previously identified to have divergent mtDNA. Marked differences in effective population sizes, levels of gene flow, patterns of isolation-by-distance, and species delimitation results were found among the two pairs of lineages. Whereas all tests support the recognition of the presently undescribed lineage as a separate species, the species-level distinction of two previously described species, M. mittermeieri and M. lehilahytsara is not supported-a result that is particularly striking when using the genealogical discordance index (gdi). Nonsister lineages occur sympatrically in two of the localities sampled for this study, despite an estimated divergence time of less than 1 Ma. This suggests rapid evolution of reproductive isolation in the focal lineages and in the mouse lemur clade generally. The divergence time estimates reported here are based on the MSC calibrated with pedigree-based mutation rates and are considerably more recent than previously published fossil-calibrated relaxed-clock estimates. We discuss the possible explanations for this discrepancy, noting that there are theoretical justifications for preferring the MSC estimates in this case. [Cryptic species; effective population size; microendemism; multispecies coalescent; speciation; species delimitation.].
Collapse
Affiliation(s)
| | - Jordi Salmona
- CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, 31062 Toulouse, France
| | - George P Tiley
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Dominik Schüßler
- Research Group Ecology and Environmental Education, Department of Biology, University of Hildesheim, Universitaetsplatz 1, 31141 Hildesheim, Germany
| | - Marina B Blanco
- Department of Biology, Duke University, Durham, NC 27708, USA.,Duke Lemur Center, Duke University, Durham, NC 27705, USA
| | - Jean B Andriambeloson
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo 101, Madagascar
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - C Ryan Campbell
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Paul D Etter
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Paul A Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - Kelsie E Hunnicutt
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Amaia Iribar
- CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, 31062 Toulouse, France
| | - Eric A Johnson
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 6, 37077 Göttingen, Germany
| | - Peter A Larsen
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Sophie Manzi
- CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, 31062 Toulouse, France
| | - JosÉ M Ralison
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo 101, Madagascar
| | - Blanchard Randrianambinina
- Groupe d'Etude et de Recherche sur les Primates de Madagascar (GERP), BP 779, Antananarivo 101, Madagascar.,Faculté des Sciences, University of Mahajanga, Mahajanga, Madagascar
| | - Rodin M Rasoloarison
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 6, 37077 Göttingen, Germany
| | - David W Rasolofoson
- Groupe d'Etude et de Recherche sur les Primates de Madagascar (GERP), BP 779, Antananarivo 101, Madagascar
| | - Amanda R Stahlke
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Rachel C Williams
- Department of Biology, Duke University, Durham, NC 27708, USA.,Duke Lemur Center, Duke University, Durham, NC 27705, USA
| | - LounÈs Chikhi
- CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, 31062 Toulouse, France.,Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Edward E Louis
- Grewcock Center for Conservation and Research, Omaha's Henry Doorly Zoo and Aquarium, Omaha, NE, USA
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany Jelmer Poelstra, Jordi Salmona, George P. Tiley are the joint first authors. Ute Radespiel and Anne D. Yoder are the joint senior authors
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|