1
|
Figus C, Carlson KJ, Bortolini E, Saers J, Seghi F, Sorrentino R, Bernardini F, Vazzana A, Erjavec I, Novak M, Tuniz C, Belcastro MG, Stock J, Ryan TM, Benazzi S. The Ontogeny of the Human Calcaneus: Insights From Morphological and Trabecular Changes During Postnatal Growth. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e70007. [PMID: 39936218 DOI: 10.1002/ajpa.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025]
Abstract
OBJECTIVES To investigate the developmental changes in the human calcaneal internal and external morphology linked to the acquisition of mature bipedal locomotion. METHODS Seventy seven micro-CT scans of modern juvenile calcanei (from perinates to 15 years old) are employed. The chronological period spans from the Middle/Late Neolithic (4800-4500 BCE) to the 20th century. Through a comprehensive approach that comprises geometric morphometric methods and whole-bone trabecular analysis, the calcaneal growing morphology has been explored. RESULTS Morphological changes reflect the development of bipedal locomotion, showing its potential when tracking the major locomotor milestones. The calcaneal shape is immature and almost featureless during the first year of life. The internal architecture is dense and isotropic with numerous thin trabeculae closely packed together. The internal architecture changes to better adapt to variations in load stimulated by a more mature gait by increasing bone mass and alignment, with fewer and thicker struts. The external morphology shows its plasticity by increasing the surface area where greater strain is expected and changing the orientation of the articular facets. CONCLUSIONS Analysis of morphological changes in the growing calcaneus highlights the importance of an integrative methodology when exploring developmental bone plasticity. The changes in calcaneal internal and external morphologies reflect the different loading patterns experienced during growth, gradually shifting from a more generalized morphology to a more adult-like one, reflecting major locomotor achievement. Our research shows that although initially genetically driven, calcaneal plasticity may display mechanical influences and provide precious information on tracking the main locomotor milestones.
Collapse
Affiliation(s)
- Carla Figus
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Kristian J Carlson
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Jaap Saers
- Naturalis Biodiversity Center, Leiden, CR, the Netherlands
| | - Francesca Seghi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Rita Sorrentino
- Department of Biological, Geological and Environmental Sciences-Bigea, University of Bologna, Bologna, Italy
| | - Federico Bernardini
- Department of Humanistic Studies, Università Ca' Foscari, Venezia, Italy
- Laboratory for Mineralized Tissue, Centre for Translational and Clinical Research, Zagreb, Croatia
- Multidisciplinary Laboratory, Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| | - Antonino Vazzana
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Igor Erjavec
- Laboratory for Mineralized Tissue, Centre for Translational and Clinical Research, Zagreb, Croatia
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
- Department of Archaeology and Heritage, Faculty of Humanities, University of Primorska, Koper, Slovenia
| | - Claudio Tuniz
- Department of Humanistic Studies, Università Ca' Foscari, Venezia, Italy
- Laboratory for Mineralized Tissue, Centre for Translational and Clinical Research, Zagreb, Croatia
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences-Bigea, University of Bologna, Bologna, Italy
| | - Jay Stock
- Department of Anthropology, Western University, London, Ontario, Canada
| | - Timothy M Ryan
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| |
Collapse
|
2
|
Lukova A, Dunmore CJ, Bachmann S, Synek A, Pahr DH, Kivell TL, Skinner MM. Trabecular architecture of the distal femur in extant hominids. J Anat 2024; 245:156-180. [PMID: 38381116 PMCID: PMC11161831 DOI: 10.1111/joa.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Extant great apes are characterized by a wide range of locomotor, postural and manipulative behaviours that each require the limbs to be used in different ways. In addition to external bone morphology, comparative investigation of trabecular bone, which (re-)models to reflect loads incurred during life, can provide novel insights into bone functional adaptation. Here, we use canonical holistic morphometric analysis (cHMA) to analyse the trabecular morphology in the distal femoral epiphysis of Homo sapiens (n = 26), Gorilla gorilla (n = 14), Pan troglodytes (n = 15) and Pongo sp. (n = 9). We test two predictions: (1) that differing locomotor behaviours will be reflected in differing trabecular architecture of the distal femur across Homo, Pan, Gorilla and Pongo; (2) that trabecular architecture will significantly differ between male and female Gorilla due to their different levels of arboreality but not between male and female Pan or Homo based on previous studies of locomotor behaviours. Results indicate that trabecular architecture differs among extant great apes based on their locomotor repertoires. The relative bone volume and degree of anisotropy patterns found reflect habitual use of extended knee postures during bipedalism in Homo, and habitual use of flexed knee posture during terrestrial and arboreal locomotion in Pan and Gorilla. Trabecular architecture in Pongo is consistent with a highly mobile knee joint that may vary in posture from extension to full flexion. Within Gorilla, trabecular architecture suggests a different loading of knee in extension/flexion between females and males, but no sex differences were found in Pan or Homo, supporting our predictions. Inter- and intra-specific variation in trabecular architecture of distal femur provides a comparative context to interpret knee postures and, in turn, locomotor behaviours in fossil hominins.
Collapse
Affiliation(s)
- Andrea Lukova
- Skeletal Biology Research Centre, School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Christopher J. Dunmore
- Skeletal Biology Research Centre, School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Sebastian Bachmann
- Institute of Lightweight Design and Structural BiomechanicsTU WienWienAustria
| | - Alexander Synek
- Institute of Lightweight Design and Structural BiomechanicsTU WienWienAustria
| | - Dieter H. Pahr
- Institute of Lightweight Design and Structural BiomechanicsTU WienWienAustria
- Department of Anatomy and Biomechanics, Division BiomechanicsKarl Landsteiner University of Health SciencesKremsAustria
| | - Tracy L. Kivell
- Department of Human OriginsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Matthew M. Skinner
- Department of Human OriginsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| |
Collapse
|
3
|
Harper CM, Patel BA. Trabecular bone variation in the gorilla calcaneus. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24939. [PMID: 38631677 DOI: 10.1002/ajpa.24939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/15/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVES Calcaneal external shape differs among nonhuman primates relative to locomotion. Such relationships between whole-bone calcaneal trabecular structure and locomotion, however, have yet to be studied. Here we analyze calcaneal trabecular architecture in Gorilla gorilla gorilla, Gorilla beringei beringei, and G. b. graueri to investigate general trends and fine-grained differences among gorilla taxa relative to locomotion. MATERIALS AND METHODS Calcanei were micro-CT scanned. A three-dimensional geometric morphometric sliding semilandmark analysis was carried out and the final landmark configurations used to position 156 volumes of interest. Trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), and bone volume fraction (BV/TV) were calculated using the BoneJ plugin for ImageJ and MATLAB. Non-parametric MANOVAs were run to test for significant differences among taxa in parameter raw values and z-scores. Parameter distributions were visualized using color maps and summarized using principal components analysis. RESULTS There are no significant differences in raw BV/TV or Tb.Th among gorillas, however G. b. beringei significantly differs in z-scores for both parameters (p = <0.0271). All three taxa exhibit relatively lower BV/TV and Tb.Th in the posterior half of the calcaneus. This gradation is exacerbated in G. b. beringei. G. b. graueri significantly differs from other taxa in Tb.Sp z-scores (p < 0.001) indicating a different spacing distribution. DISCUSSION Relatively higher Tb.Th and BV/TV in the anterior calcaneus among gorillas likely reflects higher forces associated with body mass (transmitted through the subtalar joint) relative to forces transferred through the posterior calcaneus. The different Tb.Sp pattern in G. b. graueri may reflect proposed differences in foot positioning during locomotion.
Collapse
Affiliation(s)
- Christine M Harper
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Biren A Patel
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Human and Evolutionary Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Galassi FM, Lorkiewicz W, Filipiak J, Nikodem A, Żądzińska E. Age- and sex-related changes in vertebral trabecular bone architecture in Neolithic and Mediaeval populations from Poland. Sci Rep 2024; 14:9977. [PMID: 38693297 PMCID: PMC11063184 DOI: 10.1038/s41598-024-59946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
This paper investigates trabecular bone ontogenetic changes in two different Polish populations, one prehistoric and the other historical. The studied populations are from the Brześć Kujawski region in Kujawy (north-central Poland), one from the Neolithic Period (4500-4000 BC) and one from the Middle Ages (twelfth-sixteenth centuries AD), in total 62 vertebral specimens (32 males, 30 females). Eight morphometric parameters acquired from microCT scan images were analysed. Two-way ANOVA after Box-Cox transformation and multifactorial regression model were calculated. A significant decrease in percentage bone volume fraction (BV/TV; [%]) with age at death was observed in the studied sample; Tb.N (trabecular number) was also significantly decreased with age; trabecular separation (Tb.Sp) increased with advancing age; connectivity density (Conn.D) was negatively correlated with biological age and higher in the Neolithic population. These data are found to be compatible with data from the current biomedical literature, while no loss of horizontal trabeculae was recorded as would be expected based on modern osteoporosis.
Collapse
Affiliation(s)
- Francesco Maria Galassi
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | - Wiesław Lorkiewicz
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jarosław Filipiak
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Anna Nikodem
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Elżbieta Żądzińska
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Biological Anthropology and Comparative Anatomy Research Unit, School of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
5
|
Cartwright C, Ragni A, Hublin JJ, Chirchir H. Trabecular bone volume fraction in Holocene and Late Pleistocene humans. J Hum Evol 2024; 190:103499. [PMID: 38569444 DOI: 10.1016/j.jhevol.2024.103499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 04/05/2024]
Abstract
Research suggests that recent modern humans have gracile skeletons in having low trabecular bone volume fraction (BV/TV) and that gracilization of the skeleton occurred in the last 10,000 years. This has been attributed to a reduction in physical activity in the Holocene. However, there has been no thorough sampling of BV/TV in Pleistocene humans due to limited access to high resolution images of fossil specimens. Therefore, our study investigates the gracilization of BV/TV in Late Pleistocene humans and recent (Holocene) modern humans to improve our understanding of the emergence of gracility. We used microcomputed tomography to measure BV/TV in the femora, humeri and metacarpals of a sample of Late Pleistocene humans from Dolní Věstonice (Czech Republic, ∼26 ka, n = 6) and Ohalo II (Israel, ∼19 ka, n = 1), and a sample of recent humans including farming groups (n = 39) and hunter-gatherers (n = 6). We predicted that 1) Late Pleistocene humans would exhibit greater femoral and humeral head BV/TV compared with recent humans and 2) among recent humans, metacarpal head BV/TV would be greater in hunter-gatherers compared with farmers. Late Pleistocene humans had higher BV/TV compared with recent humans in both the femur and humerus, supporting our first prediction, and consistent with previous findings that Late Pleistocene humans are robust as compared to recent humans. However, among recent humans, there was no significant difference in BV/TV in the metacarpals between the two subsistence groups. The results highlight the similarity in BV/TV in the hand of two human groups from different geographic locales and subsistence patterns and raise questions about assumptions of activity levels in archaeological populations and their relationships to trabecular BV/TV.
Collapse
Affiliation(s)
- Caroline Cartwright
- Department of Biological Sciences, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Anna Ragni
- Department of Biology, University of Tampa, 401 W. Kennedy Boulevard, Tampa, FL 33606, USA
| | - Jean-Jacques Hublin
- Paléoanthropologie, CIRB (UMR 7241 - U1050), Collège de France, 11 Place Marcelin-Berthelot, 75231, Paris Cedex 05, France; Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Habiba Chirchir
- Department of Biological Sciences, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA; Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, P.O Box 37012, Room 153, MRC 010, Washington, DC 20013, USA.
| |
Collapse
|
6
|
Tanner SB, Bardo A, Davies TW, Dunmore CJ, Johnston RE, Owen NJ, Kivell TL, Skinner MM. Variation and covariation of external shape and cross-sectional geometry in the human metacarpus. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24866. [PMID: 37929663 PMCID: PMC10952563 DOI: 10.1002/ajpa.24866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/05/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVES Analyses of external bone shape using geometric morphometrics (GM) and cross-sectional geometry (CSG) are frequently employed to investigate bone structural variation and reconstruct activity in the past. However, the association between these methods has not been thoroughly investigated. Here, we analyze whole bone shape and CSG variation of metacarpals 1-5 and test covariation between them. MATERIALS AND METHODS We analyzed external metacarpal shape using GM and CSG of the diaphysis at three locations in metacarpals 1-5. The study sample includes three modern human groups: crew from the shipwrecked Mary Rose (n = 35 metacarpals), a Pre-industrial group (n = 50), and a Post-industrial group (n = 31). We tested group differences in metacarpal shape and CSG, as well as correlations between these two aspects of metacarpal bone structure. RESULTS GM analysis demonstrated metacarpus external shape variation is predominately related to changes in diaphyseal width and articular surface size. Differences in external shape were found between the non-pollical metacarpals of the Mary Rose and Pre-industrial groups and between the third metacarpals of the Pre- and Post-industrial groups. CSG results suggest the Mary Rose and Post-industrial groups have stronger metacarpals than the Pre-industrial group. Correlating CSG and external shape showed significant relationships between increasing external robusticity and biomechanical strength across non-pollical metacarpals (r: 0.815-0.535; p ≤ 0.05). DISCUSSION Differences in metacarpal cortical structure and external shape between human groups suggest differences in the type and frequency of manual activities. Combining these results with studies of entheses and kinematics of the hand will improve reconstructions of manual behavior in the past.
Collapse
Affiliation(s)
- Samuel B. Tanner
- School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Ameline Bardo
- School of Anthropology and ConservationUniversity of KentCanterburyUK
- UMR 7194 ‐ Histoire Naturelle de l'Homme Préhistorique (HNHP)CNRS‐Muséum National d'Histoire NaturelleParisFrance
| | - Thomas W. Davies
- School of Anthropology and ConservationUniversity of KentCanterburyUK
- Department of Human OriginsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | | | - Richard E. Johnston
- Advanced Imaging of Materials (AIM) Facility, Faculty of Science and Engineering, Bay CampusSwansea UniversitySwanseaUK
| | - Nicholas J. Owen
- Applied Sports Technology Exercise and Medicine Research Centre (A‐STEM), School of Engineering and Applied Sciences, Bay CampusSwansea UniversitySwanseaUK
| | - Tracy L. Kivell
- School of Anthropology and ConservationUniversity of KentCanterburyUK
- Department of Human OriginsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | | |
Collapse
|
7
|
Reid RAG, Davies C, Cunningham C. The developing juvenile talus: Radiographic identification of distinct ontogenetic phases and structural trajectories. J Anat 2024; 244:75-95. [PMID: 37559440 PMCID: PMC10734662 DOI: 10.1111/joa.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/20/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
Trabecular bone architecture in the developing skeleton is a widely researched area of bone biomechanics; however, despite its significance in weight-bearing locomotion, the developing talus has received limited examination. This study investigates the talus with the purpose of identifying ontogenetic phases and developmental patterns that contribute to the growing understanding of the developing juvenile skeleton. Colour gradient mapping and radiographic absorptiometry were utilised to investigate 62 human tali from 38 individuals, ranging in age-at-death from 28 weeks intrauterine to 20 years of age. The perinatal talus exhibited a rudimentary pattern comparable to the structural organisation observed within the late adolescent talus. This early internal organisation is hypothesised to be related to the vascular pattern of the talus. After 2 years of age, the talus demonstrated refinement, where radiographic trajectories progressively developed into patterns consistent with adult trabecular organisation, which are linked to the forces associated with the bipedal gait, suggesting a strong influence of biomechanical forces on the development of the talus.
Collapse
Affiliation(s)
- Rebecca A. G. Reid
- Centre for Anatomy and Human Identification, School of Science and EngineeringUniversity of DundeeDundeeUK
| | - Catriona Davies
- Centre for Anatomy and Human Identification, School of Science and EngineeringUniversity of DundeeDundeeUK
| | - Craig Cunningham
- Centre for Anatomy and Human Identification, School of Science and EngineeringUniversity of DundeeDundeeUK
| |
Collapse
|
8
|
Harper CM, Zipfel B, DeSilva JM, McNutt EJ, Thackeray F, Braga J. A new early hominin calcaneus from Kromdraai (South Africa). J Anat 2022; 241:500-517. [PMID: 35373345 PMCID: PMC9296044 DOI: 10.1111/joa.13660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022] Open
Abstract
The Kromdraai site in South Africa has yielded numerous early hominin fossils since 1938. As a part of recent excavations within Unit P, a largely complete early hominin calcaneus (KW 6302) was discovered. Due to its role in locomotion, the calcaneus has the potential to reveal important form/function relationships. Here, we describe KW 6302 and analyze its preserved morphology relative to human and nonhuman ape calcanei, as well as calcanei attributed to Australopithecus afarensis, Australopithecus africanus, Australopithecus sediba, Homo naledi, and the Omo calcaneus (either Paranthropus or early Homo). KW 6302 calcaneal morphology is assessed using numerous quantitative metrics including linear measures, calcaneal robusticity index, relative lateral plantar process position, Achilles tendon length reconstruction, and a three-dimensional geometric morphometric sliding semilandmark analysis. KW 6302 exhibits an overall calcaneal morphology that is intermediate between humans and nonhuman apes, although closer to modern humans. KW 6302 possesses many traits that indicate it was likely well-adapted for terrestrial bipedal locomotion, including a relatively flat posterior talar facet and a large lateral plantar process that is similarly positioned to modern humans. It also retains traits that indicate that climbing may have remained a part of its locomotor repertoire, such as a relatively gracile tuber and a large peroneal trochlea. Specimens from Kromdraai have been attributed to either Paranthropus robustus or early Homo; however, there are no definitively attributed calcanei for either genus, making it difficult to taxonomically assign this specimen. KW 6302 and the Omo calcaneus, however, fall outside the range of expected variation for an extant genus, indicating that if the Omo calcaneus was Paranthropus, then KW 6302 would likely be attributed to early Homo (or vice versa).
Collapse
Affiliation(s)
- Christine M. Harper
- Department of Biomedical SciencesCooper Medical School of Rowan UniversityCamdenNew JerseyUSA
| | - Bernhard Zipfel
- Evolutionary Studies InstituteUniversity of the WitwatersrandJohannesburgSouth Africa
| | | | - Ellison J. McNutt
- Department of Biomedical SciencesOhio University Heritage College of Osteopathic MedicineAthensOhioUSA
| | - Francis Thackeray
- Evolutionary Studies InstituteUniversity of the WitwatersrandJohannesburgSouth Africa
| | - José Braga
- Evolutionary Studies InstituteUniversity of the WitwatersrandJohannesburgSouth Africa
- Centre d'Anthropobiologie et de Génomique de ToulouseUniversité Paul Sabatier Toulouse IIIToulouseFrance
| |
Collapse
|
9
|
Ontogenetic Patterning of Human Subchondral Bone Microarchitecture in the Proximal Tibia. BIOLOGY 2022; 11:biology11071002. [PMID: 36101383 PMCID: PMC9312028 DOI: 10.3390/biology11071002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 01/11/2023]
Abstract
High-resolution computed tomography images were acquired for 31 proximal human tibiae, age 8 to 37.5 years, from Norris Farms #36 cemetery site (A.D. 1300). Morphometric analysis of subchondral cortical and trabecular bone architecture was performed between and within the tibial condyles. Kruskal−Wallis and Wilcoxon signed-rank tests were used to examine the association between region, age, body mass, and each morphometric parameter. The findings indicate that age-related changes in mechanical loading have varied effects on subchondral bone morphology. With age, trabecular microstructure increased in bone volume fraction (p = 0.033) and degree of anisotropy (p = 0.012), and decreased in connectivity density (p = 0.001). In the subchondral cortical plate, there was an increase in thickness (p < 0.001). When comparing condylar regions, only degree of anisotropy differed (p = 0.004) between the medial and lateral condyles. Trabeculae in the medial condyle were more anisotropic than in the lateral region. This research represents an innovative approach to quantifying both cortical and trabecular subchondral bone microarchitecture in archaeological remains.
Collapse
|
10
|
Bird EE, Kivell TL, Skinner MM. Patterns of internal bone structure and functional adaptation in the hominoid scaphoid, lunate, and triquetrum. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021. [DOI: 10.1002/ajpa.24449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Emma E. Bird
- Skeletal Biology Research Centre, School of Anthropology and Conservation University of Kent Canterbury UK
| | - Tracy L. Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation University of Kent Canterbury UK
- Department of Human Evolution Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - Matthew M. Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation University of Kent Canterbury UK
- Department of Human Evolution Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| |
Collapse
|
11
|
Unique foot posture in Neanderthals reflects their body mass and high mechanical stress. J Hum Evol 2021; 161:103093. [PMID: 34749003 DOI: 10.1016/j.jhevol.2021.103093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 11/20/2022]
Abstract
Neanderthal foot bone proportions and morphology are mostly indistinguishable from those of Homo sapiens, with the exception of several distinct Neanderthal features in the talus. The biomechanical implications of these distinct talar features remain contentious, fueling debate around the adaptive meaning of this distinctiveness. With the aim of clarifying this controversy, we test phylogenetic and behavioral factors as possible contributors, comparing tali of 10 Neanderthals and 81 H. sapiens (Upper Paleolithic and Holocene hunter-gatherers, agriculturalists, and postindustrial group) along with the Clark Howell talus (Omo, Ethiopia). Variation in external talar structures was assessed through geometric morphometric methods, while bone volume fraction and degree of anisotropy were quantified in a subsample (n = 45). Finally, covariation between point clouds of site-specific trabecular variables and surface landmark coordinates was assessed. Our results show that although Neanderthal talar external and internal morphologies were distinct from those of H. sapiens groups, shape did not significantly covary with either bone volume fraction or degree of anisotropy, suggesting limited covariation between external and internal talar structures. Neanderthal external talar morphology reflects ancestral retentions, along with various adaptations to high levels of mobility correlated to their presumably unshod hunter-gatherer lifestyle. This pairs with their high site-specific trabecular bone volume fraction and anisotropy, suggesting intense and consistently oriented locomotor loading, respectively. Relative to H.sapiens, Neanderthals exhibit differences in the talocrural joint that are potentially attributable to cultural and locomotor behavior dissimilarity, a talonavicular joint that mixes ancestral and functional traits, and a derived subtalar joint that suggests a predisposition for a pronated foot during stance phase. Overall, Neanderthal talar variation is attributable to mobility strategy and phylogenesis, while H. sapiens talar variation results from the same factors plus footwear. Our results suggest that greater Neanderthal body mass and/or higher mechanical stress uniquely led to their habitually pronated foot posture.
Collapse
|
12
|
Arias-Martorell J, Zeininger A, Kivell TL. Trabecular structure of the elbow reveals divergence in knuckle-walking biomechanical strategies of African apes. Evolution 2021; 75:2959-2971. [PMID: 34570906 DOI: 10.1111/evo.14354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023]
Abstract
African apes engage in a distinct form of locomotion called knuckle-walking, but there is much ambiguity as to when and how this locomotor behavior evolved. This study aims to elucidate potential differences in knuckle-walking elbow posture and loading in African apes through the study of trabecular bone. Using a whole-epiphysis approach, we quantified variation in the trabecular structure of the distal humerus of chimpanzees, western lowland gorillas, and mountain gorillas in comparison to orang-utans, siamangs, and a sample of Old and New World monkeys. Results demonstrate differences in the distribution of trabecular bone within the distal humerus that are consistent across taxa that habitually use a flexed-elbow posture in comparison to those that use an extended elbow during locomotion. Western lowland gorillas show an extended-elbow pattern consistent with the straight forelimb position during knuckle-walking, whereas chimpanzees show a flexed-elbow pattern. Unexpectedly, mountain gorillas show an intermediate pattern between their western counterparts and chimpanzees. The differences found in elbow joint posture between chimpanzees and gorillas, and between gorilla species, point to diversification in the knuckle-walking biomechanical strategies among African apes, which has implications in the debate regarding the locomotor behavior from which human bipedalism arose.
Collapse
Affiliation(s)
- Julia Arias-Martorell
- Institut Català de Paleontologia Miquel Crusafont, Edifici ICTA-ICP, Carrer Columnes s/n, Campus de la UAB, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.,Animal Postcranial Evolution (APE) Laboratory, School of Anthropology and Conservation, Marlowe Building, University of Kent, Canterbury, UK
| | - Angel Zeininger
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Tracy L Kivell
- Animal Postcranial Evolution (APE) Laboratory, School of Anthropology and Conservation, Marlowe Building, University of Kent, Canterbury, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
13
|
Agarwal SC. What is normal bone health? A bioarchaeological perspective on meaningful measures and interpretations of bone strength, loss, and aging. Am J Hum Biol 2021; 33:e23647. [PMID: 34272787 DOI: 10.1002/ajhb.23647] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Bioarchaeological (the study of archeological human remains together with contextual and documentary evidence) offers a unique vantage point to examine variation in skeletal morphology related to influences such as activity, disease, and nutrition. The human skeleton is composed of a dynamic tissue that is forged by biocultural factors over the entire life course, providing a record of individual, and community history. Various aspects of adult bone health, particularly bone maintenance and loss and the associated skeletal disease osteoporosis, have been examined in numerous past populations. The anthropological study of bone loss has traditionally focused on the signature of postmenopausal aging, costs of reproduction, and fragility in females. The a priori expectation of normative sex-related bone loss/fragility in bioanthropological studies illustrates the wider gender-ideological bias that continues in research design and data analysis in the field. Contextualized data on bone maintenance and aging in the archeological record show that patterns of bone loss do not constitute predictable consequences of aging or biological sex. Instead, the critical examination of bioarchaeological data highlights the complex and changing processes that craft the human body over the life course, and calls for us to question the ideal or "normal" range of bone quantity and quality in the human skeleton, and to critically reflect on what measures are actually biologically and/or socially meaningful.
Collapse
Affiliation(s)
- Sabrina C Agarwal
- Department of Anthropology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
14
|
Saers JPP, DeMars LJ, Stephens NB, Jashashvili T, Carlson KJ, Gordon AD, Shaw CN, Ryan TM, Stock JT. Combinations of trabecular and cortical bone properties distinguish various loading modalities between athletes and controls. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 174:434-450. [PMID: 33244746 DOI: 10.1002/ajpa.24176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/06/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Variation in trabecular and cortical bone properties is often used to infer habitual behavior in the past. However, the structures of both types of bone are rarely considered together and may even contradict each other in functional interpretations. We examine trabecular and cortical bone properties in various athletes and sedentary controls to clarify the associations between combinations of cortical and trabecular bone properties and various loading modalities. MATERIALS AND METHODS We compare trabecular and cortical bone properties using peripheral quantitative computed tomography scans of the tibia between groups of 83 male athletes (running, hockey, swimming, cricket) and sedentary controls using Bayesian multilevel models. We quantify midshaft cortical bone rigidity and area (J, CA), midshaft shape index (Imax/Imin), and mean trabecular bone mineral density (BMD) in the distal tibia. RESULTS All groups show unique combinations of biomechanical properties. Cortical bone rigidity is high in sports that involve impact loading (cricket, running, hockey) and low in nonimpact loaded swimmers and controls. Runners have more anteroposteriorly elliptical midshafts compared to other groups. Interestingly, all athletes have greater trabecular BMD compared to controls, but do not differ credibly among each other. DISCUSSION Results suggest that cortical midshaft hypertrophy is associated with impact loading while trabecular BMD is positively associated with both impact and nonimpact loading. Midshaft shape is associated with directionality of loading. Individuals from the different categories overlap substantially, but group means differ credibly, suggesting that nuanced group-level inferences of habitual behavior are possible when combinations of trabecular and cortical bone are analyzed.
Collapse
Affiliation(s)
- Jaap P P Saers
- Department of Archaeology, Cambridge University, Cambridge, Cambridgeshire, United Kingdom of Great Britain and Northern Ireland
| | - Lily J DeMars
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Nicholas B Stephens
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tea Jashashvili
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Geology and Paleontology, Georgian National Museum, Tbilisi, Georgia
| | - Kristian J Carlson
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Adam D Gordon
- Department of Anthropology, University at Albany, SUNY, Albany, New York, USA
| | | | - Timothy M Ryan
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jay T Stock
- Department of Archaeology, Cambridge University, Cambridge, Cambridgeshire, United Kingdom of Great Britain and Northern Ireland.,Department of Anthropology, Western University, London, Ontario, Canada
| |
Collapse
|
15
|
Saers JPP, DeMars LJ, Stephens NB, Jashashvili T, Carlson KJ, Gordon AD, Ryan TM, Stock JT. Automated resolution independent method for comparing in vivo and dry trabecular bone. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 174:822-831. [PMID: 33244765 DOI: 10.1002/ajpa.24181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Variation in human trabecular bone morphology can be linked to habitual behavior, but it is difficult to investigate in vivo due to the radiation required at high resolution. Consequently, functional interpretations of trabecular morphology remain inferential. Here we introduce a method to link low- and high-resolution CT data from dry and fresh bone, enabling bone functional adaptation to be studied in vivo and results compared to the fossil and archaeological record. MATERIALS AND METHODS We examine 51 human dry bone distal tibiae from Nile Valley and UK and two pig tibiae containing soft tissues. We compare low-resolution peripheral quantitative computed tomography (pQCT) parameters and high-resolution micro CT (μCT) in homologous single slices at 4% bone length and compare results to our novel Bone Ratio Predictor (BRP) method. RESULTS Regression slopes between linear attenuation coefficients of low-resolution pQCT images and bone area/total area (BA/TA) of high-resolution μCT scans differ substantially between geographical subsamples, presumably due to diagenesis. BRP accurately predicts BA/TA (R2 = .97) and eliminates the geographic clustering. BRP accurately estimates BA/TA in pigs containing soft tissues (R2 = 0.98) without requiring knowledge of true density or phantom calibration of the scans. DISCUSSION BRP allows automated comparison of image data from different image modalities (pQCT, μCT) using different energy settings, in archeological bone and wet specimens. The method enables low-resolution data generated in vivo to be compared with the fossil and archaeological record. Such experimental approaches would substantially improve behavioral inferences based on trabecular bone microstructure.
Collapse
Affiliation(s)
- Jaap P P Saers
- Department of Archaeology, Cambridge University, Cambridge, United Kingdom
| | - Lily J DeMars
- Department of Anthropology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Nicholas B Stephens
- Department of Anthropology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Tea Jashashvili
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Geology and Paleontology, Georgian National Museum, Tbilisi, Georgia
| | - Kristian J Carlson
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Adam D Gordon
- Department of Anthropology, University at Albany, SUNY, Albany, New York, USA
| | - Timothy M Ryan
- Department of Anthropology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Jay T Stock
- Department of Archaeology, Cambridge University, Cambridge, United Kingdom.,Department of Anthropology, Western University, London, Canada
| |
Collapse
|
16
|
DeMars LJD, Stephens NB, Saers JPP, Gordon A, Stock JT, Ryan TM. Using point clouds to investigate the relationship between trabecular bone phenotype and behavior: An example utilizing the human calcaneus. Am J Hum Biol 2020; 33:e23468. [PMID: 32790125 DOI: 10.1002/ajhb.23468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES The objective of this study is to demonstrate a new method for analyzing trabecular bone volume fraction and degree of anisotropy in three dimensions. METHODS We use a combination of automatic mesh registration, point-cloud correspondence registration, and P-value corrected univariate statistical tests to compare bone volume fraction and degree of anisotropy on a point by point basis across the entire calcaneus of two human groups with different subsistence strategies. RESULTS We found that the patterns of high and low bone volume fraction and degree of anisotropy distribution between the Black Earth (hunter-gatherers) and Norris Farms (mixed-strategy agriculturalists) are very similar, but differ in magnitude. The hunter-gatherers exhibit higher levels of bone volume fraction and less anisotropic trabecular bone organization. Additionally, patterns of bone volume fraction and degree of anisotropy in the calcaneus correspond well with biomechanical expectations of relative forces experienced during walking and running. CONCLUSIONS We conclude that comparing site-specific, localized differences in trabecular bone variables such as bone volume fraction and degree of anisotropy in three-dimensions is a powerful analytical tool. This method makes it possible to determine where similarities and differences between groups are located within the whole skeletal element of interest. The visualization of multiple variables also provides a way for researchers to see how the trabecular bone variables interact within the morphology, and allows for a more nuanced understanding of how they relate to one another and the broader mechanical environment.
Collapse
Affiliation(s)
- Lily J D DeMars
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Nicholas B Stephens
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jaap P P Saers
- Department of Archaeology, Cambridge University, Cambridge, UK
| | - Adam Gordon
- Department of Anthropology, University at Albany, SUNY, Albany, New York, USA
| | - Jay T Stock
- Department of Archaeology, Cambridge University, Cambridge, UK.,Department of Anthropology, Western University, London, Ontario, Canada
| | - Timothy M Ryan
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
17
|
Mulder B, Stock JT, Saers JPP, Inskip SA, Cessford C, Robb JE. Intrapopulation variation in lower limb trabecular architecture. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:112-129. [DOI: 10.1002/ajpa.24058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/20/2020] [Accepted: 03/21/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Bram Mulder
- University of Cambridge, McDonald Institute for Archaeological Research Cambridge UK
| | - Jay T. Stock
- University of Cambridge, McDonald Institute for Archaeological Research Cambridge UK
- Department of Anthropology University of Western Ontario London Canada
- Department of Archaeology Max Planck Institute for the Science of Human History Jena Germany
| | - Jaap P. P. Saers
- University of Cambridge, McDonald Institute for Archaeological Research Cambridge UK
| | - Sarah A. Inskip
- University of Cambridge, McDonald Institute for Archaeological Research Cambridge UK
| | - Craig Cessford
- University of Cambridge, McDonald Institute for Archaeological Research Cambridge UK
| | - John E. Robb
- University of Cambridge, McDonald Institute for Archaeological Research Cambridge UK
| |
Collapse
|
18
|
Saers JPP, Ryan TM, Stock JT. Baby steps towards linking calcaneal trabecular bone ontogeny and the development of bipedal human gait. J Anat 2020; 236:474-492. [PMID: 31725189 PMCID: PMC7018636 DOI: 10.1111/joa.13120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Trabecular bone structure in adulthood is a product of a process of modelling during ontogeny and remodelling throughout life. Insight into ontogeny is essential to understand the functional significance of trabecular bone structural variation observed in adults. The complex shape and loading of the human calcaneus provides a natural experiment to test the relationship between trabecular morphology and locomotor development. We investigated the relationship between calcaneal trabecular bone structure and predicted changes in loading related to development of gait and body size in growing children. We sampled three main trabecular regions of the calcanei using micro-computed tomography scans of 35 individuals aged between neonate to adult from the Norris Farms #36 site (1300 AD, USA) and from Cambridge (1200-1500 AD, UK). Trabecular properties were calculated in volumes of interest placed beneath the calcaneocuboid joint, plantar ligaments, and posterior talar facet. At birth, thin trabecular struts are arranged in a dense and relatively isotropic structure. Bone volume fraction strongly decreases in the first year of life, whereas anisotropy and mean trabecular thickness increase. Dorsal compressive trabecular bands appear around the onset of bipedal walking, although plantar tensile bands develop prior to predicted propulsive toe-off. Bone volume fraction and anisotropy increase until the age of 8, when gait has largely matured. Connectivity density gradually reduces, whereas trabeculae gradually thicken from birth until adulthood. This study demonstrates that three different regions of the calcaneus develop into distinct adult morphologies through varying developmental trajectories. These results are similar to previous reports of ontogeny in human long bones and are suggestive of a relationship between the mechanical environment and trabecular bone architecture in the human calcaneus during growth. However, controlled experiments combined with more detailed biomechanical models of gait maturation are necessary to establish skeletal markers linking growth to loading. This has the potential to be a novel source of information for understanding loading levels, activity patterns, and perhaps life history in the fossil record.
Collapse
Affiliation(s)
- Jaap P. P. Saers
- Department of ArchaeologyMcDonald Institute for Archaeological ResearchUniversity of CambridgeCambridgeUK
| | - Timothy M. Ryan
- Department of AnthropologyPennsylvania State UniversityState CollegePAUSA
| | - Jay T. Stock
- Department of ArchaeologyMcDonald Institute for Archaeological ResearchUniversity of CambridgeCambridgeUK
- Department of AnthropologyUniversity of Western OntarioLondonONCanada
- Department of ArchaeologyMax Planck Institute for the Science of Human HistoryJenaGermany
| |
Collapse
|
19
|
Sorrentino R, Stephens NB, Carlson KJ, Figus C, Fiorenza L, Frost S, Harcourt-Smith W, Parr W, Saers J, Turley K, Wroe S, Belcastro MG, Ryan TM, Benazzi S. The influence of mobility strategy on the modern human talus. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171:456-469. [PMID: 31825095 DOI: 10.1002/ajpa.23976] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/03/2019] [Accepted: 11/13/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVES The primate talus is known to have a shape that varies according to differences in locomotion and substrate use. While the modern human talus is morphologically specialized for bipedal walking, relatively little is known on how its morphology varies in relation to cultural and environmental differences across time. Here we compare tali of modern human populations with different subsistence economies and lifestyles to explore how cultural practices and environmental factors influence external talar shape. MATERIALS AND METHODS The sample consists of digital models of 142 tali from 11 archaeological and post-industrial modern human groups. Talar morphology was investigated through 3D (semi)landmark based geometric morphometric methods. RESULTS Our results show distinct differences between highly mobile hunter-gatherers and more sedentary groups belonging to a mixed post-agricultural/industrial background. Hunter-gatherers exhibit a more "flexible" talar shape, everted posture, and a more robust and medially oriented talar neck/head, which we interpret as reflecting long-distance walking strictly performed barefoot, or wearing minimalistic footwear, along uneven ground. The talus of the post-industrial population exhibits a "stable" profile, neutral posture, and a less robust and orthogonally oriented talar neck/head, which we interpret as a consequence of sedentary lifestyle and use of stiff footwear. DISCUSSION We suggest that talar morphological variation is related to the adoption of constraining footwear in post-industrial society, which reduces ankle range of motion. This contrasts with hunter-gatherers, where talar shape shows a more flexible profile, likely resulting from a lack of footwear while traversing uneven terrain. We conclude that modern human tali vary with differences in locomotor and cultural behavior.
Collapse
Affiliation(s)
- Rita Sorrentino
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.,Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Nicholas B Stephens
- Department of Anthropology, Pennsylvania State University, State College, Pennsylvania
| | - Kristian J Carlson
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California.,Evolutionary Studies Institute, University of the Witwatersrand, Palaeosciences Centre, Johannesburg, South Africa
| | - Carla Figus
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Luca Fiorenza
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.,Earth Sciences, University of New England, Armidale, New South Wales, Australia
| | - Stephen Frost
- Department of Anthropology, University of Oregon, Eugene, Oregon
| | - William Harcourt-Smith
- Graduate Center, City University of New York, New York, New York.,New York Consortium in Evolutionary Primatology, New York, New York.,Department of Anthropology, Lehman College, New York, New York.,Division of Paleontology, American Museum of Natural History, New York, New York
| | - William Parr
- Surgical and Orthopaedic Research Laboratory, Prince of Wales Hospital, University of New South Wales, Sydney, New South Wales, Australia
| | - Jaap Saers
- PAVE Research Group, Department of Archaeology & Anthropology, University of Cambridge, Cambridge, UK
| | - Kevin Turley
- Department of Anthropology, University of Oregon, Eugene, Oregon
| | - Stephen Wroe
- Function, Evolution and Anatomy Research Laboratory, Zoology Division, School of Environmental and Rural Science, University of New England, New South Wales, Australia
| | - Maria G Belcastro
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.,ADES, UMR 7268 CNRS/Aix-Marseille Université/EFS, Aix-Marseille Université, Marseille Cedex 15, France
| | - Timothy M Ryan
- Department of Anthropology, Pennsylvania State University, State College, Pennsylvania
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
20
|
Barak MM. Bone modeling or bone remodeling: That is the question. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 172:153-155. [PMID: 31710704 DOI: 10.1002/ajpa.23966] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 10/26/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Meir M Barak
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York
| |
Collapse
|
21
|
Saers JP, Ryan TM, Stock JT. Trabecular bone structure scales allometrically in the foot of four human groups. J Hum Evol 2019; 135:102654. [DOI: 10.1016/j.jhevol.2019.102654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 11/26/2022]
|